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Simulation of granular flow in a rotating frame of
reference using the Discrete Element Method
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Abstract
Over the years, the Discrete Element Method (DEM) has attracted significant

attention for its capacity to simulate granular flows because it captures phys-
ical phenomena that cannot be observed using continuum methods. However,
the simulation of granular systems with DEM is computationally demanding,
especially in the case of systems in rotation. One solution is to perform simula-
tions in a non-inertial rotating frame of reference, which requires the addition
of fictitious velocity-dependent forces such as the Coriolis force. We assess the
numerical feasibility and accuracy of such DEM simulations. We show that
the velocity Verlet scheme in its classical form no longer defines a symplectic
map and is no longer of second order when there are velocity dependent forces.
Nevertheless, our study of a dense particle flow within a rotating hourglass
shows that the relevant properties of such flow are accurately reproduced in a

non-inertial frame and that computational performance is improved.

Keywords: DEM, non-inertial frame, symplectic integrator, volume

presearving scheme, Coriolis force, CFD-DEM

1. Introduction

Granular flows occur in many pharmaceutical, biomechanical and food pro-

cesses, and the solids motion is critical to the final quality of the products.
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The study of granular dynamics requires knowledge of a large number of par-
ticle properties, including density, size, size distribution, shape and rigidity.
Moreover, experimental investigations can be difficult to set up and analyze [1].
Numerical modeling, which is complementary to experimental investigations,
can facilitate the study of these systems.

While continuum methods have traditionally been preferred for studying
granular flows, more recently there has been increased interest in Lagrangian ap-
proaches such as the Discrete Element Method (DEM). While DEM has proven
accurate in a wide variety of applications, it is limited by its computational cost,
which depends on the number of particles and the complexity of the geometry
of the device. In pure granular flow studies, reasonable computational times can
be achieved with up to 108 particles [2]. However, this is not the case for multi-
phase solid-fluid studies, for which the efficiency is even more limited, especially
when the geometry is in motion (e.g., rotating) as is commonly encountered in
industrial mixing, segregation and drying applications [3].

To avoid the problem of a rotating geometry (e.g. an impeller in a vessel),
the simulation can be carried out in the rotating frame linked to the geometry
that is in rotation. The physics behind studies of non-inertial frames has been
known for a long time and is commonly used in computational fluid dynamics
with numerical methods such as the single reference frame (SRF) and multiple
reference frame (MRF) [4, 5]. However, this approach has not been extended
to granular flows, and only two DEM studies have been performed in rotational
frames. To the authors’ knowledge, only Shirsath et al have dealt with this
issue for the improvement of the computational performance of a rotating chute
simulation, in particular when the granular flow is coupled with a fluid [6, 7].
Performing DEM in such a frame is challenging. Because of the non-inertial
properties of these frames, inertial forces, i.e., centrifugal and Coriolis forces,
have to be taken into account. The Coriolis force is peculiar because it depends
on the velocity of the particles. In the present paper, we show that inertial forces
pose a number of challenges for the numerical integration of the corresponding
equation of motion.

For DEM simulations, symplectic integrators are often used, due to their
energy conserving nature. The velocity Verlet integration scheme is one of the
most commonly used schemes in the context of DEM and is currently imple-
mented in many DEM open source codes such as YADE [8], MERCURY [9] and
LAMMPS [10, 11}, as well as LIGGGHTS [12], which was used in the present
study.



It is important to note that velocity-dependent forces are not only relevant
for non-inertial frames of reference. Increasing attention is now paid to the
coupling between granular flows and magnetic fields [13, 14, 15], and the Lorentz
force is a velocity-dependent force like the Coriolis force [16]. This underlines the
fact that while velocity dependent forces are of great interest, few studies have
focused specifically on their impact on numerical integration schemes [17, 18]
and none have been done with specific applications to DEM.

The main goal of this work is to apply the Discrete Element Method in the
context of a rotating geometry. In this paper we test the feasability of per-
forming DEM simulations in a non-inertial frame and shed light on the impact
of a velocity-dependent force such as the Coriolis force, on the accuracy and
symplectic properties of a classical DEM integration scheme.

This paper is divided into three parts. The first (sections 2 and 3) provides
a brief introduction to DEM and the physics of rotating frames. The second
(sections 4, 5, 6 and 7) presents a theorical framework for the impacts of velocity-
dependent forces on a symplectic integration scheme using simple problems. The
third (sections 8 and 9) discusses the feasibility of using DEM in a non-inertial
frame based on several schemes. It also discusses the impact of using rotating

frames on computational performance.

2. Discrete Element Method

DEM is a Lagrangian approach for modeling granular flows where each par-
ticle is considered as a discrete entity. The method integrates Newton’s second
law of motion to calculate the velocity and position of each particle at every
time step of the simulation.

The method specifically deals with collisions, which are detected by compar-
ing the distance of two particles to the sum of their radii. If two particles overlap,
a simple spring and dashpot model is used to compute a contact force that is
decomposed into elastic and dissipative components. Each of these components
is divided into a tangential and a normal term (Figure 1).

Based on Newton’s second law of motion, the governing equations for the

translational (v;) and rotational (w, ;) motions of particle 4 can be written as



(12, 19, 2J:

dui
mi— s = Z.fc,ij +Zflr,ik + fo.i (1)
] 3
dw i
L= = (M5 + M) (2)

where m; is the mass of particle ¢, I; the moment of inertia of particle 7, f;;
the contact forces between particles ¢ and j, fi, i the non-contact (long-range)
forces between particles ¢ and k, f,; the gravitational force (f,,; = m;g), and
M, ;; and M, ;; the tangential and rolling friction torques acting on particle i
due to its contact with particle j. In the present work, non-contact forces, such
as electrostatic or Van Der Waals forces were not taken into account due to the
size and nature of the particles.

The contact forces between two particles were split into normal (fs, ;) and

tangential (fe ;) [20] components:

Jeij = Fenjig + Ferij = knijOnij 'Vn,ijsn,ij Kt,ij0t.ij ’Yt,ijét,ij (3)
where ky, ;; and k; ;; are the normal and tangential stiffness coefficients, vy ;; and
Yt,i; the normal and tangential damping coefficients, d,, ;; and d;;; the normal
and tangential overlaps, and 5,171-]- and &ﬂj their derivatives with respect to
time.

In the present work, we used a model proposed by Tsuji et al. [21] based

on the Hertz theory [22] for the normal forces. We used the Mindlin model [23]

for the tangential force. These models were combined to link the stiffness and

damping coefficients to Young’s modulus of the material (Y'), the Poisson ratio

(v), and the coefficient of restitution (e, ), using the equations given in Table 1.

The tangential overlap d; ;; was truncated using Coulomb’s law to ensure that
1.

Setrij = Isij jcn,ijthyij‘-

3. Non-inertial Frame of Reference

In a rotational frame of reference, Newton’s equations of motion cannot be
applied in their classical form since Coriolis (Feorioris) and centrifugal (Feentrifugal)

forces must be taken into account. The expression for these forces are:

Fcoriolis = 2mQ*v (4)
Fcentrifugal = m{+ (Q + q) (5)



where €2 is the rotation vector of the frame of reference, and q and v are the
position (from the projection point on the axis of rotation: g X2 = 0) and
velocity vectors, respectively.

For larger particles, Coriolis torque must also be taken into account to ensure

conservation of the angular momentum:
Tcoriolis - I(Q + wp) (6)

where I = %mrQ is the inertial momentum of a solid sphere, r the radius, and
wp the angular velocity. Due to the size of the particles in the present study
(dp < 1lem), we did not take the impact of this torque into account.

To evaluate the impact of the Coriolis and centrifugal forces compared to
other inertial forces, we used the Rossby number, which is a dimensionless
number typically used in geophysical studies. In granular dynamics, the Rossby
number is defined as [24]:

o la
Fo =553 sii(@ 0

where vy, is the characteristic particle flow velocity in the rotational frame of
reference, L a characteristic length of the system, 2 the frame velocity, and ¢
a caracteristic angle of the position of the particle. In geophysics, for instance,
this would be the latitude. When R, > 1, the rotation has no significant impact
on the system whereas R, << 1 implies that the Coriolis force is considerable.

Lastly, simulations in a non-inertial frame of reference require a correct im-
position of the initial velocity. As such, the velocity of the frame must be
substracted from the initial Eulerian velocity to give the right initial condition

in this non-inertial frame:

Viag,t=0 = Veul,t=0 Q+ q (8)

4. Hamiltonian System and Symplectic Integration Scheme

4.1. Canonical formulation of the Hamiltonian mechanic
We begin by recalling the Newtonian description of a conservative system
where all forces can be written as the negative gradient of a potential energy

V(q). Using the notation of [25] this can be written as:

d’q B
mig = V@ )



This second order equation can be transformed into a system of first order by
considering the conjugate momenta defined as p = %{; with L the Lagrangian
[26]. This redefinition of the problem based on a single total energy function,

called the Hamiltonian (H), is given by:

9= LH(q,p)
dt P
{ ®= L H(gp) 0

This system is the canonical formulation of Hamiltonian mechanics. It is im-
portant to note that the conjugate momenta is different from the momentum
(mq). In some cases these quantities are not equal. Finally, we recall the general
definition of an Hamiltonian system as:

meoy = J H(z) (11)

where z represent the canonical variables (q,p), J an arbitrary invertible con-
stant skew-symmetric matrix and , the derivative with respect to the variable
z. A canonical Hamiltonian system is defined as the particular case where the

matrix J has following structure:

(0 1L
(9 o

4.2. Flow map and symplecticity

A physical problem is defined by an equation of motion 2 = f(z) with an
initial condition z°. We note the solution of such a problem z(t,2°). The flow
map @, g associated to a particular Hamiltonian H, is defined as the set of

trajectories from 2" to the final point z(t = 7, 2°). Thus:
2(1,2°) = & u(2°) (13)

Symplecticity is a property associated to a flow map whose jacobian (®,(z) =

0
8@7’67};(2)) satisfies the following relation with the respect of specific structure
matrix J [25]:

[@:(2)]T T @2 (2)] = T (14)

For example, the flow map of a canonical Hamiltonian system is symplectic [25].
The symplecticity is a very interesting property because it implies the existence

of some conservation laws.



For example, if we consider the evolution of an element of volume in the
phase space after an infinetisimal time d¢, for a canonical Hamiltonian system

we can write:
0q 2
q(t+dt) =q(t) +<Sta + A (6t%) (15)
0
p(t +t) = p(t) + 51&8—’; A (582) (16)

According to Hamilton’s equations (10), it then follows that:

q(t +6t) = q(t) + 6%% + A (5t%) (17)
p(t +dt) = p(t) 6t%—];] + A (5t%) (18)

According to the change of variable theorem in an integral, the relation between
the initial volume and the volume after an infinitesimal time step 0t is given
by the determinant of the Jacobian (W) which corresponds to the
determinant of the Jacobian of the flow map ®,(z):

1+ 6t 2H St2H
det ( 51 92 30P ) &6ng =1+ A(6t)? (19)
op? dqOp

det(®,(z)) =

Lastly, with 6t < 0 we can conclude that the flow map of canonical Hamiltonian
system are volume preserving. In other words, the property of the Liouville-
Poincaré invariant (Figure 2) [26] is respected if the determinant of the Jacobian
matrix of a considered flow map is equal to 1.

Or, from the definition of the symplecticity (14) we can write:

det([®.(2)]" T [®.(2)]) = det(J ) (20)
€ det([®.(2)]")det(J ) det([®.(2)]) = det(J ) (21)
€ det([®.(2)]) =1 (22)

Thus, a symplectic flow map conserves the volume in phase space. Moreover,
a direct consequence of the symplectic property is the conservation of energy in
time. A detailed demonstration of this property, via a backward error analysis
is given in [25].

There is a more easily approachable definition of the symplectic property,

which we will use in the rest of this study, via the differential of the wedge



product [27]:

dqt+(§t ‘ dpt+5t _ dqt ‘ dpt (23)

t+0t t
. q q
with = @5@]{ (24)
<pt+5t> <pt>

A demonstration of the equivalence between the definitions (14) and (23) is

given in [25].

4.3. Symplectic integrator scheme

We have seen what symplecticity means for Hamiltonian systems, it is now
interesting to understand how a numerical integrator could preserve this impor-
tant property. In granular dynamics simulations, a class of integration schemes,
the so-called symplectic integration schemes, are used to ensure the global con-
servation of energy in the absence of a dissipation mechanism (e.g. inelastic
collisions). Numerous integration schemes are symplectic, including the Euler
symplectic, Runge-Kutta symplectic and Verlet schemes [28]. The core idea
behind these schemes is to update the position before computing the velocity
within the same time step. One of the most common schemes used in granular
dynamics, and particularly in the case of DEM, is the velocity Verlet scheme.

The velocity Verlet scheme [29] is based on updating the velocity at the half
time step before updating the position. Then, calculating the acceleration using
this position, the velocity is evaluated at the end of the time step. Its formu-
lation, for the resolution of %’ = a(q), with a the acceleration vector, is given
by:

VELOCITY VERLET SCHEME

V"2 = o 4 Sla(g")

qn—i-l _ qn + At,vn—i-l/Q

,Un—i-l _ ,Un+1/2 + %a(qn+l)

(25)

This is a second order scheme for position and velocity [17].




Let’s start by going back to the construction of such an integrator. This
method is based on the fact that the Hamiltonian is separable, i.e. a Hamiltonian

that can be written as a sum of a kinetic energy and a potential energy:
H(q,p) =V(q) +T(p) (26)
The method is based on a splitting into 3 parts:
H(q,p) = Hi+ Hy + H3

with H, = V(a) H=T(p) Hs=,V(a) (27)

Thus the mapping Wa¢ g generated by the integrator during a time step At for
a system, defined by its Hamiltonian H, is written as the composition of the 3

mappings of the splitting Hamiltonian:
Uarg =Var y <Unpr <Par y (28)

According to the canonical Hamilton’s equation (10), each mapping is associated

with the following sub-systems:

-
For Hi(q) and Hs(q) (29)
Cc%) = ¢V (q)
?Tg: »1'(p)
For Hs(p) (30)
dp _



From these equations we can derive the flow map for each term:

q
Vs =
p % qV(Q)
q+ At ,T(p)
Uayr =
P

qa=q
\I'%y =
p=p" 5 V(g")
a=q+At ,T(p)
YayTr =
p=p
qn+1 — (:1
‘I’%,v =
pn+1 = 5 % qV((:I)
Finally if we identify p as p"*'/? and we concatenate each step we obtain:

pn+1/2 _ pn % qv(qn)
q"t =g+ At T(pt?)
pn+1 _ pn+1/2 % qv(anrl)

10

(32)

(33)

(34)

(36)



which correspond to the formulation of (25) in canonical coordinates with the
conjugate momenta p equal to the momentum mgq. To simplify the calculations

we consider m = 1. The system (36) is equivalent to:

=g+ A" AR V(g

(37)
prt=p" 5 V(g") 5§ V(g™
Then, we differentiate these two equations:
dgq"t! = dq™ + Atdp™ Ath eqV(q")dq"
(38)
dp"tt =dpm T2 G V(gh)dg" G g V(g" T )dgH!

with 44 the Hessian matrix. Considering the wedge product between the two:

dqn+1 ‘ dpn+1 :dqn+1 | dpn

At

S| 4gV(g")dg")

At

Shaa™ | (V@ g™ (39)

with

dg"*'| dp" =dg" | dp"

+ Atdp™ | dp"
At? ,
— aV(q")dq" | dp" (40)

11



and

dg" ™ | ( 4V (gM)dg") =dq" | ( 4V (g")dq")
—&—Atdp"\ ( qu(qn)dqn)

At?

T( qu(qn)dan ( qu(qn)dqn) (41)

It is important to notice that the matrix 4,V (q™) is a symmetric matrix, thus:

dq" | ( qu(qn)dqn) =0 (42)

Finally, by replacing (40), (41) and (42) in (39) we obtain:

dqn+1 ‘ dpn+1 _ dqn | dpn (43)

This shows that, the velocity Verlet integration scheme defines a symplectic map
or in other words the velocity Verlet scheme is symplectic.

We conclude the description of the velocity Verlet integrator by looking at
the form of its flow map which could be described with the propagation matrix

R(At), for one time step:

2" =W, g (2") = R(At)2" (44)

We apply the velocity Verlet integration scheme for two close values of the

position and the velocity (qo, vo) and (go+0go, vo+dvy), we obtain respectively

12



for the first step of (25):

At
vy /2 = Vg + 7a(q0) (45)
At
V12 + 0V /2 = Vo + dvo + 70((10 +4qo0) (46)

with a limited development around dqy and dvg:

a(qo + 6g0) = a(qo) + dqpa’(qo) + A (5‘10)2 (47)

then, if we replace (47) in (46) and substract (45) from (46), we obtain:

5‘10 5‘10 1 0
5”1/2 dvg %a/(%) 1
If we use the same method for the second and third steps:
oqu dqo 1 At
5'01/2 (5”01/2 0 1
oq1 oq 1 0
oy 5’01/2 %a/(‘h) 1

Lastly, the velocity Verlet integration scheme can be written as the matrix

13



product of these three operations:

= R(At) with R(Af) = A3A2A1 (51)

(5’01 (5’00

The determinant of this matrix:
det(R(At)) = det(AgAgAl) = det(Ag)det(Ag)det(Al) =1 (52)

This shows that the velocity Verlet integration scheme is also a volume pre-
serving method as expected due to its symplectic nature.

In conclusion of this analysis, the classical velocity Verlet scheme imple-
mented in LIGGGHTS is volume preserving, second order and symplectic. How-
ever, these properties are verified only for Hamiltonian systems with a canon-

ical structure and with a separable Hamiltonian.

5. Application to the Harmonic Oscillator

To illustrate the properties of the velocity Verlet integrator, it is useful to
begin with the simple example of the harmonic oscillator in one dimension (a

spring of stiffness k) whose equation of motion is given by:

dv(q) 2 _ : _ |k
7 +wqg=0 with w—\/E (53)

ie. a(q) +w?q =0 (54)

14



where v and ¢ reprensent the velocity and the position of the mass m at the end

of the spring. Moreover the Hamiltonian description of such a system is given

by:
s
H(p,q) = . + k? with p=mwv (55)
With a matrix notation:
q 0 1 kq
= (56)
P 10 L

which corresponds to the description of a Hamiltonian system (11) with a
canonical structure due to the form of the matrix J. Moreover, the Hamil-
tonian of this system is separable. Consequently, we conclude that the char-
acteristic flow map of this system is symplectic and that the velocity Verlet in-
tegrator seems adapted to maintain symplecticity. This will be verified through
an energetic study.

From equation (51) of Section 4.3, we write for the velocity Verlet integration

scheme:

Sqn 1 off1 At 1 0| |dq
= (57)
dvy Sw? 1) \0 1 Stw? 1) | dvg

15



Firstly, this shows that, for the case of a harmonic oscillator, the velocity Verlet
scheme is volume preserving. From this equation, we can now look at the energy
of the system. It can be shown that the eigenvalues of the matrix R(At), A\

and Ao are given by:

2,2 2,2
Ag=1 Ath o 1wAty/1 At4w = rexp(o if) (59)
Atwy/1  ALw?
: : (60)

At2w2
1 2

where r=1 and 6 =tan~

and the associated eigenvectors can be expressed by:

-1 -1
i At2w? ) At2w?
e = €y = (61)

1 1

From a simple recurrence, we can then write the relation between the n*" time

step and the initial condition:

dn ? 0 - q0
“le e e es (62)

(I 0 A5 Vg
which is equivalent to:

—1

an cos(nh) ﬁsm(rﬁ) qQ
_ Wy (63)

Un wy/1 #sin(n@) cos(nb) Vo

With ¢ = nAt, and in the particular case of vy = 0:

ot sin(4L)

q(t) = qocos(=)  v(t) = qow———
Al N
1 At4

16

(64)



with this result, we can now calculate the energy of the system. It can be shown
from the development of the argument of the eigenvalues at the 3" order that

the energy at the 2% order is given by:

3At3
0 = wAt + 2 TR (At (65)
1 1
E == 2 - 2
5 + 2kq (66)
, 1o, At2w? (0t 3
ie. F= 3 Mdow (1 + o sin AL + A (AL) (67)

As expected, in the case of a harmonic oscillator with the velocity Verlet inte-

gration scheme, the energy is bounded (miwa /L 1+ #]) as shown by the
0
periodic form of its expression (67).

We can make a similar development with another method such as the explicit

Euler scheme, for example, and obtain:

1 h
J = (68)
w?h 1
A2 = 1o iwAt = rexp(o if) (69)
At?w? 3
where r=v1+AtPw? =1+ 5 + A (At (70)

17



and 0 = tan™ ' (Atw) = Atw + A (AL?) (71)

E= %mq%wzexp((At)t) + A (At?) (72)

This shows that for a traditional non-symplectic explicit Euler scheme, the en-
ergy grows exponentially. Similarly, it could be shown that the second-order
Runge-Kutta (RK2) and fourth-order Runge-Kutta (RK4) schemes are non-
symplectic and do not conserve energy. We conclude that in presence of a
separable canonical Hamiltonian system the energy is bounded if the velocity
Verlet scheme is used. Generally, it is not the case for a non-symplectic integra-
tion scheme. This is illustrated in Figure 3, where different integration schemes,
namely the symplectic velocity Verlet and non-symplectic explicit Euler, RK2
and RK4 schemes, were used for the harmonic oscillator system.

It is interesting to report the global order of these different integration
schemes. These orders are highlighted by the error between the numerical and
analytical solutions, ¢(t) = gocos(wt) after a finite time (Figure 4). The results
obtained are those expected theoretically. In particular, the velocity Verlet

scheme is second-order.

18



6. Velocity-dependent force

We have thus far shown that a symplectic integrator is generally required to

stake out the energy of a system. However, if we consider the velocity Verlet

scheme more carefully (25), we assumed that the acceleration, which is related

to the forces felt by the particles, is only a function of the position. Therefore, it

is unclear what occurs for the case of velocity-dependent forces. This question

is essential for performing DEM simulations in a rotating frame because the

Coriolis force is a velocity-dependent force.

In the case of a velocity-dependent force, the classical form of the explicit

velocity Verlet scheme is following:

VELOCITY VERLET SCHEME

(With velocity-dependent force)

,Un+1/2 — "+ %a(qn’vnfl/2)
qn+1 — qn + Atv"+1/2

Update acceleration : @ = a(g"*+*, v t1/2)

1 _ 1/2 At 1 1/2
ol = ntl/ +7a(qn+ ot / )

We can immediately see that we evaluate the acceleration with a velocity

and a position calculated at different instants.

To evaluate the consequences of this, we considered a damped oscillator. We

19




recall the projected equation of motion for a linear spring of stiffness k£ and a

damper 2X:

dv(q) 5 . |k
o + 2 (q) +wq=0 with w =1/ - (74)

First, we determined whether the velocity-dependent force has an impact on the
global order of the scheme. In order to do so, we compared the numerical solu-

tion for the position with the analytical solution z(t) = exp( At)(gocos(wit) +

Ago

290 gin(wt)) with w; = w2 A2 for the same integration schemes as before
(Figure 5).

This example illustrates a first impact of a velocity-dependent force on the
velocity Verlet scheme: it degrades from second to first order. We can see that
this was not the case for the other integration schemes because the acceleration
was not evaluated with a velocity and a position calculated at different instants.
In the classical velocity Verlet scheme, the forces are calculated between the sec-
ond and the third steps. However, if we examine (73), adding a new calculation
of the forces before the beginning of the time step could be a solution to have
the acceleration which depend on gy, v, instead of q,,v,_1/2. The result is

shown on Figure 5 with the ”Modified Velocity Verlet” scheme, and we can see

that there was an attenuation of the error, although it remains A (At). Since the

20



order of the scheme was unaffected by this modification, the classical velocity

Verlet scheme was used subsequently in this work.

We recall that the main reason for using the velocity Verlet scheme in DEM

simulation is that it is a symplectic integrator. The natural next step is to

determine whether velocity-dependent forces have an impact on this important

characteristic. This point will be investigated in the next section.

7. Velocity Verlet scheme with the Coriolis force

To assess the possibility of performing DEM simulations in a non-inertial

frame of reference we need to understand the influence of the Coriolis force,

which is a velocity dependent force, on symplectic integration schemes such as

the velocity Verlet scheme. To evaluate this, we considered a particle in the

Eulerian frame without any forces acting on it. In this frame, the particle was

thus fixed. With a Newtonian formulation, the equation of motion of the same

particle in the Lagrangian frame is given by:

mdQQIag - omO+ dqlag

= Q+(Q2+

21



where g4 is the position vector in the Lagrangian frame, and €2 the rotation
vector equal to (0 0 w).

We start by changing the formalism by using the Hamiltonian description of
the system in the non-inertial rotating frame of reference. The velocities in the

two different frames are linked straightforwardly using:
Veul = Vlag +Q+ Gilag (76)

where vy, and v.,; are the velocity vectors in the Lagrangian and Eulerian
frames.

Thus, the Lagrangian in the rotational frame is defined as:

1 1
Liag = 50y + 0105 (R £ Qlag) + SR £ Giag)? (77)

with the Legendre transformation Hjag = DiagViag  Liag, Where piqq is the
conjugate momenta in the rotational frame. We then deduced the Hamiltonian

of this particle in the rotational frame of reference:

0Ly,
Plag = P lag = MUjqq + m(Q =+ qlag) (78)
Viag
p m(Q2+q m
gy = oo M2 Q)] Mg g, 2 (79)

The first term of this Hamiltonian represents the kinetic energy of the system
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and the second term represents the centrifugal potential. Then, we can calculate:

H:Qiplag

Qlag

(80)
H = % (2 £ quag)

Plag

Finally, we deduce the associated canonical equations of motion which are equiv-

alent to (75):

q.lag 0 Id Q j:plag
= (81)

ﬁlag Id 0 Plag (Q + qlag)

m

This equation gives the description of a canonical Hamiltonian system. However,
if we look at the structure of the Hamiltonian (79) we can see that this one is not
separable, which goes against the construction of the classical velocity Verlet
scheme (section 4.3). To evaluate the impact of the non-separable Hamiltonian
on this integration scheme we make a simple simulation of the particle in the
rotating frame of reference. Since the particle is static in the Eulerian frame
(Vews = 0), the expected trajectory in the Lagragian frame is a circle with a
radius that depends on the initial position and the expected total energy is 0
(Eiot (t) = Hiqg(t) = 0). Figure 6 shows a time step-dependent deviation of the
particle from the theorical circular trajectory and an exponential growth of the
total energy in time.

Thus, the consequence of a non-separable Hamiltonian is a non-conservation

23



of the energy when the classical explicit form of the velocity Verlet scheme is
used. This is perfectly consistent with the demonstration of Sanz and Serna [30]
which proved that symplectic methods are always implicit for generic Hamilto-
nians (i.e. not necessarily separable). In our case this implies that we reformu-
late the Verlet scheme following methods such as the partitioned Runge-Kutta
method combined with the Lobatto IITA and IIIB methods [31]. In this case the
first step of the scheme would become implicit: v /2 = v" + %a(q”, v”+1/2).

However, another approach consists in using splitting methods by refor-
mulating the problem with a separable Hamiltonian. Thus, by considering
Plag = MUjay, the first-order system is obtained from the equation of motion
(75).

d9lag _ Piag

dt m
(52)
dz;% = 2Q+p, mQ=E(Q =L qay)

It is easy to show that this system is not canonical. Indeed, let us suppose the

contrary by considering that this Hamiltonian system has a canonical structure.

For such an H it would have to hold that:

(83)

We can show that these equations contradict Schwarz’s Theorem, which states
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et ; 0°H _ 9°H ;
that the second derivatives (i.e. 5pog = aqap) are symmetric. Thus, we con-

clude that this system does not have a canonical structure.
However, it is a Hamiltonian system. Indeed system (82) is equivalent to:
‘jlag 0 Id dlag H

= (84)
plag 1d 2m+ H

Plag

2m

with H = [Preal® 5 9 a)

With this description we can build a splitting method inspired by the con-
struction of the velocity Verlet method seen in section 4.3. We will use the
method of Scovel [25]. We recall here the guidelines of this method. Firstly, we

use the same splitting as for the classic velocity Verlet scheme:
Vare =Var y <Uarr <Pary (85)

2
with V(qiag) = %y + qlag\Q/and T (Piag) = 7"’;‘;‘;' .
According to Equation (84), each mapping is associated with the following

sub-systems:

dqlag _ 0
dt
For \If%y (86)

dpia
sztg = qV(q)

dqiag — Piag

dt m
For \I/At,T (87)
WPlos — 2@+ Plos
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The integration of the system (86) is exactly like in Section 4.3 (Eq.31). How-

ever, for the system (87) we solve:

0 2w 0

dpla A . A

Tg = Qplag with Q= ow 0 0 (88)
0 0 0

The solution of this differential equation is: Piag(t) = exp(Qt)Piag(0). Thus, we

can integrate the position:

g (0) = g0+ o= [ ep(25)p1sy (015 (59)

Finally, if we concatenate each step with the respect of the equation (85) we
obtain the explicit Scovel’s scheme (90) which is an adaptation of the velocity

Verlet’s scheme.

SCOVEL SCHEME

p /2 =pr &L V(g)
g =q"+ 1L OAt exp(Qs)pt1/2ds (90)

Pt =eap(QAtptt? S Vi(ght)

To calculate the exponential of the matrix we used the Rodrigues formula [25]:

eap(Qt) = Id + Smij”” Q+2 (sin(z};t/ 2) ) “o (91)
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We performed the same simulations as before with this new scheme. The

result of the simulations made with the Scovel scheme are presented in Figure

As expected we observe that the energy is conserved and oscillates between

the theoretical value E;,; = 0 and the value of the global numerical error which

is time step-dependent. We note that the error committed on this energy is

much lower than in the case of the velocity Verlet scheme.

Then we evaluate the numerical error on the position. This is illustrated

in Figure 8 and compared with other integration schemes. This Figure leads

to the same conclusions as Section 6: a velocity-dependent force leads to a

degradation of the global order of convergence of the classical velocity Verlet

scheme. However, Scovel’s scheme preserves second order.

Finally, it is also interesting to note that the addition of the Coriolis force

leads to the new velocity Verlet mapping:

1 0
Ay = (92)
% a(qo,v0) 1+ % v0@(qo, Vo)
1 At
Ay = (93)
0 1
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Ay = (94)
At

8 galgvin) 1+ 5 v1,,0(q1,v1)2)

where R(At) = A3 Ay Ay with det(R(At)) @ 1. Thus, another consequence is the
loss of the volume preservation property of the classical velocity Verlet scheme
with the addition of a velocity dependent force.

To sumarize, the explicit velocity Verlet scheme in its classical form is not the
most appropriate integration scheme for systems with velocity-dependent forces
and no source of dissipation. Indeed, in this case this scheme is not volume
preserving, it is not second order for position and velocity and it does not
conserve the symplecticity property of the system flow map. For such systems

it is preferable to use symplectic implicit schemes or schemes constructed using

a splitting method such as the Scovel scheme (Eq.90).

8. Verification with Damping Forces

The various impacts described in the previous section raise the question as
to whether it is still justified to use the velocity Verlet scheme in the case of
velocity-dependent forces. Indeed, the impacts of the loss of energy conservation
were marked for simulations in a rotating frame of reference without dissipa-
tive forces. In real cases, dissipative forces tend to stabilize DEM simulations.
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Therefore, we evaluated the possibility of performing DEM simulations in a

rotating frame of reference for practical purposes using the classical velocity

Verlet scheme (25) implemented in LIGGGHTS. Consequently, the simulations

described in this section and the following ones were performed directly with

the LIGGGHTS open source DEM software.

8.1. Verification with one particle

For the first test case, we put one particle on a disk and compared the

trajectory of the particle in the two different frames of reference: the Eulerian

frame where the disk was in rotation and the Lagrangian frame where the disk

was fixed. In the Lagrangian frame, we added Coriolis and centrifugal forces

(4) and (5) to the DEM equations.

We began with an analytical study of the trajectory of the particle in the

Lagrangian frame. Indeed, contrary to the previous section, ve,; € 0, and the

expected trajectory is no longer a circle.

Based on the canonical formulation for a particle in the rotational frame

previously obtained, the equations of the movement of a particle in this frame

are:
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qlag = pi;g Q=+ Qilag

plag = Q% Diag

Using a matrix notation for the position equation and using @ = (0 0 w),

we obtain:

0 w 0
e = A Plag ith A= 96
Giog = AQuag + ¢ Wi =lw 0o o (96)
0 0 0

where A is a matrix that represents a rotation in a plane perpendicular to the

z axis i.e., in the x y plane.

Due to the form of (96), the use of homogeneous coordinates rather than

Cartesian coordinates was justified. We thus add a fictitious third coordinate

to our system in two dimensions. It then follows that:

qlag,w 10 DPlag,z 0 w 0 Qlag,x
_ ! 97
(jlag,y - a 0 1 plag,y w 0 O qlag,y ( )
1 0 0 1 0 0 1 1
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or, more simply:

qmg,:c 0 W Plag,z Qlag,x
1
qlag,y - E w 0 plag,y qlag,y (98)
1 0 O 1 1

With this equation of motion, we deduce that the trajectory in the rotational
frame of this particle on a disk is a combination of a translation and a rotation
in the opposite direction of the frame. We thus expected to obtain a spiral in
this frame. The shape of this spiral will depend on the rotational speed and the
friction between the disk and the particle.

As expected, we obtain the right trajectory with the numerical simulation
using the LIGGGHTS software (Figure 9 (b)). Figure 9 also shows the tra-
jectories of the particle with simulations in the two different frames. Then to
compare these results we rotated the coordinates and we observed an exact
agreement between the two simulations. Based on this conclusive result, we

then performed a more complex experiment with more particles.

8.2. Verification with N particles

We simulated the motion of many particles in a rotating hourglass in the two

different frames of reference: in the Eulerian frame, in which case the hourglass
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rotated and in the Lagrangian frame, in which case the hourglass was fixed and
Coriolis and centrifugal forces were added for each particle. All the physical
parameters used for these simulations are presented in Table 2.

The main difference between this case and the previous one, with only one
particle, is that the rotation is perpendicular to gravity. We thus considered the
rotation of this force accordingly in the Lagrangian frame of reference. Figure
10 shows an illustration of the motion of the particle in both frames of reference
at different instants. As can be seen, there is an exact agreement as regards to
the motion of these particles in the two frames.

Next, we compared the evolution in time of the mass of particles in the bot-
tom part of the hourglass for two different frame velocities. These two velocities
were chosen based on the difference in the Rossby number (see (7)), which im-
plied that the Coriolis and centrifugal forces have different impacts. Indeed,
at 30 rpm, the particles were in motion during the rotation of the hourglass
(R, = 0.5) unlike at 120 rpm (R, = 0), where particles remained stuck to the
wall of the hourglass due to the greater impact of the non-inertial forces. Thus,
for the larger frame velocity, there was no-slip between the wall and the parti-
cles during the rotation of the hourglass. This is shown in Figures 10 and 11,
which illustrate the motion of the particles and where we can see that we still
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have a similar behaviour of the particles at 120 rpm in the two different frames.

Moreover, Figures 12 and 13 show that the evolution of the mass in the bottom

part of the hourglass is exactly the same for simulations performed in Eulerian

and Lagrangian frame of reference.

9. Computational Performance Study

Finally, for the sake of completeness, we investigated the impact on compu-

tational performance of conducting simulations in a rotating frame or reference.

We performed the hourglass simulation in the two different frames, with differ-

ent numbers of CPU. The cores were distributed symmetrically in the x-y plane,

and the z axis was not partitioned, as illustrated in Figure 14. The difference

in computational time between the simulations in the two frames is illustrated

in Figure 15.

With this study, we conclude that increasing the number of CPU results in

a 25% improvement in computational performance when conducting parallel (4

or 16 CPU) simulations in the rotating frame compared to traditional DEM

simulations.
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10. Conclusion

The main objective of this study was to model granular flows in rotating
frame of reference using the discrete element method. Through our various
investigations we showed that a velocity-dependent force such as the Coriolis
force leads to non-canonical Hamiltonian systems or non-separable Hamiltoni-
ans. We explained why this is problematic if the classical velocity Verlet inte-
grator, as it is implemented in LIGGGHTS, is used. We shed light on the fact
that for these systems this integration scheme is first order, it does not define
a symplectic map and it is not volume preserving. In the case of DEM, it is
commonly accepted that a physical model requires global energy conservation
[32], which is generally why all DEM open source software use the symplectic
velocity Verlet scheme. This work revealed that, in the case of non-dissipative
velocity-dependent forces such as Coriolis and Lorentz forces, the use of the
classical velocity Verlet scheme is debatable and that more accurate results can
be obtained with more appropriate scheme susch as the Scovel method.

In a non-inertial frame, with the classical velocity Verlet scheme implemented
in LIGGGHTS, our results showed that the loss of the symplectic and volume

preserving characteristic of the velocity Verlet scheme for DEM in a rotating
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frame is not problematic because the dissipative forces stabilize the entire sys-
tem. We obtained similar results in the Eulerian and Lagrangian frames for
the test cases investigated, with better computational performance in the La-
grangian frame.

In summary, we showed in this work that it is possible to perform DEM
simulations in a non-inertial frame although the use of the classic velocity Ver-
let scheme may be inappropriate if the Coriolis force or other non-dissipative
velocity-dependent forces are dominant. In this case different solutions are pos-
sible. The first is to use implicit symplectic schemes such as the implicit parti-
tioned Runge-Kutta scheme combined with Lobatto IIIA/B methods. Another
solution is to use splitting methods. For example, we showed that the explicit
Scovel scheme allows to recover a second order convergence and a symplectic

flow map for simulations in non-inertial frame with the Coriolis force.
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Figure 3: Illustration of the symplectic property of an integration scheme. Deviation of the
numerical energy from the theorical energy (AEnergy = Eip,  Enum) for a constant time
step 0t = 0.1 with w = 0.5 - (a) explicit Euler scheme, (b) Runge-Kutta 2 scheme, (c) Runge-

Kutta 4 scheme, (d) velocity Verlet scheme.
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Figure 6: Representation of the trajectory after one second and of the total energy evolution
in time of a particle in a rotating frame of reference (w = 40rad/s, m = 1) without any forces
except Coriolis and centrifugal forces. The explicit velocity Verlet integration scheme (scheme
(73)) was used with different time steps: (a) %6: 11072, (b) At =1 1073, (¢c) At =1 1074,

(d) At=1 1075
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Figure 7: Representation of the trajectory after one second and of the total energy evolution
in time of a particle in a rotating frame of reference (w = 40rad/s, m = 1) without any forces
except Coriolis and centrifugal forces. The Scovel integration scheme was used with different

time steps: (a) At =1 1072, (b) At =1 10;;, (¢) At=1 107%, (d) At=1 1075
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Figure 8: Illustration of the global order of convergence of different integration schemes for a

particle in a non-inertial rotating frame of reference: order 4 for RK4, order 2 for RK2 and

Scovel, order 1 for explicit Euler, and order 1 for velocity Verlet which are indicated by the

slope ”s”.
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Figure 9: Trajectory of the particle in the two different frames of reference for a frame velocity

of 20rad/s: (a) in the Eulerian frame and (b) in the Lagrangian frame
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Figure 10: Motion of the particles during the revolution, of period 2T, of an hourglass (30
RPM) - (a) Simulated in the Lagrangian frame and illustrated in the Lagrangian frame (b)

Simulated in the Lagrangian frame and illustrated in the Eulerian frame (c) Simulated in the

Eulerian frame and illustrated in the Eulerian frame
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Figure 11: Motion of the particles during the revolution, of period 27", of an hourglass (120
RPM). From ¢ = T the rotation is stopped.- (a) Simulated in the Lagrangian frame and
illustrated in the Lagrangian frame (b) Simulated inthe Lagrangian frame and illustrated in

the Eulerian frame (¢) Simulated in the Eulerian frame and illustrated in the Eulerian frame
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Figure 12: Comparison of the mass of particles at the bottom of the hourglass in the two
different frames of reference at a frame velocity of 30 rpm (R, = 0.5). The vertical bar shows

the end of the rotation phase (t=T).
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Figure 13: Comparison of the mass of particles at the bottom of the hourglass in the two
different frames of reference at a frame velocity of 120 rpm (R, = 0). The vertical bar shows

the end of the rotation phase (t=T).
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Figure 14: Distribution of the CPU in the x-y direction. Only one CPU was used in the z

direction.
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Figure 15: Ratio of the simulation time in the Lagrangian rotating frame of reference to the
simulation time in the Eulerian frame of reference as a function of the number of processors

for the hourglass system with 160,000 particles.
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Parameter

Equation

Normal stiffness
Tangential stiffness
Normal damping
Tangential damping
Coulomb friction force
Torque by tangential force
Rolling friction torque
Equivalent mass
Equivalent radius
Equivalent Young’s modulus
Equivalent shear modulus
Sliding friction coefficient

Rolling friction coefficient

Distance to contact point for particle ¢

Radius of particle ¢

4%
377

kt,ij = 8G:<, /R;‘k‘én,ij
2\/; ln(eT)

knij = R0,
J

Tn,ij =

In2 er)+7r2
o ln(eT
Vtij = 2[ 2 er)+7r2 kt
O¢ij
fct,ij —  Ms,ij \/cn,ijvyi(;t ”
527
M, ;=7 £ (ferij)
M, =
1] Horij fcn 1]\),“,? U‘
1 _ 1 L
m:fj my m;
1 1 1

R, T R, " R,

L () (1;”?)

: Y,

/2 *

*

1 2(2+uiy)i(1—ui) + 2(2+v,)(1—vy)

Y;

Table 1: Equations for the DEM model adapted from [3]
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Property Symbol Value

Young’s modulus Y 50 M Pa
Coefficient of restitution e 0.3
Poisson’s ratio v 0.3
Coeflicient of friction s 0.52
Rolling friction L 0.3
DEM time step AtpeEm 1+10%s
Range of diameters dp 0.3-0.6mm
Density Pp 2653 kg/m?>
Number of particle N 160 000

Table 2: Parameters for the hourglass simulation based on a previous study that investigated

the behaviour of fine particles [33]
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