
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Computer Science and Computer Engineering
Undergraduate Honors Theses Computer Science and Computer Engineering

12-2021

Automated Report Based System to Encourage a Greener Automated Report Based System to Encourage a Greener

Commute to Campus Commute to Campus

Ronald Velasquez

Follow this and additional works at: https://scholarworks.uark.edu/csceuht

 Part of the Computer and Systems Architecture Commons, and the Digital Communications and

Networking Commons

Citation Citation
Velasquez, R. (2021). Automated Report Based System to Encourage a Greener Commute to Campus.
Computer Science and Computer Engineering Undergraduate Honors Theses Retrieved from
https://scholarworks.uark.edu/csceuht/97

This Thesis is brought to you for free and open access by the Computer Science and Computer Engineering at
ScholarWorks@UARK. It has been accepted for inclusion in Computer Science and Computer Engineering
Undergraduate Honors Theses by an authorized administrator of ScholarWorks@UARK. For more information,
please contact scholar@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csceuht
https://scholarworks.uark.edu/csce
https://scholarworks.uark.edu/csceuht?utm_source=scholarworks.uark.edu%2Fcsceuht%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.uark.edu%2Fcsceuht%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.uark.edu%2Fcsceuht%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.uark.edu%2Fcsceuht%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/csceuht/97?utm_source=scholarworks.uark.edu%2Fcsceuht%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu

Automated Report Based System to Encourage a Greener Commute to Campus

Automated Report Based System to Encourage a Greener Commute to Campus

An Undergraduate Honors College Thesis

in the

Department of Computer Science and Computer Engineering
College of Engineering
University of Arkansas

Fayetteville, AR
November, 2021

by

Ronald Velasquez

Abstract

This project consists of the design and implementation of a tool to encour-

age greener commutes to the University of Arkansas. Trends in commuting of the

last few years show a decline in not so environment-friendly commute modes. Nev-

ertheless, ensuring that this trend continues is vital to assure a significant impact.

The created tool is an automated report system. The report displays information

about different commute options. A Google form allows users to submit report

requests, and a web app allows the sustainability office to process them in batches.

This system was built in the Apps Script platform. It implements several Google

services to make directions requests, store data, and send emails. It is composed

of 6 major classes, functional code, and templates. Customizability and low cost

were the two most significant design considerations. The current implementation

of the system allows changing the takeaways, system constants, and email body.

Also, it is possible to process an estimate of 200 reports/day at no cost.

THESIS DUPLICATION RELEASE

I hereby authorize the University of Arkansas Libraries to duplicate this thesis

when needed for research and/or scholarship.

Agreed

Ronald Velasquez

Refused

Ronald Velasquez

TABLE OF CONTENTS

Abstract . iii

Table of Contents . v

List of Figures . vii

List of Tables . viii

1 Introduction . 1

2 Overall Design . 3
2.1 Project Component choices . 3

2.1.1 Apps Script . 3
2.1.2 Direction Finder over Google Maps API 5
2.1.3 Gmail API . 5
2.1.4 Drive APIs . 5
2.1.5 Spreadsheets for batch processing 6
2.1.6 PDF over HTML . 6

2.2 Class distribution and interaction 6
2.2.1 ProjectUtils . 7
2.2.2 Takeaways . 8
2.2.3 Map . 8
2.2.4 Commute . 9
2.2.5 Email . 10
2.2.6 Report . 10

2.3 Built to be customizable . 11

3 Design Constraints . 14
3.1 Google Apps Script . 14

3.1.1 Form Customization . 14
3.1.2 Performance and lack of multi threading 14

3.2 Google API . 15
3.2.1 Time dependence of transit routes 15

3.3 MailApp API . 15
3.3.1 Manual message structure creation 15

v

4 Detailed design of components . 16
4.1 Script level properties . 16
4.2 Data corruption protection . 17
4.3 DirectionFinder Queries . 18

4.3.1 Formatting . 18
4.3.2 User data Calculation . 19

4.4 Customizable takeaways and email body 21
4.5 Batch processing . 22

4.5.1 Types of batch processing 22
4.5.2 Front-end parallel processing 23
4.5.3 Entry processed tracking . 23

4.6 Form Processing . 24
4.6.1 Uniformity in batch and form processing 24

4.7 File Management . 24
4.7.1 Spreadsheet Uploading . 24
4.7.2 Report Images . 25

4.8 Input testing and error handling . 25

5 Case scenarios . 28
5.1 Form . 28
5.2 Web app . 28

6 Future Work . 31

7 Conclusion . 32

Bibliography . 33

vi

LIST OF FIGURES

Figure 1.1: Metric Ton CO2e transportation emissions versus time for the
University of Arkansas . 1

Figure 2.1: UML Class Diagram of commuter menu system (Only public
methods shown) . 7

Figure 2.2: Web app view of system to edit constants 12
Figure 2.3: Web app view of the system to edit takeaways 13
Figure 2.4: Web app view of system to edit email body 13

Figure 4.1: Activity flow of the method getFileID() 16
Figure 4.2: Commute class main dictionary structure 19
Figure 4.3: Dictionary structure used to store DirectionFinder responses . . 19
Figure 4.4: Majority of formulas to perform user commute calculations.

Red colored values are editable system constants. 20
Figure 4.5: Grid on report displaying some of the user calculated data . . . 21
Figure 4.6: Takeaways front-end regex . 22
Figure 4.7: Takeaways front-end regex . 22
Figure 4.8: Regex for back-end Takeaway processing 22
Figure 4.9: Regex for origin address testing 26
Figure 4.10: Regex for destination and parking addresses testing 26
Figure 4.11: Error displaying in origin cell due to value not being present . . 27
Figure 4.12: Error messages on web app . 27

Figure 5.1: Form use case diagram . 28
Figure 5.2: Web app home screen displaying contextual menu 29
Figure 5.3: Web app use case diagram . 30

vii

LIST OF TABLES

Table 2.1: Apps Script free daily quotas relevant to the project. Retrieved
from Google Apps Script quotas [1] 4

Table 2.2: Apps Script free limitations relevant to the project. Retrieved
from Google Apps Script quotas [1] 4

Table 2.3: Time ranges for best commute mode selection 9

viii

1 Introduction

According to data reported on Second Nature [2], The Commuting Metric

Ton Carbon dioxide equivalent emissions (MTCO2e) of the University of Arkansas

have been steadily descending since the year 2018 as seen in Figure 1.1. This

trend is significant when considering that university enrollment has been increas-

ing since then. This trend is thanks to a portion of the university population

moving to alternative commuting options. According to surveys conducted by the

sustainability office at the University of Arkansas in 2015[3], driving was the com-

mute mode preferred by 60% of the respondents. However, it dropped to 43%

in 2020, and biking increased 6% [4]. Despite the 17% decrease in car commute

preferences, other commuting forms such as walking dropped 3%, motorcycle/gas

scooters increased 1%, and transit remained the same at 8%. Although the chosen

alternatives are more environmentally friendly, they are still not optimal. There is

a long way to go and great room for improvement.

Figure 1.1: Metric Ton CO2e transportation emissions versus time for the Uni-
versity of Arkansas

The objective of this project is to create a new tool with the potential to

1

encourage switching to greener commuting modes. This new tool would provide

PDF reports. These reports would lay out the user’s commuting options, duration,

calories burnt, CO2 emissions, and expenses data. Also, based on the mentioned

data, a commute modality is recommended. The possible commute modalities are

walking, biking, transit, and driving. Manually generating these reports for the

entire office staff at the university is time-consuming. It would require manually

extracting data from google forms, performing google maps searches, and person-

alizing and sending reports to the respective users. Automating the generation of

these reports would represent significant time savings for the university sustain-

ability staff. Also, it would ensure that the user will receive it on a timely manner.

The designed system is composed of two basic units: direct user inputs and batch

processing. The direct-user-input unit processes entries provided through a form.

On the other hand, the batch-processing system takes entries from a spreadsheet.

2

2 Overall Design

A set of technologies were chosen based on the necessities of the project.

Having an overall knowledge of the available tools, classes that encapsulate them

and provide functionality were defined. Through the implementation process, ad-

justments to them were made to fit the needs of the office of sustainability.

2.1 Project Component choices

The office of sustainability already possessed a manual system to process

submissions. This system used a Google form as intake and made Google Maps

searches with the provided addresses. Finally, it generated a PDF file report. The

already in place system and the lack of future or constant system maintenance

created constraints in the technologies and complexity of the system, leading to

making the following choices.

2.1.1 Apps Script

Apps Script was chosen as the hosting platform. It is a service provided

by Google that allows creating editor add-ons. Editor add-ons are JavaScript

programs that can control and attach triggers to google services such as Google

forms and spreadsheets. It also allows hosting web applications with simple systems

to execute back-end functions. Apps Script only constitutes the platform of the

system. Consequently, it was necessary to link a Google Cloud project to it.

Therefore, APIs accessible through Google Cloud could also be implemented on

Apps Script. The main advantage of Apps Script over other services such as

Firebase is the capacity of having full access to basic cloud functionalities for free.

Nevertheless, certain aspects of the platform are constrained by daily quotas and

other limitations restricting the number of daily generated reports. The quota,

3

shown in Table 2.1, that creates this limitation is the Google Maps direction query

count due to each of report requiring up to 5 queries. Consequently, only 200

reports can be generated daily. This limitation applies to both batch and form

submission processing. In addition, script run-time further limits batch processing

as seen in Table 2.2. The average time of generating a report is 4.7 seconds, and 6

minutes is the longest a single script instance can execute. Consequently, a single

call to the script would only generate roughly 76 reports.

Service Daily Quota

File Conversions 2000

Properties read/write 50000

Spreadsheets created 250

Triggers total run-time 90 min

Google Map Direction query 1000

Table 2.1: Apps Script free daily quotas relevant to the project. Retrieved from
Google Apps Script quotas [1]

Service Limitation

Script Run-time 6 min/execution

Simultaneous executions 30

Email attachments 25/message

Email body size 200KB/message

Email total attachment size 25MB/message

Properties value size 9KB/value

Properties total storage 500KB/property stored

Triggers 20/user/script

Table 2.2: Apps Script free limitations relevant to the project. Retrieved from
Google Apps Script quotas [1]

4

2.1.2 Direction Finder over Google Maps API

The most important part of the system is that of providing a preferred

route. To do so, information about trip duration and distance is required. Initially,

Google Maps Directions API was considered an option. Every query to this API

has a cost of 0.5 cents. Its main advantage is that of having no daily limitations in

the number of queries. Nevertheless, since this is a new system, reducing the cost

of initial implementation is a major priority. This led to choosing Google Maps

Direction finder. Although direction finder only allows for 1000 queries/day, they

are free. The same number of queries would have a cost of $5 using Google Maps

Directions API. Another difference between these two APIs is how queries are

performed. While Direction Finder is accessible through an object, Google Maps

API responses require making HTTP requests. The response structure obtained is

essentially the same as that of Direction Finder. However, it is a JSON object that

only needs parsing. Consequently, if future system versions require an increase in

daily reports, switching APIs is simple.

2.1.3 Gmail API

All the available emailing APIs on Apps Script are limited to sending emails

to 100 different addresses/day. This would halve the number of possible daily

generated reports. Consequently, since Gmail API has fewer limitations, it was

chosen as the emailing API. Gmail API uses quota units to define daily quotas. It

provides a billion quota units/day. Sending an email has a cost of 100 quota units.

Therefore, it is possible to send a million messages/day which does not limit the

current implementation nor possible future migrations to different APIs.

2.1.4 Drive APIs

The designed system uses a DriveApp API which is part of the Apps script

platform and Drive API V2. Although DriveApp is a complete interface, it lacks

file conversion capabilities. File conversion is needed when downloading templates

5

or uploading a file. Although the Utilities class also provides means to make blob

conversions, spreadsheet formats are not supported. Therefore, a different file

management API that would allow converting a file is required. This led to also

using Drive API V2 to perform file conversions.

2.1.5 Spreadsheets for batch processing

A suitable input system had to be chosen to implement batch processing.

Part of the manual process was already being done in spreadsheets. Consequently,

using this file format would ease the transition to the automated system. Managing

spreadsheets is easily done through the SpreadSheetApp API on the Apps Script

platform. The usage of spreadsheets across the system has a couple of advantages:

• It allows to easily split the data to be processed without data conflict issues.

Consequently, concurrently processing a file is a possibility.

• Since every single cell in a spreadsheet can be accessed and modified individ-

ually, error messages can be strategically placed on the troublesome cells.

2.1.6 PDF over HTML

Once the system generates a report, it needs to be sent using a format that

displays consistently. Initially, HTML was considered an option. Nevertheless, due

to the variety of HTML rendering systems and their lack of support for some CSS

customizations, PDF was chosen instead. PDF is not an exact displaying system

since certain aspects such as zoom are completely dependent on app settings.

However, it ensures that the file being sent displays similarly across different devices

without any visual artifact.

2.2 Class distribution and interaction

Six classes, two sections of purely functional code, and several HTML and

CSS templates comprise the system. Classes do not encapsulate the functional

6

code portion of the system due to constraints regarding cloud function calls and

trigger creation. The six classes include a utility class used across the entire system

and five other classes whose relationships are described in Figure 2.1.

Figure 2.1: UML Class Diagram of commuter menu system (Only public methods
shown)

Each class is utilized for a set of specific operations:

2.2.1 ProjectUtils

ProjUtils is the project utility class. Its methods are all static and used

across the system. Some of the members of this class perform the following oper-

ations:

• Unit conversion for distance and time.

7

• Basic input testing routines for empty fields and specificity.

• Folder check and creation.

• File ID retrieval and creation.

• Quota tracking.

2.2.2 Takeaways

The Takeaways class is in charge of managing takeaway templates. A JSON

file under the name takeaways.json stores them. This file is a dictionary of the var-

ious commuting modes, and each mode entry is an array of different takeaway tem-

plates. These templates may contain tokens of the form [⟨dataType⟩]. ⟨dataType⟩
refers to the specific data used to substitute the value. For instance, User.data,

Driving.Time, etc. Regular expressions are used across the system to ensure the

correctness of these substitutions. getReportView() makes use of them to generate

the takeaways given specific user data. This class also provides a front-end view

of the system through the method getView() and a way to modify the takeaways

templates through update().

2.2.3 Map

The map class contains methods regarding visual aspects of the commute.

Through the method getRouteLink(), a Google Maps link is created with the

respective commuting mode, origin, and destination. The link is generated using

the Google Maps API V1 format. Based on the type of addresses that the system

is receiving, this function only needs to replace comas for “%2C” and white spaces

for “+” to fit the correct format. Another relevant method is getRouteImage().

This method makes use of the static maps Google API to generate a view of

the commute route. Using polygon information provided by DirectionFinder, the

route is traced from origin to destination on a static map image. Nevertheless, the

final project does not implement it. It provided little use to the system and had

8

reliability issues. getRouteLink() was used instead since it delivered a cleaner and

more useful experience.

2.2.4 Commute

The Commute class performs all operations related to DirectionFinder queries.

It manages request errors and formats the requested data. getCommuteTime() is

its main method. It returns an array of dictionaries that contain error messages,

bus routes, commute duration and distance, and whether the requested route was

found. getCommuteTime() requests directions calling other two private methods,

rqsCommuteData() and rqsDriving(). rqsCommuteData() is used for all modes

but driving. Driving data requires making two requests due to the need for direc-

tions to and from parking lots in some cases. Therefore, rqsDriving() accounts

for these differences. In total, the Commute class performs five Google Maps API

requests if a parking lot is present or four otherwise. The Commute class also

selects the best commute mode. This is done through getBestCommute(). This

method makes use of different time duration ranges to select the best commute.

As seen in Table 2.3, if walking takes longer than 15 minutes and bicycling takes

less than 30 minutes, bicycling would be chosen as the best commute mode. The

order in which these modes are selected prioritizes the greener modes

Commute Mode Commute duration (minutes)

WALKING <15

BICYCLING <30

TRANSIT <45

DRIVING No constraints

Table 2.3: Time ranges for best commute mode selection

9

2.2.5 Email

This class contains methods for report creation, emailing, and email body

editing. It builds the report employing a template stored in commuteTemplate.html,

and fills it out using data coming from the Commute, Takeaway, and Report

Classes. The sendMsg() method creates and sends Emails. This method im-

plements the method Users.Messages.send() from the Gmail API which receives

a base64 encoded RFC2822 formatted string. This encoded string is a multi-

part/mixed message that includes the pdf report. In case of system errors, this

method also sends error messages only as an HTML email by omitting the appli-

cation/pdf part of the message. The sendMsg() function is implemented by the

method send(). send() accepts user commute data and system calculation as pa-

rameters. Also, it obtains the best commute and creates a Takeaways object. It

fills out the report template with this information and sends it. Email also main-

tains the body section of the email. It uses the method createBodyTemplate() to

create a template file in case of deletion. It also possesses getters and setters to

extract and edit a formatted version of the email body.

2.2.6 Report

The report class is the entry point for all the processing done in the sys-

tem. This class keeps a reference of the current spreadsheet being processed and

a reference to an Email object. This class makes use of the method setUpSheet()

to prepare spreadsheets for processing. Preparing a spreadsheet involves checking

that it contains a proper output sheet where the results of the operations are stored.

Also, whenever the constants sheet is absent, it is copied from the form submission

spreadsheet onto the current spreadsheet. Report prepares values (rows) extracted

from the spreadsheets. This preparation includes generating a dictionary named

userData through the method userRowToDict(). This class also performs value

testing and error reporting. In the case of batch processing and form submissions,

if errors are present, an error dictionary is generated by testUserDataFormat().

10

This function also modifies values represented different internally. The method

processEntry() processes individual spreadsheet rows. For batch processing, this

function is called recursively by processData(). Batch processing progress is re-

ported using script properties. Every time an entry is processed, a property incre-

ments. getSSCount() provides this script property to the front end. The Report

class provides methods to securely insert and delete values in a spreadsheet. These

methods are insertEntry() and deleteEntry(). When forms are submitted, there

is a chance that the single spreadsheet used has simultaneous writes and deletes.

To account for this, the Report class keeps a document-level lock to protect the

spreadsheet from data corruption.

2.3 Built to be customizable

Another aspect taken into consideration when designing the system was its

level of customizability. Since the system will lack constant or long-term support,

the system must allow the user to make small changes to the report and values

calculation. The first section of the system that is customizable is constants.

Constants are stored in the system’s form submissions spreadsheet. They are

copied into any new spreadsheet uploaded to the system. This customization allows

changing constants on only the submission spreadsheet or all the spreadsheets

stored in the system. This is done by clicking on a checkbox at the bottom of the

form as seen in Figure 2.2. Since most of these constants were obtained from web

pages, scraping or using APIs that provide this information could be alternatives.

Nevertheless, the lack of long-term support could cause issues with changes in web

pages design and API lack of support. Therefore, having users make these changes

is a more reliable option.

Takeaways are another editable section of the system. This section allows

creating templates for every single one of the possible best commute modes as seen

in Figure 2.3. The system allows to delete and add takeaways and display report

calculations using tokens. Another relevant editable section of the system is the

11

Figure 2.2: Web app view of system to edit constants

body of the email sent along with the report as seen in Figure 2.4. This field only

allows accessing the name of the user to whom the report is being sent. In the

same way as the rest of the editable sections of the system, the email body field

allows for embedding extra HTML since inputs are unsanitized.

12

Figure 2.3: Web app view of the system to edit takeaways

Figure 2.4: Web app view of system to edit email body

13

3 Design Constraints

The implementation of the system resulted in challenges due to constraints

from the chosen platform and APIs.

3.1 Google Apps Script

3.1.1 Form Customization

Although Google Forms are easy to modify, their customizability is limited.

It increases the difficulty of ensuring the correctness of user input. This is especially

true for addresses. Due to the need for a certain level of specificity to ensure correct

Google Maps queries, the user needs to provide more than just their street address.

An option would be to suggest complete addresses as the user provides input.

Nevertheless, Google Forms do not allow for that. Therefore, regex validation and

comprehensive error messages are displayed to reduce user error.

3.1.2 Performance and lack of multi threading

The maximum function run time is 6 minutes long. Therefore, the number

of entries that can be processed at once is limited. Batch processing is affected by

this constraint due to it being a time-consuming process. A single call would not

be enough to process a file with over 80 entries. Due to having several entries that

go through the same process, parallelly processing a set of entries would represent

a significant speedup. Nevertheless, since the system is JavaScript-based, this is

not an option. This limitation is accounted for by making multiple queries with

different row starting points. This halves the total processing time and increases

the number of entries processed in a single click.

14

3.2 Google API

3.2.1 Time dependence of transit routes

Making commute requests in transit mode require a departure time. If not

provided, it defaults to Date.now(). However, issues may arise for days when bus

routes are not available such as Sundays. Therefore, the system moves all requests

to the following Monday to mitigate the problem. Nevertheless, there is still a

chance that the selected Monday has no bus routes available.

3.3 MailApp API

3.3.1 Manual message structure creation

Although MailApp API provides an easy and intuitive interface to generate

email messages, the daily free quota is too limiting for the system. This led to

using Gmail API. Consequently, email bodies and headers are manually set.

15

4 Detailed design of components

4.1 Script level properties

Script level properties are properties linked to the current project. Com-

pared to other properties such as User level properties, different users accessing

the web app share them. Script level properties are used instead of more specific

user level properties since the information stored is mostly system settings and

personalizations. These properties are no more than a dictionary that can store

information between executions making its retrieval faster than if they were stored

in Google Drive. Script level properties are implemented in the class ProjectUtils,

Figure 4.1: Activity flow of the method getFileID()

16

and they are used to keep track of file IDs and time quotas. The method get-

FileID() is used to obtain file IDs. This method accepts a property name (key)

and a function callback. The callback is executed to generate a file, obtain its ID,

and create a key/value pair in the script properties if it is not present. Keeping

track of time quotas is done similarly. The main difference is that two properties

are stored. One of them is a time property to keep track of the execution time

used. The other property is the current date. The time quota restarts daily, so

whenever the current date property is different from Date.now(), the time quota

property needs to be restarted. Calling quotaTimeStart() sets up these properties

and starts a timer. Then, quotaTimeEnd() stops the timer and stores the duration

in the time property. The daily execution time is limited to 90 minutes. However,

to allow some room to report errors, executions are not allowed after 80 minutes.

Keeping track of the number of entries processed during batch processing is also

done using Script properties.

4.2 Data corruption protection

Data corruption can occur when different instances of the system try to

write at the same time on the same data field. To account for these situations,

Apps Script provides access to the LockService API. The LockService API allows

controlling the concurrent access of critical code zones. This API is essentially

mutexes, and as such, it is necessary to call tryLock() or waitLock() to attempt

lock acquisition. Once the lock is no longer needed, releaseLock() must be called.

LockService provides access to locks of different scopes. The designed system only

uses document-level locks. However, they can also be script or user level. The locks

implemented control editing script properties to avoid creating multiple files if the

key is not present. Also, during spreadsheet row deletions, there is a slight chance

that other system instances are appending rows. This could cause the deletion of

the incorrect row. Finally, when setting up a spreadsheet, a lock is requested to

avoid creating multiple sheets under the same name. In all cases, the lock is only

17

attempted to be acquired for one second. The system uses both tryLock() and

waitLock(). tryLock() returns false if a lock is not acquired. Therefore, less vital

operations such as keeping track of execution quotas implement this type of lock.

Stopping the system when a lock is not acquired would not provide extra benefits.

waitLock() throws an exception when a lock is not acquired. Therefore, operations

essential to generate the report implement this type of lock. When processing a

form is the source of these exceptions, an email is sent to the user informing server

issues. For the web app, lock exceptions are handled in the front end like other

exceptions from the system. It prompts an error message to the user informing

the error and requesting to retry. Not acquiring a lock is unlikely since one second

is enough for all processes that require a lock to finish.

4.3 DirectionFinder Queries

4.3.1 Formatting

The Commute class makes all DirectionFinder API queries. This class

stores commute information in a dictionary as seen in Figure 4.2. This dictio-

nary is an easy way of maintaining commute information and switching between

the different commuting modes. This is done by only changing the value of the

mode entry. The dictionary also stores the resulting bus route numbers as another

dictionary under the name busRoutes. This dictionary contains entries for the

two bus services in the area, and each one is an array on which the respective

route numbers are appended. The response from a DirectionFinder query is an

object. This object is a collection of routes each of which contains several legs

which contain steps. Queries are made without requesting alternative routes, so

there is always a single route entry. Legs are usually the result of commuting mode

changes, e.g., if to catch a bus some walking needs to be done there will be a leg

for walking and a leg for riding the bus. On the other hand, steps result from

direction changes in a commute and contain distance, time, and transit informa-

tion. To simplify handling commute information, the responses are mapped into

18

Figure 4.2: Commute class main dictionary structure

Figure 4.3: Dictionary structure used to store DirectionFinder responses

a collection of dictionaries of the structure shown in Figure 4.3. The route entry

stores the query response used to create a static map using polygon information.

Although no longer in use, it is still part of the structure for future implementation

of this feature. This dictionary also contains the messages entry to describe errors

and a boolean entry found to signal if a route for the given mode exists. The

entries walking and total are used to keep track of walking and driving or riding.

They store time in seconds and distance in meters. Driving or riding information

is obtained by subtracting walking from the total.

4.3.2 User data Calculation

Once a set of DirectionFinder queries have successfully been made and for-

matted, commute data is computed. The formulas in Figure 4.4 are introduced into

individual cells in the spreadsheet where the user data comes from. reportType-

19

Days represent the maximum number of days that a user will be going to campus.

Depending on the type of report, the value of reportTypeDays may change. There

are two basic report types: student and staff. The reportTypeDays for the stu-

dent type is 185 days, and the staff type is 261 days. Since this defines the total

number of days for each type, this must be divided by seven and multiplied by

the commute frequency of the user to obtain their yearly commute days as seen

in Figure 4.4 for the yearlyCommuteDays formula. In the front end, report types

such as on-campus and off-campus students map to the student type while faculty

and staff map to the staff type. This data is displayed on the report in the form

Figure 4.4: Majority of formulas to perform user commute calculations. Red
colored values are editable system constants.

of a grid as seen in Figure 4.5. Such a grid is a simple table HTML tag. However,

some cells and values in this table were changed to fit the desired format. First,

some of the calculations are rounded to the nearest integer, for instance, calories

burnt. On the other hand, other values are also rounded to two decimal places if

below zero. This is the case for daily emissions and daily expenses. The smallest

value in each row is colored green unless the row is calories burnt in which case it

is the greatest. In terms of structure, each cell in TRAVEL TIME ONE WAY is

another table tag in which commute duration and steps are separate rows. This

20

allows for a more consistent separation between the values and a better alignment

with the BICYCLE cell which lacks step count.

Figure 4.5: Grid on report displaying some of the user calculated data

4.4 Customizable takeaways and email body

There are front-end and back-end systems relevant to the email and take-

aways customization. In the front end, inputs are acquired through textarea HTML

tags contained in a form, and regular expressions preprocess the data. For the take-

aways section, tokens are extracted using the regex shown in Figure 4.6 for testing.

This regex matches any value that is either a letter, number, space, or dot in be-

tween square brackets. Therefore, not necessarily that of correct tokens allowing

displaying error messages for strings that follow the format of a token but are not

correct. These matches are then compared to the acceptable tokens. For email

body preprocessing, the regular expression in Figure 4.7 is used. This regex cap-

tures any line of text with a line skip or at the end of the text. The matched text is

inserted inside of an HTML paragraph tag. This is done so that the email body is

properly displayed. Properly displaying content requires some extra processing in

21

Figure 4.6: Takeaways front-end regex

Figure 4.7: Takeaways front-end regex

the back end. For the email body, it is only necessary to substitute the [User.Name]

token if it is present. For takeaways, the process takes longer due to the length of

strings. Therefore, using regular expression and replaceAll() is the most efficient

way of performing this operation. The regex utilized is in Figure 4.8. This regex

is a stricter version of that in Figure 4.6 and only accepts characters separated by

a dot. To speed up the process, a dictionary is used as a hash table. Some of the

entries in this hash table are the needed values. Nevertheless, some other entries

are lambda functions that receive the commuting mode as its parameter. This was

done to reduce the size of the hash table.

Figure 4.8: Regex for back-end Takeaway processing

4.5 Batch processing

4.5.1 Types of batch processing

The batch processing supports two forms of processing: process-all and

process-new. To keep track of which entries have been processed, whenever a

file is being set up, an extra column is added. This column is a collection of

checkboxes named progress. These checkboxes are checked if an entry has been

successfully processed. If there is not a checkbox present, it would be the equivalent

22

of an unchecked checkbox. Checkboxes were chosen over the usage of spreadsheet

properties since they would allow users to have greater control over the entries to

be batch processed.

4.5.2 Front-end parallel processing

To achieve some speed up, the entries on a spreadsheet are processed con-

currently. This starts by calling processBatch() which makes a back-end request

to getSSCount(). Since getSSCount() signals the start for processing, certain se-

tups take place here. First, all checkboxes are unchecked in the current file if the

call is made in process-all mode. Second, this function restarts the entries pro-

cessed counter for the current spreadsheet. Finally, it returns the number of entries

present in the file. Next, partProcessing() is called. partProcessing() defines the

start and end indexes of the concurrent calls using the entries count. Then, it

makes queries to the back end to run the function processFile(), and it keeps track

of the number of concurrent calls being made. A single call to the server can only

process approximately 78 entries in a file. Therefore, whenever the server returns

an error message signaling that run time has been exceeded, another call is made

from partProcessing(). The new call is made as a process-new batch processing.

Since process-all causes checkboxes to be cleared, process-new would only pick up

where the processing was left. Currently, the speedup obtained is not so significant

due to the limitation of entries that can be processed per day. Consequently, the

number of entries is only split into two concurrent processes. However, the func-

tions can be modified to allow for more concurrent queries whenever the system’s

daily quota needs to be increased.

4.5.3 Entry processed tracking

While entries are being processed, updateProgressVal() is called in an in-

terval of 7500ms. This function makes a call to the back-end procedure getProc-

Count() which returns the number of entries that have been processed. Calls are

23

made in this interval since it has been observed that at most a report takes roughly

the same amount of time. This ensures that by the time the request is made there

have been changes to report. These changes are displayed using a jQuery progress

bar.

4.6 Form Processing

4.6.1 Uniformity in batch and form processing

The processing of form submissions implements the same code used for

batch processing. Instead of having processData() as its entry point, it has pro-

cessEntry(). Therefore, the data needs to be formatted as a dictionary which is

done by calling Report.userRowToDict().

4.7 File Management

4.7.1 Spreadsheet Uploading

As part of the batch processing, spreadsheets need to be uploaded to google

drive. This process is done using an input HTML tag and setting its type property

to file. This field supports .xlsx, .xls, and .ods formats. Once a file is selected,

its blob data is acquired. Sending this data to the backend in the most efficient

way requires using base 64 encoding. Nevertheless, during the process, the default

JavaScript base 64 encryption takes the entire integer buffer and converts it into a

string which includes comas. To account for this issue, the function uploadFile()

takes the encoded string, decodes it, generates a blob, gets the blob data as a

string, splits the string, parses the integer values, and generates a blob for the

spreadsheet. The generated blob file is then converted to the google spreadsheet

type using the Drive API and moved to the proper folder.

24

4.7.2 Report Images

When the report template is converted into a PDF file, the resulting PDF

file only displays content that was already present and not content that requires

retrieval. Therefore, the source of images cannot be regular URLs. The data must

be in the file at the moment of conversion. Consequently, data URLs are used

instead, and the image data is encoded in base 64. To reduce encoding time, the

images are stored in HTML files as image tags ready to use. The project files that

are of this type are SOLogo.html, mapsLogo.html, and passiogoLogo.html.

4.8 Input testing and error handling

For the correct functioning of the system, the following set of entries must

not be empty:

• Name

• Email

• Relation to the UofA (Type of report)

• Origin Address

• Destination Address

• Parking address

• Parking cost

Most of the input testing for form submissions happens in the front end. Built-in

validations are used to test email and integer value fields. On the other hand, val-

idations were manually defined for origin, destination, and parking address fields.

To test them, regular expressions were defined as seen in Figures 4.9 and 4.10.

The origin address regex requires that the address at least contains street and city

which need to be at least three characters long. On the other hand, the regex for

25

destination and parking address is a derivative of the origin regex. Since these two

values can be described in terms of their names or street name, only a single value

is needed. Whenever there are errors that the form cannot provide messages for,

Figure 4.9: Regex for origin address testing

Figure 4.10: Regex for destination and parking addresses testing

an email is sent. It describes the errors along with a link to the submitted form.

This reduces the time it would take users to correct their submissions. In terms

of spreadsheet input testing, integer value validation is built-in into every numeric

cell of the batch processing template. It was attempted to implement regex val-

idations for origin, destination, and parking in the template. Nevertheless, this

testing was not compatible with file formats other than Google spreadsheet. Con-

sequently, when these addresses come from a spreadsheet, they are split wherever

there is a comma, and the resulting number of values is counted. Based on this

number, city and state strings are appended as needed. The email cell is tested in

the backend. However, due to the complexity of email testing, the regex defined

by [5] is used. To avoid any error providing the report type, cells for this column

behave as a drop-down list. In case errors are present in any of the cells, their

color is changed to red, and a note is created describing the error as seen in Figure

4.11. The web app also requires error handling due to the customizability options.

The intakes of the editable constants are number-type input tags with minimum

values set to zero. Consequently, values coming from this form will always be valid.

Also, whenever there are empty entries in the editable takeaways, these entries are

ignored. Red boxes are used to display error or updates of the system as seen in

Figure 4.12. These boxes are timed and disappear after 5 seconds.

26

Figure 4.11: Error displaying in origin cell due to value not being present

Figure 4.12: Error messages on web app

27

5 Case scenarios

The system provides two entry points: a Google Form and a web app.

5.1 Form

Users of the form are only allowed to submit a form to receive an email

result as seen in Figure 5.1. On the other hand, the Office of Sustainability staff

can access the web app and restart the Google Form to its default set of input

fields through a menu.

Figure 5.1: Form use case diagram

5.2 Web app

Most of the ways of interacting with the system are through the web app

as seen in Figure 5.3. Through the web app, users can submit a spreadsheet. The

just submitted spreadsheet and all previous spreadsheets are displayed on the home

screen. From there, the user can view all the options available by right-clicking on

the chosen file. It will display a contextual menu with the different options as seen

28

in Figure 5.2. This menu allows the user to delete the file, open it, process all the

entries or only the new entries. The user can also edit elements of the system such

Figure 5.2: Web app home screen displaying contextual menu

as constants, takeaways, and the email body. In addition, a spreadsheet template

with the correct structure for batch processing can be downloaded by clicking on

Get Template. Finally, the Help section contains step-by-step information on how

to use the system.

29

Figure 5.3: Web app use case diagram

30

6 Future Work

• Publishing the system. This would allow for the app to be linked to different

accounts and further reduce privacy concern issues.

• Substituting Google Forms for a customized system. This system could al-

low implementation of the Places API to perform address completion.Also,

the front-end Maps API could be used to display the start and end of the

commute. This would provide the user submitting the form with a more

intuitive experience which is the current system’s weak point.

• Improvements on best commute heuristics. Having a system that only ac-

counts for commute duration instead of including emissions does not neces-

sarily select the best commute mode.

• Speed up the spreadsheet submission process. Currently, the encoding system

is time-consuming. Implementing a correct base 64 encoding in the front end

would speed up the process.

• Implementing the paid version of Google Maps directions API. The current

version of the system implements DirectionFinder. DirectionFinder only al-

lows for 1000 requests/day which translates to 200 reports/day. Currently,

this daily report limitation is sufficient. Nevertheless, if the demand for re-

ports increases, moving to a paid version of this API would roughly allow for

1148 reports/day.

31

7 Conclusion

This project is the result of following the requirements defined by members

of the sustainability office. By focusing on customizability and cost reduction, the

system can run without requiring constant support and at no cost. Despite the

system having limitations, they do not constitute constraints in the early stages

of the project. The current system demands are not high enough to require more

than 200 daily reports. Consequently, it successfully satisfies their needs. Finally,

if there is a need for changes in the future, the system was designed in a way that

would allow for easy modifications. It is modular, and most of the system’s designs

are stored in templates.

32

Bibliography

[1] (2021, Mar.) Quotas for google services. [Online]. Available:
https://developers.google.com/apps-script/guides/services/quotas

[2] (2020, Jul.) University of arkansas main campus emissions report. 1
University of Arkansas, Fayetteville, AR 72701. [Online]. Available:
https://reporting.secondnature.org/institution/detail!129129

[3] U. of Arkansas Office of Sustainability, “Commute preferences survey,” 1 Uni-
versity of Arkansas, Fayetteville, AR 72701, 2015.

[4] ——, “Commute preferences survey,” 1 University of Arkansas, Fayetteville,
AR 72701, 2020.

[5] (2021, Nov.) Html standard. [Online]. Available:
https://html.spec.whatwg.org/multipage/input.htmlvalid-e-mail-address

33

	Automated Report Based System to Encourage a Greener Commute to Campus
	Citation

	Automated_Report_System
	Automated_Report_System
	Automated_Report_System

