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ABSTRACT

The problem of selecting a subset of nodes with greatest influence
in a graph, commonly known as influence maximization, has been
well studied over the past decade. This problem has real world
applications which can potentially affect lives of individuals. Al-
gorithmic decision making in such domains raises concerns about
their societal implications. One of these concerns, which surpris-
ingly has only received limited attention so far, is algorithmic bias
and fairness. We propose a flexible framework that extends and
unifies the existing works in fairness-aware influence maximization.
This framework is based on an integer programming formulation of
the influence maximization problem. The fairness requirements are
enforced by adding linear constraints or modifying the objective
function. Contrary to the previous work which designs specific
algorithms for each variant, we develop a formalism which is gen-
eral enough for specifying different notions of fairness. A problem
defined in this formalism can be then solved using efficient mixed
integer programming solvers. The experimental evaluation indi-
cates that our framework not only is general but also is competitive
with existing algorithms.

CCS CONCEPTS

• Social and professional topics→User characteristics; •Theory
of computation → Mathematical optimization; • Networks →

Online social networks.
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1 INTRODUCTION

The problem of finding the set of nodes which have the maximum
influence in a graph is known as the Influence Maximization (IM)
problem. This problem has been well studied over the past decade
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and has various applications in domains such as marketing, health-
care, communication, education, agriculture, and epidemiology,
among many others [14, 17, 22, 25].

In recent years, with the increasing use of automatic decision
making, the concerns about their impact on people’s lives has in-
creased. The majority of the existing works on fairness in auto-
mated decision making focuses on machine learning approaches,
and in particular classification tasks. There exists a vast literature
on various techniques to address algorithmic bias in machine learn-
ing. These techniques range from processing the data to removing
historical discrimination, limiting the unjust treatment of similar
individuals, and establishing statistical guarantees to ensure that
groups of individuals are not classified based on their sensitive
attributes such as race, age, and gender.

In this paper we focus on the less-studied problem of fairness in
influence maximization. In many countries, controlling the discrim-
ination in certain domains such as education and hiring is regulated
by law. Recently these regulations have been extend to online ad-
vertisement (for example, see [26]). An important application of
the IM problem is advertising. In fact, it was first introduced under
the name of viral marketing and aimed at maximizing the profit
of an advertiser who targets individuals in a social network [24].
In addition, IM has been used in various applications where the
main focus is social good, such as HIV prevention for homeless
youth [32] and financial inclusion [1]. Hence it is crucial to ensure
that maximizing influence in a network is performed in a way that
ensures a diverse spread of influence among various groups and
communities. For instance, a health awareness campaign needs to
ensure that gender, race, and sexual orientation of the people in the
community has no influence on their access to the information.

Fairness is a subjective matter and depending on a situation, dif-
ferent definitions of fairness may be employed. In machine learning
there are more than twenty different definitions of fairness [30] and
there is some debate on which definition is most suitable in each
situation. Similar to any automated decision making framework,
it is crucial to develop different variants of fairness-aware IM for
different situations. One possible approach for doing so is to design
a specific algorithm for each definition. In contrast, we develop a
formalism backed by a generic solver to handle all problem variants.
As a result, the task of developing a fairness-aware IM algorithm is
reduced to specifying the fairness measure in this formalism. Our
contributions are:

(1) We review and introduce a number of fairness measures
for modeling fairness-aware IM problems. These measures
serve as building blocks in our framework. The group-level
measures, namely equity, equality, maximin and diversity
focus on the fair distribution of influence across different
groups.
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(2) We propose a flexible framework for modeling and solving
fairness-aware IM problems. Unlike the majority of methods
in IM which solve the problems sub-optimally (possibly with
guarantees), our framework obtains optimal solutions.

(3) We conduct extensive experiments to evaluate IM methods
subject to various fairness measures. We demonstrate the
trade-offs between different fairness measures and the influ-
ence.

(4) We compare our proposed approach with existing IM meth-
ods on various metrics and show that our proposed approach
not only is general but also is competitive with existing al-
gorithms.

The rest of the paper is structured as follows: in Section 2 we
review the IM problem and a few IM methods. Next, in Section 3,
we address fairness in the IM problem by proposing four notions
of fairness. We then convert IM and fairness-aware IM problems
into Mixed Integer Programming problems in Section 4. We then
show how to encode fairness notions into linear expressions. We
evaluate our framework in Section 5, and compare our framework
to the related work in Section 6. Finally, we provide numbers of
future directions in Section 7 and conclude the paper in Section 8.

2 BACKGROUND

In this section, we review several key topics on which our proposed
approach for fairness-aware influence maximization (IM) relies. We
begin by reviewing the influence maximization problem and then
present a brief overview of a few popular methods for solving this
problem.

2.1 The Influence Maximization problem

The IM problem was first studied by Richardson and Domingos
[24] as the problem of maximizing the profit of an advertiser in a
social network. However, this problem was first presented under
the title of influence maximization by Kempe et al. [12].

Definition 1 (The Influence Maximization (IM) problem).
Assume a graph G = (V ,E) and a diffusion model M that captures
the stochastic process of spreading information on G. The influence
function σG,M : 2V → R≥0 is a set function defined on any subset
of nodes. This function captures the expected number of influenced
nodes according toM . The goal of the IM problem is to find a seed set
S ⊂ V with |S | = k such that σG,M (S) is maximized. For the rest of
the paper, when the context is clear, we omit the subscript of σG,M (S).

The influence of each user is defined based on a diffusion model.
In a generic diffusion model, each user u ∈ V is either active or
inactive. First, we assume all users in G are inactive. Next, a set of
k users called the seed set S is selected from G, and all the users
in S are categorized as active users. Then a stochastic activation
process begins and continues until no further activation is possible.
There exists an extensive amount of literature on various diffusion
models such as linear threshold model, triggering model, and time
aware model. In this paper, we focus on the most commonly used
model, called the Independent Cascade (IC) model.

Definition 2 (The Independent Cascade (IC)Model). Given
G = (V ,E), where each edge e ∈ E has a propagation probability
p(e) ∈ [0, 1], the influence propagation process defined by IC is as

follows: At the first step, only nodes in the seed set S are active. If node
u is activated at step i and it is connected to an inactive node v by a
directed edge e , there is a probability p(e) that u activates v at step
i + 1. Each node only has one chance to influence its neighbors. An
activated node always remains activated. This process continues until
it is not possible to activate further nodes.

The quality of a solution of an IM problem is determined by its
spread function.

Definition 3 (The Spread Function). Given G = (V ,E) and
S,A ⊂ V , the spread function I (S,A) is the number of nodes in A
activated according to a realization of the IC model starting from the
seed set S . Note that E[I (S,V )] = σ (S).

Computation of E[I (S,V )] is #P-hard [12]. However, Kempe
et al. propose a Monte Carlo approach for estimating E[I (S,V )]

from samples of G. Assume a distribution over induced subgraphs
ofG , such that the probability of subgraphд = (Vд ,Eд) is as follows:

p(д) =
∏
e ∈Eд

pe
∏

e ∈E\Eд

(1 − pe ) (1)

Moreover, for a given subgraph д, let Rд(S) denote the set of
nodes in Vд which are reachable from S in д. Kempe et al. show
that under the IC model the influence function σ (S) is equal to the
expected value of Rд(S), that is:

E[I (S,V )] =
∑
д

p(д)Rд(S) (2)

This suggests a method for estimating E[I (S,V )]: Given p in-
stances of G, E[I (S,V )] ≈

∑p
i=1 Rдi (S)/p. To sample an instance д

according to the probability distribution of Equation 1, we remove
each edge e ∈ E with probability 1 − p(e).

2.2 Solving the IM problem

It has been shown that the IM problem is generally NP-hard and
hence intractable unless P = NP . However, when the influence
function has certain properties, the optimal solution can be approx-
imated by an efficient algorithm. These properties are monotonicity
and submodularity.

Definition 4 (Monotonicity). An influence function σ (.) is
monotone iff σ (S ′) ≤ σ (S) for any S ′ ⊂ S ⊆ V .

The monotonicity means that adding more nodes to a seed set S
increases the influence spread.

Definition 5 (Submodularity). An influence function σ (.) is
submodular iff σ ({v} ∪ S ′) − σ (S ′) ≥ σ ({v} ∪ S) − σ (S) for any
S ′ ⊂ S ⊆ V and v ∈ V \ S .

Kempe et al. [12] introduced a a greedy algorithm which obtains
an 1− 1

e approximation for the IM problem, assuming that the influ-
ence function is monotone and submodular. They also demonstrate
that under the IC diffusion model, the influence function has these
properties.

Definition 6 (The Greedy algorithm for IM). The greedy
algorithm starts with an empty set S and iteratively selects a user
which provides the maximum marginal gain to the influence function
σ (.) and adds it to the set S .
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Despite the efficiency of the greedymethod, IM is still a very chal-
lenging problem to solve because evaluating the influence function
σ (.) is #P-hard (see Li et al. [20] for details). Existing algorithms for
solving IM are categorized into three main groups according to the
way that they approximate the influence function. The simulation
based methods such as celf [17] perform Monte-Carlo sampling for
evaluating influence function. The proxy based algorithms such as
simpath [9] replace the influence functions with proxy functions.
The main focus of this type of algorithms is efficiency. Finally, the
sketch based algorithms such as tim [28] and imm [27] speed up the
evaluation of the influence function by first constructing sketches,
which are subgraphs induced by an instance of the influence pro-
cess. There are two types of sketches, namely forward influence (FI)
and reverse reachable (RR). We refer the reader to a recent survey
for a detailed discussion of variants of IM and existing methods for
solving them [20].

3 FAIRNESS-AWARE INFLUENCE

MAXIMIZATION

To address fairness in an IM problem, we first need to define what
we mean by fairness-aware IM. There are mainly two categories of
fairness metrics in machine learning: group fairness and individual
fairness. Group fairness metrics are statistical measures which are
defined based on an attribute or set of attributes that defines two
groups of individuals. Measure such as equal opportunity, equalized
odds, and demographic parity [10] among many others attempt to
define a metric that satisfies a fairness property among two groups
of individuals. While group fairness approaches focus on group-
level fairness, individual fairness [5] considers similar treatment
among two similar individuals. In this paper our main focus is on
defining various group fairness notions in IM.

To represent different populations in G, assume we have m
groups, i.e., C = {C1,C2, . . . ,Cm } where each node v ∈ V belongs
to at least one group, i.e., VC1 ∪VC2 ∪ . . . ∪VCm = V .

The first notion of fairness that we introduce is equality which
focuses on the fair allocation of seeds to the groups proportional to
the size of the group within the population. This notion of fairness
satisfies the fair distribution of resources among groups. Assuming
an advertising campaign that aims to spend its budget fairly among
various demographic groups, which means to have fair share of
leaders among different groups.

Definition 7 (Eqality). Given a a set of groups C, the equal-
ity constraint requires that the number of seed nodes in each group
C ∈ C is proportional to the population ratio of that group, that is,
|S ∩VC |/k ≈ |C |/|V |.

The second notions is equity. While equality focuses on the fair
distribution among the seed nodes, equity aims to minimize the un-
fair outcome by fair treatment among different groups proportional
to their size in the network. Therefore, we may start with dispro-
portionate share of various groups that reaches a more diverse
population at the end.

Definition 8 (Eqity). Given a set of groups C, the equity
constraint requires that the expected number of influenced nodes
in a group C ∈ C is proportional to the its population ratio, i.e.
E[I (S,VC )]/E[I (S,V )] ≈ |C |/|V |.

The two measures that we visit next, namelymaximin and diver-
sity were first introduced by [29]. The maximin measure is closely
related to equity. This measure is closely related to the legal notion
of disparate impact where the goal is to minimize the gap between
different groups in terms of received influence relative to their size.
We want to maximize the minimum relative influence received by
any group.

Definition 9 (Maximin). Given a set of groups C, the maximin
criterion aims to maximize minC ∈C E[I (S,VC )]/|C |, which is the
minimum influence among all groups relative to their populations.

If members of one community are not well-connected in a net-
work, enforcing maximin fairness becomes very costly as assigning
seeds to the members of that community leads to limited impact
on the overall influence. The diversity measure overcomes this
problem by allocating resources according to the internal topol-
ogy of each community. It is done in two stages. In the first stage,
a fraction of seeds proportionate to the size of each community
is used for influencing the induced sub-graph of that community.
In the second stage, the internal spread of influence among each
community is used as a lower bound on the influence received by
the nodes of that group. Hence, diversity is not giving each group
fair allocation of resources like equality nor fair share of influence
similar to equity and maximin. Instead, it guarantees that each
group receives influence at least equal to their internal spread of
influence.

Definition 10 (Diversity). For a group C , let Gc denote the
graph induced from G by the nodes in C , kc = ⌈k · |C |/|V |⌉, and
OPTC = maxS ⊂C : |S |=kC σGC (S). Given a set of groups C, the diver-
sity constraint requires that for eachC ∈ C it holds that E[I (S,VC )] ≥
OPTC .

3.1 Hardness of fairness-aware IM

As we discussed in Section 2, the IM problems are computationally
challenging to solve. However since the influence function is mono-
tone and submodular, the IM problems can be solved with a greedy
algorithm with a 1 − 1

e approximate ratio. However, the influence
function of the fairness-aware IM problems does not have these
properties.

Theorem 1. The influence function of the fairness-aware IM
problems with equity, equality, maximin, and diversity notions of
fairness is neither monotone nor submodular.

This theorem is proved for maximin and diversity measures
in [29]. This proof can be easily extended to the other two variants.

4 FORMULATING FAIRNESS-AWARE IM IN

MIXED INTEGER PROGRAMMING

Wewill now show how the different variations of fairness-aware IM
which we presented earlier can be modeled and solved as instances
of a general framework. This framework is based on converting
the IM problems into Mixed Integer linear Programming (MIP)
problems. This framework is declarative, meaning that the user
only needs to specify the problem, and the solving is done by a MIP
solver. This eliminates the need for developing specific algorithms
for different problem settings.
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Table 1: Definitions and MIP encodings of fairness measures in influence maximization (0 ≤ ϵ < 1).

name mathematical notation mixed integer programming encoding

equality |S ∩VC |/k ≈ |C |/|V |

∑
j ∈C sj ≤ k · |C |/|V | + ϵ∑
j ∈C sj ≥ k · |C |/|V | − ϵ

equity E[I (S,VC )]/E[I (S,V )] ≈ |C |/|V |

∑m
p=1

∑n
j=1 a

p
i − |C |/|V | ·

∑m
p=1

∑n
j=1 a

p
j ≤ ϵ∑m

p=1
∑n
j=1 a

p
i − |C |/|V | ·

∑m
p=1

∑n
j=1 a

p
j ≥ −ϵ

maximin maximizeminC ∈C E[I (S,VC )]/|C |
maximize xmin
xmin · |C | ≤

∑m
p=1

∑
j ∈C a

p
j ∀C ∈ C

diversity E[I (S,VC )] ≥ OPTC
∑m
p=1

∑
j ∈C a

p
j ≥ OPTC

4.1 Encoding Influence Maximization in MIP

We start with presenting the MIP encoding for the basic influence
maximization problem. This MIP encoding is taken from [19]. We
introduce the binary variables si , i ∈ {1, . . . ,n} as indicators of
whether node i is selected as a seed. Recall that the influence func-
tion can be approximated by the average count of influenced nodes
in a number of samples generated from the graph. Assume that we
havem such samples. Let the variable api denote whether nodevi is
influenced in sample p. Finally, given a graph G = (V ,E), let us de-
fineH (G, i) as the set of indices of nodes that can influencevi , that is,
H (G, i) = {i} ∪ {j : vj ∈ V and there is a path from vj to vi in G}.
Then the IM problem can be expressed as:

maximize
m∑
p=1

n∑
i=1

a
p
i

s.t.

a
p
i ≤

∑
j ∈H (дp,i)

sj 1 ≤ i ≤ n, 1 ≤ p ≤ m (3)

n∑
i=1

si ≤ k (4)

si ∈ {0, 1} 1 ≤ i ≤ n (5)

a
p
i ∈ [0, 1] 1 ≤ i ≤ n, 1 ≤ p ≤ m (6)

When the objective is maximizing the influence spread, con-
straints of Equation 3 are sufficient to ensure that api is one if and
only if nodevi is influenced in samplep. We canmake this condition
hold regardless of the objective function, too. For this to hold, we
should enforce that api ∈ {0, 1} and api ≥ |H (дp , i)|

∑
j ∈H (дp,i) sj .

4.2 Encoding Fairness Measures in MIP

Wewill now show that the fairnessmeasures introduced in Section 3
can be encoded as linear expressions. This implies that one can turn
the MIP formulation of IM into a fairness-aware model by including
these expressions as constraints or objective function.

4.2.1 equality. The equality measure concerns the number of seeds
dedicated to each group. For group C , this value is captured by the
expression

∑
j ∈C sj .

4.2.2 equity. The core constructs of the equity constraint are the to-
tal influenceE[I (S,V )] and the group influenceE[I (S,VC )]. Sincewe

are approximating the influence by sum of spread in samples, these
quantities can be expressed by

∑m
p=1

∑n
j=1 a

p
j and

∑m
p=1

∑
j ∈C a

p
j ,

respectively.

4.2.3 maximin. This measure concerns the smallest group influ-
ence. To encode this quantity, we introduce an auxiliary variable
xmin and constrain it to be smaller or equal to the group influence
of all groups. When the objective is maximizing xmin , it will be
equal to the smallest group influence.

4.2.4 diversity. The diversity constraints are inequality constraints
over the influence in a group and the whole graph. These inequal-
ities can be simply formulated using the encodings of E[I (S,VC )]
and E[I (S,V )] which were introduced before. Table 1 summarizes
the MIP encodings of all fairness measures.

5 EXPERIMENTAL EVALUATION

We ran experiments on machines with 40 Intel Skylake processors
(2.4GHz) and 202GB of RAM running Linux Centos 7. The timeout
was 7200 seconds. The MIP solver is Gurobi-8.1.11. The code and
data will be available upon publication of this paper.

We examined our framework using the 20 synthetic networks
that model an obesity prevention intervention in the Antelope
Valley region of California [31]. Each network in the Antelope
Valley dataset has 500 nodes, and 1576–1697 edges. Nodes in this
dataset have labels from which we select the sensitive attributes
gender, age and ethnicity to determine the groups. In this dataset
gender includes 2 classes, age has 7 classes and ethnicity contains
5 classes. In all the experiments, similar to [29], we set k = 25.
For the equality and equity, we set ϵ = 0.1. All evaluations are
under the IC model with the commonly used edge probabilities
p(eu,v ) = 1/in-degree(v). The number of samples in the MIP
models is 100 unless otherwise stated, and the solution quality is
evaluated by simulation over 10, 000 samples.

5.1 Evaluation of Fairness-aware IM

Our fairness-aware models are all based on a MIP model for the IM
problem. To evaluate various notions of fairness, we first compare
the quality of solutions of the MIP model. We aim to determine how
the number of samples affects the performance of the fairness-blind
MIP model. We evaluate our MIP model with various number of

1www.gurobi.com
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samples in {10, 100, 200, 500, 1000}. Figure 1 shows that the average
quality of the solutions obtained by the MIP models increases with
the number of samples.

celf simpath imm tim MIP
10

MIP
100

MIP
200

MIP
500

MIP
1000

65.0

67.5

70.0

72.5

75.0

77.5

80.0

Co
ve

ra
ge

Figure 1: Coverage obtained by MIP models and existing IM

algorithms. The numbers below the MIP models show the

number of samples.

To determine the quality of the solutions obtained by the MIP
model, we also compare the performance of the MIP models with
the state-of-the-art algorithms for influence maximization, namely
celf, simpath, imm and tim (a brief explanation of each algorithm
is provided in Section 2). All competing methods use 10, 000 sam-
ples. The results presented in Figure 1 show that despite using
fewer samples, the MIP models provides comparable or even better
solutions than the competing methods. Note that increasing the
size of the samples in MIP significantly increase the run time of
the models. The results show that models with only 100 samples
are solved within reasonable time and are competitive in terms of
solution quality. Using less than 100 samples is not practical as the
quality of solutions drops drastically. Using 200 samples, models
perform very similar to the celf, simpath and imm models. The best
performing state-of-the-art IM approach is tim and the MIP models
with 1000 samples perform similarly to this approach in terms of
overall coverage. Considering the trade-off between the runtime an
solution quality, we choose to run the fairness-aware MIP models
with 100 samples.

Next, we determine the quality of our fairness-aware models
by comparing our MIP models for fairness-aware IM according to
their overall coverage. Figure 2 present the results for all labels. We
compare the performance of our MIP models for fairness-aware IM
with the best performing state-of-the-art fairness-blind IM, i.e., tim.

Tsang et. al [29] propose a metric called price of fairness (POF) to
determine the cost of fair allocation among diverse groups. Price of
fairness is defined as the ratio of optimal unconstrained total influ-
ence to the total influence subject to fairness constraints. Figure 2
presents the price of fairness for our MIP models.

An interesting observation is that the price of fairness is higher
when the number of communities are larger. Hence, POF is higher
when we consider age which has 7 categories compared with eth-
nicity with 5 categories and gender with only two labels. Moreover,
the POF is less for those methods which focus on providing equality,
i.e., equal number of influenced nodes in each community. Hence,
for the case of equality, in which we assign fair seeds to each group,
is really high. Equality and equity have higher POF and less overall
coverage compared to the maximin and diversity methods. And

the maximin approach has the overall best coverage among the
fairness notions across different attributes.

The choice of fairness measure has a substantial effect on the
result. To better understand the differences among different notions
of fairness, we perform a deeper analysis on their differences. In
Figure 4, we evaluate all fairness-aware methods using L1 norm,
which calculates the sum of absolute differences of coverage in
various communities from the average coverage. This measure
quantifies the degree of balance in terms of coverage among various
communities. From Figure 3 and Figure 4, we observe that both
maximin and equity are balanced wrt the number of influenced
nodes in each community whereas the diversity approach performs
poorly. Interestingly, even the blind approach, i.e., tim, performs
better than the diversity approach. As expected, the performance
of equality is not better than the equity or the maximin approaches.
However it still performs better than the blind model as it at-least
guarantees to provide similar opportunities for each community.

We also evaluate the notion of fairness based on their coverage
for the most disadvantaged group. Both equity and maximin meth-
ods perform well to give opportunity to the least advantaged group
while the diversity and equality methods perform poorly in this
metric. Equality still performs better than the blind method while
diversity performs even worst than TIM when the attributes are
not balanced, i.e., for the case of age and ethnicity.

Among the four notions of fairness that we study in this section,
the maximin approach not only has higher coverage and lower POF,
but it better distributes the opportunity among various communi-
ties and takes care of the most disadvantaged group. Note that in all
these experiments we set ϵ = 0.1 meaning that the differences be-
tween the groups using the equity approach is only 10%. However,
it is possible to use higher/lower ϵ to control the distribution of op-
portunity among various groups. Moreover, the maximin approach
can potentially perform very costly if our disadvantaged commu-
nity is poorly connected. While the structure of the graph and how
the members of each community are connected to each other has a
huge impact on the performance of maximin, other approaches are
less affected by the topology of the graph. Finally, the stochastic
nature of propagation can affect the performance and one can mea-
sure whether different communities propagate similarly or not. To
this end, the equality measure can provide a guarantee that all com-
munities are treated similarly and resources are distributed evenly
among them and it is due to them to propagate it accordingly.

5.2 Comparison with existing methods

We will now compare the performance of existing methods for
fairness-aware influence maximization with their counterpart MIP
models. The group maximin and diversity problems have been
introduced by Tsang et al. [29] and solved using multi-objective
submodular optimization. We compare the quality of solutions
obtained by this approach (which we will refer to as fairIM) with
the MIP models of maximin and diversity.

5.2.1 Maximin. The objective in the maximin problem is to maxi-
mize the influence received by the least well-off group. We compare
the two approaches in terms of this quantity. Figure 5 shows the
average value of this quantity over all networks for each attribute.
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Figure 2: Coverage (top row) and price of fairness (bottom row) obtained by fairness-aware MIP models for attributes gender,

age, and ethnicity.
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Figure 3: Comparing various notion of fairness in IM in terms of the coverage received by the most disadvantaged group for

attributes gender, age, and ethnicity.
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Figure 4: L1 Dispersion obtained by fairness-aware MIP models for attributes gender, age, and ethnicity.

The results indicate that the MIP model is competitive with the ex-
isting method. The advantage of our approach over fairIM is more
visible for the gender attribute. Interestingly, this improvement in
fairness does not lead to a drop in overall influence. This is reflected
in Figure 6 which shows the price of fairness for both methods.

5.2.2 Diversity. We compare our MIP model and fairIM for solving
the problem of influence maximization subject to diversity con-
straints [29]. The objective function in these problems is the total
coverage. Figure 7 compare the solutions obtained by these methods
in terms of their objective function. The results indicate that the
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MIP model consistently outperforms fairIM in terms of objective
value.
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Figure 7: Comparing the objective values obtained by MIP

and fairIM methods for the diversity problem.

Next we compare the two methods in terms of violation of diver-
sity constraints. Although these constraints are enforced as hard
constraints in the MIP model, they can be still violated when eval-
uated on a set of samples different from the ones included in the
MIP model. Figure 8 shows the average violations on all graphs for
different attributes. The results of Figures 7 and 8 indicate that the
MIP model dominates fairIM both in terms of objective value and

constraint violation, while obtaining solutions within a reasonable
runtime.
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Figure 8: Comparing the violation of diversity constraints in

solutions obtained by MIP and fairIM methods.

6 RELATEDWORK

In this section we position our work in relation to the literature of
influence maximization and fairness in AI.

Influence Maximization. Although IM problem has been intro-
duced in 2003 by Kempe et al. and despite the fact that it has been
proved that a greedy algorithm can solve it with a 1−1/e-optimally,
a large literature exists in AI community on various approaches
on making it more scalable [21], time-aware [13], cost-aware [23],
topic-aware [2] and location-aware [18]. Also, besides the technical
aspects of the IM problem, there have been efforts to address the
challenges of deploying IM in real-world applications, e.g., health-
care [32]. However, there is a lack in the literature in addressing
fairness-aware IM problems. There are only a few attempts in re-
cent years to introduce definitions of fairness in IM. Group fairness
has been first studied by Tsang et al. [29]. Similarly, the definition
of diversity for access gap is first introduced by Fish et al. [7] as an
individual-level definition of fairness in IM. Balance constraint as
two-stage problem is introduced in Gershtein et al. [8]. Also the
topology of the network for various labels to increase diversity
among the influenced nodes is studied in [3]. Our work differs from
these studies because first, we look at the IM problem from the
generic perspective. Our approach not only allows us to define all
the current definitions of fairness in our frameworks, but also gives
the possibility to define new fairness concepts. For example, any
definition consisting of a combination of existing fairness measures
can be easily encoded in our framework. In addition, in the experi-
mental evaluation, our approach has proved to be more efficient
than the existing methods.

Fairness in AI. The most notable approaches include fairness
through awareness [5], individual fairness [34], statistical parity,
disparate impact, and group fairness [4, 6, 11], counterfactual fair-
ness [16], preference-based fairness [33], and equality of opportu-
nity [10]. The goal of the above mentioned works is to assure the
fair treatment of individuals or groups that are identified by sensi-
tive attributes. The main goal of individual fairness measures is that
similar individuals are treated similarly. The most well-known indi-
vidual fairness notion is the Lipschitz condition [5] which bounds
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the distance between the outcome of the algorithm for two indi-
viduals by a function of their similarity. In this paper, we focus on
group fairness. A notable example of group fairness is demographic
parity, which expresses that a system is fair if the probability of
getting a favorable decision is equal between two groups. Assuming
that the favorable decision in the IM problem is receiving influence,
then equality and maxmin are closely related to the definition of
demographic parity. Our notion of group allow us to satisfy demo-
graphic parity for any arbitrary subgroups defined over the set of
sensitive attributes. Note that subgroup can be expressed as a union
of joint assignments to the sensitive features.

7 DISCUSSION AND FUTURE DIRECTIONS

Enforcing fairness in the IM problem is a challenging task and only
recently received some attention. Most of the existing literature on
the IM problem revolves around the submodularity of the influence
function. This property plays an important role in designing effec-
tive and efficient IM solutions. However, fairness-aware IM has to
deal with non-submodular influence functions, and therefore most
of the existing attempts for the IM problem are no longer effective
and need to be re-visited in this context.

Scalability is also a major concern for any IM algorithm to make
it feasible to be used in real life applications. For the fairness-aware
IM the issue is even harder to tackle due to its complex nature.
In this paper, as in similar existing work, we use MC sampling to
estimate the influence function, which increases the size of the MIP
problem relative to the number of the samples. An interesting path
to explore in the future is to design more effective and efficient
sampling approaches to reduce the size of the optimization problem.

Besides scalability, an important issue with the current sampling
techniques is that they cannot provide any robustness guarantee. It
has been shown that a small change in the graph structure, which
is very common in real world networks, can change the solution
drastically. Providing a robust fairness-aware IM solution may re-
quire new diffusion models to encode the dynamic nature of the
network.

In machine learning, many of the fairness metrics are defined
in terms of the confusion matrix, which consists of counts of true
positives, false positives, true negatives and false negatives. As
Kleinberg et al. [15] noted by the impossibility theorem, it is of-
ten impractical to satisfy all fairness definitions simultaneously.
Although it is feasible to express all fairness measures in IM as
linear constraints in our framework, it is important to note that
such limitation exists and we are not able to satisfy all definitions
of fairness e.g., equality, equity, maximin and diversity at the same
time.

We show that addressing fairness to ensure diverse allocation
of resources in graphs is expensive. An interesting path to explore
is to study the trade-offs between the price of fairness and various
fairness metrics in IM. Since our framework is highly expressive, we
can impose such control on the price of fairness through addition
of suitable linear constraints.

Finally, in this work we mainly focus on group-level definitions
of fairness in IM. However, our framework is easily extensible to
individual fairness measures in which the main focus is the welfare
of all individuals despite the communities to which they belong.

Addressing individual fairness in our framework is thus a promising
future direction.

8 CONCLUSION

In this paper, we demonstrate a unifying framework for the fairness-
aware IM problems from an optimization perspective. Since fairness
is subjective and IM problem are applied in different real-world
domains, a single fairness definition cannot be used in all situations.
We present multiple definitions of fairness and demonstrate their
relative advantages along with their differences depending on the
context. We also study the trade-offs between enforcing fairness
and the loss of total influence. We propose a unifying framework
which allows the user to combine various definitions of fairness (if
desired) and potentially encode new definitions.

We give new perspectives to consider diversity in IM problem at
the group level given node labels. Our extensive evaluation indicate
that addressing discrimination is expensive no matter which group-
level notion of fairness we choose. We demonstrate that each notion
of fairness has certain properties and we may not be able to satisfy
all these properties with a single fairness metric. Finally, we discuss
the limitations and opportunities of fairness-aware IM and mention
a number of open questions to explore in the future.
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