
Titre:
Title:

An exact CP approach for the cardinality-constrained euclidean
minimum sum-of-squares clustering problem

Auteurs:
Authors: Mohammed Najib Haouas, Daniel Aloise et Gilles Pesant

Date: 2020

Type: Communication de conférence / Conference or workshop item

Référence:
Citation:

Haouas, M. N., Aloise, D. & Pesant, G. (2020, septembre). An exact CP approach
for the cardinality-constrained euclidean minimum sum-of-squares clustering
problem. Communication écrite présentée à 17th International Conference on
Integration of Constraint Programming, Artificial Intelligence, and Operations
Research (CPAIOR 2020), En ligne / Online (17 pages). doi:10.1007/978-3-030-
58942-4_17

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL: https://publications.polymtl.ca/9185/

Version: Version finale avant publication / Accepted version
Révisé par les pairs / Refereed

Conditions d’utilisation:
Terms of Use: Tous droits réservés / All rights reserved

Document publié chez l’éditeur officiel
Document issued by the official publisher

Nom de la conférence:
Conference Name:

17th International Conference on Integration of Constraint
Programming, Artificial Intelligence, and Operations Research
(CPAIOR 2020)

Date et lieu:
Date and Location: 2020-09-21 - 2020-09-24, Vienna, Austria

Maison d’édition:
Publisher: Springer

URL officiel:
Official URL: https://doi.org/10.1007/978-3-030-58942-4_17

Mention légale:
Legal notice:

The final authenticated version is available online at https://doi.org/10.1007/978-3-
030-58942-4_17.

Ce fichier a été téléchargé à partir de PolyPublie,
le dépôt institutionnel de Polytechnique Montréal

This file has been downloaded from PolyPublie, the
institutional repository of Polytechnique Montréal

http://publications.polymtl.ca

https://doi.org/10.1007/978-3-030-58942-4_17
https://doi.org/10.1007/978-3-030-58942-4_17
https://publications.polymtl.ca/9185/
https://doi.org/10.1007/978-3-030-58942-4_17
http://publications.polymtl.ca/

An Exact CP Approach for the
Cardinality-Constrained Euclidean Minimum

Sum-of-Squares Clustering Problem

Mohammed Najib Haouas, Daniel Aloise, and Gilles Pesant

Polytechnique Montréal, Canada
{mohammed-najib.haouas,daniel.aloise,gilles.pesant}@polymtl.ca

Abstract. Clustering consists in finding hidden groups from unlabeled
data which are as homogeneous and well-separated as possible. Some con-
texts impose constraints on the clustering solutions such as restrictions
on the size of each cluster, known as cardinality-constrained clustering.
In this work we present an exact approach to solve the Cardinality-
Constrained Euclidean Minimum Sum-of-Squares Clustering Problem.
We take advantage of the structure of the problem to improve several
aspects of previous constraint programming approaches: lower bounds,
domain filtering, and branching. Computational experiments on bench-
mark instances taken from the literature confirm that our approach im-
proves our solving capability over previously-proposed exact methods for
this problem.

1 Introduction

Data analysis has become an important field of study in an age dominated by
substantial and indiscriminate data collection. One of the most direct ways to
extract information from a set of data observations takes the form of a cluster-
ing procedure wherein data is grouped in homogeneous and/or well separated
bundles based on some measure of similarity/dissimilarity. The partitioned data
offers a more tractable presentation of the unlabeled observations. Depending
on the criterion on which the partitioning is based, different clusters may be
achieved.

Definition 1. Let O = {o1, o2, ..., on} be a set of n data observations in some
space and d : O2 7→ R+ a dissimilarity measure (not necessarily a distance). A
k-partition (k < n) ∆ ∈ A of O into a set of classes C = {Cc}1≤c≤k (with A the
set of all possible k-partitions) is such that :

Cc 6= ∅ ∀ 1 ≤ c ≤ k, ∪1≤c≤kCc = O, Cc ∩ Cc′ = ∅ ∀ 1 ≤ c < c′ ≤ k

Let γd : A 7→ R+ be a partitioning criterion based on d. ∆∗ is an optimal
partition if ∆∗ = argmin∆∈A γd(∆).

One popular partitioning criterion is the Euclidean Minimum Sum-of-Squares
Clustering (MSSC) which is widely used to produce high quality, homogeneous,
and well-separated clusters [2]. At its core, it minimizes intra-cluster variance.

2

Definition 2. Consider observations in Rs. MSSC aims to find the cluster cen-
ters cj ∈ Rs, as well as cluster assignments wij that solve the following pro-
gram [2]

minimize
n∑
i=1

k∑
j=1

wij‖oi − cj‖2

s.t.
k∑
j=1

wij = 1 ∀1 ≤ i ≤ n

wij ∈ {0, 1} ∀1 ≤ i ≤ n, ∀1 ≤ j ≤ k,

where wij = 1 represents the assignment of observation oi to cluster Cj.

MSSC is NP-hard in general dimension [1].
Often, prior information is known about the data and can be introduced to

the clustering process in order to increase performance as well as solution quality.
This is possible through expression of custom constraints on the observations or
the resulting clusters [26, 6]. In this paper we propose an exact approach to solve
a specific variant of constrained MSSC: one that involves cardinality constraints
on the resulting clusters (ccMSSC). Strict cardinality constraints in clustering
can be encountered in various fields such as image segmentation [17], distributed
clustering [4], category management in business [5], document clustering [5], and
workgroup composition [15]. Cardinality constraints can also be used to reinforce
the clustering procedure against the presence of outliers as well as groups that
are either too large or too small [23, 25]. The ccMSSC is already NP-hard in one
dimension for k ≥ 2 [9]. In principle, existing Constraint Programming (CP)
approaches for MSSC [14, 13, 16] may be extended in order to handle such a
variant by adding a global cardinality constraint. Our contribution shows that we
can achieve better performance with specialized global constraints with targeted
filtering algorithms as well as an adapted search heuristic, both designed to take
advantage of the special structure of the problem in order to quickly reduce the
search space. Furthermore, in using CP we ensure easy extension of this work to
include independent user-defined constraints.

In the rest of the paper, Section 2 defines the CP model used to solve MSSC,
to which constraints can be added for the special case of ccMSSC, among others.
Section 3 is devoted to a review of the literature surrounding MSSC as well as
constrained MSSC. Sections 4 and 5 present our contributions: two filtering al-
gorithms dedicated to ccMSSC resolution as well as an updated and more robust
version of an existing search heuristic for MSSC. Section 6 summarizes exper-
imental results as well as comparisons to existing methods. Finally, Section 7
provides a brief summary of our work and discusses future research avenues.

2 Basic CP Model

The problem stated in Definition 2 was modeled in CP by Dao et al [14]:

3

Variables. Each observation oi is represented as an integer variable xi, D(xi) =
{1, . . . , k} representing the index of the class to which the corresponding obser-
vation belongs. A variable nc, D(nc) = {0, 1, ..., n} is introduced for each cluster
to represent its cardinality.

Objective. Recall MSSC involves finding an optimal set of cluster centers that
minimize the intra-cluster variance, per Definition 2. However there is an equiv-
alent formulation [13] of the objective which circumvents these centers, enabling
us to solve the problem without making them explicit:

minimize
k∑
c=1

1

2

1

|Cc|
∑

o,o′∈Cc

‖o− o′‖2. (1)

Using reified constraints, the objective can be further simplified and rewritten
as follows:

minimize

k∑
c=1

1

nc

n−1∑
i=1

n∑
j=i+1

(xi = c ∧ xj = c) · ‖oi − oj‖2 (2)

The objective expression in Equation 2 can be constrained to be equal to
a real variable Z,D(Z) = [0,∞[known as the Within Cluster Sum of Squares
(WCSS), from which the new objective is:

minimize Z (3)

Constraints. A Global Cardinality Constraint (GCC) [21] constrains variables
nc to take on the cardinality of their corresponding cluster:

GCC
(
{nc}1≤c≤k , {1, 2, . . . , k} , {xi}1≤i≤n

)
(4)

This model contains a value symmetry which can hinder performance (cluster
indices are interchangeable). One way to overcome this is to maintain pairwise
integer value precedence on the branching variables as follows [27]:

intValPrecedence
(
{xi}1≤i≤n , c− 1, c

)
∀ 1 < c ≤ k (5)

In essence, each instance of the above constraint ensures that if xi = c then
∃ j < i such that xj = c− 1. A higher level of propagation can theoretically be
achieved by considering each possible pair (as opposed to only adjacent pairs)
of values. However, this comes at a price for virtually no benefit to domain
reductions in practice [20].

3 Related Work

MSSC is a very well-studied problem and one that is often tackled through
heuristics due to its extremely hard nature. K-means is perhaps the most impor-
tant and widely-used algorithm to solve the unconstrained MSSC problem [28]. It

4

performs a local search to find a partition with minimal within-cluster variance,
iteratively relocating cluster centers and stopping at a local optimum. Among ex-
act methods, CP Clustering (CPC) presented in [13] is a first successful attempt
at using CP for MSSC. Improving on the model presented in Section 2, the au-
thors suggest a simple search heuristic as well as a global constraint to efficiently
navigate the search space looking for a globally optimal solution to the problem.
The authors leverage calculation of lower bounds to filter the objective variable
as well as perform cost-based filtering on the branching variables. CP Repetitive
Branch and Bound (CP RBBA) presented in [16] is a second attempt at lever-
aging CP to solve MSSC. Its operation is inspired from Repetitive Branch and
Bound (RBBA) in [10] where MSSC is divided into sub-problems, each treated
as an independent CP model in CP RBBA. This enables the use of a range of
user constraints (which RBBA doesn’t support) as well as the computation of
tighter bounds, leading to substantially better performance for many instances.

Turning now to constrained variants of MSSC, the K-means heuristic ap-
proach has been extended to support various constraints [26, 8]. A special case
of ccMSSC, the balanced MSSC, is approached in [12] using a simple Variable
Neighborhood Search. Through constant-time reevaluations of the objective af-
ter each reassignment as well as carefully selected local search neighborhoods,
the authors are able to find the best known values of several large instances. More
relevant to us, the authors of [23] suggest a method for solving the ccMSSC us-
ing convex relaxations of the problem, whose solutions can be “rounded” to a
valid one for the main problem. Their approach distinguishes itself from the oth-
ers by providing a posteriori guarantees on the sub-optimality of the solutions
obtained. In fact, based on these guarantees, the authors are able to declare
several of the solutions they found as being globally optimal. An exact Column
Generation framework for solving constrained MSSC was proposed in [3], sup-
porting anti-monotone constraints which can be used to restrict the maximum
cardinality of the clusters. Of course the CP methods previously described for
MSSC, CPC and CP RBBA, can solve the ccMSSC by simply adding a GCC
but a contribution of our work is to show that, for such a constraint, a more
integrated approach is much more productive.

4 Filtering Based on Cardinality-Constrained Clustering

In this section we present two filtering algorithms for a global constraint [13]
aimed at accelerating resolution of the model in Section 2 for the case of ccMSSC.

4.1 Basic filtering derived from CPC

This first filtering algorithm represents a specialization of CPC for the ccMSSC.
We both accelerate and tighten its bound computation by exploiting the fact
that cluster sizes {nc}1≤c≤k are fixed.

The global constraint in CPC evaluates, at each search tree node, the mini-
mum contribution Z(Cc,m) to the objective Z for each cluster Cc whenever any

5

m free observations are assigned to it:

Z(Cc,m) =
Z(Cc) · |Cc|+

∑m
i=1Ri(c)

|Cc|+m
(6)

where Z(Cc) represents the WCSS of the partially filled Cc and (Ri(c))
q
i=1 is a

non-decreasing sequence where each term represents the lowest individual con-
tribution of the i-th free observation to Cc (among q which are unassigned at
the current node) such that:

Ri(c) = r2(i, c) +
m∑
j=1

r3,j(i) (7)

where r2(i, c) is the contribution of the i-th free observation due to the observa-
tions already in Cc and (r3,j(i))

q
j=1 is a non-decreasing sequence where each term

represents half the distance between that same i-th free observation and a nearby
element in U , the set of free observations (itself included, i.e. r3,1(i) = 0 ∀i). Re-
fer to Fig. 1 for an illustration.

�/

�/

�/

�/ �/
�/

�/ �/

�

!

�

�
!

Decompose contributions

Example: m = 2, select smallest 2 terms of Ri,c

�/

�/

Partial cluster & 3 free observations

Combination is a lower bound

 !

Fig. 1: Illustration of the computation of Z(Cc,m)

The authors of CPC make use of dynamic programming in conjunction with
Equation 6 to compute lower bounds for the general MSSC problem as well as
to perform the necessary filtering on variables [13].

Global lower bound for ccMSSC. We observe that at each node of the ccMSSC
resolution, one knows exactly how many observations are to be assigned to each

6

cluster Cc to complete it to its target cardinality nc. As such, given a partial
assignment, a lower bound on the cost of a full solution can be more simply
computed as follows without resorting to dynamic programming to compute
terms for different values of m:

Z(C) =
k∑
c=1

Z(Cc, nc − |Cc|) =
k∑
c=1

Z(Cc,mc) =
k∑
c=1

Z0(Cc) (8)

where we denote as Z0(Cc) the minimum individual contribution of Cc when it
is completed to its target cardinality nc, using mc observations (mc := nc−|Cc|).
Equation 8 filters the objective Z by tightening its lower bound. It also prunes
branches that cannot result in a solution better than the incumbent.

Cost-based filtering on cluster assignment variables. It is possible to recycle
computations in order to reevaluate a global lower bound to the problem for
each value-variable assignment in order to enable effective cost-based filtering.

Consider assigning the `-th free observation o′ (w.r.t. the order of the se-
quence (Ri(c))

q
i=1) to cluster Cc. Let C′ = {C1, . . . , C

′
c, . . . , Ck} denote the set

of partially filled clusters identical to C except for C ′c which also contains o′

(C ′c = Cc ∪ {o′}). It is then possible to write the following:

Z(C′) = Z(C)− Z0(Cc) + Z0(C ′c) (9)

All the terms in Equation 9 are available except the last one. Therefore we
devise a simple way to get a lower bound on it:

Z0(C ′c) =
Z(Cc,mc − 1) · (|Cc|+mc − 1) + `-th observation’s contribution

|Cc|+mc

≥
Z(Cc) · |Cc|+

∑mc−1
i=1 Ri(c) +

∑mc−1
i=1 r3,mc(i) + r2,c(`) +

∑mc

j=1 r3,j(`)

|Cc|+mc

=
Z(Cc) · |Cc|+

∑mc−1
i=1

[
r2(i, c) +

∑mc

j=1 r3,j(i)
]

+ r2,c(`) +
∑mc

j=1 r3,j(`)

|Cc|+mc

=
(|Cc|+mc − 1) · Z1(Cc) + r2,c(`) +

∑mc

j=1 r3,j(`)

|Cc|+mc
(10)

The `-th observation’s contribution represents the sum of the following quan-
tities:

– the sum of dissimilarities between it and Cc’s components: r2,c(`);
– half dissimilarities between it and mc − 1 other free observations, which is

greater than or equal to
∑mc

j=1 r3,j(`);
– the other half dissimilarities between it and mc − 1 other free observations,

which is greater than or equal to
∑mc−1
i=1 r3,mc

(i).

with

Z1(Cc) =
Z(Cc) · |Cc|+

∑mc−1
i=1 Ri(c)

|Cc|+mc − 1
where Ri(c) = r2(i, c) +

mc∑
j=1

r3,j(i)

(11)

7

which is similar to Z0(Cc) with the difference being we only select mc− 1 terms
of (Ri(c))

q
i=1 in Z1(Cc) instead of mc. This enables the sequential computation

of both values with the same complexity. Comparing Equation 9 against the
upper bound of Z for each assignment considered enables filtering of values that
cannot result in a solution better than the incumbent.

Summary. Propagation algorithms are called whenever the domain of some vari-
able xi changes or bounds on Z are tightened. Algorithm 4.1 summarizes the
results of this section.

Algorithm 4.1 propagate method: basic filtering

(Computation of r2 and r3 not shown for brevity and are identical to [13])
1: for c← 1 .. k do
2: for v ← 0 .. 1 do
3: for i← 1 .. n where |D(xi)| > 1 do . there are q unassigned observations
4: if mc − v > 0 then
5: R[i]← r2[c, i] + r3[i,mc − 1]. r3 represents the sum in Eq. 7 directly

6: sort (R[i ∈ 1..n : |D(xi)| > 1]) . sort the contribs of the q free observations

7: Zv(Cc)←
Z(Cc)·|Cc|+

∑mc−v
i=1 R[i]

mc+|Cc|−v
. Z0(Cc) and Z1(Cc)

8: LB(Z)←
∑k

c=1 Z0(Cc) . filter objective, Eq. 8
9: for c← 1 .. k do . cost-based filtering

10: LBE ← LB(Z)− Z0(Cc)
11: for `← 1 .. n where |D(x`)| > 1 do
12: if c ∈ D(x`) then

13: LBP ← (|Cc|+mc−1)·Z1(Cc)+r2[c,`]+r3[`,mc−1]

|Cc|+mc
. Eq. 10

14: if (LBE + LBP ≥ UB(Z)) then
15: D(x`)← D(x`) \ {c} . filter if incumbent cost exceeded

The modified CPC filtering algorithm specialized for ccMSSC has a time
complexity in O(qn + q2 log q + kq log q + k + kq) = O(qn + q2 log q) (down
from O(qn+ kq2 log q) [13]) and a space complexity in O(n2). The reduction in
asymptotic complexity is less important than the tighter bounds produced which
enable more aggressive domain reduction for the case of ccMSSC compared to the
original version of the constraint. Computing individual r2 and r3 contributions
incrementally has a detrimental effect in practice due to the overhead involved
in pinpointing the changes that have occurred since the last node.

However, this filtering algorithm is limited by each cluster’s individual min-
imum contribution being computed at a local level, regardless of that of other
clusters. This means that it is possible for a given observation to be considered
for the minimum contribution of two distinct clusters, hindering lower bound
quality. We propose a way to correct this in the next section.

8

4.2 Improved filtering

A tighter global lower bound for ccMSSC. In computing the smallest cost of the
solution extended from a partial assignment (i.e., the global lower bound at a
certain node of the search tree), it helps to consider all clusters as a whole rather
than each of them separately while distributing free observations between them.
This eliminates the issue identified with the basic filtering discussed above and
can be achieved by solving a minimum-cost flow (MCF) problem. At each node
of the search tree, where |U | = q observations are unassigned, a network can be
built as follows:

1. start from a bipartite assignment graph where the first set of vertices repre-
sents the q free observations and the second set of vertices represents the k′

(k′ ≤ k) incomplete clusters;
2. supply each of the vertices representing the observations with one unit of

flow using a common source;
3. connect each of the vertices representing the partially filled clusters with arcs

of capacity mc to a common sink;
4. all other arcs have a capacity equal to 1;
5. only arcs connecting observations to clusters bear a cost, equal to Ri(c)/nc.

Such arcs only exist if the assignment is possible.

The MCF solution is integral because the constraints matrix for the cor-
responding linear program is Totally Unimodular and all other coefficients are
integers. Arcs selected by the MCF represent the optimal division of the free
observations between the incomplete clusters. The corresponding cost incurred
by this completion, based on the minimum individual contributions of each free
observation, necessarily leads to a lower bound on the cost of the solution derived
from the current partial assignment:

Z(C) =

k∑
c=1

Z(Cc) · |Cc|
nc

+ MCF∗cost (12)

This lower bound is greater or equal to the one given by Equation 8.
On the surface, the method being discussed here resembles a GCC with

costs [22]. However it is inapplicable here due to changing costs at each node
of the search tree. Indeed, the cost incurred by the assignment of an individual
observation is not known a priori as it changes every time a cluster is modified
(which happens repeatedly in the search tree). Moreover, this continuously vary-
ing nature of the problem prevents us from taking advantage of most incremental
computations involved in maintaining arc consistency in GCC with costs.

A new MCF instance must be solved each time an impactful change occurs
in the search tree. We define such a change as one where an assignment variable
has been fixed or one where a value has been filtered from the domain of an
assignment variable such that it eliminates a flow-carrying arc in the current
MCF solution. Otherwise the latter solution is still valid. If a new MCF solution
must be computed, we use Network Simplex due to its speed and the fact that
implementations of it are readily available.

9

A more thorough cost-based filtering. The same way adopting a global view of the
problem facilitates generation of tighter bounds on Z, it is possible to leverage
the flow formulation discussed above to perform a more powerful filtering of the
decision variables. This is done through forcing flow on an arc using augmenting
constraints in the current MCF problem to mandate a particular assignment. If
a bound calculated using an augmenting constraint is higher than the cost of the
incumbent solution, the value corresponding to the assumption made is filtered.

For the sake of efficiency, instead of recomputing a solution to the MCF
problem for every possible augmenting constraint, we start by modifying the
one that has been computed for the global lower bound. Such a modification
will result in an infeasible solution (Fig. 2, left) because one cluster will be
overfilled by one unit (red arc in violation) while another will be missing one unit
(transparent bold arc). The task shifts to reestablishing a feasible and optimal
solution from the situation depicted.

Infeasible modification of the optimal MCF solution Corresponding residual graph and
shortest path (in bold) between vertices in violation

[− = remove flow, + = add flow]

�

+

+

−

−

Fig. 2: MCF solution update for cost-based filtering

One way to fix this is to proceed, in an alternating fashion, to the removal
and the addition of flow in arcs of the network designed to send the excess
unit of flow from the vertex corresponding to the overfilled cluster to the one
corresponding to the underfilled cluster. For the solution to be optimal, this al-
ternating sequence of removals and additions should result in the lowest possible
added cost.

A more straightforward way to look at this operation is through a residual
graph derived from the optimal MCF solution (Fig. 2, right). A flow-carrying arc
in the current solution is flipped in the residual graph and given the opposite cost.
Restoring the optimal solution becomes a shortest path problem between the
vertices in violation. This again is reminiscent of GCC with costs [22]. However
our case is a more targeted one where the resulting residual graph is a simple
bipartite digraph. We use the Bellman-Ford algorithm [7] (due to presence of
negative-cost arcs) to solve the shortest path problem for each assumption. If a
path cannot be found, then the augmented MCF problem is inconsistent and the

10

value corresponding to the assumption made must be filtered. The cost increase
of the MCF solution after introduction of the augmenting constraint is equal
to the variation due to relocating the free observation between clusters plus the
weight of the shortest path.

Summary. Below is an algorithmic summary of the advanced filtering propaga-
tion. Changes with respect to the basic filtering algorithm are shown in green.

Algorithm 4.2 propagate method: advanced filtering

(Computation of R, r2, and r3 not shown for brevity; identical to [13] and Alg. 4.1)
1: if impactfulChangeHasOccurred() then
2: makeMCFModel()

3: solution← solveMCFModel() . Network Simplex
4: LB(Z)← partial WCSS + solution.cost() . filter objective, Eq. 12

5: for c← 1 .. k do . cost-based filtering
6: for `← 1 .. n where |D(x`)| > 1 do
7: . Only consider non-redundant assumptions, hence the test below
8: if c ∈ D(x`) ∧ ¬solution.hasFlow(x`, c) then
9: δ ← shortestDistUpdate(solution, x`, c)

10: if δ =∞∨ LB(Z) + δ ≥ UB(Z) then
11: D(x`)← D(x`) \ {c} . filtrer if bound exceeded or pb inconsistent

The time and space complexities of Algorithm 4.2 are dominated by Network
Simplex when called. Depending on the implementation [19], these vary and can
be linked to arc costs. In practice, complexity analysis around Network Simplex
rarely represents a faithful depiction of real world performance. The function
impactfulChangeHasOccurred() runs in O(n) time. Solving the shortest path
problem using the Bellman-Ford algorithm is done in timeO(qk(k+q)) due to the
graph comprising O(qk) arcs and O(q + k) vertices [7]. Overall time complexity
for the cost-based filtering of assignment variables is thus O(q2k2(k + q)).

5 Search Strategy

The search heuristic discussed in this section is inspired from the one proposed
for CPC [13] with two key improvements.

5.1 Bootstrapping from a heuristic solution

To solve MSSC, CPC starts from a feasible, heuristically generated solution
whose cost is used for the first domain reductions (recall that CPC makes use
of a cost-based filtering mechanism). A superior left branch in our search tree,
leading to an initial solution, helps to reduce its size by acting on two separate
aspects of the problem: it provides a tighter initial upper bound and it moves
potentially unsuccessful alternate, future branches near the top of the search
tree to avoid revisiting them repeatedly.

11

Initial solution generation. Instead of starting from a greedy assignment whose
results depend on the order of the observations in O [13] and which produces poor
results when user constraints are present, suppose a feasible good-enough initial
solution τ0 is known in advance (which may or may not be globally optimal). We
can use τ0 as a guide for the first n branching assignments of the CP search to
ensure the first solution found is equal to τ0, thus also ensuring the initial upper
bound is equal to the cost of τ0. Generating this solution can be done using
any number of existing heuristic methods (some of which have been discussed in
Section 3) to solve a constrained MSSC.

The cost of τ0 is only part of what helps the CP resolution. The order in
which individual assignments appear has its importance.

Order of initial assignments. Authors of [11] demonstrate the substantial im-
pact of initial data sequencing on branch and bound searches. They show that
solution times can spread over several orders of magnitude for randomly sampled
sequences. It is possible to prune off large sub-trees by ordering the data of a
heuristically generated solution in an careful manner.

Based on this, given an initial solution τ0 with initial cluster centers, we
suggest two variable orderings in the left branch of the search tree which showed
competitive results in our empirical testing:

– Decreasing distances to own cluster’s center : this method orders assignments
in τ0 from the one whose corresponding observation is farthest from the
center of its cluster to the one that is closest. It tries to place potentially
disruptive, hard to assign observations near the root of the search tree, where
we have greater flexibility to recover from a poor choice.

– Decreasing minimal distances to other clusters’ centers: this method is simi-
lar to the previous one with the difference being that the ordering is based on
the minimum distance between each observation and centers of clusters which
are not its own. Therefore, it maximizes the likelihood alternate branches
will fail the closer they are to the top, eliminating bigger sub-trees.

5.2 Dynamic tie-breaking

Once the left branch has been generated, another branching strategy takes over.
The heuristic in CPC is adequate but displays a major weakness. For each unas-
signed xi and c ∈ D(xi), CPC computes ti,c, the WCSS increase on Z if xi = c.
It then branches on the variable given by argmaxi : |D(xi)|>1 minc∈D(xi) ti,c [13].
However, ties may occur whenever a cluster becomes empty upon backtracking:
if every unassigned variable has this cluster in its domain, the minimum will be
zero for all. In that case, the heuristic essentially falls back to a lexicographical
one. To correct this, we design a dynamic tie-breaking strategy.

When presented with a tie as a result of a cluster becoming empty, we branch
in a way that assigns to the empty cluster the observation whose sum-of-squares
between it and other unassigned observations is the highest:

o? = argmax
o∈U

∑
o′∈U
‖o− o′‖2 (13)

12

Since bound computations in CPC directly involve the sum of squared dis-
tances between observations of each cluster, the choice depicted in Equation 13
is akin to a fail-first strategy: we initiate a cluster with the observation which is
most likely to produce worse solutions through elevation of its cluster’s contri-
bution.

6 Experiments

We compare our CP-centered approach to solving ccMSSC to the works discussed
in Section 3. In it, we cited CPC in [13] and CP RBBA in [16] as CP frameworks
for solving MSSC. These two approaches can easily be extended to solve ccMSSC
through the introduction of adequate cardinality constraints to their CP models.
We also cited a numerical method for solving ccMSSC with guarantees on the
sub-optimality of the solutions [23] as well as a column generation framework to
solve constrained MSSC [3]. However the latter’s current implementation does
not support solving ccMSSC and would require a significant amount of work to
add the necessary constraints.1

To carry out our experiments we select 19 instances, summarized in Table 1.
All of them are available in the UCI Machine Learning Repository2 except for
HA [18] and RU [24]. Instances from exact methods presented in Section 3 all
appear in Table 1 and have been completed with randomly sampled datasets from
the UCI repository with 200 data points or less and with numerical attributes.

Table 1: Description of selected instances

Code Name n s k Targeted cluster cardinalities Notes

AI3 Acute Inflammations 120 6 3 40 40 40 1, 2

AI4 Acute Inflammations 120 6 4 30 30 30 30 1, 2

BC Breast Cancer Coimbra 116 9 3 38 39 39 1, 2

BT Breast Tissue 106 9 6 18 17 17 18 18 18 1, 2

CB Connectionist Bench 208 60 2 111 97

CS Concrete Slump Test 103 7 3 34 34 35 1, 2

GI Glass Identification 214 9 6 70 17 9 29 76 13

HA Hatco 100 14 3 34 33 33 1, 2

FI2 Fisher’s Iris 150 4 2 60 90 2

FI3 Fisher’s Iris 150 4 3 50 50 50 1

PA Parkinson’s 195 22 2 147 48

PR Planning Relax 182 12 2 130 52

RU Ruspini 75 2 4 18 19 19 19 1, 2

SE Seeds 210 7 3 70 70 70 1

SY Soybean 47 35 4 11 12 12 12 1, 2, 3

TH Thyroid Disease 215 5 3 72 71 72 1, 2, 4

UL Urban Land Cover 168 147 9 14 16 14 25 15 23 17 15 29

WN0 Wine 178 13 3 60 40 78 2

WNB Wine 178 13 3 59 60 59 1, 2

Table 1 legend: (1) Instance with balanced classes; (2) Number of classes and/or
target cardinalities decided randomly by us; (3) Multiple versions available, ver-
sion Small used here; (4) Multiple versions available, version with 215 observa-
tions used here.

1 personal communication from one of the authors
2 https://archive.ics.uci.edu

13

New algorithms3 were implemented in C++ using IBM ILOG CPLEX Opti-
mization Studio 12.9.0. CPC was reimplemented using this same software frame-
work. CP RBBA’s C++ GECODE implementation is publicly available4 and was
used with slight alterations (to introduce the necessary constraints for ccMSSC).

All algorithms were compiled using Intel C++ Compiler 19.0.3.199 and run
on stock Intel Xeon Gold 6148 processors. Each process was allocated 1 GB of
memory and one core. Maximum runtime was set to 86400 seconds (i.e., 1 day).

6.1 Impact of dynamic tie-breaking

We present in Table 2 the impact of our dynamic tie-breaking strategy on the
performance of CPC. To isolate the effect of the tie-breaking, we do not introduce
any cardinality constraints to the model for this specific test. Dashes represent a
run that has timed out. Due to space constraints, we show results for 6 instances
that faithfully convey the general trend.

Table 2: Impact of dynamic tie-breaking on the performance of CPC

imanyD gnikaerb-eit oN c sum-of-squares tie-breaking

Inst. Time [s] Fails Branches Time [s] Fails Branches

BC 886.2 79.08k 158.21k 56.6 4.03k 8.06k
BT — — — 184 7.73k 15.45k
HA 338.4 40.63k 81.27k 289.8 33.56k 67.14k
FI3 1337.2 56.59k 113.21k 911.5 41.08k 82.19k
RU 0.4 83 170 0.4 82 168
SY 3.2 1.69k 3.38k 2.2 1.15k 2.31k

Table 2 shows a clear and generalized improvement brought on by the tie-
breaking strategy, both with respect to search space size as well as run time.
Notably, Breast Tissue can only be solved by applying the dynamic tie-breaking
to the search process.

6.2 Resolution of ccMSSC

We suggest in Section 5.1 starting the CP search from known good solutions
to the problem and arranging them in the search tree to improve performance.
To this end, we make use of two heuristic approaches to start ccMSSC resolu-
tion: LIMA-VNS [12] (discussed in Section 3) for the balanced instances and
Constrained K-Means Clustering [8] for the others. We use a third-party public
implementation5 for the latter and an executable supplied by the authors for the
former.

Both heuristic algorithms are seeded using /dev/random and run 10 times
for each instance. The median of the 10 runs is picked as a starting point for the
CP search.

3 Source-code can be retrieved from: https://github.com/mnhaouas/card-const-MSSC
4 https://cp4clustering.github.io/
5 https://github.com/Behrouz-Babaki/MinSizeKmeans

14

Each instance is solved 8 times: twice through CP RBBA using two distinct
observation orderings recommended by its authors (FF for Farthest First and NN

for Nearest Neighbor) and twice through each of CPC, the basic approach in
Section 4.1, and the advanced approach in Section 4.2. For each, we make use
of the two observation orderings suggested in Section 5.1 (OC for Decreasing dis-
tances to own cluster’s center and RC for Decreasing minimal distances to remote
clusters’ centers). We also make use of our tie-breaking strategy to accelerate
all methods except CP RBBA due to its fundamentally different nature.

Table 3: ccMSSC resolution statistics for all algorithms

 CP RBBA & GCC CPC & GCC Basic filtering Advanced filtering

Inst. Ord. Time [s] Fails Ord. Time [s] Fails Gap [%] Time [s] Fails Gap [%] Time [s] Fails Gap [%]

AI3 NN — — OC — — 53.2 — — 53.2 — — 38.0
 FF — — RC — — 55.4 — — 55.4 — — 37.7
AI4 NN — — OC — — 57.9 — — 57.8 — — 30.0
 FF — — RC — — 55.7 — — 55.7 — — 29.6
BC NN — — OC — — 81.6 42.6 29.22k — 34.7 6.82k —
 FF — — RC — — 81.6 12.2 5.52k — 5.4 787 —

BT NN — — OC — — 99.9 23.0 12.98k — 9.1 886 —
 FF — — RC — — 99.9 — — 4.0 — — 3.7
CB NN — — OC — — 36.2 — — 35.9 — — 17.4
 FF — — RC — — 35.9 — — 35.6 — — 17.3
CS NN — — OC — — 45.7 — — 45.7 — — 28.0
 FF — — RC — — 45.5 — — 45.5 — — 28.1
GI NN — — OC — — 96.5 — — 86.4 — — 55.2
 FF — — RC — — 96.5 — — 90.3 — — 58.9
HA NN 877.1 195.78k OC 60.1 14.46k — 6.0 2.58k — 4.0 559 —
 FF 2.0 161.82k RC 46.0 11.31k — 3.7 1.72k — 1.4 127 —

FI2 NN 24.7 19.11k OC 380.3 43.51k — 10.8 2.53k — 9.4 1.02k —
 FF 2.0 91.56k RC 23.9 6.17k — 3.2 706 — 1.5 142 —

FI3 NN 18.9 1.30M OC 2498.7 207.59k — 321.6 58.07k — 147.6 9.94k —
 FF — — RC 350.6 33.49k — 54.3 11.93k — 7.8 530 —

PA NN — — OC — — 79.6 — — 68.0 27022.1 1.74M —
 FF — — RC — — 79.6 — — 68.0 24867.4 1.66M —

PR NN — — OC — — 49.3 — — 40.4 — — 25.2
 FF — — RC — — 49.3 — — 40.4 — — 25.2
RU NN 1056.9 103.27M OC 5290.6 3.52M — 157.5 167.28k — 107.1 16.58k —
 FF 5192.1 586.64M RC 3341.4 2.21M — 38.8 50.73k — 9.3 1.74k —

SE NN — — OC — — 47.7 — — 46.8 — — 24.2
 FF — — RC — — 47.7 — — 46.8 37197.0 1.69M —

SY NN 13543.4 2.51G OC 442.3 766.06k — 6.0 16.43k — 13.1 3.54k —
 FF 58074.8 11.67G RC 99.7 283.89k — 0.9 2.84k — 1.8 643 —

TH NN — — OC — — 87.4 — — 83.3 — — 37.8
 FF — — RC — — 87.4 — — 83.3 — — 37.8
UL NN — — OC — — 92.2 — — 60.8 — — 30.3
 FF — — RC — — 92.2 — — 60.8 — — 30.3
WN0 NN — — OC — — 70.6 32239.3 6.60M — 6420.8 567.35k —
 FF — — RC — — 70.6 58373.0 9.28M — 11335.3 755.86k —

WNB NN — — OC — — 69.4 497.7 154.16k — 240.5 31.71k —
 FF — — RC — — 69.4 95.4 15.69k — 13.7 853 —

Table 3 shows a clear advantage for both variants of the filtering algorithms
proposed and particularly for the advanced, flow-based approach. Eight of the
19 instances could not be solved to optimality. However, on the flip side, the
advanced approach is capable of solving two instances none of the other methods
could solve in the allotted time. The basic approach, while fast, produces lower
quality bounds and loses its advantage to substantially bigger search trees.

Overall, ordering RC yields the best results. However, it is not superior for all
instances shown. For example, OC is best for the non balanced version of Wine
as well as Breast Tissue.

15

CPC is also able to take advantage of our improved search strategy to show
competitive results compared to CP RBBA, tighter bounds computed by the
latter notwithstanding. Without our improved search, CPC with GCC is only
able to solve HA, RU and SY in 12398, 15462 and 6006 seconds respectively. This
confirms the important role of a reinforced search strategy for ccMSSC.

6.3 Comparison with IBM CP Optimizer default search

In order to frame the performance of our search strategy in a recognizable refer-
ence, we compared it to the default strategy shipped with IBM CP Optimizer.
Solving the 6 instances in Table 2 as ccMSSC problems using the advanced fil-
tering method yielded, on average, search trees 27 times bigger for CP Optimizer
search and run times were increased by a factor of 20.

6.4 Comparison with the conic optimization approach

The semidefinite programming lower bound and the rounding heuristic of [23]
were able to prove the optimality of FI3, SE, PR, and PA in 584, 3823, 2637, and
2000 seconds, respectively, thus surpassing our best advanced filtering approach
except for FI3 where we show vastly improved results. They are also able to
guarantee a solution to CB and UL with gaps of 0.001% and 3% respectively
while our approach’s best gaps are equal to 17% and 30% respectively for these
instances.

However this numerical method does not allow easy expression of user con-
straints (ours can leverage the flexibility of CP to quickly and easily introduce
any extra constraints). Besides, our CP method is designed as a global optimiza-
tion method which ends its execution only when all possibilities in the search
space have been exhausted. The method of [23] is not conceived towards obtain-
ing the global optimum of the problem shall the upper bound produced by the
rounding method not coincide with the lower bound obtained via the semidefinite
programming relaxation.

7 Conclusion

We presented in this paper a CP approach for exact resolution of the cardinality-
constrained MSSC problem. We suggest both a bolstered search strategy as well
as a global constraint with two distinct filtering schemes: a basic one and a
more advanced one. Experiments on widely used data sets confirm our approach
outperforms previously available exact methods for solving ccMSSC.

Our work can be improved upon by identifying ways that can extend our
global constraint developed for ccMSSC to support soft cardinality constraints
where deviations from target cardinalities could be allowed if it meant obtaining
a lower cost solution. Moreover, as seen previously, performance is heavily de-
pendent on bound quality. Therefore, looking for more innovative ways to fully
exploit the structure of ccMSSC for even tighter bounds could be another avenue
for future research.

16

Acknowledgements

Financial support from a Natural Sciences and Engineering Research Council of
Canada (NSERC) graduate scholarship is gratefully acknowledged.

References

1. Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. Np-hardness of
euclidean sum-of-squares clustering. Machine Learning, 75(2):245–248, May 2009.

2. Daniel Aloise and Pierre Hansen. Evaluating a branch-and-bound rlt-based al-
gorithm for minimum sum-of-squares clustering. Journal of Global Optimization,
49(3):449–465, Mar 2011.

3. Behrouz Babaki, Tias Guns, and Siegfried Nijssen. Constrained clustering using
column generation. In Helmut Simonis, editor, Integration of AI and OR Tech-
niques in Constraint Programming, pages 438–454, Cham, 2014. Springer Interna-
tional Publishing.

4. Maria Fiorina Balcan, Steven Ehrlich, and Yingyu Liang. Distributed k-means and
k-median clustering on general topologies. In Proceedings of the 26th International
Conference on Neural Information Processing Systems - Volume 2, NIPS’13, pages
1995–2003, USA, 2013. Curran Associates Inc.

5. Arindam Banerjee and Joydeep Ghosh. Scalable clustering algorithms with bal-
ancing constraints. Data Mining and Knowledge Discovery, 13(3):365–395, Nov
2006.

6. Sugato Basu, Ian Davidson, and Kiri Wagstaff. Constrained Clustering: Advances
in Algorithms, Theory, and Applications. Chapman & Hall/CRC, 1 edition, 2008.

7. Richard Bellman. On a routing problem. Quarterly of Applied Mathematics,
16(1):87–90, 1958.

8. Kristin P. Bennett, Paul S. Bradley, and Ayhan Demiriz. Constrained k-means
clustering. Technical Report MSR-TR-2000-65, Microsoft Research, May 2000.

9. Alberto Bertoni, Massimiliano Goldwurm, Jianyi Lin, and Francesco Saccà. Size
constrained distance clustering: Separation properties and some complexity results.
Fundamenta Informaticae, 115:125–139, 01 2012.

10. Michael J. Brusco. A repetitive branch-and-bound procedure for minimum within-
cluster sums of squares partitioning. Psychometrika, 71(2):347–363, Jun 2006.

11. Réal A. Carbonneau, Gilles Caporossi, and Pierre Hansen. Extensions to the
repetitive branch and bound algorithm for globally optimal clusterwise regression.
Computers Operations Research, 39(11):2748 – 2762, 2012.

12. Leandro R. Costa, Daniel Aloise, and Nenad Mladenović. Less is more: basic
variable neighborhood search heuristic for balanced minimum sum-of-squares clus-
tering. Information Sciences, 415-416:247 – 253, 2017.

13. Thi-Bich-Hanh Dao, Khanh-Chuong Duong, and Christel Vrain. Constrained min-
imum sum of squares clustering by constraint programming. In Gilles Pesant,
editor, Principles and Practice of Constraint Programming, pages 557–573, Cham,
2015. Springer International Publishing.

14. Thi-Bich-Hanh Dao, Khanh-Chuong Duong, and Christel Vrain. Constrained clus-
tering by constraint programming. Artificial Intelligence, 244:70 – 94, 2017. Com-
bining Constraint Solving with Mining and Learning.

15. Jacques Desrosiers, Nenad Mladenović, and Daniel Villeneuve. Design of balanced
mba student teams. Journal of the Operational Research Society, 56(1):60–66,
2005.

17

16. Tias Guns, Thi-Bich-Hanh Dao, Christel Vrain, and Khanh-Chuong Duong. Repet-
itive branch-and-bound using constraint programming for constrained minimum
sum-of-squares clustering. In Proceedings of the Twenty-second European Confer-
ence on Artificial Intelligence, ECAI’16, pages 462–470, Amsterdam, The Nether-
lands, The Netherlands, 2016. IOS Press.

17. Lars Hagen and Andrew B. Kahng. New spectral methods for ratio cut partition-
ing and clustering. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 11(9):1074–1085, Sep. 1992.

18. Joseph F. Hair, Ronald L. Tatham, Rolph E. Anderson, and William Black. Mul-
tivariate Data Analysis. Pearson, New York, NY, fifth edition, 1998.

19. Dieter Jungnickel. The Network Simplex Algorithm, pages 321–339. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2005.

20. Yat Chiu Law and Jimmy H. M. Lee. Global constraints for integer and set value
precedence. In Mark Wallace, editor, Principles and Practice of Constraint Pro-
gramming – CP 2004, pages 362–376, Berlin, Heidelberg, 2004. Springer Berlin
Heidelberg.

21. Claude-Guy Quimper, Alejandro López-Ortiz, Peter van Beek, and Alexander
Golynski. Improved algorithms for the global cardinality constraint. In Mark
Wallace, editor, Principles and Practice of Constraint Programming – CP 2004,
pages 542–556, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

22. Jean-Charles Régin. Arc consistency for global cardinality constraints with costs.
In Joxan Jaffar, editor, Principles and Practice of Constraint Programming –
CP’99, pages 390–404, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

23. Napat Rujeerapaiboon, Kilian Schindler, Daniel Kuhn, and Wolfram Wiesemann.
Size matters: Cardinality-constrained clustering and outlier detection via conic
optimization. SIAM Journal on Optimization, 29(2):1211–1239, 2019.

24. Enrique H. Ruspini. Numerical methods for fuzzy clustering. Information Sciences,
2(3):319 – 350, 1970.

25. W. Tang, Y. Yang, L. Zeng, and Y. Zhan. Size constrained clustering with milp
formulation. IEEE Access, 8:1587–1599, 2020.

26. Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl. Constrained k-
means clustering with background knowledge. In Proceedings of the Eighteenth
International Conference on Machine Learning, ICML ’01, pages 577–584, San
Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

27. Toby Walsh. Symmetry breaking constraints: Recent results. In AAAI Conference
on Artificial Intelligence, 2012.

28. Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi
Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu, Philip S. Yu, Zhi-Hua Zhou,
Michael Steinbach, David J. Hand, and Dan Steinberg. Top 10 algorithms in data
mining. Knowledge and Information Systems, 14(1):1–37, Jan 2008.

	2020_Haouas_Exact_CP_approach_cardinality-constrained_Euclidean_article

