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ABSTRACT: This paper presents the results of Swedish fall cone tests and Casagrande liquid 2 

limit tests conducted on saline Champlain Sea clay samples from Lachenaie, Quebec. The 3 

main objective was to study a few hitherto unanswered practical questions regarding these 4 

testing methods. Penetration range is found to affect the Hansbo’s relationship used in fall 5 

cone experiments, while the mass and the bluntness degree of the cone have no effect on it. A 6 

direct relationship between thixotropic regain in shear strength and sensitivity is found. When 7 

measuring the liquid limit, if only the first penetration depth is recorded, results are up to 5% 8 

smaller than those obtained when following the standard procedure of CAN/BNQ-2501-092. 9 

With this standard, the average of the first two penetration depths within 0.3 mm of each other 10 

is recorded. These penetrations usually follow the bulk of the thixotropic shear strength regain. 11 

The Swedish fall cone was compared to the traditional Casagrande apparatus for liquid limit 12 

determinations. The two methods yielded identical results in the studied conditions (saline 13 

Lachenaie clay with liquid limit between 44% and 75%). An incorrect calibration of the 14 

height-of-drop of 1.4 mm led to a mean error of 6 liquid limit points. This error is greater than 15 

the theoretical error obtained by assuming that the number of blows is proportional to the 16 

square of the height-of-drop.  17 

 18 

KEYWORDS: Clay, fall cone, liquid limit, undrained shear strength, Casagrande apparatus, 19 

thixotropy 20 

21 
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Introduction 22 

During the past decades, the Swedish fall cone has become an increasingly important test for 23 

assessing clay mechanical properties. Its main advantages over the Casagrande apparatus are 24 

the possibility to study many problems linked with the clay intact and remolded shear 25 

strengths, and the alleged better repeatability of its results. This paper presents the results of a 26 

few simple experiments conducted with fall cones and the Casagrande apparatus. The main 27 

objective of the testing program was to study a few hitherto unanswered practical questions 28 

regarding these testing methods. 29 

The test results presented in this paper were obtained during an extensive characterization 30 

program for the Lachenaie clay body, in southern Quebec. The main features of this deposit 31 

are its relatively high salinity (up to 17 g/L total dissolved solids) of the clay and bedrock pore 32 

water. The properties and the geological history of the Lachenaie clay body are summarized 33 

by Duhaime et al. (2010), Benabedallah (2010) and Réginensi (2009). The Lachenaie clay is 34 

relatively stiff with intact shear strengths and preconsolidation pressures that can reach 125 35 

and 580 kPa, respectively. Owing to its high pore water salinity, the average sensitivity (ratio 36 

of intact to remolded shear strength) is about 17, a relatively low value for a Champlain clay 37 

deposit. The liquid limit values for this deposit are in the 40 to 78 % range. These values are 38 

within the 30 to 85 % range reported for the entire Champlain Sea basin (Leroueil et al. 1983; 39 

Windisch et Yong 1990). As for the rest of the Champlain Sea basin, the clay is mainly 40 

composed of rock flour, ground primary quartz and feldspars, illite being the main active clay 41 

mineral. 42 

The testing program was designed to address three issues.  43 
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The first issue was to validate the relationship between cone penetrations and either the 44 

intact undrained shear strength cu or the remolded shear strength cur. Factors influencing the 45 

cone K constant were examined by comparing the penetration depths obtained with blunt and 46 

sharp cones. The influence of cone mass was assessed by using the 100 g and 400 g cones for 47 

measuring cu.  48 

The second issue was to examine the influence of thixotropy on cur and on liquid limit wL 49 

values, thixotropy being the time-dependent shear strength recovery after remolding. This was 50 

investigated by recording for each test the time elapsed between remolding and penetration.  51 

The third issue was to compare the fall cone and the Casagrande apparatus for the liquid 52 

limit values, using the relationship developed by several authors who used artificial and 53 

natural clays having different geochemical and geotechnical properties. In this paper we 54 

verified this relationship for a Champlain Sea clay deposit with fairly saline pore water. The 55 

potential error on wL caused by an incorrect fall height for the Casagrande apparatus was 56 

evaluated using different calibrations of the apparatus.  57 

 58 

Fall cone, Liquid Limit and Shear Strength 59 

Atterberg (1911) introduced his consistency limits to characterize the relationship between 60 

clay consistency and water content. These limits included the limiting water contents for 61 

viscous flow, adhesion to a spatula, cohesion between clay lumps, plasticity and constant 62 

volume drying (Bauer 1959; Holtz and Kovacs 1981). The possibility of using consistency 63 

limits as proxies to describe the impact on soil mechanical behaviour of more complex clay 64 

properties, such as clay mineralogy and particle sizes and shapes, was first noticed by 65 

Terzaghi (1926). Of the original Atterberg states, the plastic limit (wP) and liquid limit (wL) 66 
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are the most commonly used in geotechnical engineering. For example, the liquid limit is 67 

useful to assess the specific surface (Muhunthan 1991: Mbonimpa et al. 2002), which is used 68 

to predict the clay hydraulic conducticity in a Kozeny-Carman relationship (Chapuis and 69 

Aubertin 2003). The clay plastic limit is essential to define the compaction conditions of 70 

impervious liners and their hydraulic conductivity (Chapuis 2002; Chapuis et al. 2006). 71 

Atterberg (1911) initially defined the liquid limit as the water content for which a groove in 72 

a pat of clay would close after a few sharp blows on the palm of the hand (Casagrande 1932). 73 

The utilization of a cone penetration method for the measurement of wL was first proposed by 74 

the Geotechnical Commission of the Swedish State Railways in the 1920’s (Hansbo 1957). 75 

Later, Casagrande (1932; 1958) suggested to measure wL with a percussion apparatus, a 76 

standardized version of the original test used by Atterberg (1911). Today, both the Casagrande 77 

and cone methods are used in the different national standards (Leroueil and Le Bihan 1996). 78 

Some authors have looked at the relationship between the cone penetration and percussion 79 

methods using clays from different countries (Belviso et al. 1985; Budhu 1985; Christaras 80 

1991; Leroueil and Le Bihan 1996; Littleton and Farmilo 1977; Mishra et al. 2011; Wasti 81 

1987). The general relationship obtained by compiling and comparing their results is shown in 82 

Figure 1. For each data set in Figure 1, the cone penetration method was based on either the 83 

Canadian standard CAN/BNQ-2501-092 (CAN/BNQ 2006a) or British standard BS 1377 (BSi 84 

1990). These standards are known to provide similar results (Leroueil and Le Bihan 1996). For 85 

percussion tests, the experimental protocoles were based on either the American (ASTM 86 

2011), Canadian (CAN/BNQ 2005) or British (BSi 1990) standards, namely ASTM D4318, 87 

CAN/BNQ 2501-090, and BS 1377. In this case, the British standard is known to give slightly 88 

higher values of wL because its cup lands on a softer base (Casagrande 1958; Norman 1958). 89 

Nevertheless, for wL < 100%, the wL values obtained with the fall cone and Casagrande 90 
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methods are approximately equal (Wasti and Bezirci 1986). For some of the data in Figure 1, 91 

the cone and percussion methods give results which differ by more than 10%. However, the 92 

correlation is very good, especially if one considers that Figure 1 gathers data for clays having 93 

very different geochemical and geotechnical properties and that there may be slight variation 94 

in the experimental procedures used by the different authors.  95 

The fall cone and Casagrande methods give equivalent results because they are essentially 96 

evaluating the same soil property: remolded undrained shear strength (cur). When using a fall 97 

cone technique, the wL value corresponds to a water content which results in a given 98 

consistency, a given cur value. The fall cone has the advantage of giving an explicit cur value. 99 

Hansbo (1957) proposed Equation 1 to define cu or cur. 100 

2
89
P

mKcu
.

=  (1) 101 

In Eq 1, cu is given in kPa, K is an empirical constant related to the cone angle and the cone 102 

surface roughness, m is the cone mass in grams and P is the mean cone penetration in mm. 103 

Equation 1 can also be obtained by dimensional analysis and it can be verified theoretically by 104 

the method of characteristics (Houlsby 1982; Koumoto and Houlsby 2001).  105 

To take into account sampling disturbance, Hansbo (1957) calculated the K values by 106 

comparing results from field vane shear tests with cone penetration depths. In standard 107 

CAN/BNQ 2501-110 (CAN/BNA 2006b), the original K values of Hansbo are still used to 108 

calculate the values of cu and cur from penetration test data: 1.00 for the 30° cones and 0.30 109 

for the 60° cones. Wood (1985) later refined Hansbo’s K values by comparing penetration 110 

depths with cur values from laboratory vane tests. He obtained K values of 0.85 for the 30° 111 

cones and 0.29 for the 60° cones. The theoretical K values of Koumoto and Houlsby (2001) 112 

generally agree with the experimental values of both Wood (1985) and Hansbo (1957). 113 
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However, the theoretical values span relatively large ranges : respectively 1.03 - 2.00 and 0.25 114 

– 0.40 for the 30° and 60° cones. The K values depend on the cone surface roughness. A 115 

rougher surface results in a lower K value. The British standard BS 1377 mentions that surface 116 

roughness has more influence on cone penetration than variation in cone sharpness.  117 

 118 

Figure 1.  Compilation of previous cone-Casagrande comparisons for liquid limits obtained by 119 

different authors and general relationship.  120 

The link between cur and wL is more tenuous for the Casagrande apparatus. This method is 121 

thought to be influenced by other factors such as the soil self weight (Sharma and Bora 2003), 122 

soil dilatancy (Casagrande 1958) and partially drained conditions for low plasticity soils (Feng 123 

2002). As a result, wL corresponds to a range of cur values.  For soils with wL = 30%, cur is 124 

around 2.5 kPa at wL whereas cur = 1.3 kPa at wL for clays with wL = 200% (Youssef et al. 125 

1965). When evaluating wL with the fall cone, a cur value at wL of 1.7 kPa is usually assumed 126 

(Sharma and Bora 2003). The cur values are not explicitly stated in the different standards as 127 
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they define wL in terms of penetration. The assumed cur value depends on the K value used 128 

with Eq 1.  129 

Compared to the fall cone method, the Casagrande method is prone to error. When several 130 

tests are performed by the same user, the Casagrande and cone methods usually show similar 131 

repeatability (Özer 2009). However, when inter-laboratory studies are conducted, the cone 132 

method is reported to have a better repeatability. Results obtained with cone methods have a 133 

coefficient of variation (standard variation/mean) of 1-3%, a value which is several times 134 

smaller than that of the Casagrande method (7-8%) (Leflaive 1971; Sherwood and Ryley 135 

1970). Many factors can explain the poor repeatability of the Casagrande method. Examples 136 

of such factors are the volume and mass of clay used in the cup, the tool used to make the 137 

groove (Mitchell 1960a) and the base hardness (Norman 1958).  138 

The fall height adjustment may be another important source of error for the Casagrande 139 

apparatus. As the fall height specified in the standards sometimes differs, quantifying this 140 

source of error is important. With standard BS 1377, the 10 mm height of fall is the maximum 141 

vertical distance between the lowermost point of the cup and the base. However, with standard 142 

ASTM D4318, the 10 mm fall height applies to the maximum vertical distance between the 143 

base and the point of the cup that strikes the base. This point does not correspond to the lowest 144 

point of the cup when it is fully raised. Some  experimental soil mechanics textbooks can 145 

sometimes give ambiguous representations of the way fall height calibration should be 146 

conducted (e.g., Bardet 1997, p. 86). Casagrande (1932) noticed that the number of blows (N) 147 

is roughly proportional to the square of the fall height (H). Consequently, at the liquid limit 148 

(N=25, H=10 mm), N=0.25 blows/mm2 H2, and by differentiating: dN=0.50 blows/mm2 HdH. 149 

This implies that a 1 mm fall height error produces a 20% error on the blow count. 150 
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Another advantage of the fall cone is that it can be used to measure other properties, at the 151 

same time as wL. For example, the fall cone is used to evaluate the sensitivity St = cu/cur  In 152 

the past, the fall cone test has also been used to study thixotropy (Lefebvre and Grondin 1978).  153 

Mitchell and Soga (2005) define thixotropy as “an isothermal, reversible, time-dependent 154 

process occurring under conditions of constant composition and volume whereby a material 155 

stiffens while at rest and softens or liquefies upon remolding”. Thixotropy was previously 156 

studied in the lab using the miniature vane-apparatus (Skempton and Northey 1952), 157 

viscosimeter (Perret et al. 1996), parallel plate shearing device (Ripple and Day 1966) and the 158 

triaxial shear test (Pusch 1982). Thixotropy is related to the time-dependent dissipation of the 159 

excess pore pressures generated during remolding. The pore pressure decrease is thought to be 160 

connected with a reorganization of the grain skeleton as different arrangements are stable 161 

during shearing (in this case remolding) and at rest (Mitchell 1960b; Osipov et al. 1984; 162 

Ripple and Day 1966). According to Mitchell (1960b), for different arrangements to be stable 163 

during remolding and at rest, the clay should show a weak tendency to flocculate. If this 164 

tendency is missing or very strong, thixotropy should not be observed. 165 

The shear strength regain is usually presented in a graph with the decimal logarithm of 166 

elapsed time, log (t) since remolding on the x axis and cu or percentage shear strength regain 167 

on the y axis (Lefebvre and Grondin 1978; Mitchell 1960b; Skempton and Northey 1952). 168 

This plot does not usually allow a mathematical equation to be fitted on the data.  Generally, it 169 

can only be said that cu increases with time at a decreasing rate. 170 

Inasmuch as intense thixotropy can easily be observed with the fall cone, it can also affect 171 

wL determinations. Experienced soil mechanics technicians know that for very sensitive clay, 172 

the cone penetration decreases very rapidly after remolding. Obviously, thixotropy also affects 173 

the wL values measured with the Casagrande apparatus. However, the fall cone test usually 174 
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lasts longer. This is especially true for very sensitive clays when the standard CAN/BNQ 175 

2501-092 is used. In this case it often takes 2-3 minutes to get penetrations within 0.3 mm, the 176 

condition required to retain a penetration value. On the other hand, at the liquid limit, the 177 

Casagrande test should always last about 12 seconds if one follows standard CAN/BNQ 2501-178 

090 and fulfills 2 revolutions per second. The main characteristics of these two standards will 179 

be presented in the next section.   180 

Methodology 181 

Liquid limit tests were performed according to standards CAN/BNQ 2501-090 and CAN/BNQ 182 

2501-092, which apply respectively to the Casagrande apparatus and the Swedish fall cone. 183 

Values of cu and cur were determined following standard CAN/BNQ 2501-110.  184 

A total of 35 samples from 14 boreholes located in Lachenaie, Quebec have been tested. 185 

The samples were obtained using thin-walled samplers with a 3-inch diameter. Samples 32 186 

and 33 were artificially slowly leached within triaxial cells (Réginensi 2009). Their pore water 187 

salinity was lowered from 7 g/L to approximately 1g/L. Several series of experiments were 188 

conducted, some of them with particular modifications to the standard method. The first 189 

experiment was completed with an incorrect calibration of the Casagrande apparatus with 190 

respect to standards CAN/BNQ 2501-090 and ASTM D4318: the cup’s falling height was 191 

11.4±0.1 mm instead of 10 mm (this calibration is conform to standard BS 1377). In the 192 

second experiment, the correct ASTM D4318 calibration was used for the Casagrande 193 

apparatus. The last experiment was aimed at evaluating the impact of thixotropy on liquid 194 

limit determinations. During the three experiments, results obtained at the same water content 195 

with cones of different masses and apex angles were used to verify the validity of Eq 1. The 196 

cone mass was changed by adding washers around the cone stem. Several cone tests were 197 
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performed with sharp and blunt apexes, and cones of different conditions. For intact clay 198 

samples, both the 100 g and 400 g cones were used for cu determinations. Thixotropy tests 199 

were conducted at constant water content to avoid shear strength regain by drying. The water 200 

contents were measured before and after the penetration series to be sure that the change was 201 

negligible. Generally, tests conducted at constant water content lasted less than 30 minutes and 202 

water content changes were inferior or close to 1%.  203 

Standards 204 

Liquid limit standards 205 

For both the Casagrande and fall cone methods, the material passing the 400 μm sieve is used.  206 

The specimen remolding and testing are performed immediately after sampling or after having 207 

removed the paraffin coating used for sample conservation in cold room. 208 

For the Casagrande method (Standard CAN/BNQ 2501-090), remolded clay is put in the 209 

cup of the apparatus to have a maximum clay thickness of 1 cm. After having leveled the clay 210 

surface, a groove is formed with a special tool. The lever is then turned so that the cup drops 2 211 

times per second. The test ends when a 13 mm long section of the groove closes. The number 212 

of drops is recorded. After remolding the clay, the test is done a second time at the same water 213 

content. If the number of drops is within two blows of the previous number, the water content 214 

is determined and the average number of drops is recorded. This procedure is repeated for at 215 

least 3 points. The logarithm of the number of drops is plotted versus the water content. A 216 

straight line is fitted through the data and wLP is taken as the water content resulting in 25 217 

drops. 218 

When using the fall cone method, the remolded sample is put in a cup. After having leveled 219 

the clay surface, a set of penetrations is obtained with the 60g/60° cone.  When two 220 
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penetrations between 7 and 15 mm and within 0.3 mm of each other are obtained, the clay is 221 

removed from the cup, remolded and put back in the cup.  Another set of penetrations is then 222 

acquired, again stopping when two penetrations within 0.3 mm are obtained.  If the average of 223 

the two penetrations of the first set is within 0.3 mm of the average of the two penetrations of 224 

the second set, the test is considered valid, the average of the four penetrations is noted and the 225 

water content is determined. Three or four data points are obtained this way. The liquid limit is 226 

found by plotting penetration depths versus water contents.  A straight line is fitted through the 227 

data points. The value of wLC is taken as the water content leading to a 10 mm penetration. 228 

Undrained shear strength standard 229 

Measurement of cu is done on a fresh and plane surface of the undisturbed clay sample. The 230 

test has to be repeated at least 5 times on the same surface, the tested zones being spaced at 231 

least 10 mm apart. The mean square penetration (P 2) is used in the calculations (Eq 2).  232 

∑
=

=
N

i
iP

N
P

1

22 1  (2) 233 

 234 

The Pi values in Eq 2 represent the individual penetrations and N is their number. The 235 

operator has to start with a 100 g cone with a 30° apex angle.  If this cone penetrates less than 236 

5 mm, a 400 g cone with a 30° apex angle must be used. 237 

To determine sensitivity, the value of cur at the natural water content (wn) must be 238 

evaluated. Normally, a 60 g cone with an apex angle of 60° is used. For very sensitive clays, a 239 

10 g cone with a 60° apex angle is used. After remolding the sample, two series of at least 240 

three penetrations are taken. The averages of the two series must be within 0.3 mm of each 241 

other. The series with the highest average is used to calculate the mean square penetration. 242 
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The cu and cur values are computed using Eq 1. The K  values are respectively taken to be 1.00 243 

and 0.30 for cones with apex angles of 30° and 60°. 244 

Thixotropy 245 

For thixotropy experiments, fall cone tests were also conducted according to standards 246 

CAN/BNQ 2501-092 for wL determinations and CAN/BNQ 2501-110 to evaluate clay 247 

sensitivity. A small change was introduced in order to quantify thixotropic behavior. For each 248 

penetration, the time elapsed since remolding (t) was recorded. In order to do so, a stopwatch 249 

was started at the end of remolding, after having leveled the clay surface. After each 250 

remolding, 4 or 5 penetrations were taken. For the last penetration, the t value was generally 251 

between 3 and 5 minutes.  252 

No special efforts were made to keep the water content constant during the thixotropy test. 253 

The loss of water during the 4 or 5 minutes that the test lasted was found to be small (around 254 

0.05 g for a 24.6 cm2 clay surface). If we assume that the water evaporated from a thin layer at 255 

the clay surface, say 2 mm thick, this translate to a 0.5 % water content change at the surface. 256 

This water content change probably answers for a small portion of the shear strength gain. 257 

However, this gain is assumed to be much smaller than thixotropic regain. 258 

For a test duration of about 5 minutes, the relationship between log(cur) and log(t) was 259 

found to be roughly linear. Equation 3 was fitted to the test data. 260 

B
ur tAc =  (3) 261 

Where A and B are constants depending on sample and water content, and cur is calculated 262 

using Eq 1. Results for a sample with intense thixotropy are presented in Figure 2. Data for 263 

three different water contents are shown. To compare the relative magnitude of thixotropy 264 

between samples, we defined a strength regain factor (R) which is equal to 10B.  R gives the 265 
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strength regain per log cycle of elapsed time. In practice, it means that between the first 266 

(roughly t = 30 s) and last penetration (t = 300 s), the shear strength is multiplied by R.  267 

Figure 2 shows that depending on the time elapsed since remolding, different water 268 

contents can lead to cur = 1.7 kPa, the assumed consistency at wL for CAN/BNQ 2501-092. 269 

Note that one can sometimes obtain a larger cur value by waiting 5 minutes than by decreasing 270 

water content by 3-4 %. To evaluate the range of wL values that can be obtained, for each 271 

sample, the test data were used to calculate two values of wL. A first value was calculated 272 

according to standard CAN/BNQ 2501-092: only the first two penetrations within 0.3 mm of 273 

each other were used. A second wL value (wLC 30s) was calculated by fitting Eq 3 on the data 274 

of the two sets of 4-5 penetrations obtained for each water content. Initial penetration values 275 

were obtained for each water content by substituting t = 30 s in Eq 3 and by solving Eq 1 for 276 

P. The P values hence obtained were plotted in the usual penetration versus water content 277 

graph to obtain wL. This value is meant to give an idea of the wL values obtained if we only 278 

use the first penetrations of each set. 279 

Results of the experimental program are shown in Table 1. 280 

 281 

Figure 2.  Results of the thixotropy test for a sample showing strong thixotropy (borehole FP-282 

08-07AB, depth 6.66 m). 283 
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Table 1. Experimental results (ILC = intact Lachenaie clay, LLC = leached Lachenaie clay, wLc 284 

= wL with cone, wLp = wL with Casagrande apparatus). 285 

Special 
condition # Sample 

descrip. 
wLp 
 (%) 

wLc 
BNQ  
(%) 

wLc 
30s  
(%) 

R (-) cu  
100 g 
cone   
(kPa) 

cu  
400 g 
cone 
(kPa) 

S t 
400 g 
cone 
(-) 

at 
wL 

at 
wN 

in
co

rr
ec

t f
al

lin
g 

he
ig

ht
 o

f 
C

as
ag

ra
nd

e 
ap

pa
ra

tu
s 

1 ILC 60.9 70.7 - - - 42.27 40.6 17 
2 ILC 54.3 62.1 - - - 60.43 56.66 12 
3 ILC 61.4 67.1 - - - 89.59 78.29 8 
4 ILC 58.5 66.1 - - - 52.03 40.81 17 
5 ILC 58.5 63.2 - - - 44.83 43.52 13 
6 ILC 42.3 48.6 - - - 80.01 59.94 8 
7 ILC 59.6 65.3 - - - 34.59 28.3 8 
8 ILC 64.0 68.5 - - - 59.96 54.95 13 
9 ILC 50.5 58.6 - - - 83.86 74.72 8 
10 ILC 58.3 64.3 - - - 42.61 43.68 18 
11 ILC - 66.1 - - - 40.46 34.11 17 

- 

12 ILC 62.9 64.0 - - - 31.78 31.84 20 
13 ILC 59.6 60.3 - - - 30.92 34.17 10 
14 ILC 67.8 68.4 - - - 97.87 82.47 12 
15 ILC 69.7 69.7 - - - 43.88 40.63 7 
16 ILC 63.7 65.8 - - - 46.18 41.25 14 
17 ILC 67.2 66.1 - - - 32.6 31.34 16 
18 ILC 71.8 71.1 - - - 45.55 46.31 16 
19 ILC 48.9 51.3 - - - 68.33 53.93 10 
20 ILC - 42.2 - - - 72.93 61.29 28 
21 ILC - 44.8 - - - 72.89 54.81 73 

Th
ix

ot
ro

py
 m

ea
su

re
m

en
ts

 

22 ILC - 72.9 70.5 1.35 1.42 - 72.56 17 
23 ILC - 65.0 64.4 1.25 - - 50.33 20 
24 ILC - 66.8 65.7 1.22 1.29 - 70.87 16 
25 ILC - 46.9 46.9 1.11 - - 56.04 7 
26 ILC - 54.7 53.8 1.48 1.54 - 66.2 33 
27 ILC - 41.2 40.8 1.22 - - 76.36 7 
28 ILC - 50.1 46.5 1.61 - - 52.04 33 
29 ILC - 63.8 61.5 1.31 1.45 - 63.77 22 
30 ILC - 41.6 41.2 1.16 - - 47.24 14 
31 ILC - 59.6 58.8 1.23 - - 41.95 19 
32 ILC - 65.4 64.3 1.25 1.27 - 32.5 12 
33 LLC - 55.4 59.6 1.51 1.54 - 96.68 56 
34 LLC - 50.7 53.2 1.61 1.4 - 55.39 59 

use of a 
blunt cone 
for wL test 

17 ILC - 66.5 - - - - - - 

18 ILC - 71.1 - - - - - - 

19 ILC - 51.5 - - - - - - 

 286 
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Experimental study of the Hansbo relation 287 

Influence of cone mass on penetration values 288 

Intact shear strength measurements were performed to evaluate the influence of using a 100 g/ 289 

30° or a 400 g/ 30° cone to measure cu. The standard CAN/BNQ 2501-110 states that the 290 

400 g cone has to be used for stiff clays, when the 100 g cone penetrates less than 5 mm. The 291 

samples presented in this paper had to be tested with the 400 g cone as their mean penetration 292 

value is 4.23 mm and the maximum penetration is 5.63 mm. However, tests were performed 293 

systematically with both cones to evaluate how different the measurements were.  294 

 295 

Figure 3.  Correlation between results with the 100 g and 400 g cones for the Lachenaie clay. 296 

The correlation between the cu values obtained with the 100 g and 400 g cones is shown in 297 

Figure 3. Equation 1 was used to calculate cu. For stiffer clays, the cu values for the 100 g and 298 

400 g cones were markedly different. The cu values measured with the 100 g cone were 299 

higher. This discrepancy can be explained by increased errors when penetrations are too low. 300 

If penetrations are lower than 5 mm, the influence of the crust, which is more likely to dry and 301 

solidify than the deeper clay, is increased and thus the measured strength is increased. This 302 
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phenomenon was also reported by Lu and Bryant (1997), who noted that results are more 303 

consistent when penetrations exceed 4 mm. 304 

This study validates the cone selection rule in the standard CAN/BNQ 2501-110. In Figure 3, 305 

the four samples having shear strengths lower than 39.2 kPa (corresponding to a penetration of 306 

5 mm with the 100 g cone) are equally distributed around the 45° line. For stiffer samples, the 307 

higher the shear strength, the greater is the bias between the two cones’ measurements. 308 

Therefore, using the 400 g cone for stiff clays is essential to avoid overestimating cu and St. 309 

 310 

Figure 4.  Influence of cone mass on the cur versus t relationship (sample 32, 60° cone, w = 311 

59.5%). 312 

When penetrations exceed 5 mm, Equation 1 applies and P2 and m are proportional for a 313 

constant cur value. Figure 4 shows test results in which the cone mass was changed between 314 

penetration series. A 60° cone was used and the cone mass was varied between 60 and 200 g. 315 

Penetrations ranged from 6.5 to 13.2 mm. Contrarily to the experiments with the 100 and 400 316 

g cones, surface drying was negligible. The cur versus t relationship and its slope were 317 

independent of the cone mass. This proves that the increase in cur with time elapsed after 318 
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remolding is due to thixotropy, not to surface drying, which has an important influence only if 319 

penetrations are smaller than 5 mm. If surface drying was important, we would expect the cur 320 

versus t relationship to be steeper for the 60 g cone than for the 200 g cone. Since penetration 321 

depths are much smaller with the 60 g cone, the influence of surface drying and the associated 322 

shear strength gain should be more pronounced for the lighter cone.  323 

Effect of using a blunt cone 324 

An objective of the experimental program was to assess the factors controlling the K factor 325 

(Eq 1). One of these factor is the degree of bluntness warranting the purchase of a new cone. 326 

Standard CAN/BNQ 2501-092 states that no bluntness should be perceived with the naked eye 327 

while standard BS 1377, which uses a 30° cone, considers that we should still be able to feel 328 

the tip of the cone when it is pushed through a hole of diameter 1.50 mm in a 1.75 mm thick 329 

plate. To quantify the impact of the cone wear, penetration depths obtained with two 60°/60 g 330 

cones and two 30°/ 100g cones of different sharpness were compared. The photographs of 331 

Figure 5 show the four cones.  332 

 333 

Figure 5.  Four tested cones with different sharpness. 334 
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The two 60°/60 g cones shown in Figure 5 were used to measure wLC for samples 17-18-19. 335 

Results are presented in Figure 6 with the usual graph used to determine wLC. Only the results 336 

of sample 19 are presented but samples 17 and 18 yielded similar graphs: the results for the 337 

blunt and sharp cones are nearly identical. The wLC values for the three samples and the two 338 

cones are presented in Table 1. The sharp and blunt cones give almost identical wLC values for 339 

the three samples. It can thus be concluded that using a blunt 60°/60 g cone such as the one 340 

presented in Figure 5 for the determination of wLC does not generate a measurable error.  341 

Figure 7 shows a cur versus t graph obtained using the two 30°/ 100g cones and the sharper 342 

60° cone of Figure 5. For the 60° cone, two penetration series were conducted, one with a 343 

mass of 60 g and the other with a mass of 113 g. Even if they appear somewhat dull, both 30° 344 

cones are compliant with the wear criterion of standard BS 1377. When the same K values are 345 

used for both 30° cones, they give similar cur values. It is interesting to note that if K = 0.29 is 346 

assumed for the 60° cone, a comparison of the cur values obtained with the 30° and 60° cones  347 

implies that K = 0.85 for the 30° cones. This corroborates the K values of Wood (1985). 348 

Another test (sample 34) was conducted with the same cones and gave similar results. 349 

 350 

Figure 6.  Liquid limit test (sample 19). 351 
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 352 

Figure 7.  Comparison of the cur – t relationships obtained using three different cones (sample 353 

32, w = 58.1 %). 354 

Study of thixotropy 355 

For each sample, the magnitude of thixotropic strength regain, the R value, shows some 356 

variation with water content. Mitchell (1960b) found that thixotropy was more intense for w 357 

values between wP and wL. However, no specific trends were observed for the Lachenaie clay. 358 

For most samples, the log(cur) vs. log(t) relationships for each water content appear roughly 359 

parallel, as shown in Figure 2.  360 

Table 1 presents results for the thixotropy tests. Even if there is no clear link between w and 361 

R, we interpolated the R value at a water content corresponding to the 30 s wLC by fitting a 362 

straight line through the R vs w data points. For some samples, we also calculated the R value 363 

at the natural water content (wn) by recording the elapsed time during the remolded part of the 364 

sensitivity test. The R values at wLC and wn are similar. It should not come as a surprise as wn 365 

is usually close to wLC in Champlain Sea clays. 366 
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Figure 8 shows the regain factor R against sensitivity. As expected from soil mechanics 367 

technician lore, R is larger when sensitivity increases. This seems to be true whether R is taken 368 

at natural water content or at wL. However, it does not seem to hold for the whole Champlain 369 

Sea basin. Some results for thixotropy experiments with samples covering the whole 370 

Champlain Sea basin were presented by Lefebvre and Grondin (1978). Figure 9 shows the R 371 

values calculated using their strength regain database for t < 5 minutes. The relationship 372 

between R and sensitivity is far more obscure in their case. Also, for a given sensitivity, the 373 

thixotropy observed in Lachenaie appears to be more intense than elsewhere in the Champlain 374 

Sea basin. This could be due to some distinctive property of the Lachenaie clay body, perhaps 375 

its pore water salinity, or to some differences in testing methods.  376 

 377 

Figure 8.  Thixotropic strength regain versus sensitivity for some Lachenaie clay samples. 378 
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 379 

Figure 9.  R versus St for the Lachenaie clay body and for the whole Champlain Sea basin. 380 

Figure 10 shows how the wLC values calculated with the 30 s penetrations compare with the 381 

wLC values obtained by following Standard CAN/BNQ 2501-092. Following the standard 382 

yields higher wLC values but the difference is generally small. Except for the leached clay 383 

specimens and for the sample with intense thixotropy, for which test results appear in Figure 384 

2, the difference between wLC 30 s and wLC is always less than 5 %. For the case of Figure 2, 385 

the wL values for 30 s penetrations and for the standard are respectively 46.5 % and 50.1 %. 386 

Sample 26 shows that intense thixotropy does not always imply markedly different wLC 387 

values. This could be due to the fact that sensitive clays often have a low Ip value (IP = wL-388 

wP). If wL and wP correspond to fixed cur values, a low Ip implies that a small w change will 389 

result in a relatively large cur change. Thus one could get strong thixotropy and, consequently, 390 

P values at 30 s markedly different from the P values obtained by following standard 391 

CAN/BNQ 2501-092, but at the same time little water content change between the 3 points of 392 

a test. In other words, in a graph similar to the one presented in Figure 2, a low Ip clay 393 

showing strong thixotropy would have steep cur versus t relationships but little water content 394 

change between them. 395 
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 396 

Figure 10.  Relationship between wLC for first penetration (30 s) and wLC done according to 397 

the standard CAN/BNQ 2501-092. 398 

Comparison of fall cone and Casagrande apparatus 399 

Fall cone-Casagrande Relationship for liquid limit 400 

The fall cone-Casagrande relationship obtained in this study is shown in Figure 11 with 401 

background literature data.  402 

 403 

Figure 11.  Cone-Casagrande relationship. 404 



24 

Our results show good agreement between the wL values of the fall cone and Casagrande 405 

methods. There is less spread in the Lachenaie data points than in the general literature data. 406 

Equation 4 gives the relationship that was obtained. 407 

9835886960 .. += LPLC ww  (4) 408 

When wL is in the 50 to 70 % range, both methods can be used with saline clays. Therefore, 409 

the Swedish fall cone can replace the Casagrande apparatus to measure wL for the saline clays 410 

of Lachenaie.  411 

 412 

The height-of-drop of the Casagrande apparatus 413 

Several Casagrande tests were performed with a fall height of 11.4 mm for the cup. This 414 

incorrect calibration was equivalent to a minimum distance of 10 mm between the base and 415 

the cup when the latter is fully raised, as stated in standard BS 1377. The relationships 416 

between the wL values obtained with the cone and the Casagrande apparatus for both 417 

calibrations appear in Figure 12. Even if the fall height error was small (11.4 ± 0.1 mm instead 418 

of 10 mm), it had a direct influence on wL values (Fig. 12). A calibration error as small as 1.4 419 

mm can generate a relative error between 8 to 14 % (about 6 % points for wL). This error is 420 

similar to the coefficient of variation (standard deviation/mean) of 7-8% observed by 421 

Sherwood and Ryley (1970) in inter-laboratory comparisons of the Casagrande method. It is 422 

therefore not a negligible error with respect to the test accuracy.  423 

As indicated before, if the number of blows is assumed to be proportional to the square of 424 

the height-of-drop, at wL dN = 0.50 blows/mm2 HdH. For a fall height of 11.4 mm, dN = 7. By 425 

using the average slope of the log(N) vs. w relationships observed for the samples presented in 426 

Table 1, a theoretical error on wL can be calculated. From N = 25 to N = 18, dlog(N) = -0.143. 427 
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The average slope dw/dlog(N) = -28.1 results in an error of 4.0 points,  a smaller error than the 428 

experimental error shown in Figure 12. Therefore, the assumption that N is proportional to H2 429 

leads to underestimating the error caused by an incorrect fall-height. 430 

 431 

Figure 12.  Effect of fall height calibration of the Casagrande apparatus on the cone-432 

Casagrande relationship. 433 

Conclusion 434 

Three experimental issues concerning the Swedish fall cone were studied using saline 435 

sensitive clay from Lachenaie, Quebec. Firstly, several factors are found to affect the Hansbo 436 

relation (cu = 9.8 Km/P2) used in fall cone experiments. For penetrations greater than 5 mm, 437 

changing the mass of the cone has no influence on cu values, as penetration varies following 438 

the Hansbo relation. When the mass of the cone is too small to produce a penetration greater 439 

than 5 mm, the Hansbo relation is invalid, yielding incorrect cu values. The bluntness degree 440 

of the cone point was found to have no effect on the K factor.  441 

Secondly, thixotropy was observed with the Lachenaie clay. A direct relationship was 442 

observed between thixotropic regain factor and sensitivity. Thixotropy is not considered in 443 

standard CAN/BNQ 2501-092 for fall cone liquid limit determinations. If the first penetration 444 
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is used, before the bulk of the thixotropic strength regain is observed, the wL value can be 445 

more than 5% smaller than that obtained while following the standard. When following the 446 

standard, the mean of two penetrations within 0.3 mm of each other is recorded. In this case, 447 

the first penetration is seldom used. The authors suggest considering the thixotropy 448 

phenomenon in future versions of the standard. 449 

Thirdly, the Swedish fall cone was compared to the traditional Casagrande apparatus for 450 

liquid limit determinations. These two methods yielded identical results in the studied 451 

conditions (saline Lachenaie clay with liquid limit between 44% and 75%). An incorrect fall 452 

height calibration of only 1.4 mm led to a mean error of 6 liquid limit units. This error is 453 

greater than the theoretical error obtained from a 1.4 mm incorrect calibration, assuming that 454 

the number of blows is proportional to the square of the height-of-drop.  455 
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