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Abstract: A semi-analytical formalism for the optical prop-
erties of a metal-insulator-metal periodic nanostructure 
using coupled-mode theory is presented. This structure 
consists in a dielectric layer in between two metallic layers 
with periodic one-dimensional nanoslit corrugation. The 
model is developed using multiple-scattering formalism, 
which defines transmission and reflection coefficients 
for each of the interface as a semi-infinite medium. Total 
transmission is then calculated using a summation of the 
multiple paths of light inside the structure. This method 
allows finding an exact solution for the transmission 
problem in every dimension regime, as long as a suffi-
cient number of diffraction orders and guided modes are 
considered for the structure. The resonant modes of the 
structure are found to be related to the metallic slab only 
and to a combination of both the metallic slab and dielec-
tric layer. This model also allows describing the resonant 
behavior of the system in the limit of a small dielectric 
layer, for which discontinuities in the dispersion curves 
are found. These discontinuities result from the out-of-
phase interference of the different diffraction orders of the 
system, which account for field interaction for both inner 
interfaces of the structure.

Keywords: plasmonics; optics; nanomaterials.

PACS: 42.25.Bs; 73.20.Mf; 42.70.-a; 78.67.Pt.

1  Introduction
Surface plasmons are the oscillations of conductive elec-
trons that propagate at the interface of dielectrics and 

highly conductive metals. They are excited in resonance 
with electromagnetic waves using momentum matching 
with the parallel wavevector of the incident wave. With 
the arrival of fabrication techniques that can achieve 
resolution well below the wavelength of electromagnetic 
wave in the visible spectrum, new structures in metals 
have open up possibilities to couple and manipulate 
such surface waves [1]. These nano-plasmonic devices 
have shown to have very unique properties; they can 
concentrate light well below the diffraction limit [2, 3], 
they can lead to large field amplification [4], as well as 
achieve long-range propagation of the surface waves 
[5]. They constitute a good way of designing materials 
with unique properties [6, 7], as well as novel optical 
devices [8, 9].

In this letter, we develop an analytical formalism for 
a combination of two structures of interest: (i) a metal-
insulator-metal (MIM) structure, with (ii) periodic 
indentation in the metal films, as depicted in Figure 1. 
Periodic corrugations in metal thin films have shown to 
exhibit interesting optical properties ever since it was 
first reported that nanohole arrays lead to extraordi-
nary optical transmission [10]. These structures con-
stitute a unique way to couple to surface waves [11]. 
As the understanding of the transmission mechanism 
improved, the high transmission observed in this struc-
ture were linked not only to the surface plasmon waves 
but also to surface waves of the corrugated surface for 
the case of perfect electrical conductors (PECs) [12]. 
Planar MIM structures, on their part, have been investi-
gated theoretically for decades now [13] and have gain 
interest recently with new experimental demonstra-
tions [3, 14, 15] as well as extended analysis for integra-
tion into nanoscale devices [16].

The optical properties of such a multilayer struc-
ture with periodic corrugation can be obtained using the 
coupled mode theory. The proposed model includes the 
calculation of the reflection and transmission coefficient 
of the interfaces as a semi-infinite medium and a multi-
ple path calculation. This last part corresponds to the 
combinative solution of a multilayer Fabry-Perot in which 
one layer acts as a diffraction grating layer. The model is 
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developed in order to obtain physical insights into the res-
onant states involved in the transmission of light through 
such a structure.

2   Theoretical model

2.1   Scattering coefficients

The theoretical model presented here uses the coupled 
mode theory in the multiple scattering formalism [17–21]. 
The structure studied in this paper consists in a dielectric 
layer of thickness h2, in between two corrugated metal-
lic layers of thicknesses h1 and h3. The periodicity of the 
system is d and the slit width is a. The dielectric con-
stants of region i are given by εi (for the metallic layer, 
this corresponds to the dielectric constant of the mate-
rial inside the slits), and 

jmε  for the metals. For simplic-
ity of the method and annotation, as well as for a focus 
on the interesting case of coupling to surface waves, we 
consider here only the one-dimensional case of slit arrays, 
for which the field is invariant along the y-axis, and the 
p-polarized wave. The metal is considered to be a perfectly 
flat PEC, but could be implemented as a real metal using 
surface impedance boundary conditions [21]. The mag-
netic fields for each layer are defined as solutions to the 
Helmholtz equation for the considered medium, whether 
it is a plane wave in a dielectric medium or a guided wave 
inside the indentation of the metallic layers, as depicted 
in Figure 2. The notation used for the fields is the one pre-
sented in a review article [21] where 0( )| ri k k n xk e +〉 =  rep-
resents the parallel component (or x-component) of the 

electromagnetic field of a plane wave, with the wavevector 
0 sin

i w i ik k θ= ε  with θ0 the incident angle and kw = w/c 
the wavevector of light in free space. The waves in die-
lectric media are represented by a Bloch combination of 
plane waves k = k0 + krn, which represents the different 
diffraction orders n of the grating. This representation is 
valid for an infinite array of slits. For the guided modes 

inside the slits, ( / 2)| costC m x a
aa

α
⎛ ⎞+〉 = ⎜ ⎟⎝ ⎠  represents the

parallel component of the guided TM m mode for paral-
lel-plate waveguides [18], where Ct is a normalization 
constant relative to the waveguide mode and equals 1 if 
m = 0 and 2  if m > 0. The z-component of the wavevec-
tors is retrieved using 2 2 2

w zk k k= +  for the plane wave and 
2 2 2( / )w zk q m aπ= +  for mode m inside the slits.

The transmission and reflection coefficients are 
obtained, using the convention given in Ref. [21], by 
matching the fields at each interface and then taking a 
projection over all 〈k| for the electric fields and over all 〈α| 
for the magnetic part. This leads to a set of equations for 
each interface, as follows:
1. Interface 1–2

12 12
0 0( ) 2 | ,kG iY G iY k

αα α α αβ β
α β

τ τ α
≠

+ + = 〈 〉∑ (1)

1 0 1 1

12 12
, 1 ,| ,k k k kk

α
α

ρ δ α τ= − + 〈 〉∑ (2)

2. Interface 2–3

23 23( ) ,G iY G iY G
γγ γ αγ αβ αβ γ γα γα

β γ

ρ ρ δ
≠

+ + = −∑ (3)

23 23
, | | ,k k k

α αβ
β

τ α ρ β= 〈 〉 + 〈 〉∑ (4)

1
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z

Figure 2: Field definition for each region of the structure.
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Figure 1: Unit cell representation of the periodic MIM structure. The 
dashed rectangle represents the structure with periodicity d; slit 
width a; and thicknesses h1, h2, and h3 for the top metal, dielectric, 
and bottom metal layers, respectively.
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3. Interface 3–4

34 34
, ,( ) 2 | ,k k kG iY G iY k

αα α α αβ β
α β

τ τ α
≠

+ + = 〈 〉∑ (5)

1 2 1 2 1

34 34
, , 2 ,| ,k k k k kk

α
α

ρ δ α τ= − + 〈 〉∑ (6)

where 12
α
τ  represents the transmission coefficient for 

 interface 1–2 of mode α, and Yk = εikw/kz represents the 
admittance of p-polarized wave. Y

α
 = qz/kw is the admit-

tance of the TM mode inside the slit. 23
αγ

ρ  represents the 
reflection coefficient of mode α into mode γ, and 34

,kα
τ  

represents the transmission into mode α of incoming k 
wavevector. | |kk

G i Y k k
αα

α α= 〈 〉〈 〉∑  describes the cou-
pling term of incident wave to the waveguide mode α with 
plane vectors |k〉, and must run over a sufficient number 
of diffraction orders. It includes, for each wavevector, the 
overlap integral for one-dimensional slit arrays:

/2 ( )
/2

/2 /2

2 2

| ( ( / 2))

( ) .
( / )

a ikxt
a

ika ika
t

Ck cos m a x a e dx
ad

C ik e cos m e
m a kad

α π

π

π

−

−

〈 〉 = +

−=
−

∫
(7)

The reflection and transmission terms for all the other 
interfaces can be retrieved by applying Eqs. (1)–(6) in a 
similar way. In region 3, the waves are represented by a 
superposition of incoming diffraction orders and reflected 
ones, denoted by k1, k2.

2.2   Multiple path calculation

Because of the difference of impedance of each medium 
involved in the MIM structure, the waves that propagate 
inside this structure will experience multiple reflections 
and transmissions at each interface. These reflections can 
occur an infinite number of times, and their summation is 
represented by a geometric series. Transmission “loops” 
can be defined inside the structure in order to enumer-
ate every possible path of light inside the structure. In a 
multilayer system like the MIM structure, each layer and 
combination of layers will behave as a possible “loop” of 
the transmission. Figure 3 represents the different loops 
possible in the four-interface MIM structure.

The total transmission becomes a complex summation 
of all possible paths, which will define how the fields inside 
each layer interact with each other. Light can be transmit-
ted directly, as represented by the td arrow in Figure 3, or 
can go through a series of loops of the system before being 
transmitted. Loops can also exist inside other loops.

Waves inside the slits can propagate as different 
modes of the parallel plate waveguide, so all possible 

loops containing these regions can be expanded into the 
different combinations of the guided modes considered. 
Furthermore, plan waves in region 3 can propagate as 
diffraction orders of the periodic system, as described by 
the indices of the reflection and transmission coefficients 

34
, ,kα

τ 23
, ,kα

τ  
1 2

34
, ,k kρ  and

1 2

32
, .k kρ  Every loop containing this 

region, i.e. f23, f13, f24, and f14, must be expanded into combi-
nations of diffraction orders both coming back and forth. 
In Figure 3B, an example of the different loop combina-
tion of f23 is given for orders – 1, 0, + 1.

In this calculation, a sufficient number of diffraction 
orders and guided modes must be taken into considera-
tion. Whenever 2sin( ) ,i w w i

mk k
d
π

θ + <ε ε  the diffraction 
order inside the medium becomes evanescent, and so the 
term eh will become significantly small. As for the guided 
modes, as only the fundamental mode for the metallic 
slits couples strongly to the plane waves of regions 1, 3, 
and 5, only this mode is considered for the remainder of 
the article. The loop factors, with diffraction order (– 1, 
0, + 1) considered for region 3 and only the transverse 
electric and magnetic (TEM)-guided mode considered in 
regions 2 and 4 ( 23

|0 ,|0ρ 〉 〉  is written ρ23), can be expressed as

1 3

1 2 1 2 2 1 2 2

1 2 1 2 2 1 1 2 2

1 2 1 1 2 2 2 2 3

1 2 1 1 2 2

12 23 21 2 34 45 43 2

23 34 32
, , , 1 2

13 34 32 21 23 2
, , 2 1

24 45 43 32 34 2
, , 2 1

14 45 43 32 21 23 3
,

( ) ( )

( ) ( )

( ) ( )

h h

k k k k k k h h

k k k k k k h h h

k k k k k k h h h

k k k k k k

f e f e

f e k e k

f e e k e k

f e k e k e

f

ρ ρ ρ ρ

ρ ρ

ρ τ ρ τ

ρ τ ρ τ

ρ τ τ ρ τ τ

= =

=

=

=

=
2 2 1 3

4 2 2
2 1( ) ( ) ,h h h he k e k e e  (8)

where k1 is the parallel wavevector of light going forward 
and k2 is the one going backward, 2

2
( ) ziq h

he k e=  represents 

f12

f23

f34

f13

f24

f14td

Region

1
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f23

{–1,–1}  {–1,0} {–1,+1} {0,–1}  {0,0}  {0,+1} {+1,–1}  {+1,+1}{+1,0}

Figure 3: (A) The different loops inside the MIM structure. (B) The 
expansion of loop f23 by taking into account the first diffraction orders.



352   A.-P. Blanchard-Dionne and M. Meunier: Optical transmission theory for MIM periodic nanostructures

the propagation term inside the dielectric layer, and 
k jz j

j

ik h

he e=  the one for the metallic layers. The direct trans-
mission of light in the structure is represented by

1 2 3

12 23 34 45 ( ) ,d
k k k h h ht e e k eτ τ τ τ= (9)

with k wavevector inside the dielectric layer. The total 
transmission coefficient is given by

14(1 ),d
k

k
t t A= +∑ (10)

where A14 represents the considered summation of every 
possible combination of loops of the system. This is 
achieved using the following matrix form:

1
14 [ ] ,A −= × − ×in out

k k kV I T V (11)

where in
kV  is a vector representing the initial loop of a 

certain combination, I is the identity matrix, Tk is a matrix 
of a subsequent loop with the corresponding connecting 
coefficient, and out

kV  represents the exit coefficient of 
the final loop considered. The middle term in Eq. (11) is 
a geometric series of matrices that sums up all possible 
combination of paths, in the same way a simple geometric 
series sums up all paths of a single layer. These vectors 
and matrices take the form

12 12 23 23 14 14
1, 2 1, 2 1, 2 1, 2[ , ],t

k k k k k k k ka f a f a f= …,in
kV (12)

12 12 12 23 12 1412 23 14
1, 2 1, 2 1, 2 1, 2

23 12 23 23 23 1412 23 14
1, 2 1, 2 1, 2 1, 2

14 12 14 23 14 1412 23 14
1, 2 1, 2 1, 2 1, 2

,

t
k k k k k k k k

t
k k k k k k k k

t
k k k k k k k k

a f a f a f
a f a f a f

a f a f a f

− − −

− − −

− − −

⎡ ⎤…
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

kT
…

� � � �

…

(13)

2 2 2

12 23 14[ ] ,T
k k kt t t= …out

kV (14)

where 1, 2
xy ab
k ka −  represents a connecting coefficient 

that uses the previous wavevector k1 as the incoming 
wavevector for the reflection coefficient of the next loop. 
The exit coefficient 

2

23
kt  inputs the correct transmission 

coefficient for the considered path, using the wavevec-
tor of the last loop. It is to be noted that the vectors and 
matrices of Eqs. (12) and (13) use the loop factors f13t, f24t, 
and f25t, which consider the loop with a summation of 
the previous possible loop that can exist inside. Finer 
details are provided in the Supplementary Information 
section. The total transmission of the system is given 
by T = |t|2. A Matlab code for the implementation of the 
model is available in the Supplementary Information 
section.

3   Results

3.1   Transmission in the subwavelength 
regime with a thick dielectric layer

In Figure 4, the transmission spectra of a nanostructured 
MIM is presented for the case of PEC and dielectric con-
stant ε1 = ε2 = ε3 = 1. The dimensions, relative to the period of 
the system d, are h1 = h3 = 2d, h2 = 1.6d, a = 0.25d. The curves 
obtained for the transmission spectrum of this structure 
with a finite element simulation via the COMSOL software 
is superposed and shows perfect agreement. The time of 
calculation is 102 faster with the model for a similar reso-
lution on the number of wavelength steps. This improve-
ment in calculation time rises to 103 when only the zero 
diffraction order is considered inside the dielectric layer 
(which is valid in the subwavelength regime for thick die-
lectric layers). In the case of a two-dimensional structure 
calculation, this improvement factor would rise to another 
10-fold.

The transmission is characterized by a series of 
resonant peaks spaced apart in multiples of the length 
of the different cavities of the structure. As no radiative 
losses from the surface roughness of the layer as well as 
no absorption losses from the metal are included in the 
model, full transmission (T = 1) is reached for resonant 
wavelengths. In the lower panel, the phase term associ-
ated with the wave propagation of loop f12 and f13t is rep-
resented. This phase term is obtained by using φ = atan 

2 3 4 5
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Wavelength (units of d)

R
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ei θ
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f
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f
13t2 3 4 5
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on

Model
Simulation

1

−0.5

0

0.5

1 f12

f13t

Figure 4: Transmission of the MIM periodic structure for dimen-
sions a = 0.25d, h1 = h3 = 1.6d, and h2 = 2d.
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(Im(f)/Re(f)). It includes both the phase shift from the 
optical propagation and the phase shift resulting from 
the reflection on the interface, and for f12 this is given by 
φ = φ1 + φ2, where φ1 = qzαh1 and φ2 = atan(Im(ρ)/Re(ρ)). The 

loop 13
13

12 23(1 )(1 )t

ff
f f

=
− −

 represents the loop of the combi-

nation of layers 1 and 2, with the geometric summation of 
the inner loops f12 and f23 included. The resonances of the 
system occurs when Real(ei2φ) = 1 for both loops. This con-
dition for loop f12 means that modes from the metallic layer 
individually can emerge as a resonant state of the system. 
The other resonances occur for a combination of both the 
metallic layer and the dielectric layer (loop f13t). No reso-
nance from the dielectric layer only is observed, which is 
consistent with the fact that light needs to travel through 
the metallic layer first, which only allows resonant modes 
to go through.

In Figure 5, the dispersion curves of the structure are 
represented, with the 1 22( )Real( ) 1ie φ φ+ =  condition rep-
resented by the black dashed line for the f12 modes and 
gray dashed lines for the f13t modes. For a small incident 
wavevector, the resonances associated with the metal-
lic layer behave like Fabry-Perot cavity modes with no 
dependence over the tangential wavevector component kx 
[18] as the propagation vector for this loop is given by the 
TEM mode of the slits qz = kw. The modes of f13t behave as 
dielectric core and metallic cladding waveguide modes, 
but phase shifted as it includes a propagation inside the 
metallic slit as well as the propagation inside the dielec-
tric bounded by metallic layers. A remarkable bending of 
all curves occurs close to the “folding” of the light line, 
which is a well-known feature of periodic corrugation 
inside a metallic film [12]. This bending is connected to the 

coupling to modes of the corrugated surface and is rep-
resented through the admittance of the modes reaching 
high values close to the Wood anomaly condition kz = O 
[12]. The resonant state can thus be described as having 
either a cavity-like character (φ1) or a surface mode char-
acter (φ2) [21, 22], depending on which phase factor is con-
tributing more to the resonance.

3.2   Transmission in the subwavelength 
regime with a thin dielectric layer

In the subwavelength regime considered throughout this 
paper, the diffraction orders inside the dielectric are eva-
nescent. They will only contribute significantly to the 
total transmission when the dielectric layer is decreased 
to a size where the exponential decay is small. The reso-
nances in this case emerge from the summation of the 
contribution of every diffraction order. Such a situa-
tion is represented in the dispersion graph of Figure  6. 
The curves in panel A show resonances relative to a 
MIM structure with dimensions h1 = h3 = 1.6d, a = 0.2d, 
h2 = 0.5d. An important property to observe from this 
graph is the discontinuities in the resonant behavior of 
the system, reminiscent of bandgaps in the dispersion 
relation of planar MIM structure [16]. The transmission 
coefficient for the direct transmission term with (B) 
k = k0 and (C) k = k0 – kr wavevectors are plotted in the 
subpanel (the transmission factor for the + 1 diffraction 
order is negligible). These graphs show the transmis-
sion coefficient reaching values close to 1 and – 1 near 
the same region, which indicate resonant states that are 
out of phase with one another, leading to no field being 
transmitted through the total structure. This direct trans-
mission factor includes the interaction term of the field 
localized at both surfaces, which influences their respec-
tive propagation, as in a planar MIM structure.

In conclusion, a MIM structure presents resonant 
behavior that resembles a combination of the modes of 
a corrugated metallic film with the Fabry-Perot modes of 
a dielectric layer. These modes can in fact be described 
using the phase condition of unity for a loop contain-
ing both layers, as well as modes of the loop of the 
metallic layer only. When the evanescent higher-order 
diffraction modes inside the dielectric become consider-
able, the surface fields on both surfaces influence the 
resonance behavior of the system, as in a MIM structure. 
Destructive interference from these fields creates dis-
continuity in the dispersion curves where no transmis-
sion is observed.
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Figure 5: Dispersion curves of the MIM structure with dimensions 
h1 = h3 = 1.6d, a = 0.25d, and h2 = 2d. The dashed black line repre-
sents the resonance condition for the f12 loop and the gray dashed 
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