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0. Summary

A bang bang controller for vibrations réduction in a flexible

beam is designed under the constraint that its action emulate the

dynamics which would be generated by a pre-assigned linear

controller. This design is carried out by using sliding mode

techniques which have been recently developed to implement a

continuous controller via a discrète valued controller. The

comparative behavior of the ensuing bang bang controller and of its

linear counterpart is illustra-ted via numerical simulation under

both nominal and perturbed operating conditions.



Ce rapport est une version étendue de l'article "A Bang Bang

Controller for Vibration Réduction in a Rotating Flexible Beam" qui

a été accepté pour publication dans les Comptes Rendus du "31st

IEEE Conférence on Décision and Control", Tucson, Arizona, Décembre

1992.
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l. Introduction

A number of real time feedback schemes have been recently

proposed to control vibrations in flexible structures such as those

characterizing light weight flexible manipulators, large space

antennas, space platfonns, space stations and similar Systems.

While the variety of approaches adopted to this end is quite

large, typically the flexible structures considered are modelled in

tenns of a linear dynamical System; the controller schemes are

often of the state feedback type with gains computed by either pôle

placement or LQG techniques [Jo.l, Li.l, Sh.l]. A conunon feature

of thèse controllers is that they are designed under the assumption

that the control action be arbitrarily selectable within a certain

continuous range of values. Practical considérations arising from

the utilization of on/off electronic hydraulic or air jet

components may, on the other hand, make it convenient or necessary

to implement thèse controllers by imposing the control action to be

restricted to assume one value out of a discrète set.

One way to solve this problem is to develop the design of the

discrète controller from scratch by considering the performance

spécifications which have led to the linear controller, and by

subsequently. applying discrète design techniques. This, however, is

an inefficient procédure to follow as it does not benefit from the

already developed linear controller. An alternative solution is

simply to insert in cascade with the linear controller a switching

device such as, for example, a puise width modulator. A

disadvantage of this approach, however, is in the introduction of
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a small delay which on occasion may produce a destabilizing

influence on the feedback loop dynamics. Aiaong more advanced

alternative avenues, a recently proposed approach, based on sliding

mode controllers techniques [De.l], appears to be particularly

attractive. In addition to the élimination of the delay, thèse

techniques may also lead to a solution with an improved robustness

to parameter variation and external perturbation.

The objective of the présent paper is to investigate the

possibility to solve our problem by applying this approach, and

more specifically, by considering the général sliding mode

procédure recently proposed in [De.2]. This objective is pursued

by considering, as a prototype of a flexible structure, a planar

flexible rotational beam . This beam is clamped to a hub at one

hand and free at the other; its rotations are implemented by means

of a linear feedback control torque applied at the hub [Da.l, Sh.l,

Bha.l]. By applying the procédure proposed in [De.2], we design a

bang bang controller which emulates the action of this pre-assigned

linear control. A nmnber of simulation experiments illustrate the

comparative behavior of the flexible beam submitted to the ensuing

bang bang controller and to its linear counterpart. This behavior

is investigated under both nominal and perturbed operating

conditions.

2. The Mathematical Setting

Consider a linear dynamical plant described by the

differential équation



x(t) = A*x(t) + B*u(t) + p(t), x(0) = XQ (l)

where: x(t) e R represents the plant state, u(t) e R is the

control, and p(t) e R" a disturbance; the symbols A and B denote

appropriately dimensioned real matrices. Thèse matrices are

assumed to be given by

A:= Ag + SA (2)

B:= Bg + SB (3)

where Ag and Bg characterize the "nominal" behavior of the plant,

and SA, SB describe the influence of parameter variations. It is

further assumed that a (continuous) control law UQ (x,t) is pre-

assigned with values belonging to a certain open set in Rm, (e. g. :

an open hypercube).

From a mathematical point of view, the problem of interest is

to détermine a (discrète) control law u(x,t) with entry values

constrained to belong to a given discrète set, u, (x,t) e {u,^ , ...,

u, y}, i = l ... m, and such that its action on the plant is, in

some sense, équivalent to that of the (continuous) control Uy (x,t).

Under nominal operating conditions, (i.e. with <SA=0, <SB=0 and

p(t)=0) , one would like the discrète controller to produce the same

(nominal) state trajectory as the pre-assigned UQ (x,t). Under

perturbed operating conditions, (i.e. with SAOO, SBOO and

p(t)<>0), one would like the discrète controller to produce a state

trajectory at least as close to the nominal one as the trajectory

produced by Up (x,t).

To solve this problem [De.2] suggests a controller defined

according to the following procédure. Using the notation
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CT(t):= B(,Bg+S(t) (4)

where Bg denotes the pseudo-inverse of Bg and

S(t) := J (X(t) -Ag*X(t) - B(,*Up(x,t)}dt

the discrète controller is selected so as to provide an output such

that

u, (x,t) € {u, i , ..., u,,t,}, i= l, .. , m (6)

and

SGN{U, (x,t)-Uo,(X,t)+^,(t)}:= - SGN{[Bo'a(t)], } (7)

where

At(t):= B(/(5A*x(t) + 5B*u(t)+p(t)} (8)

The properties of such a controller are formalized by the

following lenuna.

Lemma l (A specialization of theorem l in [De.2]): If Bg is of a

full rank and the inverse of BQ *B exists, then: the dynamics of

System (1-3) submitted to a discrète controller satisfying (4-8)

has the following properties:

i) the state trajectory of the System is described by



x(t) = Ao*x(t) + B(,*UO (x,t)

+ [I-B[Bo+B]-1Bo+]{-B(jUo(X,t) + 5A*x(t) + p(t) } (9)

ii) if Rank([5A!&B!p(t)JBg]=Rank(Bg) then

x(t) =Ao*x(t) +B(,*Uo(x,t), (10)

iii) if [I- [BgBo+]]5 = S for Se{SA, SB, p(t)}

then

X(t) = A*X(t) + B*Uo(x,t) + p(t), (11)

iv) if Rank([<SBJBg ]) =Rank(Bo)

then

x(t) =A<,*x(t) +Bo*Uo(x,t) +v(t), (12)

where

V(t) := [I- [BoBo+]]{5A*x(t) +p(t)} (13)

3. The Case of a Flexible Beam

With référence to Figure l, consider a flexible beam free at

one hand and clamped on a rotating rigid hub at the other. It has

been demonstrated in a number of récent publications that, under

appropriate assumptions, this beam may be adequately controlled by

means of a linear feedback controller [Da.l, Sh.l, Li.l]. To

further characterize this controller, let the kynematic

configuration of the beam be described in terms of the num_n-
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dimensional vector

q:=[displ* 9]• (14)

where: num_n denotes the number of nodes used to develop the

finite élément model of the beam; displ is a (num_n-l)-dimensional

vector representing the displacement of the nodes from the neutral

axis of the beam; 6 représenta the angle of rotation of the hub.

Ignoring rotary inertia and shear déformation effects, the

dynamic behavior of the (Euler-Bernoulli) model of the beam is

given by
•

X = A*X +B*u (15)

y, := C*x

where: the (2*num_n)-dimensional vector x represents the state of

the beam
•

x:= [x, x^]' x,:= q Xg:= q; (16)

the scalar u représenta the control torque applied to the hub;

y, is a (num_tp+l)-dimensional output vector: its first num_tp

entries represent the displacements measured by the strain gages

located at num_tp testing points; the last entry represents the

angular rotation of the hub.

Moreover,

A1 1 A1 2 B1
A:= B:= (17)

A2 1 A22 B2

with
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An = A22 = °'- A12:= Inum n '• A2 1 = -[Mass]'1 [Rig] (18)

B, = 0; BZ = [Mass]-1 w; W:= [0^^ „., l]'

where the symbols [Mass] and [Rig] represent respectively the beam

mass and rigidity matrices. Matrix C extracts from the state

vector those entries which correspond to either a testing point or

to the hub angular rotation.

The vibrations of the beam are controlled via a linear

feedback law

Uo (t) = - K, y, (t) - Kg y,(t) (19)

where K:=[K, K^ ] is a gain matrix; K is usually computed by

considering a beam model where the number and location of the nodes

are selected so as to coincide with the available testing points.

The structure of this controller is represented in Figure 2 .

In line with section 2, a bang bang controller, subjected to

the constraint ue{+- M}, and capable of inducing a dynamic

behavior équivalent to that produced by the linear feedback

control described by eqn (19), may be obtained as follows.

Consider

n u m n

S(t)=

t

Y2<t) - Bzo*K2*(yi <t)-yi <°)) - J«B2o*Ki -A2,o)yi(t)

(20)
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•

where y^(t):= y, (t) , and Ag , p and Bzo represent the nominal values

of Ag, and B^ which would correspond to a beam model where nodes

and testing points are made to coïncide.

Following lemma l, the bang bang controller is given by

u:= - M*SIGN[o(t)] (21)

where M represent the available level of control and

CT(t)= C, [y, (t) - y, (0)] + Cg Yz (t) + y,(t) (22)

with

•

y,:= €3 y, (23)

and

C1 := B20 IB20 K2 '• C2 := B20''• C3 :== B20'[B20 K1 - A2 1 0 3

(24)

The structure of this controller is illustrated in figure 3.
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TPj, j=l»•..,num_tp, := testing points

N-, j=l,...,num_n, := nodes

qj:= displacement of j-th node from neutral axis

theta:= angular rotation of the hub

tau:= control torque

Figure l: Flexible Rotating Beam [Da.l]
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TRANSDUCERS

CONTROt- TORQUE

y 1_DES

Figure 2: The Structure of the Continuous Controller.

C2 := B^,

\
C3:=B F B K-A

W- - an" i "ai;

CONTROL TORQUE

TRANSDUCERS

y 1_DES

Figure 3: The Structure of the Bang Bang Controller.
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4. Simulation Résulta

The comparative behavior of the bang bang controller and of

its continuous counterpart has been investigated by implementing a

certain number of simulation tests. Thèse simulations concern a

stepped beam with geometrical and physical parameters as specified

in the example developed by Angeles and co-workers in [Da.l]

(table l, Figure 4) .

Basic Test Procédure: Considering the linear and the bang bang

schemes in Figures 2 and 3, the controllers are required to

implement a 3.14 rad hub rotation. The initial state of the plant

corresponds to a beam configuration characterized by a zéro angular

speed and a null déformation. The gains of the two controllers are .

detennined using a beam dynamical model based on 8 measuring

points. More in particular, the linear gain have been taken as

suggested in [Da.l]; the matrices appearing in the description of

the bang bang controller have been coœputed using (24); the value

of the control level, M, has been taken equal to 20. In both

schemes, the dynamics of the beam is simulated by considering a

finite élément model with 29 nodes. More détails may be found in

[De.4].

Graphical Résulta Présentation : The results for each Test are

visualized graphically in Figures 5 through 11. Thèse figures

display the évolution of the tip deflection, the mid beam

deflection, the hub control and the hub rotation with respect to
^

time. The dashed curves describe the behavior with nominal

operating conditions whereas the continuous curves relate to
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perturbed operating conditions.

a = 0.1 Cm]

Hub Inertia = 4.26 E-2 [:te3 m^ 2J

Section 1 := 0.5 Cm]

Section 2 := 0.4 Cm3

Hub

Sect ion Sect i on 2——

Beam

Figure 4: Beam used in simulation expérimenta [Da.l]

PHYSICAL PROPERTIES

No. Test 1ng Points

Length Cm]

Mass Denslty [Kg/m" 3]

Young Modulus CGPa]

Vertical Helgth Cmm]

Horizontal Depth Cm]

Hub

0
a = 0. 1

2712

SECTION 1

5
0.5

2712

71 .0

2.0

0. 1

SECTION 1

4
0.4

2712

71 .0

t .0

0. 1

Table l: Physical Parameters of the Beam
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Test N. l: STEP RESPONSE BEHAVIOR UNDER NOMINAL OPERATING CONDITIONS

Objective: Ta illustrate comparative behavior under nominal

operating conditions.

Modalities: As stipulated in the basic test procédure under nominal

operating conditions (absence of perturbation, System parameters

correspond to their expected values) . The control period is of 0.1

msec.

Résulta and Discussion: With référence to lemma l, in this case one

has that SA, SB and p(t) are all equal to zéro. It follows that, in

line with lenuna l, one must expect the dynamics of the linear and

bang bang controllers to coïncide. The results of the test are

represented by the dashed curves in Figures 5-11 and confinn this

expectation.

Test N.2: INFLUENCE 0F A HUB MOMENT 0F INERTIA BIGGER THAN EXPECTED

Objective: To illustrate comparative behavior under operating

conditions where the hub moment of inertia is considerably bigger

that its nominal value.

Modalities: Identical to those of experiment N.l with the exception

that the actual value of the hub moment of inertia is now taken to

be 20 times bigger than the nominal one.

Résulta and Discussion: The results of this test are reported in

Figure 5. The addition of hub mass moment of inertia causes both

a SA and a SB différent from zéro. Contrary to the case of test

N. 1, the induced perturbation does not satisfy condition ii) of

lenuna l. As a conséquence, it is more difficult to predict the
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theoretical outcome of the test. Observe, however, that the

component of the perturbation in the range of Bg is relatively

minor, and that condition iii) of lemma l is "almost" satisfied.

Moreover, with the implemented sélection of the bang bang action,

it is still possible to satisfy eqn (7). From this observation,

one should expect the dynamics of the linear and bang bang

controllers to be similar. This is confirmed by the simulation

results in Figure 5 which report a dynamic behavior only slightly

différent from the nominal one. Thèse results also suggest that the

robustness to this type of perturbation is quite acceptable in both

the bang bang and the linear controller.

Test N.3: ADDITION 0F A MASS LOAD AT THE TIP 0F THE BEAM

Objective: To illustrate comparative behavior under operating

conditions where a mass load is added at the tip of the beam.

Modalities: Identical to those of experiment N.l with the exception

that a pointwise, unaccounted for, mass load is now assumed to be

located at the tip of the beam. The mass of this load corresponds

to 10 % of the overall mass of the beam.

Résulta and Discussion: Figure 6 illustrâtes the simulation

results. The behavior of the two controllers are visibly similar.

The discussion of Test N. 2 applies once again to this type of

perturbation.

'»

Test N.4: INFLUENCE 0F A SMALLER THAN ANTICIPATED MODULUS 0F

ELASTICITY
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Objective: To illustrate comparative behavior under perturbed

operating conditions corresponding to a smaller than anticipated

beam modulus of elasticity.

Modalities: Identical to those of experiment N. l with the exception

that the modulus of elasticity is now smaller (50%) than the

anticipated value.

Résulta and Discussion: Figure 7 illustrâtes the simulation

results. The behavior of the two controllers are visibly similar.

This perturbation causes «SA to be différent from zéro. The

discussion of Test N. 2 applies once again to this type of

perturbation.

Test N.5: BEHAVIOR UNDER AN IMPRECISE LOCATION 0F THE STRAIN GAGES

Objective: To analyze sensitivity to the location of the strain

gages used to measure vibrations.

Modalities: Identical to those of experiment N.l with the exception

that the strain gages at the tip and at the mid point of the beam

are now misplaced from their expected location of 5 mm towards the

tip of the beam.

Résulta and Discussion: The influence of this perturbation is

difficult to predict on a theoretical basis as no direct result is

available to this effect. The simulation results, (Figure 8) ,

suggest that while the dynamic behavior produced by the linear

controller is relatively uneffected by this perturbation, its
^

influence is critical to the stability of the bang bang controller.

This difficulty reveals a substantial weakness of the bang bang
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controller which should be dealt with before proceeding to test

bench implementation.

Test N.6: INFLUENCE 0F A DELAY IN THE CONTROL ACTION

Objective: To analyze sensitivity to the présence of a delay in the

feedback loop.

Modalities: Identical to those of experiment N. l with the exception

that a delay of 2.5 msec is now introduced in the application of

the control action.

Résulta and Discussion: It is once again difficult to

theoretically predict the outcome of this experiment as the

available nonlinear stability and sensitivity results are not

directly applicable to this case. The simulation results, (Figure

9), suggest that while the dynamic behavior produced by both the

continuous and the bang bang controller is influenced by this

perturbation, this influence is somewhat more damaging in the case

of the latter controller.

Test N.7: INFLUENCE 0F A PERTURBATION TORQUE ACTING ON THE HUB

Objective: To illustrate comparative behavior under the application

of a sinusoïdal perturbation torque to the hub.

Modalities: Identical to those in Test N.l with the exception that

now a perturbation torque is applied to the hub. This perturbation

is sinusoïdal with a frequency equal to l hertz and an amplitude

equal to .7 N*m.

Résulta and Discussion: With référence to lenuna l, in this case one
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has that SA. and <SB are equal to zéro and p(t)= .7*Bg sin(2*pi*t).

As this perturbation is trivially in the range of Bg , from lemma l

one must expect it to have an influence over the dynamics of the

linear controller and no influence over the dynamics of the bang

bang controller. The results in Figure 10 confirm this expectation.

They suggest that the performance of the bang bang controller is ,

in this test, superior to that of the linear controller it attempts

to emulate.

Test N.8: INFLUENCE 0F THE CONTROL SAMPLING PERIOD

Objective: To analyze sensitivity to the control sampling period in

the feedback loop.

Modalities: Identical to those of experiment N.l with the exception

that the control period is now equal to 1.5 msec.

Résulta and Discussion: It is once again difficult to

theoretically predict the outcome of this experiment as the

available nonlinear stability and sensitivity results are not

directly applicable to this case. The simulation results, (Figure

11), indicate the présence of beam oscillations when the system is

subjected to the bang bang controller. Further simulations

demonstrated a stable behavior of the continuous controller with a

control period equal to 3 msec.

Closure

The problem to reduce vibrations in a rotating flexible beam

by means of a bang bang action may be solved by applying the
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général procédure proposed in [De.2]. According to this procédure

one starts by designing a linear (continuous) controller capable to

reduce vibrations. The action of this continuous controller is then

emulated by applying the bang bang action of an "équivalent"

discrète controller. The results of this application appear to have

much in common with the analogous nonlinear study reported in

[De.3].

The structure of the overall bang bang controller is quite a

simple and easy one to implement. Simulation results confirm

theoretical predictions to the effect that the bang bang controller

may be designed so that the dynamics it générâtes under nominal

operating conditions be identical to that obtainable with the

pre-designed linear state feedback controller. Under certain types

of perturbations such as those related to an only approximate

knowledge of the beam physical parameters (hub moment of inertia,

rigidity modulus, an additional load on the tip of the beam) the

dynamics of the bang bang controller is essentially équivalent to

that of the linear controller. Furthennore, the discrète

controller, unlike its continuous counterpart, is unaffected by a

perturbation torque applied at the hub.

Thèse results also indicate, however, that the stability of

the bang bang scheme becomes problematic in the face of an only

approximate knowledge of the location of the strain gages, or in

the présence of a delay or a too long sampling period in the
l

control loop. Improvements to the bang bang controller design

should therefore be considered before its test bench performance
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may be expected to be a satisfactory one. An avenue of potential

interest in this direction is the investigation of robustness

improvement by means of correctives such as the adoption an

adaptive schéma with real time identification, the introduction of

thresholds and additional levels in the control action, the use of

a state predictor, and similar measures.
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Figure 7: Sensitivity to a diminished modulus of elasticity.



HUBCONTROL HUB ROTATION

?
s.

t

_Q
wulu
•a

0.05

0

-0.05

-0.1

-0.15

26

l 2
tùnc,(scc)

TIP DEFLECTION

//"~"

f

;z.t\1-

0 l 2

timc (sec)

0.05
/—N

S 0

g -0.05
•^

l -0.1
u

•a

-0.15

MID BEAM DEFLECTION

\/

î
fe

20

10

0

r -10

-20

0.05
^-s

e o

g .0.05

l -0.1
_u•ô

.0.15

a) Linear Controller

HUBOONTROL

l 2
timc (sec)

TIP DEFLECTION

0

i
s-/

s
e

HUB ROTATION

IL
z

0.051

s o[
s^

g -0.05 h\

l -0.1 [
u

-1—2—3 •U50-
time (sec)

b) Bang Bang Controller

MID BEAM DEFLECTION

w
l
t-

\ hÏt

y-.—\^.—.

Figure 8: Sensitivity to a misplacement of the strain gages.



HUBCONTROL

.0
•«-*

ulu
•a

0.05

0

-0.05

.0.1

.0.15

l 2

timc,(scc)

TIP DEFLECTION

ïf
J.

/
^...

l 2

time (sec)

<~»

1
\_/

£f
e

4

3

2

l

HUB ROTATION

0.05
/--s

s -o

g -0.05

l -0.1
•e

.0.15

l

"y"~ —l'

_z_7

MID BEAM DEFLECTION

..'':" ~""~~'
'/'

v

27

î
fe
<>—>•

sl

20|

101

0|

-loi

-20

0.05
^\

e o
^^

.§ -0.05

l .0.1

a) Linear Controller

HUBOONTROL

'012

timc (sec)

TIP DEFLECTION

A>
•a

-0.15

^...^................umjiirt"^"""""""""T""""?îî

^,......................

:ï

1
V-'

5
s

HUB ROTATION

./f
~T

T
-tftâAA

7—
MID BEAM DEFLECTION

l 2 3
time (sec)

b) Bang Bang Controller

Figure 9: Sensitivity to the présence of a delay in the loop.
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