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ABSTRACT 

The goal of my masters thesis research is to develop an affordable and mobile infrared 

based environmental sensoring system for the control of a servo motor based on material 

identification. While this sensing could be oriented towards different applications, my thesis is 

particularly interested in material detection due to the wide range of possible applications in 

mechanical engineering. Material detection using a thermal mobile camera could be used in 

manufacturing, recycling or autonomous robotics. For my research, the application that will be 

focused on is using this material detection to control a servo motor by identifying and sending 

control inputs based on the material in an image. My thesis is driven by the following research 

question: how does infrared imaging compare to visible light in terms of prediction accuracy 

both in ideal and non-ideal scenarios? This question is motivated by the fact that there is a lack of 

knowledge on the distinction between the qualities of thermal imaging and RGB imaging for 

computer vision, especially with the use of an affordable mobile camera. To address this gap and 

answer the research question, this thesis aims to achieve three objectives: 1) to create a dataset 

and train a thermal imaging convolutional neural network (CNN) for material detection, 2) to 

create a testbed that will utilize the material detection for the control of an actuator, and 3) to 

compare the performance of thermal imaging vs. RGB imaging in terms of detection accuracy 

for both ideal and non-ideal scenarios. To achieve these objectives, a large number of infrared 

and RGB images must be collected and pre-processed to create a dataset for the training of CNN 

models and the prediction of material types. A protocol must also be developed to establish the 

real-time communication between the mobile thermal device and the actuator to relay this 

material information. An in-depth understanding is gained of the benefits and drawbacks in terms 



 

 

of accuracy’s in ideal and non-ideal scenarios while using an affordable thermal mobile camera 

as opposed to traditional RGB cameras for material detection. These methods were tested on a 

small-scale prototype device consisting of a Raspberry Pi and a SG90 servo motor. The way each 

data type is pre-processed is different, e.g., using dynamic range quantization vs. standardization, 

in order to obtain the best model performances. Our results show that the thermal imaging model 

performed better than RGB model in non-ideal scenarios where is was dark (52% average 

accuracy vs. 46%), but was not able to outperform RGB imaging in ideal scenarios (74% average 

accuracy vs. 95%). While this conclusion is not surprising and falls in our expectation, the 

quantification of the differences between RGB imaging and thermal imaging for material 

detection and the systematic approach developed are the new knowledge generated. It reveals the 

potentials and limitations of infrared image-based computer vision and therefore sets the 

foundation for future work with thermal imaging as it relates to environmental sensing, 

autonomous applications, and under what conditions this application can be made. 
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 1 INTRODUCTION 

1.1 Background and Motivation 

In recent years, there has been a dramatic increase in the exploration of computer vision. 

Computer vision was introduced around the 1960’s and since 2010 this topic has been growing 

exponentially [5]. When this topic was first being explored, the majority, if not all, of the effort 

was being poured into visible light images which consist of Red, Green and Blue color channels 

(RGB). However, in the early 2000’s there started to become some interest in extending this 

knowledge about computer vision to the infrared spectrum [6]. Since that time, there has been 

work done for object detection, velocity calculation, and trajectory prediction using infrared (or 

thermal) image-based computer vision techniques [7] [1]. In this master thesis research, I 

propose to give quantitative proof on the merits of thermal imaging as it is compared to RGB 

imaging for material detection and to determine the best approach to obtaining this proof. 

Thermal imaging has the obvious benefit of being able to detect temperature values in a 

particular scene/image which visible light imaging cannot. This allows flexibility on the amount 

of environmental sensing that can be done with just one device. Using computer vision 

techniques in the infrared spectrum will allow this temperature data to be leveraged for different 

applications than can be achieved with the visible light spectrum using RGB images. Although 

the overarching goal of this research is to have a comprehensive infrared-based environmental 

sensoring system for the closed-loop control of unmanned ground vehicles, the immediate 

objective of this thesis is focused on material detection and to use this information for the control 

of a simple prototype device composed of a Raspberry pi and a servo motor. In future work, this 

material detection can be utilized for controlling a robot’s operating conditions. For example, the 
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robot can adapt the speed and torque of the motors automatically based on the pathway material 

that is present, e.g., concrete vs. grass. In addition, this material detection could prevent the robot 

from coming into contact with materials that are unwanted. If the robot is tasked to follow a side 

walk, anytime the robot started to encounter grass or dirt, proper adjustments could be made to 

keep on the sidewalk. To achieve this objective, we must first prototype this control system with 

a simple device and in the process answer these research question: how does the performance of 

thermal imaging compare to that of RGB imaging both in ideal (in daytime) and non-ideal 

scenarios (in darkness)? 

While there are many different approaches for material and object detection using sensors 

such as lidar, laser scanners, etc. that can already be used to obtain autonomous robot 

functionality with environmental sensing, the cost of such devices is a major barrier that can 

impede its application in some circumstances. For example, applications like personal use such 

as in the case of disabled persons or private projects. In the case of disabled persons, whether 

they are in a wheelchair or walking without sight, a cheap alternative for environmental sensing 

is important. Another important area where an inexpensive device would be helpful is in the 

education system. This device could be used easily to aid in student learning objectives in 

robotics and control. With respect to manufacturing, there may be a need to use an inexpensive 

sensing method for material detection and/or sorting for a particular temporary production 

process. With the proposed mobile thermal device, the cost will be significantly less than 

alternative sensing methods while allowing for high flexibility in the modes of sensing that can 

be achieved. Some work has been done to use computer vision techniques with RGB imaging for 

robot control, such as the work done by Christian Bodenstein et al. [8] using a mobile phone and 

as done in Robotic Weed Control System for Precision Agriculture [9] where they simply used a 
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standalone camera. In our literature review, there are no published research studies in the area of 

closed-loop control using thermal imaging or for comparing the performance of RGB and 

Thermal imaging for such an application. 

Using thermal imaging has an important benefit over RGB: thermal imaging is not 

dependent on having sufficient lighting. This will allow for materials to be identified even in low 

lighting scenarios or even no lighting at all. In the next section, I present a review of the relevant 

literature which helps identify the research gaps and questions and how to approach them. 

1.2 Research Questions and Objectives 

As before mentioned, the question that this thesis seeks to answer is how does the 

performance of using thermal imaging for material detection compare to using RGB imaging in 

ideal and non-ideal scenarios. This is a question that has not been answered in previous literature 

and by answering this question, a foundation for future application and development is 

established. In answering the questions, the best methods for image processing and network 

development are discovered and applied. There are some important objectives that have to be 

achieved in order to answer this important question. First, a dataset has to be collected, both for 

thermal data and RGB data. This data collection was accomplished by recording videos of the 

appropriate material and extracting the data from those videos in order to create the image 

datasets for thermal and RGB images. The data extracted for thermal imaging consisted of 

temperature values, while the data extracted for RGB imaging consists of pixel intensities of the 

three different color channels. This difference is important when looking at training models for 

each data type, which leads to the second objective. The second objective that must be achieved 

is to determine the optimal image processing techniques for each data type. On the one hand, the 
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thermal data consists of temperature matrices while the RGB data consists of images containing 

three channels of pixel data. Therefore, the way that each of these data types are pre-processed 

must be accounted for in the models. The third objective is to develop the CNN architectures that 

will be trained using these collected RGB and thermal datasets. How must the thermal CNN 

differ from the RGB CNN architecture and how must the hyperparameters be tuned in order to 

obtain high accuracy’s. The fourth objective is to use the trained thermal model to control a servo 

motor based on the material present in an image. By completing this motor control, it is 

demonstrated how this new knowledge about thermal imaging can be applied in future work. 

1.3 Outline and Road Map 

The general outline and road map can be seen in Figure 1.1. In the road map, it can be 

seen that Stage 1 is broken up into parts 1.1 and 1.2. The first part of stage one is used to collect 

thermal data and train the thermal imaging CNN model on that data. It also includes the data pre-

processing on the thermal data. This processing is done using the Dynamic Range Quantization 

and cropping the center portion of each thermal matrix. The second part of stage one covers the 

data collection and training of the RGB imaging CNN model with the collected data. The pre-

processing of this data is completed by using featurewise standardization and resizing the images 

before feed-forwarding to the CNN. Stage 2 is the implementation of the thermal model for the 

control of a servo motor. This stage is used as a way to demonstrate the future capabilities of this 

research. The trained thermal model is used to identify the material in a given image and that 

data is the communicated to the Raspberry Pi via TCP/IP communication. Then the Raspberry Pi 

sets the servo to a predetermined angle based on the material detected and the motor then updates 

the Raspberry Pi when the angle is changed. The third and final stage is the quantitative 
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comparison between the accuracy’s of the RGB model and thermal model with the validation 

dataset. In this stage, each model is trained 10 different times on the thermal model and 5 times 

on the RGB model and the accuracy of each model is calculated for each trained model. The 

average, maximum, and minimum of the accuracy’s are then compared to give hard evidence of 

the performance that each model can obtain. The accuracy of the thermal model and the RGB 

model will be compared in both ideal scenarios (daytime) and non-ideal scenarios (nighttime) to 

determine how well the thermal model compares to the RGB model in a range of circumstances. 

By using the validation dataset, a real application is replicated because this validation data was 

collected at a different time and place than the training dataset and is used to show the real life 

accuracy’s that the models can produce. 

 

Figure 1.1: Outline and Road Map  
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2 LITERATURE REVIEW 

2.1 Relevant Literature 

Computer vision seeks to create computational systems that can analyze and interpret 

images and videos as humans are able. This concept has proven to be very effective and useful in 

areas such as autonomous vehicles, face recognition, object detection, and so much more [1]. 

Among many computer vision techniques, one particular deep learning-based method, called 

Convolutional Neural Network (CNN) [2], has been widely used recently. For example, Jangblad 

[1] used thermal imaging for object detection to aid in the landing of airplanes by detecting 

important landmarks such as the runway, approaching lights and PAPI lights. In this study, he 

found that the prediction time was longer in higher resolution images, but the accuracies were 

better with higher resolution images. This detection information, however, was meant to be used 

by the pilots flying the planes when they are landing in poor weather conditions. It was not used 

for autonomous control of these aircraft and was not compared in performance to RGB imaging. 

Other studies involving thermal imaging have been done for object detection. One study, 

performed by Zingoni and his co authors [7], used a flexible algorithm for detecting moving 

objects. The algorithm that they developed involved evaluating each pixel of a video, updated 

frame-by-frame, and rejecting pixels that had no significant change between frames. 

The results of this study showed that moving objects could be detected with a detection rate of 

96% and that there would only be one false alarm for every 14 video frames. However, the use of 

this algorithm for the control of an autonomous robotic platform was neglected and the 

comparison was never made between RGB and thermal imaging. 
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There have been medical studies conducted using thermal imaging as well. One example 

of this is a study conducted by Cho and his co-authors [10] that deals with the monitoring of the 

human respiratory rate. Thermal imaging can also be used to detect inflammation areas and even 

be used to monitor and help in treating arthritis [11]. These studies used temperature data to 

identify these conditions. These studies are an example of some of the inherent benefits that 

thermal imaging has over RGB in that they use temperature data and do not rely on visible 

light. 

Within the application of material recognition, Dr. Youngjun Cho and his coauthors have 

developed a deep-learning approach using thermal imaging [12]. They accomplished this using a 

CNN in MATLAB’s “MatConvNet” framework. In their study, they were able to achieve a 

prediction accuracy of 98% on indoor materials and an accuracy of 89% on outdoor materials. 

However, when the outdoor materials were wet (i.e. during rainfall) the accuracy of the trained 

network dropped to below 5%. This is most likely due to the substantial change in the emissivity 

of the materials when the materials are exposed to moisture. Also, the accuracy in real 

application scenarios, the accuracy’s dropped to approximately 68% for outdoor materials. The 

CNN structure that they used to obtain this amount of accuracy was drawn from the study 

performed by Jaderberg et al. [13] which provides a robust CNN architecture that can handle a 

wide range of variations in data. This was helpful in the work done by Cho et al. [12] because of 

the wide range of materials and the variances in the data. Again, it should be noted that this study 

never compared the performance of the thermal imaging to RGB imaging in this application of 

identifying material types. 

It is worth noting that with regard to applying their work to real world applications, Cho 

et al. left it for future work. They discuss the possibilities for integrating this mobile thermal 
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camera for use with automatic cleaning robots, such as vacuum, sweeping, and mopping robots 

for floor type detection. Another real world application was to use this technology as a third eye 

for impaired people who use wheelchairs or for care takers who have limited visibility of the 

footpath they are walking. In this thesis, Dr. Cho’s work is leveraged to set a foundation to 

explore the benefits of using thermal imaging for material detection compared to RGB imaging. 

There are some key differences in the methods used in this thesis, but several of the methods 

from Dr. Cho’s work are strongly utilized. These differences and similarities will be discussed in 

later sections. This thesis also seeks to apply the resulting thermal model for servo motor control 

as a way of demonstrating the future possibilities of autonomous robotic 

control. 

In summary, there has been an increase in the amount of work done in computer vision on 

thermal imaging in recent years. However, research gaps exist in the lack of application of 

thermal imaging in the control of a system and in comparison between the use of thermal 

imaging with that of RGB imaging to determine the performance of each method. To fill these 

gaps, a thermal and RGB image dataset must be collected for detecting materials that are of 

interest and the best methods must be developed for processing these datasets. Although this type 

of application for real-time control has be utilized with RGB imaging [9], the use of thermal 

imaging has been widely neglected. Because thermal imaging is being used, the possibilities for 

analysis and the range of applications is extended. It can be used in the dark (or low lighting) and 

the images collected can be used for thermal analysis of buildings in addition to being used for 

material recognition. Before discussing the details of this thesis work, there is some technical 

background that should be covered. 
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2.2 Technical Background 

This section focuses on background information for the methods used in this thesis. 

The topics that are covered include CNN terminology and structure, the differences between 

RGB and thermal image data, and different processing techniques for RGB and thermal data. 

2.2.1 CNN Terminology and Structure 

There are some key concepts and definitions that should be discussed regarding CNNs. 

The first concept is Kernel (K): this refers to a set matrix that is used to scan, or stride over the 

input matrix (I) and perform multiplication and addition on each stride (see Figure 2.1). 

 

Figure 2.1: Convolution Operation by a 3x3 Kernel [1] 

A stride can be (1,1), which means the kernel moves one pixel on each stride horizontally 

and one pixel when it scans vertically. The same goes for (2,2), (3,3), etc. The larger the stride is, 

the smaller the output convolved image will be. Another way of manipulating the size of the 

output convolved image is called padding. Padding is when there is an extra perimeter of pixels 

placed around the input image. These extra pixels are typically assigned a value of zero, which is 

called zero padding (see Figure 2.2a). As shown in the figure, because of the padding, the 

convolved image (green) is of the same dimensions of the input image (blue). Now that the initial 
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convolution operation has been performed, the next step is called pooling. There are two types of 

pooling operations that can be done: max pooling and average pooling. Max pooling simply 

takes the largest value that is contained in the kernel of the input data at a certain stride and 

places it in the corresponding location in the output matrix (see Figure 2.2b). Average pooling is 

the same concept as max pooling, except it takes the average value of all the elements of a kernel 

[2]. These convolution and pooling operations are used to extract important features from the 

input images, such as edges, corners, etc. 

 
(a) Padding of a 5x5 Input Image 

 to Produce a 5x5 Convolved Image (b) Pooling Operations by a 2x2 Kernel 

Figure 2.2: Pooling and Padding [2] 

Activation functions are used in a CNN when a linear model is not able to capture all the 

variations in the data while training the network. These activation functions are able to more 

adaptively train the network even with large variations in data, thus allowing it to learn more 

complex patterns. Common activation functions consist of sigmoid activation and Rectified 

Linear Unit (ReLU) activation functions. The ReLU (Figure 2.3) is the more commonly used 

activation function as the sigmoid activation function saturates and is no longer useful in 

training. The equation for the sigmoid activation function is given as: sig . The 
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sigmoid activation function is typically only discussed for historical purposes as it is not readily 

used in neural networks at present [3]. The ReLU does come with one downfall, that is the 

”dying ReLU”. This is caused due to the zero value for any negative inputs, which in turn can 

cause some nodes to remain untrained and essentially ”die”. One other activation function to note 

is the Softmax. The softmax is generally used as the final layer in a CNN for multi-class 

classification. 

 

Figure 2.3: Rectified Linear Unit Activation Function [3] 

A loss function compares the predicted value of an image during network training and 

compares that to the actual value given by the dataset. The most commonly used, and the method 

used in this thesis, is the Cross-Entropy Loss function (Equation 2.1). This loss function is used 

when a softmax classifier is present in a model. 

  (2.1) 

Where ti is the truth label and pi is the softmax probability value for the ith class. 

In a CNN, batch size is the hyper-parameter that refers to the number of samples that are 

utilized before the model parameters are updated. A sample is any single row of data, in our case, 

one sample would be a single image. The common values that are used for batch size are 32, 64, 

128, and 256. Another key hyper-parameter is called the number of epochs. This refers to the 

number of times that the given training dataset will be iterated over until a sufficiently small 
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error is obtained in the model. The final hyperparameter that we will discuss is the learning rate 

of the network. The purpose of this hyperparameter is intuitive. The faster the learning rate is, the 

faster the network approaches an optimal value in terms of the number of epochs needed. On the 

other hand, the slower the learning rate, the more epochs the network will need to reach an 

optimal value. Furthermore, the faster the learning rate, the more rapid the changes in the model 

and this can cause poor results. However, if the learning rate is too slow, this can cause the 

network to get stuck and lead to poor results. This is why the learning rate is often considered the 

most important hyperparameter. 

Backpropagation is an essential step in the CNN training process. After each batch of data 

has been fed through the network and the loss values have been calculated, the parameters and 

weights of the neurons are updated by the backpropagation step. Backpropagation is much like it 

sounds, after the weights and parameters have been determined in the forward direction of the 

network, the calculated loss is propagated backwards through the network to update weights and 

parameters of the neurons. In this way, the optimal weights are determined for the neurons. This 

step is repeated for every batch of data until all of the dataset has been used, which constitutes 

one epoch. When Training a neural network, overfitting needs to be avoided. Overfitting occurs 

when any single neuron is relied on too heavily for the correct classification of the input. This 

might mean that the network performs extremely well on the training data, but when unseen data 

is introduced, it will perform poorly. This overfitting problem can be solved by adding some 

dropout regularization layers in the network. By doing this, the network is forced to not rely so 

much on any one neuron to classify the input correctly and the network consequently performs 

better on unseen data. 
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Figure 2.4: K-Fold Cross Validation [4] 

K-Fold Cross Validation is the process of splitting a given dataset into K different 

partitions called folds. The network is then trained on K-1 of these folds, while one fold is used 

as a test set. This process continues until every fold has an opportunity to be set as the test set. In 

this way, the network is able to better fine tune the hyperparameters without loosing any data to a 

strictly dedicated test set (see figure 2.4). 

In this thesis, K-fold validation was not used. The model was tuned by manually tuning 

the hyperparameters, the performance was optimized based on human judgement, then using 

those hyperparameters, the thermal network was trained 10 different times (5 times for RGB 

model) using an 80/20 split of training and test data. This train and test data were selected 

randomly, thus, every time the model is trained, the achieved accuracy is different. Therefore, by 

training the model on the dataset multiple times, the overall accuracy’s can be obtained and a 

conclusion of the robustness of the model can be made. Before any of these techniques could be 

implemented, the image dataset needed to be preprocessed to obtain the best performance 

possible. 
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2.2.2 Image Processing Techniques 

Image processing is a highly important step to any image driven CNN. There are many 

techniques ranging from changing the dimensions of the image to cropping the image to only 

include specified pixels to completely altering the pixel values across the entire image. The most 

important pre-processing methods that we use for our thermal images and RGB images in this 

thesis are Dynamic Range Quantization and Image Standardization, respectively. Each of these 

concepts will be discussed in detail later. First, the difference between the thermal data and RGB 

data must be established. 

The Flir One mobile thermal camera uses the temperature values of the scene and then 

color maps that temperature data into a colorful image that one can observe on the phone screen. 

Thus, when the data was collected, the images that were captured consisted of this heat map. 

These heat map images are not adequate for network training. When using these heat map 

images, there are no defining patterns between one material or another that the network can 

learn, thus creating a very poor network with little to no accuracy in classifying unseen data. 

However, using the SmartIR application for the Flir One camera, the raw temperature values are 

saved to a special file which can then be accessed later to extract this raw thermal data. By using 

these raw temperature matrices and the DRQ processing method discussed in the next paragraph, 

the CNN model accuracy increases dramatically. 

Dynamic Range Quantization (DRQ) is considered for thermal data. The DRQ method 

involves scanning the entire raw thermal matrix obtained from the thermal camera, identifying 

the maximum and minimum temperature values and then uses these values to “quantize” the 

remaining pixels in the thermal matrix. The equation that results from this process is shown in 

Equation (2.2): 
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  (2.2) 

This equation allows us to reduce the environmental effects captured in the image. 

Therefore, regardless of the absolute temperature due to the time of day or what time of year, by 

using the DRQ method, these effects are taken out of the image and the temperature values are 

only compared to neighboring pixels. From Equation (2.2), A(x,y) is the value of each pixel 

being processed, this value is then scanned over each pixel of the image. The min value is the 

minimum temperature value of the entire image and the max value is the maximum temperature 

value. Thus, when these processed images are feed-forward into the CNN, each pixel is not being 

learned absolutely, but rather it is being learned relative to neighboring pixels. Therefore, for 

varying materials with varying porosity and texture, these changes in pixel values are specific to 

that certain material and not for what the absolute temperature that material may be experiencing. 

The image data that was collected with the normal RGB camera are comprised of three 

channels: Red, Green, and Blue. The CNN then has to train on these three channels of red, green, 

and blue pixel values. While this makes the training time for the RGB network longer than the 

thermal network (where there is only one channel), the amount of data is inherently greater, 

which produces a better accuracy in scenarios with good lighting. However, this good accuracy 

only happens in the ideal lighting scenario; this will be discussed in depth later. When 

considering what type of processing technique to use for RGB images, it is clear that the DRQ 

method will not help because in these three channels (over the entire image), there would be 

values that are zero and others that are 255. Thus, making the DRQ equation reduce to simply 

dividing each pixel by 255. This method is often used in some applications, but this leads to poor 

accuracy for material detection. 
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Image Standardization was used for the RGB images. This method is similar to the DRQ 

method, but with some important differences. The equation used for this method is shown in 

Equation 2.3 [14]: 

  (2.3) 

The µ value is the mean of the image pixel values and the σ value is the standard 

deviation from the mean. This allows the image data to have properties as a Gaussian distribution 

where the mean is zero and the standard deviation is 1, in other words, the mean is removed from 

the image, which in turn aids in the CNN learning and classifying process by centralizing the 

data. There are two ways that this standardization can be applied in a CNN. The first way it can 

be applied is samplewise, where each image is standardized by its own standard deviation. The 

second is called featurewise standardization and this is where each input image is standardized 

by the standard deviation of the entire dataset.  
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3 CONVOLUTIONAL NEURAL NETWORK: SETUP AND EXPERIMENTATION 

3.1 Dataset Collection 

The data for the training and validation contained in this thesis were collected 

periodically over the course of a year using an affordable mobile camera. Using this affordable 

thermal camera has the benefit of being obtainable by almost anyone, but it also has some 

drawbacks with respect to quality and performance of the data acquired. These drawbacks cause 

some issues with processing the thermal data and will be discussed later. The first group of data 

was collected in July of 2020, however, this data was discarded as we purchased newer 

equipment and recollected data. The second group was collected with a new equipment in 

September of 2020, this was the largest collection. Then there was more data collected to extend 

our data-set further in April and May of 2021. This data was collected by recording a video of 

the materials from a distance of approximately 30 inches from the surface, the overall flow of 

this process can be seen in Figure 3.1. The mobile thermal camera plugs straight into the 

charging port of the phone and the SmartIR app is used to capture the video during data 

collection. 

After collecting this data, a .mp4 file is saved as well as a .vir file. The raw thermal data 

is stored in this .vir file and it is possible to extract the data in a particular way which will be 

discussed in detail later. This raw thermal matrix was used for training and testing 
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Figure 3.1: Thermal Dataset Collection 

after preprocessing with the DRQ method. In Figure 3.2, an example of the color mapped 

thermal image can be seen and the final DRQ image and size can be seen as well. The original 

thermal resolution is 160×120, however, there was a study that shows that when using a cheap 

thermal camera, the temperatures that are at the edges of the frame are sometimes inaccurate. 

Therefore, by using the 60 × 60 cropped portion from the center of the frame, the possibly 

skewed values from the edges are removed and the most accurate data is retained [12]. The 

cropped DRQ image is what is used to train and validate the thermal model. The raw thermal 

data was used for training because, although the color mapped image looks more pleasing to the 

naked eye, the raw temperature values allow the CNN to more readily identify differences 

between the materials by learning the distinct thermal patterns. When using the color mapped 

images, the network has a very poor validation accuracy and, in some cases, yielded a zero 

accuracy. The image processing challenges are discussed at length later. 

As for the RGB data, the data was collected much the same way as the thermal data, by 

recording a video of the material approx. 30 inches away from the surface. The recorded 
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Figure 3.2: Thermal Dataset Examples 

videos were then broken down frame-by-frame to obtain the images which were then fed into the 

network after the featurewise standardization had been performed. Figure 3.3 shows an example 

image of asphalt that was resized to 96x96. This resizing is performed to save computational 

time. The 96 × 96 is used with RGB images as opposed to 60 × 60 as in the thermal data case, 

because the standard dimensions that were observed in the literature review was 96×96 and that 

is what was adopted here. The resize option was also commonly used with RGB images, so that 

is what was used with this RGB CNN model as opposed to cropping. An example image is not 

provided after the standardization is applied, because this processing is performed inside the 

model training structure. Each RGB image was resized to 96x96 in order to save computational 

time because the full resolution image is not needed to produce good results. 

This collected thermal and RGB data was then split in several different ways to be used in 

the thermal and the RGB network model. The dataset was split into 80% training and 20% 
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Figure 3.3: RGB Dataset Example 

testing groups. Thus, 80% of the data was used to train the network and the other 20% was used 

to test the network during training. It should be noted that this testing dataset is not of high 

importance in this thesis because the main focus here is to obtain the highest prediction 

validation accuracy. In other words, the accuracy that is of highest importance is the accuracy on 

validation data that is collected at a different time and place than the training and testing sets. 

Thus, by collecting this validation data it can be used to mimic real application circumstances to 

evaluate the trained network models as it would perform in a real life scenario. The different 

types of material data, data collection times and location, and how the dataset was split is 

tabulated in Tables 3.1 and 3.2. 

Table 3.1: Thermal Dataset Collection 
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Table 3.2: RGB Dataset Collection 

 

3.2 CNN Configuration Testing and Prediction Validation 

The tests and experiments that were carried out on this data are listed below: 

1. Experimented with many different hyperparameter configurations with the thermal 

CNN 

2. Used the best performing hyperparameters and completed the pseudo K-Fold cross 

validation 

3. Collected nighttime thermal images to experiment with the versatility of the CNN 

performance 

4. Repeated items 1,2,3 for RGB images 

3.2.1 Thermal Hyperparameter Configuration 

The purpose of the first experiment was to find the best combination of hyperparameters 

based on human heuristic that resulted in the highest accuracy on the validation dataset. 
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The first hyperparameters that should be considered are those contained in the CNN layers 

themselves. The CNN structure that was finally determined to be the best performing is shown in 

Figure 3.4: 

 

Figure 3.4: The Developed Convolutional Neural Network Structure 

This network structure starts with a 7 × 7 convolution layer. This convolution layer is 

followed by a ReLU activation layer which is used to catch all variations in the inputs and more 

adaptively train the model. After the ReLU, a batch normalization layer is added. This batch 

normalization is the same concept as the featurewise standardization image processing, except 

instead of standardizing over the entire dataset, it standardizes over each batch. By adding this 

layer to the CNN, it allows for more robust learning accuracy and robustness. Because in 

addition to applying the DRQ for each input image, the images are now normalized over the 

inputs for the entire batch. Without this layer, the final prediction validation accuracy of the 

model is lower and more inconsistent. Another important layer to note are the dropout layers. 

These dropout layers are used after each pooling layer, and then again, after the fully connected 
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layer (FCL). These layers aid in preventing the network from relying too much on any one node 

in the neural network, which in turn reduces the possibility of overfitting. The amount of dropout 

was iterated many times to get the best performing model. These iterations included values 

ranging from 5% to 30% and by using different values for after each layer. For example, when 

using a single dropout layer of 30% after the FCL, the resulting prediction validation was 

approximately 50%. After many iterations, the best performance was obtained by using 10% 

dropout after each pooling layer and 20% dropout after the FCL. The purpose of the fully 

connected layer at the end is to flatten the output of the last pooling layer and is used to learn the 

differences between materials. This FCL then feeds into the softmax classifier for class 

identification. This structure is based heavily on the work done in by Cho et al. [12], but with 

some differences in the number of layers and with the addition of the batch normalization which 

was found to increase the accuracy by approximately 9%. Now that the core network structure 

has been established, the final hyperparameters must be optimized. 

The final hyperparameters that were tuned consist of the number of epochs, the learning 

rate, and batch size. By tuning these hyperparameters, the best accuracy is achieved and the 

resulting hyperparameter values are used for the prediction validation tests. The learning rate was 

iterated a few times, but this had little affect of the performance of the final model, thus it was 

left at the most typical value of 1−3. The number of epochs was iterated, along with the batch 

size, in order to find the combination that provided the best validation accuracy. Some of the 

highlights from this hyperparameter testing are shown in Table 3.3: 

The combination of hyperparameters that resulted in the best validation accuracy was 

 

 

 

 

Table 3.3: Thermal Hyperparameter Testing 
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250 epochs with a learning rate of 1−3 and a batch size of 120. The smaller batch size allowed for 

more iterations in each epoch, which leads to more opportunities that the model has to update the 

neuron weights. This process of iteration and discovery of what hyperparameters and layers were 

important for our model took several months to complete. The largest challenge with training the 

network was identifying of which layers should be included in the CNN and where they should 

be added. After it was identified that a dropout layer should be added after each max pooling 

layer and that the batch normalization should also be included, the rest of the hyperparameter 

iterations followed quickly. 

As can be seen from Figure 3.5, the training accuracy was at nearly 100% after the first 

couple epochs. 

The loss function (blue line) periodically spikes and at these spikes it can be seen that the 

testing accuracy (gray line) on the this 20% testing split decreases, but then as this loss is 

backpropigated through the network, the accuracy returns to 100%. For the majority of the 

epochs, this model accuracy on the testing data (gray line) tends to be 100%. This high accuracy 

on the testing split occurs because the testing split of the data was collected at the same time, 

place and conditions as the training split (the testing dataset is simply a random 
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Figure 3.5: Thermal Training and Testing Plot 

20% split of the collected dataset). This makes it easier for the model to identify and predict the 

images contained in this testing dataset. This is one of the reasons it is important to create the 

validation dataset which was collected at a different place and time; and under different weather 

conditions. This way, the actual prediction capability of the model could be confirmed. Thus, the 

most important part is the model accuracy on the validation dataset and the testing accuracy’s are 

ignored (this will be discussed in more depth later). 

3.2.2 Thermal Model Prediction Validation 

Now that the best performing hyperparameters have been identified, it is time to 

implement the prediction validation as discussed previously. This will provide the average 

prediction validation accuracy that can be obtained for thermal images. This testing is shown in 
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Table 3.4. 

Table 3.4: Thermal Prediction Validation 

 

This testing is completed by training the neural network on the training dataset and then 

calculating the prediction accuracy on the validation dataset with the final model obtained for 

each training iteration. This process of training and then calculating the prediction accuracy on 

the dataset is repeated 10 times for the thermal model. Because the 80% split of data for training 

the model is chosen randomly every time the model is trained, the prediction accuracy on the 

validation dataset is different for each test. This is done to find the average prediction accuracy 

that can be obtained by the given model hyperparameters. This provides insight on how robust 

the thermal model is and how this robustness compares to that of the RGB model. 

3.2.3 Thermal Model Prediction Validation on Nighttime Images 

The final step for the thermal model is to evaluate the prediction accuracy on unseen 

nighttime images. These nighttime images represent the non-ideal scenario. The CNN has no 

nighttime data introduced for training the model, thus the prediction accuracy is expected to 

decrease. The purpose of this test was to determine the robustness of the thermal model and the 
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advantage of thermal imaging over RGB imaging for a non-ideal scenario. The results of this test 

are shown in Table 3.5 

Table 3.5: Thermal Nighttime Prediction Validation 

 

3.2.4 RGB Model Configuration and Prediction Validation 

The RGB CNN structure was the same as the thermal CNN structure (see Figure 3.4). As 

such, the same dropout and batch normalization layers are used. However, the number of epochs 

and batch size are iterated to determine the best performing combination for the RGB model. 

This testing can be seen in Table 3.6. After the best hyperparameters are identified, the validation 

prediction is completed by the same method discussed in the thermal model prediction 

validation. These results are tabulated in Table 3.7 for the ideal scenario (daytime) and Table 3.8 

for the non-ideal scenario (nighttime): 

Table 3.6: RGB Hyperparameter Testing 

 

 

 

Table 3.7: RGB Prediction Validation 
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Table 3.8: RGB Nighttime Prediction Validation 

 

3.3 Discussion of Results 

When the thermal dataset was being collected with the Flir One mobile camera, there was 

an issue that arose while recording the videos. If the video was not long enough, the thermal 

matrix would result in skewed and even sometimes a corrupted raw temperature matrix so that 

the model could not recognize the images. The color mapped image was not affected, it was only 

the raw thermal data that was stored in the .vir file that was corrupted. It was discovered that the 

length of the video needed to be 60 seconds long to avoid this error. One possible cause for this 

phenomenon is that the raw thermal matrix takes this long to fully calibrate and save an 

uncorrupted raw temperature matrix file. This caused many problems when originally testing the 

thermal model, because this issue was not identified immediately and the results were very poor 

because of it. This error took a week to identify and correct. However, once this problem was 

identified, the validation data was collected again and used for the prediction validation testing. 
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This was only the beginning of the issues that were encountered while collecting and processing 

the thermal data using the Flir One camera. 

One of the most challenging parts of this research was the method by which the raw 

temperature data is obtained and how to process this raw data. The Flir One camera is operated 

by the SmartIR app [15]. In this SmartIR app the color mapped video is recorded and saved to 

the smartphone gallery as a .mp4 file. In the beginning stages of this research, each frame from 

this mp4 file was then extracted and used to train the thermal model. However, when using these 

images, the thermal model was not able to accurately identify any material type. This was a 

puzzling result, until it was discovered that the color mapped video was not comprised of the raw 

temperature data. It was using the raw temperature matrix to map it into the colorful video as a 

way of visualizing this temperature data. In an effort to collect this raw thermal data, the Flir One 

SDK was used to create a simple android application that could be used to collect this data. 

However, after weeks of attempting this development, it was discovered that the SmartIR app 

saved a separate .vir file to the phone files in which the raw thermal data was stored. After this 

.vir file was found, the extraction of the raw thermal data could be accomplished and this raw 

data was used to train the thermal model. This raw thermal data was saved as a UInt8 

1D array in the .vir file. It was manipulated in order to create a 160 × 120 × L matrix (L is the 

number of video frames). This manipulation is completed by taking the final length of the 1D 

array (N), then subtracting 8 and dividing by 4 which provides the number of pixels 

) in the entire video. By going one step further and dividing by 160 and again by 

), the total number of frames of the video can be obtained. This allows the 
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final form of 160 × 120 × L to be obtained. Each frame of this final raw thermal matrix form was 

then processed using the DRQ function. Once this challenge was overcome, the thermal model 

could be tested and validated. 

It can be seen from the hyperparameter testing for the thermal model and the RGB model 

that the number of epochs and the batch size used for each model are different from each other. 

This is has to do with the larger dataset for the RGB model. With this larger dataset, the number 

of epochs could be less and the batch size could be larger than the thermal model without 

sacrificing performance. Other than these two changes, the thermal model is identical to the RGB 

model. The reason the two models were made to be so similar was to create an even playing field 

for the comparison of each image type. Because if one model was vastly different from the other, 

then that would not be a very good representation of the performance solely based on the type of 

data used. Computer vision using RGB images has been in development longer than thermal 

computer vision, as such, there are much more sophisticated models that have been developed for 

RGB image data than the thermal model developed in this thesis. The question that this thesis 

seeks to answer is how does thermal imaging compare to RGB imaging for material detection. 

Thus, it is important that the same model structure is used for each method so that the 

comparison is being made purely on the difference in data type and not on the CNN model 

development. 

The model prediction validation is the way in which the thermal and RGB model 

performance is quantified. This prediction validation is conducted using the validation dataset 

that was collected at a different time and place from the training dataset. This validation dataset 

is used as a way to mimic real world applications of these models. In other words, how will these 

trained models perform on real world data to detect material types. This prediction validation 
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accuracy is determined after the network model is fully trained. This final model, which is 

obtained after being trained through every epoch on the training dataset, is then used to predict 

the materials present in each image of the validation dataset. The prediction accuracy is then 

calculated from the number of correct label predictions out of the entire validation dataset. This 

process is repeated multiple times for both the thermal and RGB models to obtain an average 

accuracy over multiple tests. Therefore, the model is trained multiple times and the predication 

validation accuracy is calculated each time the model is retrained. The accuracy’s vary with each 

test, because the model randomly selects 80% of the dataset to train with and the other 20% is 

used to test the model. However, the performance of this testing dataset split is not of importance 

in this thesis because the model accuracy on the validation dataset is the main focus. This process 

of training the network and calculating the accuracy on the validation dataset is repeated 10 times 

for the thermal model and 5 times for the RGB model. By doing this, the robustness of the 

thermal model and the RGB model are determined regardless of what training data is used. The 

comparison of these prediction accuracy’s are discussed next. 

Comparing Tables 3.4 and 3.7, and as shown in Figure 3.6, it can be seen that the RGB 

model outperforms the thermal model on in an ideal scenario where the data was collected in 

daylight. The average prediction validation accuracy for the thermal model was 74% and the 

average accuracy of the RGB model is 95%. 
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Figure 3.6: RGB vs Thermal Validation in Ideal Scenario 

This is a significant difference and there are a few reasons that this is the case. First, the 

RGB dataset was larger because of the higher camera frame rate, which allowed more images to 

be captured in a shorter time period. The data available in the RGB image is inherently greater 

because the RGB image is comprised of three different channel (red, green, and blue) and the 

model uses all of these channels for training. This would allow the RGB model to have more data 

and give a wider of variety of data to train on. Second, the RGB images rely solely on the visible 

light that is in the scene. Thus, in an ideal scenario the RGB has three channels of data which can 

give the model a high performance largely based on the color of the material. Which in the case 

of this thesis, the materials considered are asphalt, concrete, and grass, so the color differences 

are drastic between each material. Because thermal images do not have these properties and are 

relying simply on the temperature distribution across the material, it is at a disadvantage. 
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However, looking at Tables 3.5 and 3.8, and as in Figure 3.7, it can be seen that the 

thermal model significantly outperforms the RGB model in the non-ideal scenario. 

 

Figure 3.7: RGB vs Thermal Validation in Non-Ideal Scenario 

The reasons for this are the flip side of the ideal scenario, now that there is very little 

visible light in the scene, the RGB model is not able to identify the material as well because now 

the material color is obscure and there are not real patterns for the model to detect, thus the 

performance drops drastically. The percentage decrease of the RGB model was 95%−46% = 49% 

from the ideal to non-ideal scenario, while the percentage decrease of the thermal model was 

only 74% − 52% = 22%. Thus, the thermal model is much more robust to changes in different 

scenarios. The thermal model detects material types based on how the temperature changes 

across the material due to porosity, cavities, and emissivity. Thus, even though the materials 

absolute temperature changed from daytime to nighttime, the temperature changes across the 
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material mostly stay the same. This allows the thermal model to be more robust. Furthermore, the 

more that visible light is absent from the scene, the larger the gap will become between the 

thermal and RGB model accuracy’s. 

 

Figure 3.8: PLA (left) and ABS (right) 3D Printing Materials 

The ability to detect 3D materials would be very advantageous in manufacturing and in 

cooperative 3D printing applications. If a 3D printer could identify other 3D materials in its work 

area and react in real time to this information, it could be helpful in improving the speed and 

accuracy of the 3D printers. Because of this, thermal data was collected for PLA and ABS 3D 

printing materials. These materials were used to train the thermal model to see if they could be 

learned and identified. However, these two materials were very similar in surface texture and the 

model was unable to learn any recognizable patterns. It can be seen from Figure 3.8 that the 

difference between PLA and ABS is almost indiscernible. The lack of available data was also a 

contributing factor to the inability to get any positive results. 

The prediction accuracy’s of each model on the individual material classes was not calculated 

because for the purposes of this research that was not vital information. However, it should be 

noted that this model works best on materials that have noticeably different surface textures. As 

it was seen when testing the 3D printing material detection, the model was not able to 
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differentiate between the two different printing materials, because they were very similar in 

surface texture. This is a case where combining the RGB data and the thermal data could be very 

advantageous so that the RGB data could better detect color differences in the material and the 

thermal model could detect slight differences in thermal patterns. Then by combining the two 

different data types, similar materials could still be identified (i.e. steel vs aluminum). This work 

on combining RGB and thermal data for model training is left for future work and is discussed 

briefly in the conclusion.  
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 4 PHYSICAL EXPERIMENT: SETUP AND TESTING 

In this chapter, the physical experimentation of servo motor control using the trained 

thermal model is presented. The purpose of this experiment is to demonstrate the future work and 

applications that are possible on this topic. These tests are carried out to demonstrate how the 

trained thermal model can be used to send control signals to a servo motor that will then respond 

with the correct adjustment based on what material is present. The servo motor in this 

demonstration is a simplified representation of a robotic platform. 

4.0.1 Setup and Communication Protocol 

A Raspberry Pi (RPi), SG90 Servo, and required hardware was purchased for this testing. 

First, it was attempted to run the thermal model on the Raspberry Pi itself. However, the RPi did 

not have the appropriate software to run the CNN model. Therefore, a TCP/IP communication 

was establish between the RPi and a laptop via an Ethernet cable. The RPi is established as the 

server which will receive data from the client, the laptop. A diagram of this setup is shown in 

Figure 4.1. 

WiFi could also be used for this communication, which will be much more practical in 

future testing and implementation so that the RPi can be used to control a mobile platform (i.e. 

robot). By setting up this connection, the predicted material from the laptop can be sent directly 

to the RPi and the RPi can then send this as a control input to the servo motor to update the 

position. In a real application, This can be thought of as the RPi sending wheel turning updates 

on an autonomous robot based on the material present in order to prevent collision or detouring 

from a planned path. 
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Figure 4.1: Physical Experiment Setup 

4.0.2 Discussion of Results 

This testing successfully proved that this thermal model can be deployed in real-life 

application for autonomous robotics or even for manufacturing application where some machine 

operation may need to adapt to the materials that it is coming into contact with. In this 

demonstration, the RPi was programmed to update the position of the servo based on the criteria 

in Table 4.1. The material that was correctly detected by the model on the laptop was grass with 

a 100% certainty (Figure 4.2). By using the criteria in Table 4.1, the servo was then updated to 

position itself at 180 degrees. 

 

Table 4.1: Testbed Motor Control Criteria 
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Figure 4.2: Grass Correctly Detected 
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5 CONCLUSION 

There are some key results from this research that identify methods and quantitative 

evidence in applying thermal imaging and RGB imaging for material detection. These methods 

include how to pre-process thermal data using the Dynamic Range Quantization and RGB data 

using image standardization for the best performance in the CNN models. The quantitative 

evidence is based on how well the thermal imaging and RGB imaging both perform in ideal 

scenarios where the lighting and environmental conditions are good; and for non-ideal scenarios 

where it may be dark or environmental conditions are poor (e.g. excessive fog). The conclusions 

drawn from these items are discussed below. 

The best performance for the thermal model was obtained by utilizing the Dynamic 

Range Quantization (DRQ) method for processing the thermal data. This method works well for 

the thermal data because when dealing with absolute temperature in matrices (as is the case with 

the mobile thermal camera), it is crucial that the temperature values be scaled in relation to all 

other values in the matrix. This allows for the highest degree of variance between neighboring 

matrix values and thus results in a more robust training of the CNN model. It was also found that 

when using the SmartIR app, the thermal data is stored in a separate file called a ”.vir” file. 

Within this ”.vir” file, the thermal data is stored in a 1D array, which must be extracted in a 

particular way in order to get out a 160x120xL thermal matrix. The third value (”length”) is the 

length of the video, or in other words the number of frames in the video that was recorded during 

the dataset collection. The best performance for the RGB model was obtained by utilizing the 

standardization method for processing RGB images. This method works by transforming the 

input data to have a mean value of zero and a standard deviation of 1. By doing this, the model 
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was able to identify the difference between each material much more accurately. There are two 

different ways in which this standardization can be applied to the data set. The first is called 

samplewise standardization and this works by applying the standardization on each input image. 

The second is called featurewise standardization and it works by applying the standardization 

based on the input values over the entire input dataset. The featurewise application yielded the 

best performance in the final RGB model. When developing the two different models, the 

hyperparameters that were focused on for tuning were the number of epochs, the batch size, and 

the amount of dropout used in the CNN. The dropout was critical because it allowed the model to 

not rely too heavily on any particular neuron in the network, which would then cause overfitting. 

If overfitting occurs, the model performance decreases dramatically. 

After the image pre-processing was completed and the models were tuned and trained, the 

thermal model was found to have inferior accuracy as compared to RGB imaging for material 

detection in ideal lighting scenarios. The average accuracy of the thermal model on validation 

data after 10 folds was found to be 74%. The average accuracy of the RGB model, on the other 

hand, had an average accuracy of 95% after 6 folds. Thus, the RGB model was able to 

outperform the thermal in the ideal case. However, for the non-ideal case (after dark), the thermal 

model has a noticeably better performance as compared to the RGB model. The average 

accuracy of the thermal model on validation data after 5 folds was 52%, while the RGB model 

accuracy was only 46%. These results were based on images that were taken after dark, but the 

images were not completed dark, there were still small sources of light. Thus, if there were to be 

no lighting present in the image, it can be expected that the gap between the accuracy thermal 

model and the RGB model will only become more drastic. This will be very advantageous for 

autonomous operations in dark areas and for disabled persons to use after dark. 
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This thermal model for material detection was deployed for the control of a servo motor 

as a proof of concept and as a demonstration of what can be done in future work. This control 

demonstration was accomplished by establishing a TCP/IP communication between a laptop and 

a Raspberry Pi, which then relayed the control input from the laptop to the control of the servo 

motor. The thermal model was employed on the laptop to identify the material that was present 

in a given image, this information was then sent to the Raspberry Pi, processed and then sent to 

the servo as input. Once the servo motor is set to the predetermined position (which is based on 

the material type detected), the Raspberry Pi then displays a message that states that the servo 

motor position has been updated. This demonstration successfully showed the possibilities of 

using the thermal model for autonomous functions. 

The work presented in this thesis does have some limitations. Data was only collected for 

three materials; asphalt, concrete, and grass. This was due to the amount of time it takes to 

collect the data and the amount of data that is necessary to properly train the models. Thus, the 

number of materials was reduced to just these three. The models created in this thesis are 

deployed for use in the control of a single servo motor as a demonstration of the possible uses. 

These models should be deployed in more complex systems such as a robot for autonomous 

control. Also, the process in which this motor control demonstration was conducted required the 

manual process of sending an image to the model on the laptop and having it processed and 

detected before the laptop could send this information to the Raspberry Pi for motor control. This 

process should be implemented using a more automatic control algorithm and also be employed 

for real-time detection and control. Regardless of these limitations, the findings in this thesis 

have laid a foundation for future work in deploying this affordable mobile thermal camera for 

use in autonomous robotics, manufacturing, and personal use. Future work should first include 
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expanding the already created dataset both in the amount of data and the variety of data. 

Secondly, it should also involve more tuning of the thermal model in terms of hyperparameter 

values to obtain an optimal prediction accuracy on the validation data. Thirdly, future work 

should involve deploying this thermal model in more advanced robotic platforms for autonomous 

control. Deploying these findings for the control of a robotic platform will provide an affordable 

alternative to conventional sensing methods and can also serve multiple sensing capabilities from 

one device (i.e., material detection, object detection, temperature monitoring, etc.). 

Another area that should be explored in future work is that of combining the thermal data 

and the RGB data so that both methods can be simultaneously leveraged in the applications 

discussed above. As can be seen in Figure 5.1, the thermal camera itself can combine the RGB 

image and the thermal data to create a mixed version. In this way, the objects in a scene can be 

easily detected and the temperature information can also be seen. By using this same concept, the 

raw thermal data that is collected and processed could be combined with the RGB data before 

training so that The benefits of both data types can be leveraged for any scenario. This would 

have to be done in a separate step before training that model. The mixed image shown above 

could not simply be taken, processed, and used to train the model, because of the same issue 

observed when using the pure thermal image for training the thermal model. Therefore, the raw 

temperature data would have to be extracted and then later combined with the RGB data in a way 

such that both data types could be effectively used for training and 

validation. 
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 (a) Mixed View         (b) Pure Thermal View 

Figure 5.1: Different View Types with SmartIR 
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