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Abstract 

Since mostly consumed raw, foodborne pathogen contamination of leafy greens has led to a large 

number of foodborne disease outbreaks and illnesses each year in the United States. Human 

noroviruses (hNoV) are the most common viral pathogen transmitted by leafy greens. In this 

dissertation, the persistence of the hNoV surrogate Tulane virus (TV) on pre-harvest lettuce and 

microgreens was investigated. Lettuces are the most studied leafy green model, while previous 

hNoV research has mainly focused on the post-harvest stage of production. Here, pre-harvest 

hydroponically grown lettuce were used to determine TV persistence on leafy greens. After 

inoculation on leaves at 40 days age, TV reached over 4 log PFU/leaf reductions over the 

subsequent 4 days of observation. On day 45, TV was still detected on leaves, indicating that the 

pre-harvest viral contamination may last to post-harvest stages including consumption. 

Meanwhile, microgreens are a group of novel salad greens whose color, texture, flavor and 

nutritional values have attracted more consumers in recent years. Currently, the understanding of 

viral risks in microgreen cultivation systems is limited. This dissertation used sunflower (SF) and 

pea shoots (PS) as model microgreens to study the virus transmission from two types of soil-free 

cultivation matrix (SFCM)—biostrate and peat. Without the presence of plants, TV survived 

over 10 days in SFCM with only 2.08 and 1.76 log PFU/tray reduction in biostrate and peat, 

respectively. However, when TV were inoculated in SFCM on day 0 before sowing seeds, no 

virus was detected in harvested microgreen edible tissues on day 10, regardless of the plant 

variety and SFCM type. Notably, there were significantly lower virus concentrations in the 

planted SFCM compared to the unplanted control areas. Later, the virus transfer from SFCM to 

microgreen was further investigated when inoculated with TV at day 7 of plant age. On day 10, 

there were minor reductions in virus concentrations in SFCM, but in microgreen edible tissue, 



  

TV was still not detected. In addition, another study was carried out to characterize virus 

persistence on microgreen leaves surfaces. A significantly higher virus persistence was observed 

on PS than SF. From plant age of 7 to 10 days TV reduced on average over 4.5 log PFU/plant 

(n=2) on SF, while the reduction was only 2.52 on average (n=2) for PS, indicating a plant 

variety-dependent virus persistence on microgreens. The findings in this dissertation provides 

insights on virus transmission during pre-harvest production stage of two types of leafy greens—

head lettuce and microgreens. This information will help to develop more effective virus 

prevention and control strategies within leafy green production systems.  
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Introduction: Leafy Green Production System 

I. Conventional and modern leafy green production

Fresh produce occupies a higher proportion of the human daily diet with the increased awareness 

of natural foods and the concept of a balanced diet (Randhawa et al., 2015). Traditionally, leafy 

greens are produced in soil under open air with irrigation and application of fertilizers, 

pesticides, and herbicides (Lages Barbosa et al., 2015). In modern agriculture, controlled 

environment agriculture (CEA) such as greenhouses and hydroponics has been implemented to 

improve the yield and quality of fresh produce (Ferguson et al., 2014). In addition, the choice of 

growing media and production system types for fresh produce has become more diversified, and 

it can be classified into soilless medium, hydroponic or aquaponic, and aeroponic (Aatif Hussain 

et al., 2014; Ako and Baker, 2009; Lakhiar et al., 2018; Touliatos et al., 2016).  

The soilless cultivation media usually include a mix of different components such as 

vermiculite, coconut coir, peat moss, sphagnum moss, sand, or perlite at a designated ratio for 

different leafy green types. In hydroponic, aquaponic, and aeroponic systems, the roots of the 

plant are exposed continuously or periodically to a nutrient solution in a closed space (Lakhiar et 

al., 2018; Savvas and Gruda, 2018). Compared to the conventional production mode, there are 

several advantages of soilless media production, including more water efficient, no pesticide use, 

less impact to the environment, lower land space occupation, and lower risk of fecal and spoilage 

microorganisms (Lages Barbosa et al., 2015; Sirsat and Neal, 2013). These new sustainable 

cultivation techniques are suggested to be the possible solutions to future food security caused by 

the rapidly increasing human population (AlShrouf, 2017).  
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II. Indoor microgreen production 

Microgreens, also called “vegetable confetti”, are a special group of leafy green. They are 

immature vegetables that are usually harvested when the seed leaves fully develop and first pair 

of true leaves emerge, which takes 1 to 3 weeks after seed germination (Pinto et al., 2015). 

Various vegetables and herbs can be grown as microgreens including red beet, cilantro, radish, 

sunflower, mustard, and pea shoots (Kyriacou et al., 2016) (Table 1). In the 1980s, microgreens 

were first used by chefs in San Francisco, California (Renna et al., 2017). Now microgreens, as a 

new culinary trend, are mostly consumed in restaurants for enhancing the texture and flavor of 

foods and embellishment purposes (Kyriacou et al., 2016). Moreover, as a rich source of 

antioxidants and minerals (e.g. ion and zinc), microgreens can provide a higher dietary intake of 

macroelements, microelements, and bioactive compounds vegetables, while containing less anti-

nutrients compared to mature plants (Lenzi et al., 2019; Weber, 2017). 

The small scale of microgreen production and its relatively simple production setup 

requirements offer the potential of diversifying the food system especially in urban areas (Weber, 

2017). Most commercial microgreen production systems are indoor operations which belong to 

the CEA production category. A recent survey of 176 microgreens operations in the US revealed 

that the most used a production setup is comprised of trays on stacked artificially lit shelves in 

indoor residential places (26.7%), followed by container farms inside a climate-controlled 

greenhouse (8.5%), and trays on shelves in indoor commercial spaces (6.8%) (Misra and Gibson, 

2021). Interestingly, 75% of operations in the survey were opened after 2010, which indicates 

the growing demand of the microgreen market in recent years.  
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III. Microbial food safety risks during leafy green production

The foodborne pathogens that are frequently associated with leafy greens include Shiga toxin-

producing Escherichia coli, Salmonella enterica, Listeria monocytogenes, norovirus, Hepatitis 

A, and Cyclospora (Carstens et al., 2019). Microbial contamination during leafy green 

production may be caused by various components in the growing system, such as the irrigation 

water, environment, soil amendment and fertilizer, and harvesting process (FAO, 2008). The 

interconnection of farmers, livestock, plant and environment contribute to the complexity of the 

possible contamination routes (U.S. Food and Drug Administration, 2021). For instance, the 

contamination routes of human norovirus in fresh produce production can be a result of (1) 

heavy rain and flooding causing sewage water to spread to irrigation water sources or to the plant 

growing field, (2) cross-contamination from worker or equipment during production and harvest, 

and (3) improper use of organic waste in field as fertilizer (EFSA, 2014; Sofy et al., 2018; Terio 

et al., 2020). According to an investigation on the irrigation water from five farms located in 

Finland, the Czech Republic, Serbia and Poland, human enteric viruses Hepatitis E viruses (1/20) 

and human norovirus (hNoV) genogroup 2 (GII) (4/28) were detected in leafy green irrigation 

water (well water) from three countries. Also, 3.6% of hNoV GII  (2/56) were detected in berry 

fruit irrigation water (river and well water) from all four countries (Kokkinos et al., 2017).  

In addition, the contamination routes and microbial hazards related to different leafy green 

production methods share some similarities but also vary due to their different characteristics. 

For example, a study comparing aquaponic and hydroponic systems revealed that the 

introduction of Shiga toxin-producing E. coli was mainly through fish feces in the former 

system; however, for the hydroponic system (i.e., without fish presence), the introduction of E. 
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coli was possibly through accidental cross contamination or biofilm in equipment (Yi-Ju et al., 

2020). Thus, for each production system, the microbial risks need to be evaluated specifically.  

 

IV. Norovirus and leafy greens 

Noroviruses (NoV) are non-enveloped single-strand RNA viruses that cause acute 

gastroenteritis. As a member of family Caliciviridae, NoV are classified into 10 genogroups (GI-

GX) so far, among which genogroups I, II, VIII and IX are infectious to humans (Parra, 2019). 

The GI, GII, GVIII and GIX are known to consist of 9, 27, 1 and 1 genotypes, respectively 

(Chhabra et al., 2019). On average, hNoV leads to 570-800 deaths, 56,000-71,000 

hospitalizations, 400,000 emergency department visits, 1.7-1.9 million outpatient visits, and 19-

21 million illnesses each year in the US (Hall et al., 2013). 

Between 2004 to 2012, hNoV was found responsible for 59% and 53% of fresh produce 

caused foodborne outbreaks in the United States and European Union, respectively (Callejón et 

al., 2015). Fresh produce is an important food source that can be contaminated with hNoV. 

Among single commodity caused hNoV outbreaks (n=364) from 2001 to 2008, leafy greens 

constituted 33%, fruits and nuts were 16%, and mollusks caused 13% outbreaks (Hall et al., 

2012). Hall et al. (2014) reported that leafy vegetables constituted 30% of the hNoV outbreaks 

caused by single commodity (n=67) in the US, 2009-2012. 

In this dissertation, viral risks were evaluated in hydroponic and indoor farming systems 

for the production of lettuce and microgreens, respectively. The hydroponic lettuce was used as a 

model for studying the virus persistence on pre-harvest leaf surface (Chapter 2). On the other 

hand, microgreens are a new class of leafy greens. In contrast to the numerous foodborne 

outbreaks associated with contaminated lettuces, so far there have been no documented 
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outbreaks linked to microgreens and only several recalls have been reported due to potential 

Salmonella and Listeria contamination of commercially available microgreens (Turner et al., 

2020). Nevertheless, hNoV is one of the top causes in leafy green outbreaks, while current 

knowledge about hNoV risk in microgreen production is very limited (Herman et al., 2015). 

Therefore, several potential viral risks during indoor microgreens production were investigated 

in this dissertation. The virus survival in different types of microgreens growing media and the 

subsequent transfer to plant edible tissue was tested (Chapter 3). Also, the impact of virus 

contamination occurrence when close-to-harvest stage of microgreens was examined. Last, the 

impact of contamination route (irrigation water or direct contact with leaves) was investigated in 

order to understand virus transfer and persistence on the edible microgreen tissue (Chapter 4). 
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VI. Tables

Table 1. Summary of common microgreens by families and species 

Microgreen Families Species 

Vegetable 

Brassicaceae 
Cauliflower, broccoli, cabbage, kale, radish, 

rappini, watercress, mizuna, arugula, rocket 

Asteraceae Lettuce, endive, chicory, radicchio, sunflower 

Apiaceae Dill, carrot, fennel, celery, cilantro, cumin 

Amarillydaceae Garlic, onion, leek 

Amaranthaceae 
Amaranth, quinoa, swiss chard, beet, spinach, 

quinoa 

Cucurbitaceae Melon, cucumber, squash 

Herb 

Gramineae Oat, wheat, corn, barley, rice 

Leguminosae 

(Fabaceae) 

Chickpea, alfalfa, bean, green bean, fenugreek, 

fava bean, lentil, pea, clover 

Lamiaceae Basil 

Liliaceae Chives 



 10 

Chapter 1: Interaction of microorganisms within leafy green phyllospheres: Where do 

human noroviruses fit in? 

I. Abstract 

Human noroviruses (hNoV) are one of the major causes of foodborne disease outbreaks linked to 

leafy greens. However, the interactions—including attachment and persistence—of hNoV with 

leafy greens are not well characterized. In the present review, three mechanisms are 

hypothesized for the interaction of hNoV with leafy green phyllospheres: 1) specific binding to 

histo-blood group antigen (HBGA)-like carbohydrates exposed on leaf surfaces and present on 

bacterial microbiota; 2) non-specific binding through electrostatic forces; and 3) internalization 

of hNoV through contaminated water (e.g. hydroponic feed water). To add more complexity, 

there is a rich diversity of microbial communities (i.e., bacteria, fungi, protozoa) residing in leafy 

green phyllospheres, and the attachment and persistence of hNoV could be largely impacted by 

these microorganisms through direct and indirect interactions. For instance, enzymes produced 

by bacteria and fungi could potentially compromise the structure of HBGA-like carbohydrate 

binding sites on leaves, leading to a reduction in hNoV binding. On the other hand, some 

bacteria also possess HBGA-like binding sites on their cell surface, which may provide extra 

binding locations for hNoV. There are also numerous metabolic compounds that can be produced 

by leafy greens and its microbial inhabitants and be subsequently distributed within leafy green 

phyllospheres. These compounds could theoretically play roles in enhancement or reduction in 

the attachment of hNoV. Overall, increasing the understanding of the various types of hNoV 

attachment and interactions with leafy green phyllospheres will be crucial for elucidating hNoV 

transmission via leafy greens as well as for the development of effective control measures. 
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II. Introduction 

 Public health burden of human noroviruses 

Human noroviruses (hNoV) are non-enveloped, single-strand RNA viruses that are a causative 

agent of acute gastroenteritis. Norovirus genus belongs to the family Caliciviridae. The genus is 

classified into at least 6 genogroups and further divided into at least 38 genotypes (Vinjé, 2015). 

Human noroviruses from genogroups I, II, and IV are infectious to humans (de Graaf et al., 2016; 

Verhoef et al., 2015). This group of viruses is transmitted through multiple routes: food, water 

(drinking and recreational contact), environmental surfaces, and person-to-person, among which 

person-to-person transmission is predominant. Specifically, 24% of hNoV outbreaks in the United 

States (U.S.) are foodborne, and in the European Union (EU) the percentage is estimated to be 

lower at 10% (Belliot et al., 2014). Globally, 14% of hNoV caused diarrheal diseases are due to 

food contaminations (Lopman et al., 2015). Among all of the hNoV genogroups and genotypes, 

GII.4 are more related to person-to-person transmission while non-GII.4 genotypes are frequently 

related to foodborne transmission (de Graaf et al., 2016).  

Infections caused by hNoV are usually self-limiting among healthy populations, while more 

severe in elderly, young children, and immunocompromised populations. As reported by the U.S. 

Centers for Disease Control and Prevention (CDC), hNoV causes 56,000-71,000 hospitalization 

and 570-800 deaths annually, which are 15-20% and 2-10% of the total food-caused 

hospitalizations and deaths, respectively (CDC, 2016). The total cost of hNoV illness in the U.S. 

every year is $2 billion with 5,000 quality-adjusted life-years for illnesses and deaths (Belliot et 

al., 2014). Worldwide, hNoV results in a median number of 699 million illnesses (95% 

uncertainty interval [UI]: 489–1,086 million) and 219,000 deaths (95% UI: 171,000–277,000) 
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annually (Bartsch et al., 2016). These illnesses and deaths result in $4.2 billion in costs directly 

to health care and $56.2 billion related to loss in productivity.  

Nevertheless, the disease burden due to hNoV is nearly always underestimated due to the 

underreporting of outbreaks. For instance, during an epidemiological investigation in the U.S., 

Hall et al. (2013) observed a 25-fold difference between the highest and lowest states reporting 

hNoV outbreaks on a population-based rate. These discrepancies are partly due to incidence 

variations among states, but more likely, this is an indication of outbreak reporting and 

investigation resources at the state level. Also, hNoV outbreaks on a global scale are 

underestimated as the epidemiological investigations are normally performed within each 

individual country with varying resources (de Graaf et al., 2016).  

 

 hNoV and leafy greens  

A majority of confirmed hNoV outbreaks in Belgium from 2002 to 2007 were caused by food 

handlers (42.5%) followed by contaminated water (27.5%), bivalve shellfish (17.5%), and fresh 

produce (12.5%) (Baert et al., 2009). While the reporting on hNoV outbreaks in water and 

shellfish has been intensive, reporting of outbreaks associated with fresh produce is less frequent 

(Baert et al., 2011). According to the outbreak summary for leafy greens and fresh fruits in the 

U.S. and EU, hNoV is the primary causative agent followed by Salmonella (Raquel M Callejón 

et al., 2015). In the U.S., hNoV outbreaks are more often related to consumption of salad, and in 

the EU, reported outbreaks are mainly due to contaminated berries (Raquel M Callejón et al., 

2015).  

Between 1973-2012 in the U.S., there were a total of 606 outbreaks associated with leafy 

greens, leading to 20,003 illness, 1,030 hospitalization and 19 deaths. Among all outbreaks, most 
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of them were caused by hNoV (55%), followed by Shiga toxin-producing Escherichia coli 

(18%), and Salmonella (11%) (Herman et al., 2015a). Leafy green contamination with hNoV is 

more often related to GI hNoVs with positive GI results found in 100% (2/2), 72.5% (133/181), 

and 66.7% (2/3) of tested samples collected from food companies or supermarkets in Belgium, 

Canada, and France (Baert et al., 2011). This is potentially due to the fact that GI genotypes are 

more often associated with contaminated environmental sources such as water and have been 

shown to persist longer in the environment when compared to GII hNoVs (Bitler et al., 2013; 

Escudero et al., 2012; Matthews et al., 2012).  In addition, the risk of hNoV contamination of 

leafy greens is conceivably greater due to the globalization of the food supply chain, especially 

when products are imported from countries with poor sanitation practices (Callejón et al., 2015; 

Nyachuba, 2010). With respect to fresh vegetables including leafy greens, 25% of those on the 

U.S. market are imported each year (Johnson, 2015). Meanwhile, this globalization provides 

increased opportunities for viral strains to comingle and possibly increase the chance for viral 

recombination—one of the primary ways for viruses to evolve—leading to more challenges 

related to prevention and control through vaccine and anti-viral compound development (de 

Graaf et al., 2016). 

 

III. Overview: Interactions of microorganisms with leafy greens 

In recent decades, outbreaks related to consumption of leafy greens are becoming more frequent 

and recognized. Unexpected pathogens have been associated with fresh produce including E. coli 

O157:H7 in baby spinach, Yersinia pseudotuberculosis in lettuce, and Listeria monocytogenes in 

bagged salads, etc. (Lynch et al., 2009). To control and reduce these undesired pathogens as well 
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as to hypothesize the less well-understood interactions of human enteric viruses with leafy 

greens, it is crucial to understand how microorganisms colonize and interact with leafy greens.  

 

 Bacteria  

 General bacterial habitants on leafy greens 

Fresh produce harbors a diverse population of residential bacterial communities, which are 

determined by many factors. The microbial diversity is large across different fruits and 

vegetables, but often the same type of fresh produce (i.e., lettuce, spinach, tomato etc.) share 

more common microbial compositions compared to the other types (i.e., apple, peach, mushroom 

etc.), (Leff and Fierer, 2013). Bacteria are able to colonize most organs of plants including 

leaves, stems, and roots (Bais et al., 2006). While some bacteria can be found throughout a plant, 

there are also unique taxa that are only found in certain parts of the plant. Fresh produce leaves 

are colonized by numerous bacterial cells with an average of 106-107 cfu/cm2 (Lindow and 

Brandl, 2003). As reported previously, the majority of bacteria genera found on lettuce leaf 

surfaces include Pseudomonas, Pantoea, Arthrobacter, Flavobacterium, Acinetobacter, and 

Bacillus (Table 1). In rhizoplane, bacteria composition varies between different soil types 

(Maloney et al., 1997). Cardinale et al. (2015) reported the most abundant bacteria families on 

lettuce roots are Pseudomonadaceae, Xanthomonadaceae, Cellvibrio, Flavobacterium, and 

Sphingomonadaceae. The plant age can also impact bacterial compositions since the variety of 

bacteria decreases during the maturation of lettuce leaves. Similarly, the concentration and 

diversity of the bacteria decrease during spinach leaf maturation (Dees et al., 2015). In addition 

to the above mentioned, climate and storage conditions, the bacteria location, and even the 
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microbial detection methods (i.e., culture-based, molecular) used in a given lab can all contribute 

to the reported microbial composition diversity in fresh produce (Rastogi et al., 2012, 2010).  

Aside from just the bacterial composition of leafy greens, there is great interest in the plant-

microbe interaction known as symbiosis, which can be categorized as pathogenic, mutualistic, or 

parasitic (Newton et al., 2010). Mutualism is beneficial for both plant and microbes. The most 

well-known mutualistic interaction is between the nitrogen fixation bacteria Rhizobium and 

legumes (Oldroyd, 2013). Parasitic and pathogenic interactions are both harmful to hosts with 

the former leading to collateral damage while the latter one causes trophic loss and even necrosis 

(Newton et al., 2010). Pathogenic interactions have been the most intensively studied compared 

to other types of interactions. For example, the phytopathogen Pseudomonas syringae is able to 

cause disease in a wide range of plants. This is achieved through the Type III secretion system 

(T3SS), which secrets host-specific effectors into plants (Feng et al., 2016).  

In turn, plants have immune systems for defense during interactions with bacterial 

pathogens. The first line of defense relies on the binding between pathogenic-associated 

molecular patterns (PAMPs) from bacteria and pattern recognition receptors (PPRs) from plant 

(Feng et al., 2016). This further activates PAMPs triggered immunity (PTI) in plants to respond 

to invaders. Since PTI is non-specific and can be triggered by any bacteria, its effects are very 

limited. When a pathogen successfully outcompetes PTI, the second line of the plant immune 

system starts to react. Effectors secreted by pathogens will be specifically recognized and 

therefore activate the effector-triggered immunity (ETI) of the plant. Generally, if ETI is able to 

block all the pathogen effectors, then the plant is not impacted. Otherwise, the plant can develop 

diseases (Jones and Dangl, 2006; Xin and He, 2013).  
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The composition of the leaf surface provides the basic nutrient uptake for microorganism 

colonization. As reported by Hunter et al. (2010), the soluble carbohydrates, calcium, and 

phenolics on lettuce leaf surfaces have significant influence on bacterial community structure. 

Meanwhile, the morphology of the leaf is another factor effecting colonization. Specifically, the 

size of the lettuce head can determine air flow as well as water and soluble nutrient deposit 

(Hunter et al., 2010). Interestingly, bacterial colonization on leaves can sometimes alter the 

surface to make a better habitat. To better colonize and survive on leaves under harsh conditions, 

microbial aggregates can be formed with mixed bacterial species and even fungi. The matrix of 

aggregation is called extracellular polymeric substances (EPS) produced by bacteria. The EPS on 

leaf surfaces shield bacteria and protect them from some outer stresses (Lindow and Brandl, 

2003). 

Given the complexity of bacterial composition on leafy greens, it is not surprising that 

interactions have been reported among bacterial communities. The presence of Xanthomonas 

campestris pv. vitians (Xcv) on lettuce leaves was found to be positively related to genus 

Alkanindiges, while negatively related to Bacillus, Erwinia, and Pantoea. Several hypotheses 

have been raised to explain these relationships while the mechanisms behind it remain unclear 

(Rastogi et al., 2012). First, it might be due to the antagonistic relationship between Xcv with 

Bacillus, Erwinia and Pantoea. Second, the establishment of Xcv on lettuce leaves may have a 

specific impact on the phyllosphere community including Bacillus, Erwinia and Pantoea. In 

addition, the relationship might be due to other less well-defined factors such as the plant 

genotype. 
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 Human bacterial pathogens on leafy greens 

Human pathogenic and opportunistic bacteria colonization on plants can be an important part of 

their life cycle as an alternative host for these human pathogens. A study revealed that 

Salmonella Typhi introduced by contaminated water to lettuce can survive from the seeding 

stage to maturation (Brandl et al., 2013). Human bacterial pathogens can attach to leafy greens 

through polysaccharides, bacterial lectins, and structural adhesins such as fimbriae, pili, and 

flagella (Gorski et al., 2003; Hassan and Frank, 2004; Tan et al., 2016). After attachment, 

bacteria are able to internalize in the plant through natural openings and damages, root uptake, or 

migrations through the vascular system (Quilliam et al., 2012). Unlike plant pathogens which 

trigger all available plant immune responses, human pathogens only induce very basal defenses 

of the plant. For instance, Salmonella and E. coli O157:H7, although recognized by lettuce 

immune cells, only trigger a weak defense response (Brandl et al., 2013). 

Numerous studies have focused on leafy green colonization with foodborne pathogens 

including Salmonella, E. coli, and L. monocytogenes (Klerks et al., 2007; Quilliam et al., 2012; 

Solomon et al., 2002). The colonization of bacterial pathogens on plants can be significantly 

affected by plant genotypes. Salmonella enterica colonization of the phyllosphere of four types 

of tomatoes showed a 100-fold difference depending on the type of tomato (Barak et al., 2011). 

(Quilliam et al., 2012) also observed that the metabolic activities of E. coli O157:H7 on lettuce 

phyllosphere vary depending on the cultivar.  

It has also been shown that plant pathogens that cause leaf maceration favor the growth of 

human pathogens such as Salmonella and E. coli O157:H7, whose cell density can be 10-fold 

higher on damaged plants compared to healthier plants. More specifically, the leaf maceration 

causes the leakage of nutrients such as sugars which can then be utilized by Salmonella and E. 
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coli O157:H7 (Brandl et al., 2013). Conversely, competition also happens between E. coli 

O157:H7 and indigenous spinach-biofilm bacteria since they utilize the same type of carbon and 

nitrogen sources (Carter et al., 2012). Bacterial pathogens can also interact with inhabitants on 

leafy greens. Studies have shown that vacuoles released by certain protozoa on lettuce and 

spinach can support the growth and survival of foodborne pathogens including E. coli, L. 

monocytogenes, and Salmonella enterica subspecies enterica (Gourabathini et al., 2008). 

 

 Protozoa 

The presence of free-living protozoa (FLP) is common on leafy greens such as lettuce and 

spinach (Gourabathini et al., 2008; Vaerewijck et al., 2011). Protozoa are ubiquitous in the 

environment, and they can be introduced to leafy greens through irrigation water or soils (Hsueh 

and Gibson, 2015). The estimated number of FLP on butterhead lettuce leaves ranges from 

9.3×102 MPN/g to 2.4×105 MPN/g leaf and is dominated by Spumella(-like) flagellates and 

Cercozoa (Vaerewijck et al., 2011). Protozoa can also favor the growth and survival of certain 

bacterial pathogens. For instance, E. coli and Salmonella enterica Typhimurium were able to 

survive the digestion of Tetrahymena sp. and then egested via fecal pellets, whereas 

Helicobacter pylori was digested (Rehfuss et al., 2011; Smith et al., 2012). Furthermore, S. 

Typhimurium that passed through the FLP was reported to have an elevated gene expression for 

acid tolerance, compared to S. Typhimurium that had not passed through Tetrahymena (Rehfuss 

et al., 2011). 
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 Fungi 

Fungal communities on leafy greens are less densely populated compared to their bacterial 

counterparts, though studies in this area are also not as prevalent (Vorholt, 2012). Fungi can 

interact with the plant by delivering small RNAs (sRNAs) into cells to defect plant immunity. 

Fungal pathogen Botrytis cinerea (Bc) can silence tomato and Arabidopsis immunity genes by 

secreting small RNAs (Bc-sRNAs) (Weiberg et al., 2013). In turn, endogenous sRNAs in many 

plants (e.g., wheat, rice, eggplant, cotton) were found to play important roles in immune response 

against fungal pathogens (Li et al., 2014; Llave et al., 2002; Weiberg et al., 2014; Zhang et al., 

2016). For instance, cotton plants can excrete microRNAs to silent virulence genes in the fungal 

pathogen Vertiillium dahlia (Zhang et al., 2016). These cross-kingdom interactions were further 

utilized as genetic tools by researchers to construct a transgenic plant to biologically control 

natural enemies such as demonstrated by Koch et al. (2013) using Arabidopsis and barley plants 

to inhibit Fusarium colonization and infection.  

Bacteria have also been utilized as another tool for controlling plant fungal pathogens. The 

pathogenic fungus Rhizoctonia solani can cause crop losses; however, Chowdhury et al. (2013) 

discovered a strategy to attenuate the adverse impact by introducing Bacillus amyloliquefaciens 

FZB42 to the lettuce rhizosphere. As a result, B. amyloliquefaciens FZB42 successfully reduced 

the bottom rot of lettuce caused by pathogen R. solani. Also, B. amyloliquefaciens FZB42 were 

observed to lower the impact of Rhizocotonia on microbiome on lettuce phyllosphere (Erlacher 

et al., 2014). In addition, studies on plant fungi have also focused on the utilization of the 

arbuscular mycorrhizal fungi (AMF) to enhance the accumulation of mineral compound (e.g., 

Cu, Fe) and antioxidants such as anthocyanins, carotenoids, and phenolic compounds in lettuce 

leaves (Baslam et al., 2011; Li et al., 2012). Conversely, when AMF was present, the time of 
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persistence was extended for foodborne pathogens Salmonella and E. coli O157: H7 which were 

internalized in leek roots (Gurtler et al., 2013). 

 

 Viruses  

While viruses pathogenic to leafy greens as well as human enteric viruses that may contaminate 

leafy greens have both been intensively studied and reviewed in the literature, there are fewer 

studies characterizing the virome of leafy greens. A recent study by Aw et al. (2016) reported on 

the diversity of viruses present in field grown and retail lettuces using metagenomics. The 

authors found that plant pathogenic viruses dominated the romaine and iceberg lettuces, with a 

relative abundance of 66.7 and 64.4% respectively. Other viruses were found that infected a wide 

range of hosts including bacteria, invertebrates, amoeba, fungi, and algae.  The bacteriophages 

(phage) present on tested lettuces were associated with 63 different bacterial hosts including 

homologs of Salmonella and E. coli phages. Rotaviruses and picobirnaviruses—common human 

and animal viruses—were identified on tested samples, while more well-known foodborne 

viruses such as hNoV, hepatitis A and E were absent, possibly due to the high detection limit or a 

seasonal effect. Human enteric viruses can be introduced during the production of leafy greens 

through contamination with human waste. Mattison et al. (2010) reported the detection of hNoV 

and rotaviruses in packaged leafy greens collected from retail stores in Canada. Among 275 

samples, 6% were hNoV positive and 0.4% were positive for rotavirus. 

Independent of the immune response to bacterial pathogens, plants have a different response 

mechanism against pathogenic viruses called RNA silencing (Voinnet, 2005). The viral genome 

replication can happen in the nucleus or the cytoplasm of the host cell. Under both environments, 

viral gene replications are recognized by DCL (dicer-like) which further triggers the production 

of viral siRNA (small interfering RNA). The viral siRNA interacts with viral DNA or RNA, 



 21 

resulting in silencing of viral gene expression (Voinnet, 2005). However, viruses are not always 

pathogenic and can also be mutualistic with the plant. As reported by Roossinck (2015), viruses 

can ameliorate the adverse effects of abiotic stresses on plants including drought, heat, and cold. 

For example, Xu et al. (2008) inoculated four viruses—brome mosaic virus, cucumber mosaic 

virus, tobacco mosaic virus, and tobacco rattle virus—onto plants then cultivated them under 

water withholding conditions. Surprisingly, all four viruses postponed the appearance of drought 

symptoms. 

 

IV. Human noroviruses (or hNoV surrogates) and leafy green interactions 

 Brief overview of hNoV structure and function 

While the structure and function of hNoV has been covered thoroughly in the literature (Hardy, 

2005; Karst et al., 2014; Tan and Jiang, 2010, 2014), a brief overview is provided here. The 

virion of hNoV is icosahedra and is composed of 90 dimers of a major capsid protein (VP1) and 

one or two copies of a minor structural protein (VP2) (Hardy, 2005). The protruding (P) domain 

on VP1 plays the main role in binding to carbohydrate receptors such as histo-blood group 

antigens (HBGAs)—the presumptive hNoV receptor on target host cell (Tan and Jiang, 2010, 

2014). Specifically, the P domain is located on the outermost portion of the virus particle 

forming arches extending from the shell and contains two subdomains—P1 and P2—with the 

latter responsible for the strain diversity, HBGA binding, and antigenicity (Shanker et al., 2016; 

Tan and Jiang, 2007). Additional ligands have also been identified including glycosphingolipids 

with negatively charged sialylated structures; however, the recognition of these alternative 

ligands varies by hNoV genotype (Rydell et al., 2009; Han et al., 2014).  It can be hypothesized 

that the binding specificity (i.e. the composition of the central binding pocket and variable 
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surrounding region) of a given hNoV genotype would likely impact interactions and binding of 

hNoV with leafy greens via carbohydrate moieties present on the phylloplane as well as hNoV 

persistence as covered in Chapter 1 Section III-iii. 

 

 Introduction to hNoV surrogates 

Although the hNoV research community has unveiled numerous aspects of hNoV 

pathogenesis in the past decade, an in vitro culturing method for hNoV remained unavailable 

until recently. Ettayebi et al. (2016) reported on the successful cultivation of hNoV in human 

intestinal enteroids. However, until the cultivation method is widely available and part of routine 

hNoV research, cultivable surrogate viruses will continue to be used to understand and predict 

the physicochemical properties, interactions, infectivity, and pathogenesis of hNoV. The most 

common hNoV surrogates include other caliciviruses such as feline calicivirus strain F9 (FCV), 

murine norovirus type 1 (MNV), and Tulane virus (TuV) (Cromeans et al., 2014; Li et al., 2012). 

Additional less commonly used surrogates include porcine enteric calicivirus, or sapovirus 

(PSaV; Cowden strain), Aichi virus A (AiV), and Hepatitis A virus (HAV) with AiV and HAV 

human pathogens in their own right (Bozkurt et al., 2014; Cromeans et al., 2014; D’Souza et al., 

2016). With respect to structural similarities of surrogates with hNoV, FCV is in the same family 

but differs from hNoV in some biochemical properties and is a feline respiratory virus as 

opposed to enteric.  Meanwhile, MNV is more similar to hNoV in that it is a member of the 

Norovirus genus, but its symptoms of infection present differently in mice, and it recognizes 

sialic acid as their functional receptor as opposed to HBGAs (Karst et al., 2014). On the other 

hand, TuV does recognize HBGA receptors in rhesus macaques similar to hNoV recognition of 

HBGAs in humans for the majority of genotypes (Farkas et al., 2010). Similar to hNoV structure, 
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surrogate virus properties are likely to impact the type of interactions observed in studies with 

leafy greens as outlined below in Sections III-iii and III-iv of Chapter 1. 

 

 Attachment of hNoV (or surrogates) to leafy greens 

Although hNoV is not a plant pathogen, it can contaminate the phylloplane of leafy greens. 

As shown with other microorganisms, the leaf surface structure and morphology of leafy greens 

can impact the distribution and persistence of viruses. Using immunofluorescence analysis, 

hNoV virus-like particles (VLPs) preferably distributed around cut edges, stomata, and minor 

veins of lettuce leaf surface (Esseili et al., 2012a). Hirneisen and Kniel (2013) found that the 

rougher and more irregular spinach leaf surfaces allowed hNoV to persist longer under thermal 

conditions. However, it is unclear how the viruses actually interact with the leaf surfaces. It is 

hypothesized that the attachment of hNoV to leafy green surfaces can be achieved in various 

ways, including specific binding, non-specific binding, and internalization as outlined in Table 3. 

 

 Specific binding 

Upon entry into the human body, hNoV needs to attach to the host cell in order to cause 

infection. As mentioned previously, the attachment of the majority of hNoV genotypes relies on 

the specific recognition of HBGAs present on the membranes of cells that line the body’s 

mucosal layers (Huang et al., 2005). The binding specificities among hNoV genotypes rely on 

the recognition of different carbohydrate moieties on HBGAs (Hirneisen and Kniel, 2013). In 

addition to HBGAs, hNoV has been found to bind with other receptors depending on the 

genotype (Chapter I, Section III-i). Tian et al. (2005) demonstrated that recombinant norovirus-

like particles (rNVLP) bound to porcine gastric mucin (PGM) through the recognition of sugar 

moieties. Han et al. (2014) revealed that GI.3 and GII.4 VLPs were able to bind to the 
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oligosaccharide of ganglioside. In addition, Rydell et al. (2008) found α-2,3-sialylated 

carbohydrates as another binding site for select  hNoV GII strains. Based on hNoV attachment to 

host cells, researchers became interested in the attachment of hNoV to food matrices—an 

important vehicle of transmission as detailed in Chapter 1 Section I-ii. To investigate the 

interaction of hNoV with common food commodities implicated in hNoV outbreaks, numerous 

studies have been conducted with lettuces (Hirneisen and Kniel, 2013).  

Most studies on hNoV binding to lettuce focus on GII.4 strains, which are known to bind to 

the widest variety of HBGAs (Huang et al., 2005). Esseili et al. (2012a) reported on the specific 

binding of GII.4 hNoV VLPs to lettuce cell wall materials (CWM), especially various 

carbohydrate moieties presence on the cell wall. Binding of hNoV VLPs to young leaf (2-6 cm) 

and old leaf (20-25 cm) CWM were quantified and compared with an enzyme-linked 

immunosorbent assay (ELISA) method. It was revealed that binding of hNoV VLPs to old 

lettuce leaf CWM was significantly higher than that for young leaves. This can likely be 

attributed to the different sugar concentrations and composition between old and young leaves 

(Esseili et al., 2012a). Later, Gao et al. (2016) further revealed that GII.4 hNoV VLPs 

specifically recognize and bind to -1,2-fucose moiety of HBGA-like carbohydrates on lettuce 

leaves. The authors also identified the presence of HBGA-like carbohydrates in the 

hemicellulose fraction of the cell wall. Cellulose R-10 digestion pre-treatment can increase 

binding efficiency of hNoV VLPs since the HBGA-like binding sites are not directly exposed but 

rather under the surface of leaves (Gao et al., 2016).  

In addition to leafy greens, the binding of GII.4 hNoV VLPs to other types of fresh produce 

was also tested (Gao et al., 2016). After digestion by the cell wall degrading enzyme R-10, GII.4 

hNoV VLPs were able to bind to celery veins while not to basil leaves. This indicates that hNoV 
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specific binding can occur in a variety of fresh produce (Gao et al., 2016). However, in a study 

by Gandhi et al. (2010), the authors did not find any HBGA-like carbohydrates in romaine 

lettuce. The authors stated that hNoV GI.1 VLPs bind instead to unknown proteinaceous 

compounds found on lettuce surfaces. In contrast, (Esseili et al., 2012a) indicated that hNoV 

GII.4 VLPs bind weakly or non-specifically to cell wall proteins of lettuce leaves. The 

distinction could be an indication of the differences in binding specificity between hNoV GI and 

GII. 

Previous studies have also investigated the localization of hNoV surrogates including MNV 

and TuV. Similar to distribution patterns of hNoV VLPs, hNoV surrogates TuV and MNV were 

also found to aggregate around lettuce stomata (DiCaprio et al., 2015b; Esseili et al., 2016). 

DiCaprio et al. (2015b) also observed a variation in affinities between TuV and MNV during 

attachment to romaine lettuce leaves possibly due to differences in receptor binding. As stated 

previously, only TuV mimic the majority of hNoV that specifically recognize HBGAs while 

MNV bind to sialic acids on glycoproteins (Esseili et al., 2016; Taube et al., 2009). Therefore, 

whether or not these distribution patterns of hNoV surrogates are related to specific binding or 

presence of viral cellular receptor analogs over the other on leafy greens is difficult to determine. 

 

 Non-specific binding  

Vega et al. (2008) conducted studies on the attachment of viruses to butterhead lettuce and 

subsequently revealed the major role of electrostatic forces in this interaction. The authors tested 

four viruses: echovirus 11, FCV, MS2, and X174. Then NaCl was used to reduce or eliminate 

the electrostatic forces. The inhibitory effect of 1M NaCl varied depending on type of viruses 

and pH conditions. At pH 7 and 8, 1 M NaCl blocked all viral attachment except X174. The 
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authors hypothesized that the strong absorption at pH 5 was due to Van der Waals forces (Vega 

et al., 2008). Wang et al. (2012) also reported that at pH 5 (capsid isoelectric point for PSaV), the 

binding of PSaV to lettuce leaves was most significant, and its infectivity remained after 1 week 

at 4°C. 

 

 Internalization 

Viral internalization can occur during both soil production and hydroponic production of fresh 

produce. DiCaprio et al. (2012a) cultured romaine lettuce in hydroponic feed water with around 

106 RNA copies/mL of hNoV or 106 PFU/mL of TuV and MNV (strain type 1). High levels of 

viral-genome RNA were detected for hNoV (105 to 106 RNA copies/g) at day 1 while it took 3-7 

days for TuV and MNV to reach a level of 105 to 106 PFU/g. After reaching some maximum 

level, the hNoV and surrogate concentrations remained stable for 14 days in lettuce tissue 

(DiCaprio et al., 2012a). Similar studies were carried out in kale and mustard microgreens, using 

both plaque assay and real-time reverse transcription PCR (RT-qPCR), (Wang and Kniel, 2015). 

The plaque assay results indicated that MNV remained stable (2.5-1.5 log PFU/sample) during 

the first 12 hours and then decreased from day 8 to 12. However, RT-qPCR results indicated 

relatively higher levels of MNV (4.5-5.5 copies/sample) which also maintained stability (Wang 

and Kniel, 2015). Besides root uptake, the internalization could also happen through cut lettuce 

leaves or the stomata of lettuce. Wei et al. (2010) compared internalization of intact lettuce to 

those with cuts on leaf and stem; although more MNV was observed under confocal microcopy, 

the difference was not statistically different. Nevertheless, once internalized, viruses cannot be 

easily removed compared to those existing on the surface of fresh produce.  
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In addition, DiCaprio et al. (2015a) studied the effect of biotic stress (infection with lettuce 

mosaic virus) and abiotic stresses (drought and flood) on the internalization and dissemination of 

hNoV surrogates in soil grown romaine lettuce. The results indicate that only abiotic stress alters 

rates of internalization for TuV and MNV. More specifically, drought stress significantly 

decreased the rate of internalization and dissemination for MNV and TuV but not flooding stress. 

The authors explained that drought stress may have led to more hNoV surrogates binding to the 

soil matrix due to an increased presence of cations, thus rendering the virus unavailable for 

passive uptake through the roots. Another possibility introduced by the authors was virus 

inactivation due to osmotic stress in an increase in reactive oxygen species in the plant.  

 

 The effect of leafy green (surface) metabolites on hNoV or its surrogates 

The lettuce leaf contains a vast number of metabolites that are water-soluble (carbohydrates, 

polyols, organic acids, and amino acids) or soluble in organic solvents (e.g. sterols, fatty acids, 

diacylglycerophospholipids, etc.), (Sobolev et al., 2005). As lettuce grows and matures, the 

energetic compounds in leaves decrease. Pereira et al. (2014) observed metabolite changes in 

lettuce leaves under four main categories during leaf maturation. Most amino acids (6/7), organic 

acids (2/2), carbohydrates (2/3), and other compounds (7/8) showed a decrease in concentration 

with leaf maturation. These details may be of important as those metabolites on lettuce surfaces 

could play roles during hNoV binding and survival.  

 Metabolic compounds that impact hNoV 

The metabolomes of leafy green surfaces can negatively impact attachment or survival of 

viruses. According to a study by Lamhoujeb et al. (2008), HAV exposure to potentially toxic 

compounds (e.g. phenolics, ethanol, and acetylaldehyde) on lettuce surfaces accelerated virus 

inactivation. Additional studies have focused on the inactivation of hNoV and its surrogates 
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when exposed to natural plant compounds (Li et al., 2012; Su and D’Souza, 2013, 2011). Several 

phytochemicals extracted from fruits have been shown to have anti-hNoV activity, such as 

flavonoids from grape seeds, polyphenols and anthocyanidin in the berry secondary metabolite 

catechin, and polymeric tannins from persimmons (Ryu et al., 2015). Polyphenol and flavonoids 

both exist in lettuce, though the concentrations vary between different lettuce species. Llorach et 

al. (2008) characterized the concentration of polyphenols and Vitamin A in five types of lettuce 

including iceberg, romaine, continental, red oak leaf, and lollo rosso. The highest level of 

phenolic compounds and Vitamin A was detected in red-leaf and continental varieties, 

respectively. Interestingly, Lee and Ko (2016) observed that Vitamin A was able to inhibit MNV 

replication during in vitro and in vivo experiments.  

 There are also compounds that may enhance the binding of hNoV. Binding of hNoVs 

specifically to lettuce leaf surfaces relies on the carbohydrates exposed on the cell walls (Esseili 

et al., 2012a). For surrogates, it is known that MNV attachment requires sialic acid, glycolipids, 

and glycoproteins (Ryu et al., 2015). Aside from this, very little information is known with 

regards to the potentially beneficial impact of metabolic compounds on hNoV. 

 

V. Potential interactions between hNoV and microorganisms that colonize leafy greens 

 Bacteria identified on leafy green surfaces 

As mentioned in Chapter 1 Section II-i, the bacterial community has the largest population 

among all microbial groups inhabiting leafy green surfaces (Leff and Fierer, 2013). The major 

groups of bacteria found on lettuce were very similar according to several reports summarized in 

Table 2. These bacteria can interact with plants, within the bacterial community on the plants, 

with fungi and protozoa that inhabit the plants, and possibly with viral inhabitants as well. There 
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are very few reports about the potential interactions between hNoV and bacteria on leafy greens. 

However, it has been reported that bacteria can interact and associate with hNoV in other 

environments or in vitro (Almand et al., 2017; Li et al., 2015; Miura et al., 2013). 

 

 Bacteria influence hNoV binding 

After hNoV was found to specifically bind to HBGAs expressed on intestinal epithelium, it was 

further discovered that some bacteria also express HBGA-like binding sites. Miura et al. (2013) 

reported an enteric bacteria Enterobacter sp. SENG-6 bears HBGA-like binding sites on their 

EPS. Li et al. (2015) also discovered that hNoV VLPs from GI.1 and GII.4 bound to HBGA 

expressing E. coli LMG8223 and E. coli LFMFP861 though the HBGA epitopes may not be the 

same as those present on human red cells. The authors also demonstrated that pre-incubation 

with HBGA expressing E. coli protected the antigen integrity and mucin-binding ability of both 

hNoV GI.1 and GII.4 VLPs under heat treatment at 90C for 2 min (Li et al., 2015). In addition, 

it was reported that the amount of epitopes for GII.4 were significantly increased for HBGA 

expressing E. coli when detected after heating, revealing that heat treatment potentially helped to 

unmask epitopes (Li et al., 2015). Another study evaluated the binding of hNoV GII.4, GI.6, 

surrogate TuV and Turnip Crinkle Virus (TCV) to several representative gut microbiota 

(Klebsiella spp., Citrobacter spp., Bacillus spp., Enterococcus faecium, and Hafnia alvei) and 

reference strains (Staphylococcus aureus and E. cloacae). While hNoV GI.6 and GII.4 bound to 

all tested bacteria with more than 90% binding efficiency, TuV only bound selectively to five 

bacteria and no bindings occurred for TCV (Almand et al., 2017). Although it is not clear the 

mechanisms of binding of hNoV, the authors hypothesized that the HBGA-like antigens on 

bacteria played the role since TuV—genetically close in relation to hNoV—also bound to 
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bacteria, though more selectively, while TCV—not related to hNoV—did not. Of additional 

importance, some of these bacteria (i.e. Bacillus spp., Enterobacter spp.) are also relevant to and 

present in the leafy green phyllosphere (Jackson et al., 2015, 2013).  

 Conversely, some studies have focused on the antiviral effect of bacteria against hNoV 

surrogates. Shearer et al. (2014) tested antiviral effects of the metabolic products from a range of 

bacteria (Enterococcus faecalis, Pseudomonas fluorescens, E. coli, S. epidermidis, B. subtilis, B. 

coagulans, Clostridium sporogenes) as well as a commercial probiotic mixture (Lactobacillus 

acidophilus, Lactobacillus rhamnosus, Bifidobacterium bifidum, Lactobacillus salivarius, and 

Streptococcus thermophiles) against MNV and TuV; however, no inhibitory effect was found 

during virus infectivity assays. 

 

 Impact of fungi and protozoa on the interaction of lettuce and hNoV  

Some fungi can favor hNoV binding to leafy greens indirectly. For instance, a fungal habitant 

Trichoderma viride on lettuce leaves is able to produce a multi-enzymatic system called R-10, 

which has cellulase, pectinase, and hemicellulase activities. As reported previously by Gao et al. 

(2016), R-10 can digest lettuce cell wall structure and exposing HBGA-like carbohydrates, 

leading to significantly increased binding of hNoV GII.4 VLPs to lettuce leaves. In addition, 

some leafy greens can be contaminated by the mold Aspergillus flavus leading to subsequent 

decay. During the decay process, more HBGA-like binding sites on lettuce leaves can be 

exposed. In contrast, bacteria and fungi on plant surfaces could secrete enzymes that 

depolymerize the main structural polysaccharide or decipher the carbohydrate structure on plant 

cell wall (Gao et al., 2016).  
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In regards to protozoa, the FLP Acanthamoeba sp. can be found in similar environments (i.e. 

water and fresh produce) as hNoV. The study by (Hsueh and Gibson, 2015) revealed that hNoV 

surrogate MNV could attach to A. castellanii and A. polyphaga and be internalized into the 

trophozoites and survive a complete life cycle (i.e. encystment through excystment), while 

another surrogate, FCV, could not. However, although the authors speculated about the exact 

interaction, neither the binding type nor specific binding site and the internalization mechanisms 

for MNV were confirmed. 

 

VI. Future research directions 

Current research on hNoV and leafy green interactions has mainly focused on the various 

mechanisms of attachment of hNoV to lettuce. However, the interaction between hNoV and 

leafy greens is such a complex process that many other factors could be involved aside from 

simple attachment. Due to the difficulty of culturing hNoV in vitro, research must involve 

surrogates to gain a better understanding of hNoVs. Therefore, to what extent the particular 

surrogate mimics hNoV will affect the research outcomes. A previous study compared the 

performance of hNoV and surrogate MNV during the attachment to both inert and food surfaces 

(lettuce leaves, strawberry and raspberry). It was found that hNoV and MNV attachments were 

comparable only on inert and lettuce surfaces, but not strawberries and raspberries (Deboosere et 

al., 2012). However, lettuce and inert surfaces clearly have different properties with lettuce 

surfaces presenting a much more complex environment—a living environment. As indicated, 

leafy green surfaces are habitats for a vast number of diverse microbes. The viral binding and 

dwelling on leafy greens is not only dependent on an exposed binding site but could also be 

affected by the microbial community that inhabit the surface. More thorough understanding is 
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needed on the relationship between the bacterial population and viral binding properties. It is 

known that bacteria can modify leafy green surfaces through aggregation and production of EPS 

to aid in survival on the leafy green phyllospheres during osmotic stress, oxidative stress, etc. 

(Lindow and Brandl, 2003). However, it is unclear so far if the EPS also protects viral 

inhabitants and potentially provide binding sites for hNoV (Miura et al., 2013). Additionally, 

some bacteria and fungi are able to produce carbohydrate degrading enzymes which unveil the 

binding sites for hNoV (Gao et al., 2016). Thus, characterization of the enzymes produced on 

leafy green surfaces would also be worthwhile.  

The metabolic compounds on leafy green surfaces might also play an important role in 

hNoV binding and persistence. One study reported that it took only 4 days for infectious MNV to 

be reduced by 1-log on lettuce surfaces whereas it took 29 days in water, 15 days on stainless 

steel, and 12 days in soil to get the same reductions (Fallahi and Mattison, 2011). This possibly 

indicates that some anti-viral metabolites, or other compounds, exist on lettuce leaves. In 

addition, it was reported that the latex sap of lettuce leaves was able to damage the capsid of 

PSaV while not destroying the RNA. Latex sap, located in the continuous tube of lettuce leaves, 

is formed by leaf secretions and secondary metabolites (Esseili et al., 2012c). Although minimal, 

these studies reveal some possible interactions between hNoV and leafy greens metabolites. 

Therefore, future studies are needed to discover these functional compounds with potential anti-

hNoV effects. 

 

VII. Conclusions 

In summary, the interaction of hNoV and leafy greens is an under developed area of research that 

warrants future investigations based on the evidence presented in this review. Given the status of 
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hNoV and leafy greens as an important pathogen-commodity pair responsible for numerous 

outbreaks each year, further elucidating the interactions between hNoV and leafy greens will 

move forward attempts to design effective control and prevention strategies, understand viral 

infectivity, and ameliorate detection methods.  

The surfaces of leafy greens are colonized by bacteria, fungi, protozoa, and other microbial 

inhabitants, that utilize the nutrients from plants for growth and survival. Plants have their 

physical barriers and immune systems, while bacteria use different strategies to replicate. The 

microbial inhabitants interacting with leafy greens have been described from the standpoint of 

both human and plant pathogens. Overall, human pathogens only trigger a low level of plant 

immune response. Meanwhile, their replications are very limited as they are unable to infect 

plant cells. Therefore, interactions between human pathogen and leafy greens are relatively 

simple.  

In this review, the interactions of hNoV with leafy greens were categorized into three types: 

specific binding, non-specific binding (i.e. electrostatic force), and internalization. Specific 

binding is stronger than non-specific interactions, and their specificity will vary depending on the 

hNoV genotype. The well-characterized GII.4 hNoV recognizes and binds to HBGA-like 

antigens on the lettuce surface. However due to the strict specificity, the specific binding can be 

interrupted once the binding sites are damaged through some force or compound such as 

carbohydrate enzymes. In addition to providing binding sites, leafy green surfaces also contain a 

variety of metabolic compounds such as polyphenols and flavonoids. Some anti-viral compounds 

might damage or even inactivate hNoV. So far there are few studies characterizing the impact of 

lettuce metabolites on hNoV survival.  
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Though the effect of most microbial communities on hNoV remains unclear, some bacteria 

with HBGA-like antigens could provide extra binding sites for hNoV and thus allow for some 

form of protection. Also, certain enzymes (e.g. R-10) produced by bacteria and fungi help to 

expose more binding sites on leafy green surface, which indirectly assist hNoV interactions with 

the leafy green surface. However, some enzymes could also damage the binding sites by 

decomposing carbohydrates. Overall, the vast diversity of bacterial and fungal communities on 

leafy green surfaces could be either beneficial or challenging to hNoV persistence and survival. 
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IX. Tables 

Table 2. The bacterial community identified on leafy greens. 

Leafy Green Type Location Microorganism Method Proportion Reference 

Romaine lettuce 

 

Leaf 

surface 

Pseudomonas (17%), Bacillus 

(7%), Massilia (5%), 

Xanthomonas (4%), Arthrobacter 

(1%),  

Pantoea (6%) 

 

Washing of leaf samples (n = 

106) 

Percentage of 

microorganisms in all 

tested samples. 

(Rastogi 

et al., 

2012) 

Romaine lettuce, baby 

spinach, green leaf 

lettuce, iceburg 

lettuce, red leaf lettuce 

 

Leaf 

surface 

Pseudomonas, Pantoea, 

Chryseobacterium, and 

Flavobacterium  

Sterile or unsterile samples 

were places in bottle and 

shake at 200 rpm; culture 

isolate 

Exist in more than 

20% of samples 

(Jackson 

et al., 

2013) 

Lettuce (Lactuca 

sativa) 

Leaf 

surface 

Xanthomonas sp., Pantoea sp. 

(Enterobacteriaceae), 

Pectobacterium sp., Leuconostoc 

sp., Janthinobacterium sp. 

 

Swabbing conventional and 

organic lettuce 

Large proportions 

(>5% of bacterial 

community on lettuce). 

(Leff and 

Fierer, 

2013) 

 

Spinach Leaf 

surface 

Pantoea sp. (Enterobacteriaceae), 

Klebsiella/Raoultella sp. 

Sterile water rinse of 

conventional and organic 

spinach 

Large proportions 

(>5% of bacterial 

community on 

spinach). 

(Leff and 

Fierer, 

2013) 

 

Lettuce Leaf 

tissue 

Pseudomonas (53%) 

Acinetobacter (10%) 

Alkanindiges (5%), Pantoea (4%) 

 

5 g lettuce leaf tissue were 

broken down and re-

suspended in 10 mL of 

0.85% NaCl. 

Percentage of 

microorganisms in all 

tested samples. 

(Erlacher 

et al., 

2014) 

Lettuce (L. sativa) Leaf 

surface 

Pseudomonas (30%), 

Arthrobacter (12%), Pantoea 

(10%), Acinetobacter (8%) 

Shaking at 100 rpm in 

0.15M NaCl, 0.1% Tween 

20 solution at room 

temperature for 15 min. 

Percentage of 

microorganisms in all 

tested samples. 

(Dees et 

al., 2015) 
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Table 3. Currently known interactions of hNoV or its surrogates with leafy greens as well as colonizing microorganisms on leafy green 

surface. 

Interaction type hNoV or 

surrogates 

Interact with Details Reference 

Non-specific 

binding 

echovirus 11, 

FCV, MS2, and 

X174 

Butterhead 

lettuce 

The nonspecific binding is mainly by electrostatic forces (Vega et al., 

2008) 

Specific binding hNoV GI.1 

VLPs 

Lettuce 

surface 

hNoV GI.1 VLPs bind to unknown proteinaceous 

compounds on lettuce surface 

(Gandhi et al., 

2010)  

Internalization hNoV GII.4, 

TuV, MNV 

Romaine 

lettuce 

During hydroponic cultivation, the romaine lettuce took 

1-7 days to reach the similar levels of virus 

concentrations as that in feed water.  

 

(DiCaprio et 

al., 2012a) 

Indirectly help 

binding 

MNV Protozoa on 

leafy green 

Acanthamoeba sp. can be found on fresh produce. MNV 

was reported to be internalized into the trophozoites of 

the protozoa. 

(T.-Y. Hsueh 

and Gibson, 

2015)  

Internalization MNV Kale and 

mustard 

greens 

After 2 hours inoculation, MNV was detectable in 

edible tissue and root of both fresh produces, which are 

cultivated on hydroponic pad.  

 

(Wang and 

Kniel, 2015) 

Specific binding hNoV GII.4 

VLPs 

Lettuce cell 

wall 

GII.4 hNoV VLPs specifically bind to HBGA-like 

carbohydrates on lettuce leaves 

(Gao et al., 

2016) 

Indirectly increase 

viral binding 

hNoV Fungi on leafy 

green 

The fungi Trichoderma viride on lettuce leaves produce 

enzymes that digest cell wall structure; the mold 

Aspergillus flavus cause decay on lettuce. These help to 

expose HBGA-like carbohydrates on lettuce. 

 

(Gao et al., 

2016) 

FCV = feline calicivirus; hNoV = human norovirus; MNV = murine norovirus; TuV = Tulane virus; VLP = virus like particle 
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Chapter 2: Virus Persistence on Pre-harvest Hydroponic Lettuce Leaf Surface 

I. Abstract 

Human norovirus (hNoV) is one of the major causes of outbreaks linked to leafy greens. This 

study aimed to investigate the persistence of Tulane virus (TV), a hNoV surrogate, on pre-

harvest hydroponically grown lettuce leaf. TV were characterized for virus survival on adaxial 

surface of 40 days age oakleaf lettuce grown hydroponically. On day 40, TV were inoculated on 

one random leaf for each of five lettuce heads. On post-inoculation day (PID) 0, 1, 2, 3, and 4, 

TV were recovered from leaves and quantified immediately by viral plaque assay. Tulane virus 

were found to survive throughout all four days. Virus reduction on PID 2 was highest (average 

2.19 log PFU/leaf) and on PID 3 and 4 virus concentration only decreased by 0.14 and 0.6 log 

PFU/leaf, respectively. This study showed that virus contamination that happens close to harvest 

day might sustain infectious virus through post-harvest or even consumption. The understanding 

of virus persistence on pre-harvest leafy greens will help to characterize the virus transmission 

route as well as to develop specific control strategies.  

 

II. Introduction 

Human noroviruses are a group of enteric viruses that lead to epidemic and sporadic 

gastroenteritis worldwide (Ramani et al., 2016). The most common food vehicles for hNoV 

transmission include leafy greens, berries, and seafoods (Bozkurt et al., 2021). In recent decades, 

the consumption of fresh produce has increased remarkably in order to obtain a healthier and 

balanced diet (Chatziprodromidou et al., 2018; Machado‐Moreira et al., 2019). Since often 

consumed raw or with minimal processing, there is an increased risk of foodborne illnesses in 

consumers. In industrialized countries, the top three foodborne pathogens leading to fresh 

produce-related outbreaks include hNoV (42.4%), Salmonella enterica (19.9%) and 
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Staphylococcus aureus (7.9%) in 2010 to 2015 (Li et al., 2018). An investigation by Herman et 

al. (2015) found the food-etiology pair of lettuce and hNoV accounted for 25% of leafy green 

caused outbreaks (n=97) in the US between 1973-2012, only behind the lettuce and Shiga toxin-

producing Escherichia coli (30%) food-etiology pair. Contamination of lettuce due to hNoV has 

been increasingly reported in recent years (Müller et al., 2016). Moreover, due to globalization of 

the food system and different hNoV transmission modes, many international outbreaks are 

difficult to investigate (Verhoef et al., 2011). For instance, in April of 2016, there were 23 

separate point-source gastroenteritis outbreaks reported in Denmark within one week. In total, 

1,497 persons were exposed when dining in café, company, high school, nursing home, 

restaurant, or catering located in different cities. Later a national investigation found that the 

source of the outbreak was hNoV genogroup I contaminated green coral lettuce imported from 

France (Müller et al., 2016).  

Because of the significant economic and health burdens caused by hNoV, it is crucial to 

understand virus attachment and persistence in the leafy green production system. On farm, 

enteric viruses can be transmitted to leafy greens through irrigation water, virus-shedding farm 

workers, packaging, and food handlers (Stals et al., 2015). Human norovirus and its surrogates 

previously have been characterized for internalization into leafy greens from hydroponic nutrient 

solution while virus persistence on hydroponic lettuce remains unclear (DiCaprio et al., 2012). 

This study focused on the understanding of virus persistence on lettuce leaves that are close to 

harvest date using the TV surrogate.  
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III. Material and method 

 Mammalian cell growth and virus production 

Monkey kidney cells LLC-MK2 (ATCC CCL-7; American Type Culture Collection, Manassas, 

VA) were cultured in M199 medium (Corning, VA, USA) containing 10% Fetal Bovine Serum 

(FBS, Cytiva, MA, USA), 1% Penicillin-Streptomycin (100 U/mL, 100 g/mL; Cytiva) and 1% 

Amphotericin B (Corning) supplementation. The incubation of cells was at 37C, 5% CO2 and 

cells were split when they reached 100% confluency. Tulane virus was kindly provided by Dr. 

Jason Jiang from Cincinnati Children’s Hospital Medical Center (Cincinnati, OH). Virus 

propagation and titration were carried out as described previously with minor modifications 

(Arthur and Gibson, 2015). Briefly, viruses were produced by infecting MK2 cells in T175 flasks 

at multiplicity of infection (MOI) of 0.1 and rocking at 37C, 5% CO2 for 1h. Afterwards, 

maintenance medium (2% FBS supplemented Opti-MEM) (Gibco Life Technology, Scotland, 

UK) was added to the flask and further incubated at the same condition without rocking for 48h. 

Tulane virus was harvested by three freeze-thaw cycles and centrifugation at 3000g, 4C for 15 

min. The virus supernatant went through 0.45μm cellulose acetate membrane filter (Corning) to 

remove any remaining cell debris. Harvested viruses were aliquoted and stored at -80C until 

use. 

For virus quantification, MK2 cells were seeded in 6 well plates at a concentration of 

8×105 cells/well and incubated overnight. Five hundred microliters of serial diluted virus in 

maintenance medium were added to each well followed by 1h rocking at 37C and 5% CO2. 

After aspirating viruses, 2mL of 1:1 ratio mixture of 3% low melting agarose and maintenance 

medium were added in each well to cover the cell monolayer. The plates were further incubated 
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at 37C without rocking for 120h. At the end of incubation, the virus plaque forming units (PFU) 

were visualized by staining with 0.01% neutral red for 1h at 37C without rocking. 

 

 Optimization of viral recovery method  

Green oakleaf lettuces purchased from local supermarket were used. One milliliter of TV stock 

at known concertation (4.53 log PFU/mL) was inoculated to one young leaf by pipetting tiny 

droplets (approximately 50L) (Figure 3). Two leaves were inoculated and allowed to air-dry 

(approximately 2h) in the biosafety cabinet. Following air drying, the two leaves inoculate with 

TV were added to 10mL of elution buffer (1x MEM supplemented with 2% FBS and 1% 

Penicillin-Streptomycin). The samples were then recovered by (1) shaking by hand and vortex at 

maximum speed for 1 min, or (2) placed in beaker and rocked at 200 rpm 4C for 15min. The 

eluent was passed through 0.45m filter, serial diluted and quantified in plaque assay. The 

recovered virus concentration showed minor difference from the virus stock, indicating that 

either method was reliable (Figure 5). In the end, the vortex method was chosen for the formal 

experiment. 

 

 Cultivation of hydroponic lettuces 

Hydroponic nutrient solution was prepared following the instruction of Hydro-Gro Leafy Green 

(CropKing, OH, USA) supplemented with Calcium Nitrate (Hi-Yield, TX, USA). The oakleaf 

lettuce (Lactuca sativa var. crispa) seeds (Seed Needs LLC, MI, USA) were planted in rockwool 

cubes (Cropking) that were pre-soaked in nutrient solution for 5 minutes. The rockwool cubes 

(Grodan, Roermond, NL) were placed on Petri dishes under 6400K growing light (Agrobrite, 

Hydrofarm, PA, USA) with a photoperiod of 16h at room temperature (21  1 C) and relative 

humidity 45-55%. The rockwool cubes were kept moist via daily watering. Once seeds 
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germinated and the roots developed to about 1 inch long (around 5 to 7 days), the rockwool 

cubes were moved to a styrofoam raft floating on 20L nutrient solution in a 27L size plastic 

container (Sterilite, MA, USA) (Figure 1). The outer surface of the container was covered by 

aluminum foil to prevent light from entering. An air-pump (ActiveAQUA, Hydrofarm) was 

immersed in the nutrient solution for generation of oxygen. The nutrient solution was monitored 

and maintained within a pH range of 5.8 to 6.0 and an electrical conductivity (EC) of 1ms/cm. 

The lettuces were cultivated to 40 days of age for experiment. 

 

 Inoculation of virus on lettuce and sampling 

At the age of 40 days, five lettuce heads were inoculated with TV. For inoculation, one young 

leaf from each lettuce head was randomly chosen and labeled with a sticker on the leaf tip. Five 

hundred microliters of deionized water (DI water) containing approximately 106 PFU of TV 

were inoculated on the adaxial surface of each labeled leaf by evenly pipetting small droplets. 

The leaves were allowed to air dry for 1 to 2h. On post-inoculation day (PID) 0, 1, 2, 3 and 4 (i.e. 

plant age 40, 41, 42, 43, and 44 days), one random lettuce head was harvested and the labeled 

leaf was detached to recovery the surface viruses (Figure 2). The leaf was placed in a 50mL 

centrifuge tube containing 10mL elution buffer (1 MEM supplemented with 2% FBS and 1% 

Penicillin-Streptomycin). The tubes were vigorously shaken by hand followed by 1 min 

vortexing to recover the surface viruses. Afterwards, the eluate was filtered through 0.45μm 

cellulose acetate membrane to remove bacteria and leaf tissue debris. The samples from PID 3 

and 4 were then concentrated by ultrafiltration using a molecular weight cut-off (MWCO) 100 

kDa centrifugal filter unit (Amicon-15, Millipore Sigma, Germany) spinning at 5000g for 7 

min. The regular or concentrated virus samples were then quantified by plaque assay.  
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 Total aerobic bacteria, mold and yeast count on lettuce leaves 

To determine the indigenous microorganisms on hydroponic lettuce, lettuce leaves of similar size 

(around 3g) were sampled and placed in stomacher bags containing 10mL of PBS. The surface 

microbes were recovered by hand massaging without breaking the leaf for 1 min. The surface 

and internalized microorganisms were recovered by smashing the stomacher bag with hammer 

followed with stomaching at 230 rpm for 1 min. The samples were spread plated on Tryptic soy 

agar (TSA) plates and incubated at 35C for 5 days and counted.   

 

 Data analysis 

The virus recovered and PID were analyzed by one-way ANOVA in RStudio (version 1.4.1106, 

implementing R version 4.0.4) (https://www.rstudio.com). Afterwards, post-hoc analysis 

Tukey’s HSD test was used for paired comparisons. The significance level of 0.05 was used. The 

average count of two replications for recovered TV against PID were plotted as dot plot.  

 

IV. Results 

 TV persistence on lettuce leaf surface 

TV persisted from PID 1 to 4 (Figure 4). Starting from 5.69 log PFU/leaf on PID 0, the virus 

decreased by over 4 log PFU/mL during the monitored time. The main reduction happened on 

PID 1 and 2 which reached on average 1.4 and 2.19 log PFU/leaf reduction, respectively. While 

the reduction on PID 3 and 4 was minor with only 0.15 and 0.6 log PFU/leaf, respectively. 

Overall, the major virus titer drop was observed on PID 2 with a recovered TV of only 2 log 

PFU/leaf. The recovered TV on PID 3 and 4 showed a large variation.  
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 Comparison of two recovery methods 

The vortex and shaking incubator showed a recovery rate of 71% and 53% respectively. Their 

difference from TV stock were both less than 0.5 log PFU/mL, so either of them are suitable for 

virus recovery. In this study, the vortex method was chosen.  

 

 Microorganism count on hydroponically grown lettuce 

There were no colony forming units (CFU) on plates after 24h incubation, while after 120h the 

count from leaf surface and smashed leaf were 75 and 25 CFU/leaf respectively. Bacteria, yeast 

and mold colonies were observed.  

 

V. Discussion 

Human norovirus contamination during pre-harvest stage of leafy green production can occur 

through contaminated seeds, growing media, irrigation water, and production equipment, as well 

as the cross-contaminations from sewage and farmer (CDC, 2021; Iwu and Okoh, 2019; Riggio 

et al., 2019). It is concerning if virus contamination on lettuce leaves before harvest will persist 

to post-harvest stage. As loose-leaf type lettuce, oakleaf lettuce are usually mature and harvested 

between 45 to 55 days (Loresco et al., 2018). The present study used hydroponically cultured 

lettuce as a model to investigate virus persistence at the pre-harvest stage (40 to 45 days) under 

indoor farming conditions. This study showed that the contamination of TV on lettuce leaf 

surface was able to persist over 4 days. On the last PID (45 days age), there was still on average 

1.34 log PFU/leaf virus remaining, which poses a risk to post-harvest and consumption stage.  

 Previously several studies have been carried out related to virus persistence on lettuce 

leaf surfaces with a large portion of them focused on post-harvest stage (Allwood et al., 2004; 

Esseili et al., 2016, 2015; Fallahi and Mattison, 2011). Esseili et al. (2016) studied the survival of 
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hNoV and hNoV surrogates murine norovirus (MNV), sapovirus (SaV), and TV on abiotic 

stressed (physical damage, heat or flood) lettuce and spinach leaves at pre-harvest stage. The 

authors did not observe any significant difference with infectious virus titer on stressed leaves for 

all tested surrogates until PID 7, and after that the virus titers became undetectable (Esseili et al., 

2016). Unlike the infectious viruses for surrogates, the RNA titer for hNoV and surrogates were 

detected throughout PID 14. It was shown that hNoV was significantly enhanced on the 

physically damaged lettuce leaves on PID 14. Meanwhile, the RNA titers of MNV and TV were 

significantly enhanced by three stresses in different extent (Esseili et al., 2016). Nevertheless, the 

RNA titer is not equal to the detection of infectious viral particles. Thus, the real number of 

infectious viruses on PID 14 is unknown.  

In addition to lettuce, virus persistence on pre-harvest produce leaves was also carried out 

on 4-week-old basil (Li and Uyttendaele, 2018). In their study, TV and MNV titer were 

undetectable on PID 3, which was over a 5.5 and 3.3 log PFU/leaf reduction for MNV and TV, 

respectively (Li and Uyttendaele, 2018). These results are comparable to the present study which 

observed 3.7 log PFU/leaf reduction of TV on PID 3. While in another study carried out on 

spinach, Hirneisen and Kniel (2013) reported insignificant different decimal reductions of 2.25 

and 2.61 days for TV on smooth and semi-savory spinach adaxial leaves. Overall, the plant type, 

experiment setup, and plant growth conditions all lead to difficulties for cross-study 

comparisons. 

In this study, two recovery methods—shaking incubator and vortex—were compared 

(Figure 5). The difference in recovery efficiency was negligible, though the vortex seemed like a 

more intensive force to the leaf than shaking. Moreover, the vortex method is easier for handling 

different sizes of leaves by rolling it up to fit the centrifuge tube. For the shaking method, leaves 
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with smaller size can better fit the beaker bottom. The bacterial counts of lettuce leaves in this 

study were less than 100 CFU per leaf (~3g) regardless of the leaf surface or whole leaf sample. 

According to a study on field grown lettuce, the surface bacterial community ranged between 105 

to 106 CFU per gram tissue, and the actual culturable population was estimated at 1-log lower 

than the number (Rastogi et al., 2012). The huge difference in their counts into the present study 

indicates that the indoor hydroponically grown lettuces have reduced microbial populations. 

Moreover, it was reported that the microbial diversity on lab grown lettuce was significantly 

lower than field grown (Williams and Marco, 2014).  

There are some limitations in this study. First, the experiment was carried out with 

surrogate TV. The cultivation system of hNoV is a long-standing barrier to studying the virus in 

past decades. Due to the unavailability of an economical and easily manipulated cell culture 

system, most studies on hNoV are carried out using virus surrogate models (Estes et al., 2019). 

The virus surrogates are genetically, morphologically, or biochemically similar to hNoV (Feng et 

al., 2011). The most commonly used hNoV surrogates include TV, MNV, feline calicivirus 

(FCV) and MS2 bacteriophage (Kamarasu et al., 2018). Despite the similarities shared by 

surrogates and hNoV, the extrapolation of experimental results to hNoV should be done with 

caution. Previously, virus persistence on semi-savory spinach whole plant (foliar surface and 

stem) was carried out for hNoV genogroup II and surrogate MNV and TV (Hirneisen and Kniel, 

2013). There were significant differences in survival observed between hNoV and its surrogates, 

though the surrogates were analyzed for infectious virus by plaque assay, and hNoV RNA were 

quantified by PCR.  

Second, in this study, the lettuce was grown at an ambient indoor temperature which is 

different from the greenhouse or field conditions such as day and night temperature change, 
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outdoor humidity fluctuation, UV exposure, etc. In reality, the lower temperature at night may 

favor virus persistence while the exposure to UV radiation may give the opposite effect. Also, as 

mentioned previously, the large populations of bacteria on lettuces grown in field or high tunnels 

might also contribute to a different virus survival pattern (Esseili et al., 2016; Liu et al., 2020; 

Williams and Marco, 2014). Moreover, the starting concentration of TV in the study was high 

(average 5.69 log PFU/leaf) while in reality the virus concentration in a farm environment would 

likely be much lower (Miranda and Schaffner, 2018).  

The present study showed that virus contamination at late growth stage persisted though 

reduced over time on the mature plant. In future research, more virus persistence study on pre-

harvest fresh produce should be carried out. Currently, most related studies were for post-harvest 

stage virus survival and sanitizing as it is closer to the consumption part of ‘farm to fork’ supply 

chain. However, the prevention or reduction of virus contamination during the production period 

will also alleviate the burden of post-harvest stage cleaning and disinfection procedures.  
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VII. Figures 

 
Figure 1. Lab-scale oakleaf lettuce hydroponic growing system. A container filled with 20L of 

nutrient solution was covered by a styrofoam raft with six holes where each hole held a lettuce 

head. An air pump was located in the bottom of the container to supply air. The system was 

maintained at pH 5.8 to 6 and EC 1ms/cm. 
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Figure 2. Tulane virus inoculation and recovery on oakleaf lettuce leaves at age of 40 days. The TV were inoculated on one leaf per 

lettuce head. For each PID, one lettuce head was harvested, and the leaf was recovered for TV following above procedures. 
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Figure 3. Flow diagram for virus recovery method comparison. The oakleaf lettuces inoculated with TV were either vortexed or 

subject to shaking to recover viruses from leaves surfaces. Both samples followed the same subsequent steps for virus quantification. 
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Figure 4. Tulane virus persistence on oakleaf lettuces in continuous five days from plant age of 

40 days. The inoculated TV was approximately 6 log PFU/leaf. The dots in graph represent the 

average of two biological replications. Error bars were plotted on each mean value. The detection 

limit is 0.3 log PFU/leaf and throughout the experiment every sample was above the detection 

limit. 
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Figure 5. Tulane virus recovered concentrations from vortexing and shaking method. Recovered 

virus concentrations were converted into log PFU/mL to compare with the original stock 

concentration.  
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Chapter 3: Virus Persistence in Plant Growing Medium and Virus Internalization from 

Medium into Microgreen Plant Tissue 

I. Abstract 

As a novel salad green, the microgreens market has expanded in recent years due to an increase 

in popularity amongst consumers. Meanwhile, the lack of standard risk management practices for 

commercial microgreen cultivation has prompted safety concerns. So far, several studies have 

evaluated the risks of pathogenic bacteria in microgreens growing systems including Listeria 

monocytogenes and Salmonella spp., but there have been few investigations on human 

pathogenic viruses such as human noroviruses (hNoV). In this study, a hNoV surrogate Tulane 

virus (TV) was first tested for persistence in two types of soil-free cultivation matrix (SFCM)—

biostrate and peat—without plants. On day 0, approximately 7.6 log PFU of TV was mixed with 

irrigation water and inoculated on biostrate and peat in growing trays. The trays were maintained 

under a 16-h photoperiod with a growing light and watered daily to mimic the microgreen 

growing condition. At post-inoculation day (PID) 0, 1, 3, 5, and 10, TV was recovered from 

SFCM samples and quantified. It was observed that the reduction of TV was on average 2.08 and 

1.76 log PFU for biostrate and peat, respectively. No significant difference in persistence of TV 

was shown between peat and biostrate (p>0.05). For both SFCM, the reduction pattern for TV 

was gradual over time. Subsequently, the transfer of TV from inoculated SFCM to mature 

microgreen edible tissue was determined. After inoculation of SFCM with 7.6 log PFU of TV, 

sunflower (SF) or pea shoot (PS) seeds were planted on half of the area of each SFCM, while the 

other half was left unplanted and served as a control. On day 10, the mature microgreens were 

harvested, and SFCM samples were collected from planted and unplanted areas of each tray. No 

TV was recovered from the edible tissue of either type of microgreen. However, TV was still 
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present in the SFCM on day 10. Interestingly, the level of TV was significantly lower in the root-

containing planted area compared with the unplanted area for both biostrate and peat (p<0.05). 

The difference between unplanted and planted was on average 1.15 and 0.49 log PFU/g for 

biostrate and peat, respectively. In this study, it was found that TV was able to survival in SFCM 

during the complete microgreen cultivation period and possibly beyond. Although the direct 

transfer to edible tissue was not observed, there is still a risk of cross contamination from SFCM 

to microgreens during commercial production.  

 

II. Introduction 

Microgreens are a novel category of plants produced with vegetable, herb, or cereal seeds. These 

were initially used in 1996 in San Francisco, California to embellish the cuisine in restaurants 

(Turner et al., 2020). Microgreens are harvested within 1 to 3 weeks after seed germination, 

usually when cotyledon have fully developed or the first pair of true leaves has appeared (Teng 

et al., 2021). The introduction of a diverse variety of microgreens provides more alternatives for 

healthy diet given their rich contents of phytonutrient and bioactive compounds (Galieni et al., 

2020). Compared to seeds and mature plants, microgreens are reported to contain lower 

antinutrients and are more abundant in polyphenols, minerals (e.g. Ca, K), carotenoids, and 

vitamins (Paradiso et al., 2018; Renna et al., 2020; Xiao et al., 2012).   

Depending on the farm size, microgreens are grown in soil, hydroponics or soil-free 

alternative substrates under open air, greenhouse, or indoor settings (Kyriacou et al., 2016; Misra 

and Gibson, 2021). The soil-alternatives include substrates made of natural fibers (agave fiber, 

coconut fiber, peat moss) or synthetic substitutes (capillary mat and cellulose sponge), or mixes 
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of peat, bark, perlite, and vermiculite (Kyriacou et al., 2016; Teng et al., 2021). Unlike other 

fresh produce, research on microbial risks during microgreen production is limited. 

Human norovirus is one of the major food pathogens contributed to foodborne outbreaks 

in fresh produce (CDC, 2021). One of the most prevalent causes of viral contamination in fresh 

produce production is sewage contaminated irrigation water and growth substrate (Alegbeleye et 

al., 2018). According to an investigation, one liter of community sewage water contains as many 

as 5000 enterovirus particles, 7000 cells each of Salmonella spp. and Shigella spp., and 100 

Vibrio cholerae cells (Iwu and Okoh, 2019). In addition to water contamination, the transmission 

of hNoV at the farm level can also occur through farmer workers’ hands and  contaminated 

harvesting equipment (Bouwknegt et al., 2015).  

So far, microgreen production safety research has been mainly focused on bacterial 

hazards (Misra and Gibson, 2020; Reed et al., 2018; Wright and Holden, 2018; Xiao et al., 

2015). Human enteric virus risks during microgreen production has only been studied within a 

hydroponic system; however, virus survival in hydroponics is likely not representative of virus 

survival in solid growth media (Wang and Kniel, 2016). Gioia et al. (2017) previously 

characterized the microbial population in microgreen growth substrates including a peat-based 

mix and synthetic mat. The authors found that peat contains significantly higher aerobic bacteria, 

yeast, mold, and Enterobacteriaceae than the other three types of fiber-based media evaluated in 

the study. Currently, studies characterizing virus persistence in different types of growing media 

is lacking. Therefore, the two aims of this study include comparing two types of soil-free 

cultivation matrix (SFCM)—biostrate and peat—for virus persistence without planting. The 

biostrate felt mat is designed for microgreen and salad green cultivation while peat is one of the 

most commonly used cultivation matrices for microgreens (Misra and Gibson, 2021). 
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Furthermore, virus uptake from contaminated SFCM into microgreen tissue was studied. Here, 

sunflower and pea shoot were chosen since they are within the top three produced microgreen 

varieties in the US and have not been characterized in previous studies (Misra and Gibson, 

2021). In addition, due to the limitations of the hNoV in vitro cultivation system, the surrogate 

Tulane virus (TV) was used for studying virus persistence and transmission (Bhar and Jones, 

2019). 

 

III. Material and method 

 Mammalian cell cultivation, virus production and quantification. 

 Cell cultivation 

The LLC-MK2 cells (ATCC CCL-7; American Type Culture Collection, Manassas, VA) were 

grown in M199 medium (Cytiva, MA, USA) and supplemented with 10% Fetal Bovine Serum 

(FBS, Cytiva), 1% Penicillin-Streptomycin (100 U/mL, 100 g/mL; Cytiva), and 1% 

amphotericin B (250 g/mL; Corning, VA, USA) at 37C, 5% CO2 condition. Tulane virus was 

kindly provided by Dr. Jason Jiang from Cincinnati Children’s Hospital Medical Center 

(Cincinnati, OH).  

 Virus production and quantification 

Virus production and plaque assay followed the method described previously (Arthur and 

Gibson, 2015). Briefly, MK2 cells were infected with TV at a multiplicity of infection (MOI) 

0.1. The flask with inoculated MK2 cells was rocked under 37C, 5% CO2 for 1h followed by 

adding 20mL of maintenance medium (2% FBS supplemented Opti-MEM) (Gibco Life 

Technology, Scotland, UK). The infected cells were incubated for an additional 48h at 37C, 5% 

CO2 without rocking. At the end of incubation, the flask was tap vigorously to detach all cells. 
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Viruses were harvested by three times freeze-thaw (-80C and 37C) to release the viruses from 

the cells. The lysed cells were pelleted by centrifugation at 3000g, 4C for 15 min. The virus 

supernatant was then filtered through a 0.45μm pore bottle top vacuum filter (Corning).  

The day before the plaque assay, MK2 cells were seeded in 6 well plates at a concentration of 

8×105 cell/well. After overnight incubation, 500µL of TV or sample were added per well with 

technical duplicates. The plates were rocked for 1h at 37C and 5% CO2. Samples were then 

removed, and cell monolayers were covered with 2mL overlay containing 1.5% low melting 

agarose and maintenance medium. The plates were further incubated for 5 days at 37C without 

rocking. On day 5, the cells were stained with 2mL of 0.01% neutral red diluted in phosphate 

buffered saline (PBS) (1, pH 7.4) followed by 1h incubation at 37C without rocking for 

visualization of plaque forming units (PFU). 

 

 Virus inoculation on SFCM without plants 

Soil-free cultivation matrix were prepared before virus inoculation. BioStrate® Felt 185gsm 

growing mat (biostrate) (Grow-Tech, ME, USA) was cut into10-inch by 10-inch square pieces 

(equivalent to approximately 11 g) that fit the bottom of a growing tray (True Leaf Market, UT, 

USA). Three hundred grams of Canadian sphagnum peat and vermiculite mix (peat) (Jiffy–Mix®, 

Jiffy Growing Solutions, NL) were weighed and added to the growing tray. Tulane virus in total 

of 4107 PFU was mixed into 200mL and 500mL of sterile deionized (DI) water for inoculation 

of biostrate mat and peat, respectively. The virus contaminated water was evenly distributed in 

the biostrate tray by tilting the tray in different directions. The peat and water were mixed 

uniformly by hands wearing sterile gloves. To mimic the plant growing condition, the trays 

containing SFCM were placed under growing lights with a 16h photoperiod at room temperature 



 

 70 

(21°C) and relative humidity (RH) 50-60%. Also, the biostrate and peat trays received 100mL 

and 150mL of watering daily, respectively, from day 1 to 10. 

On day 0, the biostrate and peat samples were taken immediately after virus inoculation. 

Biostrate samples of 22cm size (approximately 0.1g) were cut off from a random location in the 

tray by sterile scissors and tweezers. The sample was transferred to a 50mL centrifuge tube 

containing 5mL of phosphate saline buffer (PBS) (1, pH 7.4). Approximately 0.5g peat samples 

were taken by a sterile metal spoon and stored in 50mL centrifuge tube containing 10mL of PBS. 

Post-inoculation day (PID) 1, 3, 5 and 10 samples were taken following the same procedure as 

day 0. 

 Tulane virus was recovered from biostrate samples by vortexing (VWR Analog Vortex 

Mixer, PA, USA) at maximum speed (3200 rpm) for 1 min. The eluent was then passed through 

a 0.22µm PVDF filter (Foxx Life Science, NH, USA) syringe filter in order to remove potential 

bacteria present. Peat samples were vortexed at intermediate speed for 30 seconds then 

centrifuged (Allegra X-30R Centrifuge, Beckman Coulter, CA, USA) at 800 rpm for 5 min to 

spin down peat. The supernatant was collected and passed through filter paper (VWR Grade 417, 

Avantor) and a 1µm nylon filter (Whatman, UK) to further remove the low weight and fine soil 

particles. Lastly, the eluent was passed through a 0.22µm PVDF filter to remove any bacteria 

present. Most peat was pelleted after the centrifugation while some lighter particles were floating 

on top of the supernatant. Thus, the filter paper was used afterwards to separate those light 

particles. These peat particles left on filter paper were scraped off and transferred back to the 

original tube containing the centrifuged peat pellet.  

The biostrate and peat eluents were serially diluted and titered for TV by plaque assay as 

described in Chapter 3 Section III-i. The tubes containing biostrate and peat sample were dried 
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without lid covering in 80C oven for 48h. Sample dry weights (gram) were recorded. The 

PFU/g in biostrate and peat was calculated based on the sample dry weight. Furthermore, the 

total virus per tray was calculated by multiplying the PFU/g with total weight of biostrate or peat 

in trays. All samples were tested with biological and technical duplicates. 

 

 Microgreen cultivation on TV contaminated SFCM 

 Day 0 TV inoculation on SFCM, SFCM sampling, and microgreen sowing 

Sunflower (Helianthus annuus) (Tiensvold Farms, NE, USA) and pea shoots (Pisum sativum) 

(Tiensvold Farms) were separately grown on two types of soil-free cultivation matrix (SFCM), 

biostrate and peat. The preparation of SFCM before planting followed the same procedure as 

described in Chapter 3 Section III- ii. Two hundred milliliters and 500mL of sterile DI water 

containing approximately 4×107 PFU TV were added to biostrate and peat trays, respectively, to 

hydrate the cultivation matrices. One sample each of biostrate and peat was taken from each tray 

before planting and denoted as day 0 sample. The sampling and recovery method of day 0 

sample followed the same steps in Chapter 3 Section III- ii. 

Organic black oil sunflower (SF) seeds and field pea shoot (PS) seeds were soaked in sterile 

DI water for 6h before sowing. At the end of soaking, the seeds were drained in sterilized sieves. 

Approximately 25g of SF or 40g of PS seeds were evenly planted on half of the area of tray 

while the other half was left unplanted as control (Figure 6). After sowing seeds, the trays were 

covered with black lids and incubated in the dark for 48h to favor seed germination. During the 

covered period, the water loss in the trays was minor so trays were only misted 1 to 2 times daily 

to keep moist. When lids were removed, the growing trays were set on shelves installed with 

three compact fluorescent lamps (GrowBright 4-foot T5 6400K, HTG supply, PA, USA). The 

photoperiod was set at 16h. The SFCM were visual checked daily to determine the watering 
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volume. The biostrate and peat trays were irrigated overhead with approximately 100mL and 

150mL, respectively, of water daily. During the sprouting stage the trays were also misted 

several times per day to help maintain the moisture of roots. The indoor temperature and relative 

humidity (RH) were maintained within a range of 21 to 23C and 50 to 60%. Both SF and PS 

were harvested on day 10.  

 Day 10 harvesting of microgreen and SFCM sampling 

At day 10, microgreens and SFCM were both sampled, and microgreens were analyzed to 

determine TV transfer from SFCM to microgreen edible parts. The SF and PS plants were held 

by sterile tweezers at the top of the stem and were cut at the bottom of the stem (1cm above 

SFCM) using sterile scissors. For each tray, approximately 5 to 10 plants were sampled, 

weighed, and stored in stomacher bags. Each sample was weighed and then 5mL of PBS were 

added to each bag. Microgreen samples were smashed by gently hitting a hammer on the bag to 

release the virus in plant tissue. The samples were further blended in a stomacher machine 

(Stomacher 400 Circulator; Seward, UK) for 2 min at 230 rpm. The eluent was transferred to a 

15mL tube by serological pipette. To remove the plant debris, the samples were centrifuged at 

3000×g for 5 min. The supernatant was transferred to a clean tube and subsequently passed 

through 1µm and 0.22µm pore size filters. The plant eluent samples were serially diluted and 

plated on 6-well plates for plaque assay as described in Chapter 3 Section III-i with biological 

and technical duplicates.  

 The SFCM were sampled from the planted and unplanted areas of each tray. In the 

planted area, the microgreen roots and SFCM were mixed. There were no extra steps to separate 

roots from the SFCM. The elution of virus from peat samples was similar to day 0 samples. 

Briefly, 10mL of PBS were added to the 50mL tube containing peat samples and vortexed gently 
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for 30s. Afterwards, the samples were centrifuged at 800 rpm for 5 min to pellet the heavier 

components in peat. The supernatant was then passed through a filter paper to remove the light 

particles. The resulting sample was then passed through 1µm and 0.22µm pore size filters to 

remove tiny particles and background microorganisms. The samples were plated to quantify 

virus as described in Chapter 3 Section III-i.  

For biostrate samples, the recovery was slightly different from the day 0 sample recovery. 

The day 10 samples were collected in 50mL tubes and immersed in 5mL PBS. After vortexing 

for 1 min, the eluent was centrifuged at 3000×g for 5 min to pellet the any bacteria present. The 

supernatant was then passed through 1µm nylon and 0.22µm PVDF filters to remove remaining 

bacteria. Also, 1mL of Penicillin-Streptomycin solution (100 U/mL, 100 g/mL; Cytiva) was 

added to each sample to inactivate bacteria in case any remained following filtration. Samples 

were serially diluted and plated in duplicate for detection of TV by plaque assay. All peat and 

biostrate samples were dried in 80°C oven for 48h and weighed for the calculation of per gram 

concentration of viruses recovered.  

 

 Statistical analysis 

Virus counts were log transformed for statistical analysis. The virus survival comparison in 

biostrate and peat were analyzed using one-way ANOVA in RStudio (version 1.4.1106, 

implementing R version 4.0.4) (https://www.rstudio.com). The Tukey's HSD test was applied in 

the post-hoc analysis to compare the means among different PID. The result in log PFU/tray was 

reported in dot plot. The viral transfer from SFCM to microgreens experiment was a nested 

design, and it was analyzed using mixed effect model. The virus counts in SFCM (log PFU/g) 

were reported as boxplot. A significant difference level of 0.05 was used for all above analysis.   
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IV. Results 

 TV persistence on SFCM 

To compare TV persistence in different kinds of SFCM for microgreen growth, peat and 

biostrate were studied in the absence of plants (Figure 7). Virus count from each sample was 

calculated for log PFU/g and then multiplied by the SFCM weight to get a total virus number in 

the whole tray in order to compare the biostrate and peat. For biostrate, the virus titer on PID 10 

was significantly lower than other tested days (i.e., PID 1 to 5) (p<0.05), while no significant 

differences were observed for the virus counts among PID 0, 1, 3, and 5 (Table 4). For peat, no 

significant differences in virus titers were detected among all PID samples (Table 5). Throughout 

the tested time, the total reduction of TV was higher for biostrate than peat (average 2.08 vs. 1.76 

log PFU/tray), but the effect of SFCM was not significant (p= 0.72).  

 

 Virus transfer from day 0 inoculated SFCM to microgreen edible plants 

To determine the TV transfer to microgreens, the above ground edible portions, SFCM planted 

(containing roots), and SFCM unplanted area were all tested on PID 10. No virus was detected at 

the limit of detection range of 0.32 to 0.74 log PFU/g (this range was based on the microgreen 

sample weight) in the microgreen edible tissue of SF or PS grown in both types of SFCM. This 

may indicate that no virus transferred from SFCM to edible tissue during the growing period.  

Besides microgreens, the virus concentrations in SFCM were also monitored on PID 0 and 

10 (Figure 8). In order to better interpret the data, the TV concentrations in SFCM was not 

calculated back to PFU/tray. The recovered TV concentration on PID 0 were on average 6.41 

and 4.67 log PFU/g for biostrate and peat trays, respectively. Compared to PID 0, the virus titer 

from all samples on PID 10 decreased in the range of 1.27 to 3.21 log PFU/g, and no sample was 

below detection limit. When looking at biostrate or peat individually, the virus titers in planted 
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and unplanted area were compared within each SFCM type. Without considering the microgreen 

variety, in biostrate the unplanted area contained 1.15 log PFU/g higher of TV than the planted 

area (p= 0.035). The unplanted areas were on average 1.07 and 1.46 log PFU/g higher than 

planted area for SF and PS biostrate trays, respectively. Similar patterns were also observed in 

peat, where the unplanted area of combined microgreen types was on average 0.49 log PFU/g 

higher than planted area (p=0.0081). For SF and PS peat tray, the unplanted areas were 0.67 and 

0.34 log PFU/g than planted areas, respectively. 

 

V. Discussion 

Microgreens are perishable leafy greens that are usually consumed with minimal or no 

processing (Mir et al., 2017; Riggio et al., 2019). Thus, it is critical to understand the foodborne 

pathogen risks during microgreen production. In recent years, several studies were carried out to 

investigate the fate of bacterial foodborne pathogens in different microgreen growing conditions 

including in hydroponics and SFCM (Wright and Holden, 2018; Xiao et al., 2015). However, 

research on the risks related to contamination of microgreens with human enteric viruses is 

limited. Only one published study on murine norovirus (MNV) in hydroponic systems has been 

carried out (Wang and Kniel, 2016). To our knowledge, this is the first study that characterizes 

virus persistence in microgreen SFCM. Also, the subsequent virus transfer from SFCM to edible 

tissues of microgreens was first described here.  

Without plants presence, TV reductions in biostrate and peat were similar with minimal 

reduction over the 10-day experimental trials. In a previous study on virus persistence in a 

hydroponic system for the production of microgreens, Wang and Kniel (2016) reported on the 

survival of murine norovirus (MNV) in the circulating nutrient solution of hydroponic system 
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over five days without the presence of microgreen. No significant differences in  MNV were 

observed over the 5-day post inoculation period in the (Wang and Kniel, 2016). Both the present 

study and the one by Wang and Kniel (2016) indicate that viruses (i.e., TV and MNV) are 

relatively stable under common microgreen production conditions. This may indicate that virus-

specific risk management practices should be development to prevent and control virus 

contamination within microgreen growing environments, specifically as it relates to soil-free 

media and nutrient solutions.  

When microgreens were cultivated in TV contaminated SFCM, we were not able to 

detect virus transfer to edible tissue of either microgreen type even though SFCM on PID 10 still 

contained virus. The virus uptake from media can be plant type or cultivation matrix dependent. 

A study by Yang et al. (2018) compared TV internalization from hydroponics and soil into pre-

harvest green onions, lettuce, and radish. While TV were recovered from all three studied plants 

grown in hydroponic system, only lettuce cultivated in soil was TV positive. The TV was not 

detected in any part (i.e., root, shoot, or leaf) of the plant for radish and onions (Yang et al., 

2018). Similarly, another study also reported the absence of infectious TV and RNA 

internalization into bell peppers grown in contaminated soil (DiCaprio et al., 2015). As discussed 

in the above two studies, a possible reason for the absence of virus internalization into certain 

plant types was due to the presence of the antiviral compounds in plants. Sunflower seeds were 

previously found to contain antiviral peptides, and its crude extract effectively reduced the 

herpes simplex virus (HSV-1) (Oliveira et al., 2009; Rauf et al., 2020). However, the antiviral 

activity that was observed for HSV-1 can be different for hNoV. Specifically, HSV-1 is an 

enveloped double-strand DNA virus while hNoV is a non-enveloped single-strand RNA virus 
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(CDC, 2021; Gavanji et al., 2015). Nevertheless, the specific reasons for the lack of detection of 

TV in edible microgreen tissue need further exploration. 

Interestingly, the planted and unplanted areas within each tray showed significantly 

different virus titers, regardless of the SFCM types. The planted and unplanted areas were treated 

the same (i.e., irrigation, photoperiod, temperature, and humidity) while their major differences 

were the planted coverage and the presence of roots. The reason for this difference requires 

further investigation to uncover, but there are two possible explanations for it. The possibility is, 

that even though the virus concentrations in plant and unplanted areas were at the same level, the 

plant roots have their own microbial communities and produce secondary metabolites that could 

be antiviral. With respect to the potential rhizosphere bacterial community in the planted areas 

(Ofek et al., 2011; Reed et al., 2018), some viruses in planted areas might associate with the 

bacteria through unknown mechanisms. Previous research has reported the binding activities of 

TV with certain bacteria including binding with Escherichia coli O86:H2 through the exposed 

histo-blood group antigens (HBGAs) on the bacterial surface (Li et al., 2017). It has been 

reported that TV can selectively bind to some types of HBGAs and sialic acids (Tan et al., 2015; 

Zhang et al., 2015). Moreover, hNoV has been reported to bind with several bacteria derived 

from leafy greens; thus, TV may bind to certain plant indigenous bacteria through similar 

binding mechanisms. There are also some virus and bacteria bindings by unknown mechanisms. 

Almand et al. (2017) observed the binding of hNoV genogroup I. 6 (GI. 6), GII. 4 to eight 

selected human gut microbiota while TV bound to four of them (Lactobacillus plantarum, L. 

gasseri, Klebsiella spp., and Enterococcus faecium). Based on the previous finding, if virus 

binding activity occurred in the present study, the recovery procedures (i.e., centrifugation and 

filtration steps) might have removed the viruses associated with bacteria or other larger particles, 
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and only the remaining unbound viruses were detected. The unplanted area might harbor much 

lower bacterial population, so the viruses and bacterial binding effect was limited.  

Second, virus concentration in planted area was possibly reduced by certain secondary 

metabolites secreted by rhizosphere bacteria. The Pseudomonas fluorescens strain Gpf01 

isolated from ginseng rhizosphere was found to produce antiviral compounds against the 

cucumber mosaic virus (Cho et al., 2009). Similarly, cotton rhizospheric Bacillus 

amyloliquefaciens (VB7) contains 10 antimicrobial peptide genes encoding iturin, bacilysin, 

bacillomycin and other antimicrobial compounds (Vinodkumar et al., 2018). The antimicrobials 

together with VB7 secreted fatty acids synergistically complemented the antiviral effect against 

tobacco streak virus.  

 In this study, the virus titration of TV in microgreen root was performed on the mixture 

of SFCM and roots since the biostrate mat fiber and roots were combined tightly and difficult to 

distinguish. To maintain consistency, the roots in peat were also not separated. Because of this 

limitation, the TV titer in root was not determined alone. Another limitation of this study was 

that the microgreen growth rate on peat and biostrate differed. A visually lower canopy height 

and yield were observed for biostrate than peat. The substrate effect on microgreen production 

has been reported in several studies (Bulgari et al., 2021; Kyriacou et al., 2020; Wieth et al., 

2020). A study compared the growth of three types of microgreens on six substrates (agave 

fibers, capillary mat, coconut fibers, peat moss and cellulose sponge), revealing that all 

microgreens varieties achieved their tallest canopy on peat, and the shortest on capillary mat 

(Kyriacou et al., 2020). Third, the growth condition of microgreen had some fluctuations due to 

difficulties in controlling the indoor air conditioning system as previously described (Deng et al., 

2021). On PID 10, a big variation within biostrate samples was observed, and the possible reason 
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could be related to the room temperature and relative humidity (RH) fluctuations in the plant 

cultivation room. Even though a humidifier was placed next to the microgreen trays, its buffering 

capacity was limited if there was a drastic change of RH in the plant room. Comparably, the peat 

was less affected by the changes in environmental conditions. Last, this study was carried out 

using the hNoV surrogate TV which shares many biochemical and genetical similarities with 

hNoV (Tian et al., 2013). However, the results from this study should be extrapolated with 

caution in regard to how hNoV might behave under similar conditions.  

There are also some questions to be solved in future research. First of all, as discussed 

earlier, the bacteria in microgreen root areas have potential interactions with viruses which may 

lead to lower TV titer in planted area. Additional research should aim to characterize the 

microbial communities and investigate whether virus-bacteria binding or bacteria produced 

antiviral compounds played a role on TV titer. Second, more studies should focus on the 

mechanism of virus internalization or transfer from different SFCM to leafy greens. So far, 

several fresh produce are reported to have lower or to be absent of virus internalization within 

certain growing systems (DiCaprio et al., 2015; Yang et al., 2018). If a certain cultivation system 

were proved to reduce the risk of virus internalization, it should be considered a risk 

management practice to enhance the safety of fresh produce.  

 Overall, this study revealed that TV was able to persist for a fairly long time in biostrate 

and peat. Although virus transfer from SFCM to the edible tissue of microgreens was not 

observed, the virus in SFCM could potentially lead to cross-contamination. For instance, during 

production, any contact between the edible tissue of mature microgreens with SFCM may lead to 

virus transmission. Also, in the real world, some farms reuse the microgreen trays during a 

continuous production cycle. In this case, the cleaning and sanitizing procedures should be 
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validated for sufficient inactivation of pathogens including viruses (Turner et al., 2020). To 

summarize, the findings in this study provide valuable information on viral transmission routes 

during microgreen production.   
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VII. Figures  

 
Figure 6. Experiment layout for microgreens planting on day 0 and sample collection on day 10. The microgreen planted and 

unplanted areas in each tray are shown above. On day 0, SFCM samples from each tray were collected. On day 10, microgreens edible 

tissues were harvested in stomacher bags, and SFCM from planted and unplanted areas were sampled respectively in tubes.  
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Figure 7. Tulane virus persistence in soil-free cultivation matrices without planting microgreens 

under indoor farming conditions over 10 days. The virus counts were log transformed and 

calculated as total virus counts per tray. The SFCM peat (open circle) and biostrate (open square) 

were plotted against PID. Each treatment was replicated twice. 
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Figure 8. TV recovered in two types of SFCM for microgreen cultivation. The virus titer in 

planted (red) and unplanted (blue) areas of each tray were plotted against microgreen varieties. 

PS represent pea shoots and SF represents sunflower. The data for biostrate and peat were plotted 

separately. Each treatment level contains a replication of two.  
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VIII. Tables 

Table 4. The mean comparisons using Tukey’s test for viruses recovered from biostrate among 

different PID. 

PID Means SE DF Lower. CL Upper. CL Group 

10 4.11 0.43 10 3.15 5.06 1 

5 6.23 0.43 10 5.27 7.19 2 

3 6.33 0.43 10 5.37 7.29 2 

1 6.79 0.43 10 5.83 7.74 2 

0 7.14 0.43 10 6.18 8.10 2 

* Post-hoc analysis following a one-way ANOVA to further determine the group of means that 

are significantly different from others. The means are obtained from replication (n=2). SE stands 

for standard errors; DF stands for degree of freedom; Lower. CL and upper. CL stands for lower 

and higher confidence intervals. The different numbers under group represent significant 

differences.  

 

Table 5. The mean comparisons using Tukey’s test for viruses recovered from peat among different 

PID. 

PID Means SE DF Lower. CL Upper. CL Group 

10 4.91 0.43 10 3.95 5.87 1 

5 5.97 0.43 10 5.01 6.93 1 

0 6.67 0.43 10 5.71 7.63 1 

3 6.70 0.43 10 5.74 7.65 1 

1 6.86 0.43 10 5.90 7.81 1 

* Post-hoc analysis following a one-way ANOVA to further determine the group of means that 

are significantly different from others. The means are obtained from replication (n=2). SE stands 

for standard errors; DF stands for degree of freedom; Lower. CL and upper. CL stands for lower 

and higher confidence intervals. The different numbers under group represent significant 

differences.  
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Chapter 4: Human Norovirus Surrogate Persistence during the Late Growth Stage 

Contamination in Microgreen Production 

I. Abstract 

Human norovirus (hNoV) is a pathogenic agent that is frequently associated with foodborne 

disease outbreaks linked to fresh produce. In the emerging microgreen production system, the 

understanding of virus transmission routes and persistence is limited. Virus contamination, 

particularly during the pre-harvest production phase, can result in contamination that lasts until 

the consumption stage. Virus contamination caused by farm workers and irrigation water were 

mimicked in this study. To understand the virus persistence on microgreen leaf surfaces, 

approximately 5 log PFU of Tulane virus (TV)—a hNoV surrogate—was inoculated on 

sunflower (SF) and pea shoot (PS) leaves at 7-day age. The virus reduction on SF was 

significantly higher than PS (p=0.00015). On day 10, the viral reductions for SF and PS were 

4.50 and 2.52 log PFU/plant, respectively. In addition, the ability of TV to transfer from two 

types of soil-free cultivation matrix (SFCM) to microgreens was studied. On day 7, 7.6 log PFU 

total were added to growing trays with SF and PS grown on biostrate and peat. On day 10, the 

harvested SF and PS were analyzed for TV presence in the whole plant (i.e., surficial and 

internalized) and internalized in the tissue. However, no virus was detected from PS and SF in 

whole plant, indicating the absence of TV transmission from SFCM to microgreen. On day 10, 

TV in SFCM only reduced 0.78 and 1.06 log PFU/g in biostrate and peat, respectively. Overall, 

this study revealed that TV persistence on microgreen leaves is dependent on plant variety. Virus 

transmission from SFCM to microgreen was not observed. The findings help to further 

understand potential hNoV transmission routes in a microgreen production system and to 

develop effective preventive measures.  
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II. Introduction 

Microgreens are small salad greens with unique color, texture, visual appeal, as well as 

nutritional value (Renna and Paradiso, 2020; Verlinden, 2020). Starting in 1996 as 

embellishments in cuisine, the microgreens industry has emerged and increased rapidly in recent 

years (Misra and Gibson, 2021; Turner et al., 2020). As required by the U.S. Food and Drug 

Administration (FDA) (2020), the production of microgreens is subject to the Food Safety 

Modernization Act Part 112 “Standards for the Growing, Harvesting, Packing and Holding of 

Produce for Human Consumption”, except for subpart M related to sprouts. Although both are 

harvested at an immature stage, microgreens are different from sprouts since microgreens are 

harvested when the first pair of true leaves emerge (Di Gioia et al., 2017; Galieni et al., 2020). 

Microgreens have not been linked to any foodborne disease outbreaks so far, but in the past few 

years, there have been several recalls of microgreen products in Canada and the United States 

due to the potential contamination of Salmonella and Listeria monocytogenes (Canadian Food 

Inspection Agency, 2020; Turner et al., 2020; FDA, 2018). 

Human noroviruses (hNoV) are the most common viral pathogen found in fresh produce 

(Chatziprodromidou et al., 2018). The transmission routes of hNoV on farm are complex. A 

primary route is likely the contamination of irrigation water with human sources of fecal 

pollution. For instance, the feces of hNoV patients contain on average 105-109 genomic copies/g 

viruses and the shedding on average lasts 8 to 60 days (Teunis et al., 2015). The irrigation water 

for crops may come from groundwater (spring and well), surface water (rivers, lakes, reservoirs), 

reclaimed water, or a combination of sources (Centers for Disease Control and Prevention, 

2016). In addition to agricultural water, the farm workers, harvesting equipment and tools, and 

harvest containers may also lead to hNoV contamination of fresh produce (Jung et al., 2014).  



 

 91 

The study of viruses within microgreen production has previously been carried out using a 

hydroponic system (Wang and Kniel, 2016). However, commercial microgreen production more 

commonly utilizes trays which are arranged on stacked shelves, channels, and benches (Gioia et 

al., 2017; Misra and Gibson, 2021; Teng et al., 2021). The growing substrates for trays and 

similar containers are usually soil or soil-free cultivation matrices (SFCM), including perlite, 

peat moss, vermiculites, coconut coir, and fiber mats. Previously, bacterial pathogens have been 

investigated within microgreen production systems using SFCM, but no studies have been 

published on viruses in these systems. In addition, sunflower (SF) and pea shoots (PS) belong to 

the top three most frequently produced microgreens species in commercial farms, and the virus 

risk in these two microgreen species has yet to be evaluated (Misra and Gibson, 2021). In this 

study, the SFCM biostrate and peat were selected for characterization of virus persistence and 

transmission to SF and PS microgreens. Also, virus persistence on the leaf surfaces of SF and PS 

grown from peat were compared. Here, hNoV surrogate Tulane virus (TV) was employed for the 

virus persistence and transfer studies (Drouaz et al., 2015).   

 

III. Material and method 

 Mammalian cell culture and virus propagation 

Cell culture, virus propagation, and titration followed the protocol as described previously 

(Arthur and Gibson, 2015). Tulane virus was kindly provided by Dr. Jason Jiang from Cincinnati 

Children’s Hospital Medical Center in Cincinnati, OH. LLC-MK2 cells (ATCC CCL-7; 

American Type Culture Collection, Manassas, VA) were cultured in M199 medium with L-

glutamine and Earle’s salts (Corning, VA, USA) with 10% Fetal Bovine Serum (FBS) (Cytiva, 
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MA, USA), 1% Penicillin-Streptomycin (100 U/mL, 100 g/mL; Cytiva) and 1% Amphotericin 

B (Corning) supplementation. Cells were incubated at 37C, 5% CO2.  

For virus production, MK2 cells were infected with TV at a multiplicity of infection 

(MOI) of 0.1, rocking at 37C, 5% CO2 for 1h. Following rocking, 20mL of maintenance 

medium (Opti-MEM with 2 % FBS) (Gibco Life Technology, Scotland, UK) were added and the 

flasks were further incubated until complete cytopathic effect was achieved which usually takes 

48h. The flasks were transferred to -80C and underwent three freeze and thaw cycles. The cell 

debris were pelleted at 3000g 4C for 15 min. The virus supernatant was purified by filtering 

with 0.45μm cellulose acetate membrane filter (Corning).  

For virus quantification, 2mL of MK2 cells were seeded in 6 well plates at a 

concentration of 8×105 cell/well and incubated at 37C, 5% CO2 overnight. TV samples were 

serially diluted in maintenance medium. After aspiration of cell growth medium, 500L of 

prepared sample was added per well, followed by 1h rocking at 37C. At the end of rocking, 

virus samples were removed, and the cell monolayer was covered by 2mL of a 1:1 mix of 3% 

low melting agarose (VWR, PA, USA) and maintenance medium. Following a 5-day incubation 

at 37C, the cells were stained with 0.01% neutral red (Sigma, MO, USA) for 1h to visualize 

plaque forming units (PFU). 

 

 Microgreen cultivation before TV inoculation 

Soil-free cultivation matrix were prepared before planting. Biostrate® Felt 185gsm microgreen 

growing mat (Grow-Tech, South Portland, ME, USA) was cut into 10-inch by 10-inch square 

pieces to fit the growing tray (True Leaf Market, UT, USA). Three-hundred grams of Canadian 

sphagnum peat and vermiculite mix (Jiffy–Mix®, Jiffy Growing Solutions, NL) were used to fill 
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additional growing trays. For biostrate and peat, 200mL and 500mL of deionized (DI) water was 

added, respectively, and distributed homogenously. The biostrate trays were tilted at different 

angles to allow the water to evenly saturate the mat. The peat in tray was uniformly mixed with 

the DI water by sterilized gloved hands.  

Twenty-five grams of organic black oil sunflower seeds (Tiensvold Farms, NE, USA) 

and 40g of field pea shoot seeds (Tiensvold Farms) were soaked in sterile DI water for 6h in the 

dark. When finished soaking, the seeds were drained in sterilized sieves, and approximately 25g 

of sunflower or 40g of pea shoots seeds were planted per tray. Seeds were planted in four rows, 

and space was left among rows to allow for future TV inoculation. During the first two days, the 

trays were covered with a black lid and were only misted daily to keep moisture until seeds 

germinated. Once lids were removed, the growing trays were transferred to a shelf with installed 

growing lights (GrowBright, 4-foot, T5 6400K, HTG supply, PA, USA). On each layer of the 

shelf, a humidifier was sitting next to trays. The biostrate and peat trays were irrigated overhead 

with 100mL and 150mL of water, respectively, per day as well as 3 to 4 sprays of water mist. 

The indoor temperature and relative humidity (RH) were maintained within a range of 70-75F 

and 55-60%. Sunflower and pea shoots were grown under the aforementioned conditions until 

the day of experiments.  

 

 Virus inoculation on pre-harvest microgreen leaf surface 

Sunflower and pea shoots were grown on peat as described in Chapter 4 Section III-ii. On 

day 7, 50µl of TV inoculum containing approximately 105 PFU TV were inoculated onto 

microgreen leaf surfaces by pipetting 10L droplets (Figure 9). Both sunflower and pea shoots 

were inoculated on the abaxial side of leaf surface. The inoculated sunflowers were labeled by a 
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red sticker on the abaxial surface of the leaf while pea shoots were labeled on the peas. The 

leaves were allowed to air-dry (approx. 2 to 3 hours) at room temperature. From day 7 to 10, the 

microgreens were irrigated with the same water volume (150mL/day) as previous days by 

serological pipetting instead of overhead irrigation. The row-by-row pipetting irrigation 

prevented the inoculated viruses from being washed off the leaves. 

On post-inoculation day (PID) 0, 1, 2 and 3 (i.e., plant age day 7, 8, 9 and 10), one 

random sunflower and pea shoot microgreen were cut off by sterile scissors. The plant was 

placed in 50mL tubes containing 5mL of PBS. The tubes were vortexed (VWR Analog Vortex 

Mixer) at maximum speed for 1 min to recover the leaf surface viruses. The eluent was passed 

through 0.22m PVDF filters (Foxx Life Science, NH, USA) to remove bacteria and any plant 

debris. The samples were then serially diluted in maintenance medium and quantified in plaque 

assay.  

 

 TV contaminated irrigation water in late growth stage 

 TV inoculation and sampling 

Sunflower and pea shoots were grown on peat and biostrate as described previously until day 6. 

Irrigation water on day 7 for both types of SFCM was pre-mixed with 4107 PFU TV in a 

biosafety cabinet. The SFCM were irrigated with TV containing water using serological pipettes 

(Figure 10). The pipetting tip was 1 to 2 cm above the SFCM and care was taken not to 

inadvertently touch the microgreens. TV were evenly inoculated row by row on each tray. The 

biostrate trays were slowly tilted in different directions to ensure the inoculum uniformly 

distributed. Immediately after the inoculation, each tray was sampled for peat or biostrate to 

quantify the starting concentrations. Peat was sampled using a sterile spoon across four different 
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random locations in the tray and collected in a 50mL centrifuge tube. Biostrate samples (around 

22cm) were held with forceps and cut at a random location by sterile scissors, then transferred 

to a 50mL tube.  

 On day 10, clean stomacher bags were weighed for net weight. Sunflower and pea shoots 

were sampled into bags and weighed. While sampling, forceps were used to hold the top of 

microgreen and scissors were used to cut the stem 1cm above SFCM. About 5 to 10 microgreen 

plants (ranged between 2 to10g) were collected per bag. SFCM sampling for day 10 was the 

same as day 7.  

 

 Microgreen and SFCM sample recovery 

Microgreen samples were either pre-treated to eliminate surface associated viruses or non-

treated. To characterize the internalized virus only, the surfaces of microgreens were disinfected 

by immersing plants in 1000 ppm chlorine for 5 seconds. The plants were then transferred to a 

clean stomacher bags containing 200mL of DI water to rinse off chlorine. After three times 

rinsing, the microgreens were dried using paper towels, and immersed in 0.25M sodium 

thiosulfate to neutralize any residual chlorine. Afterwards, the microgreens were again rinsed 

three times with 200mL water and lastly dried on paper towel. The treated microgreens were 

transferred to new stomacher bags and processed for virus recovery following the same 

procedure as the non-treated group. Five mL PBS were added to each stomacher bag, then gently 

smashed with a hammer, and stomached at 230 rpm for 2 minutes. The eluent was pipetted into a 

15mL tube and centrifuged at 3000g for 5min. Afterwards, the supernatant was slowly pipetted 

into a new tube. The supernatant was further filtered sequentially with 1m and 0.22m filters to 

remove any remaining plant debris and bacteria. The samples were serially diluted and quantified 

in plaque assays. 
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For SFCM samples from day 7 and 10, the TV recovery followed the same procedures. 

Five and 10mL of PBS of were added to biostrate and peat samples, respectively. Biostrate was 

vortexed at maximum speed for 1min, while peat was vortexed at intermediate speed for 30sec. 

Eluent was pipetted into a clean 15mL tube and centrifuged at 3000g for 5min to spin down the 

bacteria. The supernatant then went through a 1m nylon filter and a 0.22m PVDF filter to 

remove remaining bacteria. One mL of Penicillin-Streptomycin (100 U/mL, 100 g/mL) was 

added to each tube and vortexed. For peat, after vortexing, the sample was centrifuged at 800 

rpm for 5min. The supernatant with still visible floating particles was poured into a funnel with 

filter paper (VWR Grade 417, Avantor), then further filtered through a 1m nylon filter and a 

0.22m PVDF filter. The remaining peat on filter paper was scraped off and collected with 

pelleted peat in tube. SFCM samples were measured dry weight after 48h incubation in 80C 

oven. The infectious viruses were quantified by plaque assay, and PFU/g (dry basis) was 

calculated.  

 

 Statistical analysis 

Data were first logarithm transformed from PFU/g and PFU/plant to Log PFU/g and Log 

PFU/plant. The TV survival on microgreen leaf surface was summarized in boxplot. The effect 

of microgreen type and plant age on virus persistence were fit in the two-way analysis of 

variance (ANOVA) in RStudio (version 1.4.1106, implementing R version 4.0.4) 

(https://www.rstudio.com). For the TV titer in SFCM with day 7 inoculation, a three-way 

ANOVA was used. In all analysis, p<0.05 were set as significant level.  
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IV. Results 

 TV survival on microgreen surface  

To analyze the effect of different microgreen varieties on TV survival on leaf surfaces, TV was 

monitored for reduction from microgreen age day 7 to 10 (Figure 11). Starting from 

approximately 4.6 log PFU/plant on day 7, the virus reductions on day 10 were 4.50 and 2.52 log 

PFU/plant for SF and PS, respectively. Tulane virus reduction on PS surface was significantly 

less than on SF (p=0.00015). Moreover, on day 10, TV was no longer detectable on SF (limit of 

detection 0.8 log PFU/plant) while PS titer was still at 2.18 Log PFU/plant.  

For each microgreen variety, the number of days significantly impacted the virus titer on leaf 

surfaces. For PS, the TV recovered titer on day 7 was significantly different from the rest of 

days. This indicates that the majority of virus reduction occurred between days 7 and 8. The TV 

titer on day 8, 9, and 10 continued to reduce, although the titers among these days were not 

significantly different. For SF, the same reduction pattern was observed as for PS, while the day-

to-day reduction in SF was higher than PS. 

 

 Internalization of TV from late stage inoculated SFCM to microgreens 

On day 7, TV of 7.6 log PFU/tray were inoculated to SFCM to observe the virus transfer to SF 

and PS. The total virus transferred to the edible part of microgreens was analyzed without pre-

treatment, while the internalized virus in tissue was detected after plant surface disinfection. On 

day 10, TV was not detected in microgreen edible part regardless of microgreen pre-treatment or 

not, for PS and SF grown in either type of SFCM.  

Meanwhile, SFCM and microgreen roots mixture were sampled for day 7 and 10 (Figure 

12). The microgreen variety did not affect the virus titers in SFCM (p>0.05). Starting at 6.07 log 
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PFU/g in biostrate, the virus only reduced 0.78 log PFU/g by day 10. The post-hoc analysis 

showed that virus titer on day 10 was not significantly different from day 7 (p>0.05). While for 

peat, TV was an average of 5.09 log PFU/g on day 7, and the virus on day 10 had reduced an 

average of 1.06 log PFU/g (p= 0.008).  

 

V. Discussion 

In fresh produce production, viral contamination may be introduced by the irrigation water, plant 

medium, or farm workers (Machado-Moreira et al., 2019). In this study, TV persistence on 

microgreen leaf surface mimicked the situation of virus contamination by overhead irrigation or 

the hand touch by hNoV shedding workers. The second experiment investigated a single 

contamination event of SFCM from virus contaminated irrigation water.  

 The TV on preharvest microgreen leaves were significantly higher in PS than SF, 

indicating that the virus persistence pattern is potentially plant variety-dependent. Two possible 

theories may explain this observation. First, the topographical differences of leaves between SF 

and PS might lead to the difference in virus persistence (Doan et al., 2020).  According to a 

comparison of Escherichia coli O157:H7 survival among spinach cultivars Emilia, Lazio, Space 

and Waitiki, the leaf blade roughness and stoma density had significant impact on the bacterial 

survival (Macarisin et al., 2013). The E. coli population was 0.4 log CFU higher (p<0.05) on the 

highest leaf roughness cultivar Waitiki. Also, the number of stomata on leaves showed a positive 

relationship with the recovered number of E. coli (Macarisin et al., 2013). Another possibility is 

that the leaf exudates profile on SF and PS contributed to the difference in virus persistence. 

Rowe et al. (2012) reported that mature sunflower leaves produce a mixture of secondary 

metabolites into the glandular trichomes located on the leaf surface. The main components of 
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sunflower trichome secretion were sesquiterpene lactones (STL). Recent studies found that one 

STL called brevilin A—isolated from medicinal herb Centipeda minima—had antiviral activity 

against Influenza A virus H1N1, H3N2, and H9N2. Bervilin A inhibited the virus replication 

under both in vitro and in vivo conditions (Zhang et al., 2019, 2018). The sunflower in the 

present study is at the microgreen stage, so the production of STL and the specific types remains 

unclear. Further characterization of the sunflower microgreen surface exudates is needed.  

Previous studies on bacteria and virus on fresh produce have observed that the inoculation 

levels affected the efficiency of bacterial and viral internalization from growth substrate (Cooley 

et al., 2003; Yang et al., 2018). Also, based on our previous finding in Chapter 3, the day 0 virus 

inoculation to SFCM did not lead to the virus transfer into microgreens on day 10 (data not 

shown). This study utilized a later growth stage inoculation into SFCM to ensure a high 

inoculation level of TV when harvesting on day 10. The virus reduction from day 7 to day 10 

was on average 0.92 log PFU/g in SFCM. Nevertheless, the TV was still not detected in 

microgreens edible tissue, indicating that the inoculation dose in this case was probably not the 

reason for the failure of virus internalization.  

So far only one published paper studied hNoV surrogate internalization from growing 

media to microgreens. In Wang and Kniel (2016), murine norovirus (MNV) was inoculated into 

the nutrient film technique hydroponic system on day 8 and subsequent internalization into kale 

and mustard was observed. Within 2h the MNV had internalized into edible tissue, and viruses 

were detectable until day 12 harvesting. The present study is not comparable with their research 

due to differences in cultivation system, virus types, microgreen varieties, and even plant age 

may affect the result (Hirneisen et al., 2012; Pu et al., 2009). The effect of cultivation method 

and plant variety on TV internalization has been described by Yang et al. (2018). The study by 
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Yang and co-authors was carried out in one-month old radish and two-month old onion and 

lettuce. They found that TV in nutrient solution successfully internalized in hydroponically 

grown onion and radishes, but not in the soil grown system. While for lettuce, the TV 

internalization occurred in both hydroponic and soil systems.  

Despite the absence of TV internalization in microgreen edible tissue in the present study, 

the long persistence of virus in SFCM is noteworthy. In commercial production, the virus 

containing SFCM can easily cross-contaminate harvesting machines or workers’ hands, 

potentially leading to a spread of contamination. On the other hand, due to the highly perishable 

nature once harvested, some microgreens are sold as a living produce in plastic tray containing 

growth medium to extend the shelf life (Renna et al., 2017).  In this case, the virus in SFCM may 

further cause cross-contaminations when consumers harvest the microgreens in kitchen.  

There are some limitations in this study. First, during the virus persistence assay on leaf 

surface, the potential internalization of TV into leaves through stomata was not considered. 

Salmonella enterica were found to aggregate on the stomata of lettuce leaves, further penetrate 

and invade the tissue (Kroupitski et al., 2009). Norovirus-like particles were previously reported 

to aggregate in romaine lettuce stomata (Esseili et al., 2012a). However, it is unknown whether 

hNoV would behave the same way on leaf surface and even internalize into tissue or not. A 

scanning electron microscope (SEM) on kale, arugula, lettuce and mizuna microgreens showed 

that their stomata were slightly longer than the mature leaves (Park et al., 2013; Turner et al., 

2020). Thus, in the present study, the potential of TV internalization in microgreen tissue 

through stomata in unclear. Second, there was a greater standard error for virus recovered on day 

7 from biostrate. This was due to the fact that the water content among biostrate trays was not 
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exactly the same. As a result, when inoculating the same amount of TV, viruses were more 

diluted in higher water content biostrate trays.    

This study revealed that in certain microgreen varieties, the virus can persist longer. This 

raises the question regarding whether the washing steps before consumption can effectively 

remove the viruses. To answer the question, a thorough understanding on how virus attach or 

bind to microgreen leaves is required. A previous study showed that washing step for lettuce leaf 

only reduce viruses by less than 1 log PFU (Bae et al., 2011). Human norovirus is known to 

specifically bind to the histo-blood group antigen (HBGA) like carbohydrate moiety on lettuce 

leaves (Esseili et al., 2019). Therefore, in future work on microgreens, the virus attaching 

mechanism should be explored. On the other hand, the present study did not observe the virus 

internalization from tested SFCM into SF and PS. More microgreen varieties should be tested for 

virus internalization on SFCM. For instance, the mature lettuces have been well studied for 

hNoV and surrogate virus internalization in both hydroponics and soil cultivation matrix (Esseili 

et al., 2012b; Yang et al., 2018). However, the virus internalization into the lettuce microgreen 

has not been characterized (Weber, 2016).   

Overall, the present study characterized virus contamination of microgreens when 

introduced to the microgreen system at close-to-harvest timing. The leaf surface virus persistence 

was found to be plant variety-dependent. While the virus persisted in SFCM, it is not internalized 

into the edible tissue based on the tested two microgreen species. In addition, this study provided 

a set of reliable virus recovery methods from different types of microgreen SFCM which can be 

used for future virus studies on crops. 
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VII. Figures 

 
 

Figure 9. Flow diagram of TV inoculation on day 7 microgreen leaf surfaces and virus recovery. 

The 10L droplets of TV inoculum on SF and PS leaves are shown in the diagram. After drying 

in RT, the microgreens were recovered for virus concentration. 
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Figure 10. The layout of plant seeds on day 0 and the inoculation of TV on day 7. On day 0, the sowing of seeds was in a row-by-row 

pattern on biostrate and peat. On day 7, TV was inoculated into SFCM by a serological pipette in spaces between rows without contact 

with above ground edible tissues. 
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Figure 11. The survival of TV on sunflower and pea shoots leaf surface. The virus titers (log 

PFU/plant) on microgreen leaves surfaces were plotted against plant age (days). Sunflower 

(blue) and pea shoots (red) surface virus counts were based on two biological and two technical 

duplicates. The limit of detection (LOD) was 0.8 log PFU/plant, the below LOD data points were 

considered as 0 log PFU/plant in graph. 
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Figure 12. The TV titer in SFCM on microgreen age day 7 and 10. Day 7 was the virus 

inoculation day while day 10 was the microgreen harvesting day. The virus titer (Log PFU/g) 

was plotted against microgreen age (days). The result summarized separately for biostrate and 

peat, as well as for sunflower (green) and pea shoots (red). Data for each treatment includes two 

replicates of biological and technical, respectively. 
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Chapter 5: Conclusions 

Leafy greens play a crucial role in a healthy balanced diet (Randhawa et al., 2015). However, 

reducing the microbial risks in leafy green production and preparation is a challenge (Kaczmarek 

et al., 2019). This dissertation aimed to understand the human noroviruses (hNoV) persistence on 

leafy greens (i.e. lettuces and microgreens) and the related production systems.  

Lettuce is the most consumed type of leafy green with an annual consumption of 5,888g 

per individual in the United States (Pang et al., 2017). Therefore, pathogens that are frequently 

associated with contaminated lettuce have been studied intensively. Human norovirus is the 

primary viral pathogen found on lettuces (CDC, 2021). Here, the hNoV surrogate Tulane virus 

(TV) on hydroponically grown oakleaf lettuces at pre-harvest stage were studied for its 

persistence on leaf surface. It was found that oakleaf lettuce inoculated on 40 days age survived 

to day 45 when the lettuce was fully mature and ready to harvest. The major reduction of virus 

on leaves was observed on post inoculation day (PID) 2. Over four days of observation, TV was 

reduced by over 4 log PFU/leaf. The findings indicate that when virus contamination occurs 

close to harvest, the virus could very well persist to the post-harvest and consumption stages.  

Microgreens are a group of novel leafy greens with a rich nutritional value compared to 

their mature plant counterparts (Choe et al., 2018). Currently, the knowledge surrounding 

foodborne pathogen risks within microgreen cultivation system is limited, especially in regard to 

the risk of contamination with human enteric viruses. This dissertation for the first time 

characterized the viral persistence in two types of soil-free cultivation matrix (SFCM) used in the 

production of microgreens—biostrate and peat. It was found that the hNoV surrogate TV 

survived on SFCM over 10 days with a reduction of 2.08 and 1.76 log PFU/tray for biostrate and 

peat, respectively. Furthermore, the microgreen sunflower (SF) and pea shoot (PS) seeds were 
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planted on virus contaminated SFCM and analyzed for virus transfer into edible tissue of the 

microgreens. No virus was found in either microgreen variety after harvest on day 10. However, 

an interesting finding was that in SFCM, the planted area contained significantly lower virus 

than the control (unplanted area). On biostrate and peat, the differences were on average 1.15 and 

0.49 log PFU/g, respectively. The finding provides insights on the potential interactions between 

TV and rhizosphere microorganisms. Future studies are needed to illustrate the mechanisms of 

this observation.  

Next, since the TV transfer from day 0 inoculated SFCM to edible tissue was not detected 

based on preliminary studies, an experiment was carried out to understand the effect of later 

growth stage inoculation on virus transfer. On microgreen age of 7 days, the TV was inoculated 

by serological pipette to biostrate and peat without contact with the growing SF and PS. 

Although this gave a higher TV titer in SFCM than day 0 inoculation, again no virus was 

detected on day 10. Besides SFCM inoculation, in a separate study, TV was also inoculated on 

leaves of SF and PS on day 7. It was found that TV survival on leaves was plant variety-

dependent. On day 10, the reduction of virus was 4.50 log PFU/plant for SF, while only 2.52 log 

PFU/plant for PS.  

Overall, the study in a microgreen production system indicated that TV can persist in 

SFCM over the entire microgreen cultivation time. However, the viral transfer from SFCM to 

edible microgreen tissue was undetected for SF and PS. Nevertheless, the TV inoculated on leaf 

surface of pre-harvest PS can survive to post-harvest, indicating that more safety attention should 

be paid to certain microgreen species. The findings in this dissertation will help to develop viral 

preventive strategies in the future with better targeting. Also, this study revealed that the 

practices implemented in the post-harvest stage should not only prevent the introduction of virus, 
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but also apply effective cleaning and sanitizing practices to eliminate the viruses potentially 

carried from the pre-harvest stage.  
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