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Abstract 

Excess inputs of nutrients and sediments jeopardize drinking water sources, aquatic life 

habitats, and aesthetic quality of freshwater resources for recreation.  The purpose of this 

dissertation was to analyze long-term water quality trends and loads in the Upper Poteau River 

Watershed (UPRW) and the Lake Wister Watershed (LWW), and analyze internal phosphorus 

(P) loads in Lake Wister, Oklahoma. Additionally, this dissertation sought to review the 

literature for methods of prioritizing subwatersheds for watershed management using watershed 

models, implement a cost efficient method to remotely monitor streamflow and estimate 

constituent loads in small-scale watersheds, and finally, to validate the Soil Water Assessment 

Tool (SWAT) at the small-scale watershed using the aforementioned monitoring data. 

 Water quality changed over time in the watersheds impacted by both point and nonpoint 

sources in the UPRW.  At the James Fork, total P (TP) did not change and orthophosphate (OP) 

increased over time, while P decreased at the Poteau River; nitrogen (N) increased at both.  

Finally, sediment concentrations decreased over time at both the Poteau River and James Fork, 

with decreasing shifts also occurring in the early 2000’s.  In the LWW, the largest magnitude of 

loads came from the Poteau River, and while the magnitude of constituent loads from the 

Fourche Maline is less, increasing P is a concern.  The relatively undisturbed Black Fork 

watershed contributes the least amount of loads to Lake Wister, and concentrations are 

decreasing or not changing over time.   

In Lake Wister, after 5 aluminum sulfate (alum) treatments across 6 years, sediment P 

fluxes under anaerobic conditions were not significantly different than prior to any alum 

treatments.  The lack of overall improvement in anaerobic P fluxes over time is likely due to the 

magnitude of P and sediment loads entering Lake Wister from the LWW, where 92% of the total 
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P load to Lake Wister from 2010 to 2020 was from external sources.  Therefore, while alum 

treatments provide short term reductions in P fluxes at Quarry Island Cove, the effectiveness was 

short, suggesting external sources of P must be addressed.   

 When watershed models are used for subwatershed prioritization, model calibration is 

often conducted at minimal sites on the large watershed scale and model outputs on the 

subwatershed scale or smaller are used for prioritization, but little data exists to validate the 

small-scale model outputs.  Therefore, a method was developed to monitor streamflow and 

estimate constituent loads in small-scale watersheds by using inexpensive pressure transducers to 

collect continuous records of stage, deploying SonTek-IQs during high flow events, and 

developing rating curves with stage and discharge data.  The small-scale watershed data was then 

used to validate a SWAT model, which mostly resulted in unsatisfactory performances. 

 Ultimately, it is important to continue monitoring in the UPRW and LWW to ensure 

constituent concentrations do not exceed levels of concern.  Watershed sources of P must be 

addressed in addition to internal sources of P in Lake Wister. Finally, it is important to continue 

exploring subwatershed prioritization techniques and improving watershed model outputs on the 

small watershed scale.  
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PVC  Polyvinyl Chloride 

PVIA  Poteau Valley Improvement Agency 

Q  Discharge/Streamflow 

Qd  Mean Daily Flow 
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QGIS  Open Source Geographic Information System 

Qi  Instantaneous Flow 

QSWAT Open Source Geographic Information System Interface for SWAT 

QUAL2kw Framework for Simulation of Water Quality  

R  Hydraulic Radius 

RMSE  Root Mean Square Error 

RS  Remote Sensing 

RSR  Root Mean Square Error Standard Deviation Ratio 

S  Slope 

SO4  Sulfate 

SPARROW Spatially Referenced Regression on Watershed Attributes 

SRP  Soluble Reactive Phosphorus 

SS  Suspended Sediment 

SSURGO Soil Survey Geographic Soil Database 

SWAT  Soil Water Assessment Tool 

SWAT-CUP Soil Water Assessment Tool Calibration and Uncertainty Program 

SY  Sediment Yield 

TMDL  Total Maximum Daily Load 

TN  Total Nitrogen 

TP  Total phosphorus 

TREX  Two-Dimensional Runoff Erosion and Export 

TSS  Total Suspended Solids 

UPRW  Upper Poteau River Watershed 

USEPA United States Environmental Protection Agency 

USGS  United States Geological Survey 

WEPP  Watershed Erosion Prediction Project 

WERM Watershed Erosion Response Model 

WLP  Watershed Land prioritization 

WP  Wetted Perimeter 

WRTDS Weighted Regression on Time, Discharge, and Season 
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WRW  Wachusett Reservoir Watershed 

WWAT Water Withdrawal Assessment Tool 

WWTP Waste Water Treatment Plant 
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Introduction 

 Non-point source (NPS) pollution is a highly recognized threat to freshwater ecosystems 

(Daniel et al. 1998; Maxted et al. 2009; Ongley et al. 2010), caused by diffuse sources 

transporting nutrients and sediments into waterbodies primarily through human alteration of 

landscapes (i.e. urban development and agricultural land use) (Trauth and Xanthopoulos 1997; 

JunRan et al. 2000; Jonge et al. 2002; Sun et al. 2012).  Fertilizers and other chemicals used in 

agricultural, residential and urban areas enter waterbodies through runoff and seepage, as well as 

sediments from construction sites and eroding streambanks.  External nutrient loading can also 

originate from point sources, most often through industry and wastewater treatment plant 

effluent.  Excess inputs of nutrients and sediments jeopardize drinking water sources, aquatic life 

habitats, and aesthetic quality of freshwater ecosystems for recreation (Anderson et al. 2002).  

With increasing pressures of climate change and population growth, sustainable management of 

water resources becomes ever more imperative.     

Some nutrients entering the waterbody from external sources settle into the bottom 

sediments through biological assimilation and deposition of suspended solids (Sonzogni et al. 

1982; Correll 1998).  The bottom sediments can then act as an internal nutrient source, since 

nutrients are released back into the water column through wind resuspension (Carper and 

Bachmann 1984), organic matter mineralization (Lovley and Phillips 1986), reductive 

dissolution under anoxic conditions (Mortimer 1942), or sediment/water equilibrium 

concentration gradients (Haggard and Sharpley 2006).  In particular, sediment release of 

phosphorus (P) can account for a relatively large fraction of the total P load, especially in 

eutrophic to hypereutrophic reservoirs (Moore et al. 1998; Haggard et al. 2005a).  Sediment P 

flux is consistently greater during periods of anaerobic conditions compared to aerobic 
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conditions at the sediment water interface (Correll 1998; Penn et al. 2000; Haggard et al. 2002; 

Steinman et al. 2004; Haggard et al. 2005a; Sen et al. 2007; Lasater and Haggard 2017), and this 

internal source of P can maintain water quality issues even when external sources of nutrients are 

decreased.   

Many management strategies focus on external nutrient sources, specifically NPS 

pollution control through implementation of best management practices (BMPs), which 

successfully reduce pollutant loads and improve water quality (Merriman et al. 2009; Rao et al. 

2009).  However, internal sources of nutrients, especially P, are just as important to consider in 

watershed management strategies (Lasater and Haggard 2017).  Sediment P flux is commonly 

managed by chemical treatment or oxygenation of the water column, causing P to bind to the 

bottom sediments and reduce internal loading (Kennedy and Cooke 1982; Steinman et al. 2004; 

Debroux et al. 2012). 

Quantifying external and internal pollutant loads, in addition to collecting long-term stage 

and discharge data, is an essential step towards calibrating and validating watershed models.  

Watershed models provide a holistic view of hydrologic processes and help to evaluate 

watershed responses to anthropogenic impacts and changing climates.  With advancements in 

collection of hydrologic data and understanding of physical, chemical and biological processes, 

these models allow for better understanding on how factors such as population growth, 

industrialization, urbanization and agriculture, will influence the supply, demand and quality of 

water (Daniel et al. 2011).  Ultimately, watershed models can guide decision making so that 

management strategies and conservation activities can be effectively implemented to protect 

water resources. 
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Study Site Description 

 The Poteau River Watershed (HUC 11110105) originates on the western edge of 

Arkansas and flows into Oklahoma, on the southern portion of the Arkansas River Valley.  In 

Arkansas, the Poteau River Watershed drains an area of 1,400 km2, which is 56% forested, 21% 

grassland, 19% transitional and 2% urban/suburban (Arkansaswater.org 2017).  The headwaters 

of the Poteau River originate near Waldron, Arkansas, flowing west into Oklahoma, near 

Loving, Oklahoma.  The two main tributaries of the Poteau River within Arkansas are the Black 

Fork and the James Fork (to the south and north, respectively).  

 The Poteau River Watershed has been listed as a priority watershed within the Arkansas 

Nonpoint Source (NPS) Pollution Management plan since 1998, and thus has been the focus of 

trans-boundary water quality issues for the last several decades.  Several reaches of the Poteau 

River have been identified as impaired on the 2018 303(d) list for dissolved oxygen, nutrients, 

anions and turbidity from municipal and industrial point sources and surface erosion (ADEQ 

2018).  The 2018-2023 NPS Pollution Management Plan aims at reducing pollutant loads in this 

priority watershed to decrease impairments and restore designated uses (ANRC 2018).  

 Lake Wister is an impoundment on the Poteau River in Oklahoma, and is on Oklahoma’s 

303(d) list for algal biomass, pH, total phosphorus (TP) and turbidity (ODEQ 2020).  The Lake 

Wister Watershed covers an area of 2,580 km2 and encompasses the southern portion of the 

Upper Poteau River Watershed (excluding the James Fork watershed, which meets the Poteau 

River downstream of Lake Wister).  The Oklahoma portion of the Lake Wister Watershed is 

72% forest, 19% agriculture and 4% urban; similarly, the Arkansas portion is 71% forest, 20% 

agriculture and 5% urban.  The Poteau Valley Improvement Authority (PVIA) actively works to 

improve water quality in Lake Wister through managing the watershed, the full lake, and Quarry 
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Island Cove (on the north shore of Lake Wister).  Total Maximum Daily Load (TMDL) 

development concluded that a 78% reduction in TP and a 71% reduction in Total Suspended 

Solids (TSS) is needed to meet Oklahoma’s water quality standards (Scott and Patterson 2018).   

 The majority of the Upper Poteau River Watershed falls within the Arkansas Valley, 

which is an alluvial valley between the Ozark Highlands and the Ouachita Mountains.  This area 

is largely underlain with sandstone, shale and siltstone, and poultry and livestock farming are 

important agricultural land uses.  The Black Fork portion of the Upper Poteau River Watershed 

falls within the Ouachita Mountains, which consists of ridges and hills formed by erosion of 

sandstone, shale and chert.  This area is dominated by loblolly pine and shortleaf pine, and is 

important for the logging industry. Similarly, the Lake Wister Watershed covers area in the 

Arkansas Valley and Ouachita Mountains (Woods et al. 2004). 
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Chapter 1: Water Quality Trends and Shifts Variable across Constituents at the Upper 

Poteau River Watershed in Arkansas  

Abbie L. Lasater1, Meagan O’Hare1, and Brian E. Haggard1,2 

1Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, 

AR 72701 

2Arkansas Water Resources Center, University of Arkansas, Fayetteville, AR 72701 

Abstract 

Trend analyses of water quality seek to determine whether concentrations of constituents 

have increased or decreased over time, which can suggest the effectiveness of management 

practices or the need for pollutant reduction.  The Poteau River Watershed (PRW) is a 

transboundary watershed across Arkansas and Oklahoma, and in Arkansas, the Poteau River is 

listed as a priority watershed.  The Poteau River flows into Lake Wister, which is an important 

reservoir for recreation, fishing, and waterfowl hunting for residents and tourists around eastern 

Oklahoma.  The purpose of this study was to analyze long-term (i.e., approximately 25 years) 

water quality trends across the upper PRW, and to determine how nutrients and sediments have 

evolved with increasing agriculture and changes in waste water treatment plants in Arkansas. 

The relatively undisturbed river in the PRW, the Black Fork, showed either decreases or no 

change in nutrient and sediment concentrations over time (i.e., ~ 1.0 % yr-1 decrease or less).  On 

the other hand, water quality was changing over time in the two larger watersheds that are 

impacted by both point and nonpoint sources.  At the James Fork, TP did not change and OP 

increased over time, while P decreased at the Poteau River; N increased at both.  Finally, 

sediment concentrations decreased over time at both the Poteau River and James Fork, with 
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decreasing shifts also occurring in the early 2000’s.  The changes over time were not necessarily 

monotonic, as shifts in flow adjusted concentrations were observed.  Point sources in the 2000s 

reduced their effluent concentrations and regulations were implemented in Arkansas to manage 

poultry little applications in nutrient surplus areas (i.e., the UPRW) based on the P index.  After 

these shift changes, water quality did not monotonically change for most sites and parameters 

over time.  Overall, continued monitoring is important, to ensure increasing or unchanging trends 

do not lead to excessive nutrient concentrations in the watershed.   

Introduction 

Since the Clean Water Act (CWA) amendment in 1972, federal, state, and local 

governments have invested billions of dollars to reduce pollutants entering streams and rivers 

(Keiser and Shapiro 2018).  Excess pollutants entering waterbodies can lead to an array of 

environmental and human health concerns (e.g. excessive plant and algal growth or mercury 

bioaccumulation through the food chain, Clarkson 1992).  The leading source of water quality 

impairment is nonpoint source pollution, which is most often caused by rainfall runoff across 

agricultural and urban landscapes (USEPA 2008a).  Efforts such as total maximum daily load 

(TMDL) development, best management practice (BMP) implementation, and stakeholder and 

citizen education over the last several decades have sought to address diffuse pollutants and 

improve water quality across the United States.  

Monitoring water quality is necessary to assess pollutant concentrations and impacts of 

conservation activities and watershed management.  Long-term water quality and flow data for 

streams and rivers allow for constituent load estimation, TMDL development, and trend 

analyses.  Trend analyses of water quality seek to determine whether concentrations of 

constituents have increased or decreased over time, which can suggest the effectiveness of 



 
 

7 

management practices or the need for pollutant reduction (e.g., see Haggard 2010; Scott et al. 

2011).  Trends in water quality often occur monotonically, where changes in concentrations are 

continuous over time, and the typical method involves adjusting constituent concentrations for 

streamflow and then assessing trends through time (Hirsch et al. 1982; Simpson and Haggard 

2018).   These trends can inform citizens, watershed managers and government officials of the 

historical and current state of waterbodies, and the observed changes help to determine future 

actions for water quality protection. 

The Poteau River Watershed (PRW) is a transboundary watershed across Arkansas and 

Oklahoma.  The headwaters of the Poteau River originate near Waldron, Arkansas, then flow 

west into Oklahoma into Lake Wister, before flowing north to meet the Arkansas River.  In 

Arkansas, the Poteau River it has been listed as a priority watershed within the Arkansas 

Nonpoint Source (NPS) Pollution Plan since 1998, and has been a focus of trans-boundary water 

quality issues for the last several decades (ANRC 2018).  A TMDL was developed in 2006 for 

the Poteau River, which concluded a 35% reduction in total phosphorus (TP) from non-point 

sources was necessary for water quality protection (USEPA 2006).  Additionally, municipal and 

industrial point source reductions have occurred over the past two decades (ANRC 2018).   

The purpose of this study is to analyze long-term water quality trends across the upper 

PRW (UPRW), and to determine how water quality has evolved with increasing agriculture and 

changes in waste water treatment plants in Arkansas.  Monotonic and shift changes in measured 

water quality parameters will be identified and compared to known watershed management 

practices and point source reductions through time.  This will help determine whether water 

quality has improved in the area with increasing efforts to minimize point and nonpoint source 

pollution.   
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Methods 

Study Site Description 

The UPRW (HUC 11110105) occupies an area of 1,400 km2 in Arkansas (Figure 1).  In 

2016, land use in the area was 65.3% forested, 25.9% agriculture, 3.7% shrubs/grassland, 6.3% 

urban/suburban, and 0.8% open water (Dewitz 2019).  The headwaters of the Poteau River begin 

near Waldron, Arkansas, and flow west into Oklahoma, near Loving, Oklahoma. The two main 

tributaries to the Poteau River within the UPRW are the Black Fork and James Fork.  The USGS 

gauges in the UPRW are on the Black Fork of the Poteau River near Page, Oklahoma, the Poteau 

River near Cauthron, Arkansas, and the James Fork near Hackett, Arkansas (Figure 1, Table 1).  

The UPRW is one of 11 NPS priority watersheds in Arkansas (ANRC 2018).  

 
Figure 1: Upper Poteau River Watershed in Arkansas; numbers near streamgages correspond 

with Site IDs in Table 1. 
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Table 1: Site IDs (corresponding to Figure 1), names, USGS station numbers, locations, 
watershed areas, and land use in the Upper Poteau River Watershed 

1 % Forest (%F) includes deciduous, evergreen, and mixed forest; 2 % Urban (%U) includes open 
space, low, medium and high intensity development; 3 % Agriculture (%Ag) includes pasture, 
hay, and cultivated crops; 4 % Grassland (%G) includes grassland and shrubs. 

 

The Poteau River in Arkansas and the Fourche Maline in Oklahoma flow into Lake Wister, an 

impoundment in Leflore County, Oklahoma (Figure 1), which serves as a drinking water source 

to about 50,000 people in rural Oklahoma. Lake Wister is also an important reservoir for 

recreation, fishing, and waterfowl hunting for residents and tourists around eastern Oklahoma.  

Lake Wister is on Oklahoma’s 303(d) list for chlorophyll-a, pH, TP, turbidity and mercury 

(ODEQ 2020).  Historically high algal and cyanobacteria in Lake Wister have led to difficult and 

costly treatment for drinking water, and has produced several disinfectant by-products. To 

address water quality concerns in Lake Wister, the Poteau Valley Improvement Agency (PVIA) 

developed an improvement strategy in 2009, which breaks down restoration into three categories 

including the watershed, the full lake, and Quarry Island Cove.   

An extensive search was conducted in regards to National Pollutant Discharge Elimination 

System (NPDES) permits and other major changes in the watershed.  The Black Fork represents 

a relatively undisturbed watershed, whereas the Poteau River and James Fork represent 

Site 

ID 
Site Name 

USGS 
Station 

Number 

Lat N Lat W 
Watershed 

Area (km2) 
%F1 %U2 %Ag3 %G4 

1 
James Fork 
near Hackett, 

AR 

7249400 35.162500 94.406944 385 49.7 4.8 33.2 10.9 

2 
Poteau River 
near 

Cauthron, AR 

7247000 34.918889 94.299444 527 63.7 5.6 21.3 7.8 

3 
Black Fork 
near Page, 

OK 

7247250 34.773610 94.511944 245 88.3 3.5 4.0 4.0 
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watersheds impacted by point and nonpoint sources. The two major point sources discharging 

into the Poteau River near Waldron are the Waldron Waste Water Treatment Plant (WWTP) and 

Tyson Foods, Inc. Permit changes for the Waldron WWTP and Tyson Foods, Inc. have included:  

 In 2004, NPDES permits for Tyson, Inc. and Waldron WWTP limited effluent TSS to a 

monthly average of 15 mg L-1.   

 The 2010 permit renewals included an additional effluent limit on TP, resulting in a 

monthly average of 1.0 and 1.5 mg L-1 for the WWTP and Tyson, respectively.   

 No limitations have been set on TN, NN or ammonia (NH3) for the WWTP; however, 

since 2004, Tyson’s NPDES permit limits TN effluent to 103 mg L-1 monthly average.   

Several permitted discharges into tributaries of the James Fork (upstream of the monitoring 

site) include Huntington and Mansfield WWTPs and West Fraser Inc. (formally known as Travis 

Lumber Company).  In addition, Hartford School District obtained a NPDES permit to discharge 

in 2004, but it was not renewed in 2009.  On the James Fork, limitations on point source 

effluents with NPDES permits have not changed since first permitting any of the facilities.  

These NPDES permits include: 

 For the Hartford School District, the NPDES permit limited TSS to a monthly average of 

20 mg L-1, but this permit was not renewed after its expiration in 2010.   

 The NPDES permit for the Huntington WWTP limits effluent concentrations to a 

monthly average of 20-30 mg L-1 TSS (depending on the time of year) and 4 mg L-1 NH3.  

In January of 2019, the plant was approved for construction to add a second clarifier and 

include UV disinfection.   
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 At the Mansfield WWTP, in 2007, an entirely new plant was constructed, and limits on 

effluents concentrations are monthly averages of 20-30 mg L-1 and 4-6 mg L-1 for TSS 

and NH3, respectively.   

 At West Fraser Inc., TSS is limited to a monthly average of 35 mg L-1;  modifications to 

the NPDES permit in 2014 included a sedimentation basin that is authorized to discharge 

overflow into the James Fork after a 10-year, 24-hour or greater storm event.  

None of the permits in the James Fork Watershed have limits on effluent P concentrations.  

Effluent data from all point sources were obtained from the Arkansas Department of 

Environmental Quality (DEQ; https://www.adeq.state.ar.us) in January, 2021.  Simple linear 

regression and Mann-Kendall trend tests were used to determine trends in reported effluent 

concentrations over time.   

Data Analyses 

The long-term data used at each site comes from the USGS National Water Information 

System database (NWIS; http://waterdata.usgs.gov/nwis), which includes flow, stage, and 

various water quality parameters.  Constituents of interest at each site were instantaneous 

discharge (Qi), total nitrogen (TN), nitrate plus nitrite (NN), total phosphorus (TP), soluble 

reactive P (OP) and suspended sediments (SS) (Table 2).  These data were generally available 

from the 1990s to 2020 depending on site and parameter (Table 2).  However, water quality data 

at the Black Fork ended in 2018. 

Raw data from the USGS contained censored (i.e., values below detection and/or 

reporting limits) and estimated values. Estimated values were assumed sufficient, and these 

values were used in analysis. Less than 15% of the data were censored across all sites and 

constituents, except for TN and OP at the Black Fork, where 16% and 39% of the data was 

https://www.adeq.state.ar.us/
http://waterdata.usgs.gov/nwis
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censored, respectively (Table 1).  Censored values were replaced with the average of the 

censored values for each parameter to the potential influence of changing reporting limits.  The 

U.S. Environmental Protection Agency suggested using simple substitution methods with data 

sets less than 15% censored (USEPA 2000).  Since less than 15% of the data here was censored 

for the majority of constituents (except for TN and OP at Black Fork), this method is likely 

adequate for our data set.   

Table 2: USGS parameter codes, constituents, percentage of censored values, and data 
availability for each site in the Upper Poteau River Watershed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The database covers several decades where processing and analyses changes occurred for 

some constituents. Some data were combined to account for changing methods (e.g. switching 

from filtered to unfiltered samples or for gaps in data availability). At all sites, we combined the 

USGS 

parameter 
code 

Constituent 

Data availability (% Censored) 

Site 1 Site 2 Site 3 

p00600 
Total nitrogen (TN), unfiltered, 

mg L-1 as N 

1975-1981, 

1995-2020 
(9.2%) 

1995-2020              

(11.5%) 

1991-2018 

(16.4%) 

p00630 
Nitrate plus nitrite (NN), 
unfiltered, mg L-1 as N 

1977-1994              
(0.0%) 

NA NA 

p00631 
Nitrate plus nitrite (NN), 

filtered, mg L-1 as N 

1976-1981, 

1994-2020 
(10.8%) 

1995-2020 
(11.5%) 

1991-2018      
(1.4%) 

p00665 
Total Phosphorus (TP), water, 

unfiltered, mg L-1 as P 

1972-1981, 

1983-2020 
(9.6%) 

1995-2020 

(0.3%) 

1992-2018      

(9.3%) 

p00671 
Orthophosphate (OP), water, 

filtered, mg L-1  as P 
1995-2020                
(13.9 %) 

1995-2020 
(6.2%) 

1991-2018 
(38.7%) 

p80154 
Suspended sediment (SS) 

concentration, mg L-1 

1978-1981, 
1995-2020 

(0.0%) 

1995-2020 
(0.0%) 

1991-2018      
(1.0%) 
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discharge (Qd, P00060) with the instantaneous discharge (Qi, P00061) to account for missing Qi 

values (< 10 % of data). For the James Fork, we combined the filtered nitrate plus nitrite (NN, 

p00631) with the unfiltered NN (p00630). There were a few sample dates with both filtered and 

unfiltered data, and the values were within 10% of each other, so an average of the values was 

used. At the Poteau and Black Fork, full data sets were available for the filtered NN, so no 

combination was necessary.  

Constituent concentrations were used to evaluate long-term water quality trends, using the 

following three-step procedure (White et al., 2004):  

 Discharge and constituent concentrations were log transformed in order to reduce effects 

of outliers (Hirsch et al., 1991).  

 Constituent concentrations were flow adjusted using a locally weighted regression 

(LOESS) smoothing technique. LOESS spans were manually inspected, in order to 

minimize error from the LOESS regression while maximizing the regression’s predictive 

power (Simpson and Haggard, 2018). A range of spans between 0.3 and 0.7 for all 

constituents was chosen, based on the root mean square errors (RMSE) and visual 

inspection of the LOESS fits. 

 Residuals from the LOESS fit (i.e. the flow-adjusted concentrations, FACs) were 

analyzed over time in order to evaluate trends, changes in residuals represent a change in 

constituent concentration over time unrelated to flow.  Monotonic trends were examined 

using linear regression and the nonparamtetric Seasonal Kendall Test (SKT) based on 

quarterly data or the median FAC during that quarter.  The slopes from these tests were 

used to estimate the magnitude (% yr-1) of any trends (Sen, 1968; Hirsch et al., 1982). 

Trends with P values less than 0.05 were considered “extremely likely” to increase or 
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decrease, P values between 0.05 and 0.20 were considered “likely” to increase or 

decrease, and P values greater than 0.20 were considered “likely not changing” (i.e. as 

likely increasing or decreasing or not). 

Trend analysis was then repeated by removing all censored values to see if the reporting limits 

influence our trends interpretation. The results from linear regression and the SKT were not 

different across most of the data, so the results focused on the linear model slopes and p-values. 

A nonparametric change point analysis (nCPA) was implemented for all FACs over time, 

to detect any changes in the time series of data (King and Richardson 2003; Qian et al. 2003).  If 

one or more change point was identified, then the three-step trend analysis was conducted on the 

time series to the left and right of the point. Additionally, for constituents with gaps in the data 

sets, a simple t-test or analysis of variance (ANOVA) was used to analyze the difference between 

means FACs across the groups of data.  All data analysis was completed using R, an open source 

statistical computing environment (R Core Team, 2016). 

Results 

Poteau River 

 The Poteau River near Cauthron (Site 2) generally showed the greatest concentrations 

compared to the James Fork and Black Fork.  Over the 25 years of available data, TN 

concentrations ranged from 0.39 to 2.60 mg L-1, with a median value of 0.76 mg L-1.  NN 

concentrations ranged from 0.02 to 1.74 mg L-1, with a median value of 0.23 mg L-1.  TP 

concentrations ranged from 0.02 to 2.60 mg L-1; however, 98% of the data fell below 0.50 mg L-1 

and the median concentration was 0.09 mg L-1.  OP concentrations ranged from 0.004 to 2.30 mg 

L-1, with a median concentration of 0.03 mg L-1, and only one data point (2.30 mg L-1) fell above 

0.50 mg L-1.  Lastly, SS concentrations ranged from 4 to 970 mg L-1, and the median 
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concentration was 24 mg L-1.  Over the last two years of the study (2019 and 2020), median 

concentrations of TN, NN, TP, OP, and SS were 0.66, 0.25, 0.05, 0.01, and 10.5 mg L-1, 

respectively. 

 All constituent concentrations showed some distinct pattern with increasing discharge.  

Sediments, P and TN generally increased with discharge, while NN was more variable at higher 

flows.   LOESS was fit to each concentration and discharge relationship with sampling 

proportions of 0.5 – 0.7 across all constituents (Table 3).  All constituents had relatively low 

RMSEs (<0.50) and spread across time (Table 3, Figure 2), especially TN (RMSE = 0.14). 

All nutrient and sediment FACs showed monotonic changes over time, but the direction 

varied by constituent (Table 3).  Flow-adjusted TN significantly increased over time (p<0.05), 

even though the change was small (0.44 % yr-1).  Flow-adjusted NN was the only constituent at 

this site that showed different results between the linear model and SKT.  A slight increase was 

observed over time with both methods (0.62 and 1.23 % yr-1, SKT and linear model, 

respectively).  However, the SKT suggests only likely increasing (0.05 < p < 0.20), while the 

linear model suggests extremely likely increasing (p < 0.05), likely due to the quarterly 

organization of data with the STK. 

In contrast to N, sediment and P were extremely likely improving (i.e. monotonically 

decreasing) in concentration over time (p<0.05).  The greatest magnitude of change occurred in 

OP FACs, decreasing by -2.55 % yr-1.  The decrease in TP was slightly less (-1.53 % yr-1).  

Sediment FACs were decreasing at a rate of -2.15 % yr-1.  Changing FACs each year are 

relatively small for all constituents (< 3 % yr-1).  However, for a change of 2.55 % yr-1, over 25 

years of data collection, that’s nearly a 65% change in FACs since 1995. 
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Each constituent showed a shift in FACs (or change point) over time, except for NN 

(Figure 2).  Where shifts occurred, for all constituents, FACs to the left or right were likely not 

changing over time (p > 0.20).  For flow-adjusted TP and SS, a shift in FACs occurred in August 

and October of 2002, resulting in a 22% and 32% decrease in mean TP and SS FACs, 

respectively.  Similarly, a shift occurred in flow-adjusted OP in October 2003, resulting in a 32% 

decrease.  However, for flow-adjusted TN, a shift occurred in May, 2007, with a 9% increase in 

mean FACs after this time. 

James Fork 

 At the James Fork (Site 1), concentrations were typically lower than the Poteau River.   

Over the approximately 30 years of available data, TN concentrations ranged from 0.24 to 3.20 

mg L-1, with a median value of 0.52 mg L-1.  NN concentrations ranged from 0.01 to 1.60 mg L-1, 

with a median value of 0.11 mg L-1.  TP concentrations ranged from 0.01 to 0.80 mg L-1, with a 

median value of 0.04 mg L-1.  OP concentrations ranged from 0.003 to 0.26 mg L-1, with a 

median value of 0.01 mg L-1.  Lastly, SS concentrations ranged from 3 to 642 mg L-1.  However, 

only two values fell above 200 mg L-1, and the median concentration was 27 mg L-1.  Over the 

last two years of the study (2019 and 2020), median concentrations of TN, NN, TP, OP, and SS 

were 0.51, 0.18, 0.04, 0.01, and 16 mg L-1, respectively. 

 All constituents at the James Fork showed an increase with increasing discharge.  LOESS 

was fit to each concentration and discharge relationship with sampling proportions of 0.4 – 0.7 

(Table 3).  All constituents had relatively low RMSEs (<0.40) and spread across time (Table 3, 

Figure 3).  Again, TN expressed the least RMSE of 0.16. 
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Flow-adjusted TN was likely increasing from 1995 to 2020 (0.05 < p < 0.20), with a 

relatively low magnitude of change (0.29 % yr-1), and no change point was identified in flow-

adjusted TN over time.  However, the average flow-adjusted TN was 20% greater between 1975 

and 1981 compared to 1995 to 2020 (p < 0.05). Flow-adjusted NN was extremely likely 

increasing from 1995 to 2020 (p < 0.05, Table 3).  The magnitude of change in flow-adjusted NN 

was slightly greater than TN (1.25 % yr-1).  Trends in NN were analyzed from 1995 to 2020, 

where the data set was completely filtered (Table 1).  However, with the combined dataset of 

filtered and unfiltered NN, ANOVA results from the three groups of flow-adjusted data (based 

on data gaps) showed significant differences.  Average, flow-adjusted NN is greatest between 

1977 and 1994 and least between 1976 and 1981.  Average, flow-adjusted NN from 1994 to 

2020 fell between these two groups, but is significantly increasing across time.  A shift in flow-

adjusted NN occurred in April 1998, with a 38% increase in NN FACs after 1998 compared to 

1994 – 1998, but no monotonic trends occurred before or after the change point.   

Flow-adjusted OP was likely increasing over time, with a magnitude of change of 0.44 % 

yr-1.  However, SKT suggests trends in flow-adjusted OP were likely not changing (p > 0.20).  

Two shifts occurred in flow-adjusted OP, one in June 2006 and the other in April 2011.  Average 

flow-adjusted OP was 21% greater after 2011 and 24% less before 2006 compared to between 

2006 and 2011.  Similar to NN, no monotonic trends occurred in the data set before or after 

change points in flow-adjusted OP. 

 Flow-adjusted TP was likely monotonically increasing from 1983 to 2020 (0.05 < p > 

0.2, Figure 2, A). However, the SKT suggests trends in flow-adjusted TP were likely not 

changing (p > 0.20).  Comparing the mean FACs for TP before and after the data gap (Table 1), 

the average flow-adjusted TP was significantly greater (8% increase) after 1983 compared to the 
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data between 1972 and 1981 (p < 0.05).  Additionally, two shifts were identified in FACs over 

time, one in September 1996 and one in April 2008 (Figure 3, A); however, no monotonic 

changes occurred before or after the change points.  The average flow-adjusted TP was 9% less 

between the two change points (1996 2008) compared to prior, and 16% less compared to after, 

giving the slight “U” shape to the FACs over time. 

 Flow-adjusted SS was the only constituent to be extremely likely improving from 1995 to 

2020 (i.e. monotonically decreasing, -2.27 % yr-1) (p < 0.05, Table 3).  However, the average 

flow-adjusted SS after 1995 was not significantly different than the average flow-adjusted SS 

before 1981 (p > 0.05).  Two change points were identified relatively close in time, one in June 

2002 and the other in January 2005 (Figure 2, E).  There was an extremely likely increase in 

flow-adjusted SS between 2002 and 2005 (p < 0.05), but trend analysis across a three-year period 

is likely unreliable.  There were no monotonic trends before 2001 and after 2005. Average flow-

adjusted SS was 35% less between 2005 and 2020 than SS FACs between 1995 and 2002.  

Black Fork 

At the Black Fork (Site 4), concentrations were lower than the Poteau River and the 

James Fork.  Over the 27 years of available data, TN concentrations ranged from 0.11 to 1.3 mg 

L-1, with a median value of 0.35 mg L-1. NN concentrations ranged from 0.01 to 0.88 mg L-1, 

with a median value of 0.078 mg L-1. TP concentrations ranged from 0.006 to 0.26 mg L-1, with a 

median value of 0.022 mg L-1. OP concentrations ranged from 0.003 to 0.18 mg L-1, with a 

median value of 0.008 mg L-1. Finally, SS concentrations ranged from 0.83 to 146 mg L-1, with a 

median value of 8.0 mg L-1. At the Black Fork in 2018 (the final year of water quality data), 

median concentrations of TN, NN, TP, OP, and SS were 0.20, 0.10, 0.01, 0.01 and 4.0 mg L-1, 

respectively.  
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 All constituents at the Black Fork generally increased in concentration with increasing 

discharge.  LOESS was fit to each concentration and discharge relationship with sampling 

proportions of 0.4 – 0.6 (Table 3).  All LOESS fits for the constituents had relatively low RMSEs 

(< 0.35), and TN expressed the least RMSE of 0.16 at this site like the Poteau River and the 

James Fork. 

Flow-adjusted TN was extremely likely decreasing over time (p < 0.001), with a change 

of –0.60 % yr-1 (Figure 4, A). One shift in TN FACs occurred in March of 2002, however, FACs 

to the left or right of the change point were likely not changing over time (p > 0.20).  The 

average flow-adjusted TN was 10% greater from 1991-2002 than the average FAC after 2002.  

Flow-adjusted NN was likely not changing over time (p = 0.97; Figure 3 B), and no shift in NN 

FACs occurred during the study period.   

Flow adjusted TP was extremely likely decreasing from 1991-2018 (p < 0.001, Figure 

4C), and showed the greatest magnitude of change compared to other constituents at the Black 

Fork (–1.04 % yr-1). Two shifts were found in flow-adjusted TP over time, one in November 

1998 and one in January 2003 (Figure 4). No monotonic changes occurred after the change point 

in 2003, but there was an extremely likely increase in flow-adjusted TP between 1991 and 2003 

(p = 0.03).  Average flow-adjusted TP between 1998 and 2003 was 23% greater than between 

1991 and 1998, and 19% greater than between 2003 and 2020. 

Flow-adjusted OP was extremely likely improving over time (i.e. monotonically 

decreasing) (p < 0.001, Table 3), by a magnitude of –0.90 % yr-1, but nearly 40% of the data are 

censored. One change point in OP FACs was identified in May of 2000 (Figure 4), however, no 

monotonic changes occurred before or after the shift.  After 2000, average flow-adjusted OP was 

17% less than averages before 2000.  
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Flow-adjusted SS was likely not changing between 1991 and 2018 (p = 0.52). A change 

point in SS FACs was identified in April of 1992 (Figure 4) after only three data points. Flow-

adjusted SS after 1992 was likely decreasing at a rate of -0.45 % yr-1 (p = 0.10). 

Table 3: Optimal LOESS Span, LOESS RMSE, Linear Model Slope, Linear Model P-Value, 

Seasonal Kendall’s Test (SKT) Sens Slope, and Seasonal Kendall’s Test P-Value for Trends in 

Flow Adjusted Concentrations (FACS) for each Parameter of Interest at the Poteau River, James 

Fork and Black Fork. 

 

Site Parameter 
LOESS 
Span 

LOESS 
RMSE 

Linear 
Model Slope 

(% /yr) 

Linear 
Model P-

Value  

SKT Sens 
Slope 

(% /yr) 

SKT P-
Value 

Poteau 
River at 

Cauthron, 
AR 

TN 0.70 0.14 0.44 0.02 0.30 0.01 

NN 0.70 0.36 1.23 0.02 0.62 0.05 

TP 0.50 0.29 -1.53 <0.01 -1.37 <0.01 

OP 0.50 0.46 -2.55 <0.01 -2.71 <0.01 

SS 0.60 0.31 -2.15 <0.01 -2.16 <0.01 

James 

Fork 

TN 0.40 0.16 0.29 0.15 0.28 0.12 

NN 0.70 0.36 1.25 0.01 0.99 0.01 

TP 0.70 0.26 0.12 0.18 0.04 0.55 

OP 0.70 0.24 0.44 0.05 0.12 0.42 

SS 0.50 0.33 -2.27 <0.01 -2.18 <0.01 

Black 

Fork 

TN 0.40 0.16 -0.60 <0.01 -0.66 <0.01 

NN 0.40 0.26 -0.01 0.97 -0.01 0.941 

TP 0.60 0.25 -1.04 <0.01 -1.07 <0.01 

OP 0.40 0.22 -0.90 <0.01 -0.40 <0.01 

SS 0.40 0.32 -0.19 0.52 -0.25 0.28 
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Figure 2: Trends in Flow Adjusted Concentrations (FACs) of Total Nitrogen (TN), Total 

Phosphorus (TP), Suspended Sediments (SS), Nitrate+Nitrite (NN), and Orthophosphate (OP) at 

the Poteau River. The FACs were truncated from -1 to 1 for consistency.  This may cause a few 

data points to be missing from the figure, but all data were included in trend analysis.  

Significant change points are identified by solid vertical lines, the grey areas are the 95% 

confidence intervals around the change points, and significant linear model slopes are identified 

by solid blue lines. A timeline of events related to Nonpoint Source Discharge Elimination 

System (NPDES) permits and other significant milestones for the point sources on the Poteau 

River is shown in Figure A.  
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Figure 3: Trends in Flow Adjusted Concentrations (FACs) of Total Nitrogen (TN), Total 

Phosphorus (TP), Suspended Sediments (SS), Nitrate+Nitrite (NN), and Orthophosphate (OP) at 

the James Fork. The FACs were truncated from -1 to 1 for consistency.  This may cause a few 

data points to be missing from the figure, but all data were included in trend analysis.  

Significant change points are identified by solid vertical lines, the grey areas are the 95% 

confidence intervals around the change points, and significant linear model slopes are identified 

by solid blue lines. A timeline of events related to Nonpoint Source Discharge Elimination 

System (NPDES) permits and other significant milestones for the point sources on the James 

Fork is shown in Figure A.  
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Figure 4: Trends in Flow Adjusted Concentrations (FACs) of Total Nitrogen (TN), Total 
Phosphorus (TP), Suspended Sediments (SS), Nitrate+Nitrite (NN), and Orthophosphate (OP) at 

the Black Fork. The FACs were truncated from -1 to 1 for consistency.  This may cause a few 
data points to be missing from the figure, but all data were included in trend analysis.  

Significant change points are identified by solid vertical lines, the grey areas are the 95% 
confidence intervals around the change points, and significant linear model slopes are identified 

by solid blue lines. 
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Point Source Effluents 

 Point sources in the Poteau River watershed include the Waldron WWTP and Tyson, Inc.  

At the Waldron WWTP, NH3 concentrations ranged from 0.05 to 23.3 mg L-1 with a median of 

0.29 mg L-1, TP concentrations ranged from 0.03 to 15.0 mg L-1 with a median concentration of 

0.79 mg L-1, and TSS concentrations ranged from 0.28 to 29.3 mg L-1 with a median 

concentration of 2.4 mg L-1.   At Tyson, Inc., NH3 concentrations ranged from 0.05 to 5.1 mg L-1 

with a median of 0.22 mg L-1, TP concentrations ranged from 0.07 to 22.7 mg L-1 with a median 

concentration of 0.88 mg L-1, and TSS concentrations ranged from 0.20 to 370 mg L-1 with a 

median concentration of 1.4 mg L-1.  Significant linear decreases have occurred in NH3, TP and 

TSS at Tyson, Inc. and TP and TSS at Waldron WWTP (Figure 5).  Additionally, based on 

Mann-Kendall trend test, significant decreases occurred in all constituents over time at Tyson, 

Inc. and Waldron WWTP.   

 
Figure 5: Effluent Concentrations of Ammonia (NH3), Total Phosphorus (TP), and Total 

Suspended Solids (TSS) from the Waldron Waste Water Treatment Plant (WWTP, A-C) and the 
Tyson Foods, Inc. (D-F) between 1993 and 2019. Blue line represents the linear model slope of 

the data. 
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In the James Fork watershed, point sources include Mansfield and Huntington WWTP 

and West Fraser, Inc. At the Mansfield WWTP, NH3 concentrations ranged from 0.05 to 23.3 mg 

L-1 with a median of 0.29 mg L-1, and TSS concentrations ranged from 1.0 to 20.0 mg L-1 with a 

median concentration of 3.0 mg L-1.   At the Huntington WWTP, NH3 concentrations ranged 

from 0.06 to 10.5 mg L-1 with a median of 0.57 mg L-1, and TSS concentrations ranged from 1.0 

to 22.0 mg L-1 with a median concentration of 4.8 mg L-1.   Based on linear regression and 

Mann-Kendall trend test, no significant changes occurred in reported constituents over time, 

except for NH3 at Huntington, which slightly decreased.  At West Fraser, Inc., only a few 

samples of TSS were reported since 2014, which ranged from 19.1 to 64 mg L-1 with a median of 

18 mg L-1; concentrations did not significantly change over time (p > 0.05).   

 
Figure 6: Effluent Concentrations of Ammonia (NH3) and Total Suspended Solids (TSS) from 

the Mansfield Waste Water Treatment Plant (WWTP, A-B) and the Huntington WWTP (C-D) 
between 2014 and 2019. Blue line represents linear model slope of the data. 
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Discussion  

Since water quality has been an ongoing concern in the UPRW, the data presented here 

provide valuable insight into changes in nutrients and sediments over the last several decades.  

At the Black Fork, median TN and TP concentrations between 1991 and 2018 were 0.35 mg L-1 

and 0.02 mg L-1, respectively.  Through a literature review of nutrient-biological thresholds 

across the United States, benthic algal thresholds were determined to be 0.38 – 1.79 mg L-1 and 

0.011 – 0.28 mg L-1 for TN and TP, respectively (Evans-White et al. 2013).  Median 

concentrations in the last two years at the Black Fork fell below this range for TN and on the 

lower end of this range for TP.  However, median TP concentrations at the Black Fork fall 

between 0.006 mg L-1 and 0.026 mg L-1 TP, where benthic algal response was related to shifts in 

diatom species rather than nuisance algal conditions (summarized by Evans-White et al. 2013).   

While various trends occur across constituents on the Poteau River and the James Fork, 

median concentrations for all constituents over time are below nutrient thresholds typical for 

nuisance algal conditions (0.75, 0.49, 0.14, and 0.03 mg L-1 for TN, NN, TP and SRP, 

respectively), determined for the naturally turbid Red River Basin in Arkansas (Haggard et al. 

2013).  These thresholds may be applicable to the Poteau River, which is also naturally turbid.  

However, median TN and TP concentrations in the last two years at the James Fork and Poteau 

River fell within the range for benthic algal thresholds  (0.38 – 1.79 mg L-1 and 0.011 – 0.28 mg 

L-1 for TN and TP, respectively; Evans-White et al. 2013) reported across the U.S. 

Undisturbed watersheds are valuable benchmarks for discerning natural from human-

influenced changes in water quality (Murdoch et al. 2005), and nutrients and sediments are often 

very well retained due to natural vegetation and riparian areas (Lowrance et al. 1984). Trends 

across seven relatively undisturbed streams in the United States saw both increasing and 
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decreasing trends in N; however, often times the length of data influenced the direction of trends 

(Argerich et al. 2013).  Additionally, between 2000 and 2014, analysis of minimally disturbed 

streams across the U.S. found increasing TP concentrations (Stoddard et al. 2016). For the Black 

Fork, the relatively undisturbed watershed within the UPRW, slight decreases or no changes over 

time occurred across all flow-adjusted constituents, including after significant shifts in FACs.  

Our analysis spans nearly 30 years of data at the Black Fork, which likely improves analyses of 

natural changes over time.  It is important to continue water quality monitoring at this site to 

serve as valuable reference condition for human impacts on regional water quality, but data 

ended in 2018.   

In an analysis of TN and TP concentrations and trends from 2002 to 2012 across 762 sites 

in the U.S., the majority of sites were above levels of concern (i.e., 0.12 – 2.18 mg L-1 TN and 

0.01 – 0.08 mg L-1 TP, varying by ecoregion and based on human health and aquatic life) with 

undetermined (i.e., minimal rates of change) or decreasing trends (Shoda et al. 2019).  TN and 

TP concentrations at the James Fork and Poteau River fell on the lower end of these ranges, and 

increasing trends in TN should be closely monitored.  Decreasing TP and no change in TP after 

2002 at the Poteau River is encouraging, but lack of change in TP at the James Fork should be 

monitored to observe if increases would occur.   

On the James Fork and the Poteau River near Cauthron, water quality is impacted by both 

point and nonpoint sources.  Effluent limitations for point sources have become more stringent 

over the last several decades (USEPA 2018), and the facilities within the UPRW have made 

improvement efforts to meet these standards.  Effluent concentrations of NH3, TP and TSS have 

decreased significantly since 1993 for both facilities in Waldron (Figure 5, p < 0.001), except for 

NH3 at the WWTP.  Notably, in the mid 90’s, TSS concentrations from the WWTP and Tyson 
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reached up to 30 and 400 mg L-1, respectively. With more stringent effluent limitations, the 

decreasing TSS from these facilities over the last several decades likely contributes to the overall 

decrease in flow-adjusted suspended sediments at the Poteau River.  Similarly, the decreasing 

effluent P concentrations are likely a big factor contributing to reduced P concentrations at the 

Poteau River.  

In 2006, the TMDL for the Poteau River near Waldron was developed for TP, copper and 

zinc, with suspected sources of impairment being the Waldron WWTP and Tyson plant; the 

target concentration for TP in the Poteau River was determined to be 0.1 mg L-1 (FTN Associates 

2006).  In 2019 and 2020, the median TP concentration was below this target at 0.05 mg L-1.  

The decreasing shifts in flow-adjusted P and sediment concentrations occurred around the time 

(or slightly before) of the TMDL development and 2004 permit renewals, which is likely due to 

the plants preparing to meet new effluent limitations.  However, no changes in flow-adjusted P 

or sediments have occurred since the decreasing shifts in the early 2000s.   

While increasing N trends are slight on the Poteau River, this may be due to the lack of 

limitations on effluent NN concentrations, and since NN is not reported from point source 

effluents, it could be increasing.  While effluent NH3 concentrations have decreased over time, 

this could be due to nitrification at WWTPs (Dong et al. 2019), which would lead to increased 

NN and TN as observed on the Poteau River.  Additionally, the Poteau River monitoring site is 

at least 30 km downstream of the point sources, and uptake lengths for NH3 are typically 

between 0.4 and 1.4 km (Haggard et al. 2005b), suggesting reduced N inputs from the effluent 

would have been nitrified in the river.  In 2019 and 2020, fertilizers sold in Scott county were 

less than 600 tons, which is on the lower end compared to the rest of Arkansas (UADOA 2019, 

2020).  Therefore, while fertilizer rates often control N concentrations (Liu et al. 2021), it is 
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more likely that increasing N on the Poteau River is due to point sources than fertilizer inputs. 

However, it is important to note that while NN is increasing over the entire period of data, TN 

was likely not changing after the increasing shift in 2007.   

In the James Fork Watershed, effluent concentrations of NH3 and TSS from the 

Mansfield and Huntington WWTPs have only been reported since 2014.  Effluent concentrations 

of NH3 and TSS have been relatively stable since 2014, with the only significant decrease 

occurring in NH3 from the Huntington WWTP (Figure 6).  No effluent data was available from 

the Hartford School District, and only a few samples of TSS were reported from West Fraser 

Inc., which have been relatively stable since 2014.  These small facilities may be contributing to 

N increases at the James Fork, similar to processes discussed previously for the Poteau River, 

since fertilizers use in Sebastian county are also low compared to the rest of Arkansas (UADOA 

2019, 2020). However, the impact on P concentrations is more difficult to determine without 

effluent P data.  Additionally, monitoring in HUC-12 subwatersheds within the James Fork 

watershed between 2011 and 2012 identified streams with high nitrate and TP concentrations as 

watersheds with permitted discharges (Massey et al. 2013).   

Interestingly, our analyses of the data suggested decreasing suspended solids on the 

Poteau River and James Fork since at least 1994, while the relatively undisturbed Black Fork 

Watershed suggested likely no changes. Similar decreasing trends were observed for suspended 

sediment concentrations between 1992 and 2012 on the Poteau River at Loving, Oklahoma in a 

study conducted by the United States Geological Survey (Oelsner et al. 2017).  On the Poteau 

River and James Fork, decreasing solids could be attributed to more stringent effluent limitations 

(or limitations at all) for point sources.   
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In Scott County, which contains the Poteau River Watershed, population has maintained 

relatively stable, chicken operations have decreased, but chicken counts have remained fairly 

stable over the last several decades (USDA-NASS 2018) (Figure 8).  Stable or increasing poultry 

counts with decreasing operations likely suggests decreasing farm numbers while operations 

increase in production capacity.  Chicken counts are related to the amount of litter produced, 

which must be managed in the watershed.  Most likely, the litter is land applied within relatively 

close proximity to the poultry houses.  Historically, poultry litter was managed on an N basis 

(i.e., applied to pastures and hay fields to meet the forage N requirements), which has led to 

buildup of P in the soils and potential for P loss from the landscape.   However, in 2003, 

Arkansas legislation was implemented to manage poultry litter based on the P Index, which 

assigns a risk value for P loss in runoff based on P source potential, P transport potential, and 

BMPs (DeLaune et al. 2004).  The P index was updated in 2010 to be more stringent in nutrient 

surplus areas (Sharpley et al. 2010), which includes the UPRW. Therefore, in addition to the 

TMDL development and decreases in point source effluents, the decreasing trends in P on the 

Poteau River, and the shifts in TP and OP in the early 2000’s, could be related to implementation 

of the P index across the watershed.   

In Sebastian County, containing the James Fork Watershed, population has increased by 

about 25% over the last 30 years and chicken counts have continually increased from 1997 to 

2017 (USDA-NASS 2018) (Figure 8).  In addition to the small point source facilities in the area, 

increasing population and amount of poultry litter are likely leading to increased N and P 

concentrations.  Subwatersheds with less than 50% forested area and more than 0.9 poultry 

houses km-2 were identified as critical source areas for NPS pollution management in Arkansas 

(Mccarty et al. 2018), and while poultry house density is about 0.3 poultry houses km-2 in the 
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James Fork watershed, just less than 50% of the watershed area is forested, suggesting land use 

may be a reason for impairments.   

 
Figure 8: Chicken operations and count by county in the Upper Poteau River Watershed from the 
USDA National Agricultural Statistics Service (NASS, https://www.nass.usda.gov/Quick_Stats). 

 

Numerous efforts have been made in Scott and Sebastian Counties to reduce sediment 

and nutrient loading from nonpoint sources into the Poteau River over the last several decades.  

Between 2002 and 2005, several BMPs were implemented in the watershed (e.g. prescribed 

grazing, waste management systems, nutrient management), leading to an overall reduction of N, 

P, and sediment loads by 14,025 kg yr-1, 1,225 kg yr-1, 67 kg yr-1, respectively (USEPA 2005).  

Also, between 2009 and 2010, the ANRC provided subsidies to transport litter from nutrient 

surplus areas (including the UPRW) to other approved areas in Arkansas.  
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In general, the magnitude of decreasing trends were greater than the magnitudes of 

increasing trends, suggesting that water quality is improving at a faster rate than it may be 

worsening.  Additionally, after shift changes occurred in most constituents, water quality did not 

monotonically increase or decrease afterwards.  Since the passing of the clean water act (CWA) 

in 1972, water quality across the U.S. has been improving, and over 700 waterbodies have been 

partially or fully restored (USEPA 2019).  Therefore, we expect water quality to improve in this 

watershed, especially with the numerous efforts to reduce point and nonpoint source pollution 

going into Oklahoma.  For the UPRW, continued monitoring will be important to allow changes 

in water quality from human activities and watershed management to be captured.  Additionally, 

continued monitoring will contribute to better understanding on how anthropogenic activities are 

influencing water quality in this watershed.  

Conclusions 

 Long term water quality trends in the Upper Poteau River Watershed in Arkansas 

identified areas of concern with increasing constituent trends, as well as benefits of management 

implementation in the watershed.  The relatively undisturbed river, the Black Fork, had median 

nutrient concentrations below typical nuisance algal thresholds and showed either decreases or 

no change in nutrient and sediment concentrations over time.  Water quality monitoring ended in 

2018, and resumed monitoring could allow for the Black Fork to serve as a reference for the 

impacted watersheds in this region.   

The James Fork and Poteau River are impacted by both point and nonpoint sources, and 

median concentrations of TN and TP fall within the benthic algal thresholds. In the James Fork, 

increases in N and P have occurred, while decreases in sediments were observed. Small WWTPs 

in the James Fork watershed have no limitations on P, and population and poultry production 
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have increased over time, likely leading to the increasing FACs.  However, after shift changes in 

nutrient and sediment FACs in the 2000s, no changes have occurred over time. 

At the Poteau River, decreases in P and sediments and increases in N have occurred.  

Shifts in P FACs occurred around 2003, when point sources were making improvements and 

reducing effluent concentrations, and regulations were implemented in Arkansas to manage 

poultry litter applications in NSAs (i.e., the UPRW) based on the P index.  Additionally, over the 

last two years, median TP concentrations at the Poteau River fell below the target concentration 

identified in the TMDL.  While effluent NH3 concentrations were decreasing in the Poteau River 

watershed, increases in TN and NN might be attributed to increasing nitrification at WWTPs.  

Ultimately, the regulations and indexes in the UPRW have likely contributed to the decreasing 

nutrient trends (or minimized the rate of increasing trends).  However, it is important to continue 

monitoring increasing or unchanging trends in FACs across the watershed, to prevent and 

manage excessive nutrient concentrations.   
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Abstract 

Trend analyses of water quality seek to determine whether concentrations of constituents 

have increased or decreased over time, which can show the effectiveness of management 

practices or the need for pollutant reduction.  The Poteau River Watershed (PRW) is a 

transboundary watershed across Arkansas and Oklahoma, and in Arkansas, the Poteau River has 

been listed as a priority watershed within the Arkansas Nonpoint Source Pollution Plan since 

1998.  The Poteau River, Black Fork, and Fourche Maline within the PRW flow into Lake 

Wister, which is an important reservoir for recreation, fishing, and waterfowl hunting for 

residents and tourists around eastern Oklahoma.  The purpose of this study is to analyze long 

term trends and loads using the Weighted Regression on Time, Discharge, and Season (WRTDS) 

to analyze water quality trends and constituent loads from the Poteau River, Black Fork, and 

Fourche Maline entering Lake Wister.   The largest magnitude of loads came from the Poteau 

River, but flow normalized (FN) phosphorus (P) and sediments have decreased over time, which 

is a positive impact of watershed management and must be maintained.  However, FN nitrogen 

(N) on the Poteau River has increased over time, and should be the focus of future management 
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on the Poteau River.  While the magnitude of constituent loads from the Fourche Maline are less 

than the Poteau River, increasing FN P is a concern, and should be prioritized for management in 

Oklahoma.  The relatively undisturbed Black Fork watershed contributes the least amount of 

loads to Lake Wister, and FN concentrations are decreasing or not changing over time, 

suggesting a low priority for the Black Fork watershed.   

Introduction 

Lakes and reservoirs provide many benefits, including wildlife habitats, hydrodynamic 

energy production, drinking water, and recreation opportunities.  However, nutrient pollution to 

lakes and reservoirs contributes to algal blooms and potential algal toxins, which jeopardizes the 

quality of these freshwater resources.  In 2012, the National Lakes Assessment concluded that 

40% of lakes in the United States (U.S.) had excessive total phosphorus (TP) levels and 35% of 

lakes had excessive total nitrogen (TN) levels.  Additionally, the algal toxin microcystin was 

detected in 39% of lakes (USEPA 2016). Therefore, it is imperative to manage and reduce 

nutrient pollution in order to sustain lake and reservoir ecosystems, and efforts such as total 

maximum daily load (TMDL) development, best management practice (BMP) implementation, 

and stakeholder and citizen education over the last few decades have sought to improve water 

quality across the United States.  

The leading source of water quality impairment is nonpoint source (NPS) pollution, most 

often caused by rainfall runoff across agricultural and urban landscapes (USEPA 2008a).  Point 

source inputs also contribute to water quality concerns, through effluents from waste water 

treatment plants (WWTPs) and other industry processes.  Nutrients and sediments from external 

sources (i.e., point and NPS pollution) ultimately accumulate in bottom sediments of lakes and 

reservoirs, and these nutrients can be released back into the water column under certain 
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conditions (i.e., internal nutrient sources).  Excess nutrients and sediments from internal and 

external sources lead to accelerated eutrophication and degradation of water resources.   

Long-term water quality monitoring is important for assessing nutrient and sediment 

concentrations entering lakes and reservoirs.  Monitoring data allows for constituent load 

estimations (Malago et al. 2019), total maximum daily load (TMDL) development (Borah et al. 

2019), and trend analyses (Shoda et al. 2019), which help analyze impacts of conservation 

activities and watershed management. In particular, trend analyses of water quality seek to 

determine whether concentrations of constituents have increased or decreased over time, which 

can show the effectiveness of management practices or the need for pollutant reduction (e.g., see 

Haggard 2010; Scott et al. 2011).  Estimation of constituent loads help to identify critical source 

areas, or smaller watersheds which may be contributing disproportionally higher pollutant loads 

and can be prioritized for management intervention.  These trends and constituent loads can 

inform citizens, watershed managers and government officials of the historical and current state 

of waterbodies, and help to determine future actions to protect water quality. 

The purpose of this study is to analyze long term trends and loads from major tributaries 

to Lake Wister, Oklahoma, to understand nutrient inputs into the reservoir.  Specifically, the 

Weighted Regression on Time, Discharge, and Season (WRTDS) was used to analyze water 

quality trends and constituent loads from the Poteau River, Black Fork, and Fourche Maline 

entering Lake Wister. This analysis will help to inform citizens and stakeholders of changes in 

water quality over time at the Lake Wister Watershed (LWW), as well as the relative 

contribution from each major inflow.   

Methods 
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Study Site Description 

The LWW encompasses the southern portion of the Poteau River watershed (HUC 

11110105), and it occupies an area of 2,580 km2 in Arkansas and Oklahoma (Figure 1), that is 

72.0% forested, 14.4% agriculture, 7.2% shrubs/grassland, 4.0% urban/suburban, and 1.2% open 

water.  The three main tributaries into Lake Wister are the Poteau River, Black Fork, and 

Fourche Maline. The headwaters of the Poteau River begin near Waldron, Arkansas, and flow 

west into Oklahoma, near Loving, Oklahoma. The most downstream USGS gauges with flow 

and water quality data in the LWW are on the Black Fork of the Poteau River near Page, 

Oklahoma, the Poteau River near Loving, Oklahoma, and the Fourche Maline near Leflore and 

Red Oak, Oklahoma (Table 1). 

 
Figure 1: Lake Wister Watershed in Arkansas and Oklahoma; numbers near stream gages 

correspond with Table 1. 
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Table 1: Site ID’s (corresponding to Figure 1), names, USGS station numbers, locations, 
watershed areas, and land use in the Lake Wister Watershed 

1 % Forest (%F) includes deciduous, evergreen, and mixed forest; 2 % Urban (%U) includes open 
space, low, medium and high intensity development; 3 % Agriculture (%Ag) includes pasture, 
hay, and cultivated crops. 4 % Grassland (%G) includes grassland and shrubs. 

 

Lake Wister is an impoundment in Leflore County, Oklahoma, which serves as a 

drinking water source to about 50,000 people in rural Oklahoma. Lake Wister is also an 

important reservoir for recreation, fishing, and waterfowl hunting for residents and tourists 

around eastern Oklahoma.  Lake Wister is on Oklahoma’s 303(d) list for chlorophyll-a, pH, TP, 

turbidity and mercury (ODEQ 2020).  Historically high algal biomass and cyanobacteria in Lake 

Wister have led to difficult and costly treatment for drinking water, and has produced several 

disinfectant by-products. To address water quality concerns in Lake Wister, the Poteau Valley 

Improvement Agency (PVIA) developed an improvement strategy in 2009, which breaks down 

restoration into three categories including the watershed, the full lake, and Quarry Island Cove.  

PVIA has been working to chemically treat Quarry Island Cove at Lake Wister, develop TMDLs, 

and implement best management practices (BMPs) in the watershed.   

Data Analyses 

Site 

ID 
Site Name 

USGS 

Station 
Number 

Lat N Lat W 
Watershed 

Area (km2) 
%F1 %U2 %Ag3 %G4 

1 
Poteau River 
near Loving, 

OK 

7247015 34.879722 94.483889 697 66.0 5.2 19.7 7.7 

2 
Black Fork 

near Page, OK 
7247250 34.773610 94.511944 245 88.3 3.5 4.0 4.0 

3 
Fourche Maline 

near Leflore, 

OK 

7247650 34.919722 94.945279 692 66.9 3.4 18.9 8.6 

4 
Fourche Maline 
near Red Oak, 

OK 

7247500 34.912500 95.155556 303 67.2 4.1 19.5 7.8 
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The long-term data used at each site comes from the USGS National Water Information 

System database (NWIS; http://waterdata.usgs.gov/nwis), which includes flow, stage, and 

various water quality parameters.  Constituents of interest at each site were discharge (Q), total 

nitrogen (TN), nitrate plus nitrite (NN), total phosphorus (TP), orthophosphate (OP) and 

suspended sediments (SS) (Table 2).  These data were generally available from the 1990s to 

2020 depending on site and parameter; however, water quality data at the Black Fork ended in 

2018. 

Table 2: USGS parameter codes, constituents, percentage of censored values, and data 

availability for each site in the Lake Wister Watershed. 

 

 

 

 

 

 

 

The Weighted Regressions on Time, Discharge, and Season (WRTDS) model (Hirsch et 

al. 2010; Hirsch and De Cicco 2015) was used to estimate loads and trends at all sites (i.e., the 

most downstream monitoring sites on tributaries into Lake Wister).  For each site and parameter 

of interest, WRTDS uses weighted regression to estimate mean daily concentrations.  For load 

USGS 

parameter 
code 

Constituent 

Data availability (% Censored) 

Site 1 Site 2 Site 3 

p00600 
Total nitrogen, unfiltered (TN), 

mg L-1 as N 

1993-2020 

(6.1%) 

1993-2018 

(16.4%) 

1993-2020 

(8.4%) 

p00631 
Nitrate plus nitrite (NN), filtered, 

mg L-1 as N 

1993-2020 

(6.1%) 

1993-2018 

(1.4%) 

1993-2020 

(8.7%) 

p00665 
Phosphorus (TP), water, 
unfiltered, mg L-1 as P 

1993-2020 
(0.0%) 

1993-2018 
(9.3%) 

1993-2020 
(0.8%) 

p00671 
Orthophosphate (OP), water, 

filtered, mg L-1  as P 
1993-2020 

(3.6%) 
1993-2018 
(38.7%) 

1993-2020 
(17.2%) 

p80154 
Suspended sediment (SS) 

concentration, mg L-1 

1993-2020 

(0.0%) 

1993-2018 

(1.0%) 

1993-2020 

(0.0%) 

http://waterdata.usgs.gov/nwis
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estimations, mean daily concentrations are multiplied by mean daily flow, and then summed to 

determine annual loads.   

For trend analysis, mean daily concentrations are flow normalized (FN) to remove the 

influence of interannual and temporal variability in streamflow.  Flow normalization is a method 

for identifying long-term systematic water quality changes due to anthropogenic activity (point 

and nonpoint processes) rather than “noise” from variability in streamflow.  Trends are reported 

as the time series of FN annual concentrations (i.e., the average daily FN concentration for each 

year) and as the percent change in FN concentration relative to initial concentrations.  While 

water quality data at the Black Fork ends in 2018, WRTDS predicts trends and loads through 

2020 based on discharge.  See Hirsch et al. (2010) for a complete description of the trends and 

loads methods, including the weighted regression approach and FN process.   

Analyses were completed using the EGRET version 3.0.2 R package.  The significance of 

trends in annual FN concentrations were evaluated using a boot strapping method with EGRETci 

version 2.0.3 R package (Hirsch et al. 2015).  Trends with P values less than 0.05 were 

considered “extremely likely” to increase or decrease, P values between 0.05 and 0.20 were 

considered “likely” to increase or decrease, and P values greater than 0.20 were considered 

“likely not changing” (i.e. as likely increasing or decreasing or not).  

Raw data from the USGS contained censored values, which typically occurs when the 

concentration is less than a reporting limit. Less than 15% of the data were censored across all 

sites and constituents, except for TN and OP at the Black Fork, where 16% and 39% of the data 

was censored, respectively (Table 1).  The WRTDS framework replaces censored values with 

half of the censored values for each parameter.  The U.S. Environmental Protection Agency 

suggested using simple substitution methods with data sets less than 15% censored (USEPA 
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2000).  Since less than 15% of the data here was censored for the majority of constituents (except 

for TN and OP at Black Fork), this method was likely adequate for our data set.   

On the Fourche Maline, the gauging station on site 6 collects only continuous stage and 

discharge data.  At site 3, there are no continuous stage and discharge data, and only water 

quality samples and instantaneous discharge measurements.  WRTDS requires daily discharge 

measurements to complete trend and load analyses; therefore, analyses on the Fourche Maline 

were conducted using mean daily discharge from site 4 and water quality measurements from 

site 3.   

Results 

Poteau River 

At the Poteau River (Site 1), the most downstream gage on the Poteau River into Lake 

Wister, annual FN TN concentrations ranged from 0.67 to 0.82 mg L-1, with a median value of 

0.76 mg L-1, and FN NN concentrations ranged from 0.17 to 0.28 mg L-1, with a median value of 

0.24 mg L-1.  Both FN TN and NN showed increasing slopes, however, FN TN was likely not 

changing (p = 0.21), and FN NN was likely increasing (p = 0.11) at a rate of 2.60 % yr -1 (Figure 

2).  The largest magnitude of annual constituent loads occurred on the Poteau River, where the 

average annual discharge was 9.30 m 3s-1 (min = 1.89 m 3s-1, max = 17.68 m 3s-1).  Annual TN 

loads ranged from 0.05 to 0.66 106 kg yr-1, and annual NN loads ranged from 0.01 to 0.15 106 kg 

yr-1 (Figure 5). 

 Annual FN TP concentrations ranged from 0.10 to 0.14 mg L-1, with a median value of 

0.11 mg L-1, and FN OP concentrations ranged from 0.03 to 0.08 mg L-1, with a median value of 

0.04 mg L-1.  Both FN TP and OP likely decreased over time at a rate of -0.97 % yr-1 and -2.70 % 
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yr-1, respectively (Figure 2). Annual TP loads ranged from 0.01 to 0.16 106 kg yr-1, and annual 

OP loads ranged from 0.003 to 0.05 106 kg yr-1 (Figure 5).  

 Finally, annual FN SS concentrations ranged from 26.4 to 45.6 mg L-1, with a median 

value of 29.3 mg L-1. FN SS concentrations were extremely likely decreasing over time with a 

change of -1.60 % yr-1 (Figure 2), and annual SS loads ranged from 3.69 to 76.7 106 kg yr-1 

(Figure 5).  The largest magnitude of loads for all constituents at the Poteau River occurred in 

2020, where the largest magnitude of discharge also occurred. 

Fourche Maline 

At the Fourche Maline (Sites 3 and 4), annual FN TN concentrations ranged from 0.58 to 

0.69 mg L-1, with a median value of 0.63 mg L-1, and FN NN concentrations ranged from 0.10 to 

0.14 mg L-1, with a median value of 0.11 mg L-1.  Both FN TN and NN showed low magnitude 

slopes, and were likely not changing over time (p = 0.64 and 0.82, respectively, Figure 3).  The 

average annual discharge was 4.10 m 3s-1 (min = 1.01 m 3s-1, max = 8.20 m 3s-1).  Annual TN 

loads ranged from 0.03 to 0.34 106 kg yr-1, annual NN loads ranged from 0.005 to 0.05 106 kg  

yr-1 (Figure 5). 

 Annual FN TP concentrations ranged from 0.05 to 0.10 mg L-1, with a median value of 

0.08 mg L-1, and FN OP concentrations ranged from 0.01 to 0.02 mg L-1, with a median value of 

0.01 mg L-1.  FN TP was extremely likely increasing over time (p < 0.039) at a rate of 2.80 % yr -

1, while FN OP was likely decreasing over time (p = 0.07) at a rate of -1.10 % yr-1 (Figure 3).  

Annual TP loads ranged from 0.003 to 0.08 106 kg yr-1, annual OP loads ranged from 0.001 to 

0.01 106 kg yr-1 (Figure 5).  
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 Finally, annual FN SS concentrations ranged from 42.7 to 53.2 mg L-1, with a median 

value of 44.2 mg L-1. FN SS concentrations had an increasing slope, but were likely not changing 

over time (p = 0.59, Figure 2), and annual SS loads ranged from 2.65 to 66.42 106 kg yr-1. The 

largest magnitude of loads for all constituents occurred in 2016, which is also when the largest 

magnitude of discharge occurred.  

Black Fork 

At the Black Fork (Site 2), annual FN TN concentrations ranged from 0.26 to 0.37 mg   

L-1, with a median value of 0.34 mg L-1, and FN NN concentrations ranged from 0.08 to 0.11 mg 

L-1, with a median value of 0.09 mg L-1.  FN TN was extremely likely decreasing (p < 0.039) at a 

rate of -1.10 % yr-1, while FN NN was likely not changing (p = 0.65, Figure 4).  The average 

annual discharge was 4.87 m 3s-1 (min = 0.62 m 3s-1, max = 9.60 m 3s-1).  Annual TN loads 

ranged from 0.007 to 0.14 106 kg yr-1, and annual NN loads ranged from 0.002 to 0.05 106 kg yr-1 

(Figure 5).   

Annual FN TP concentrations ranged from 0.02 to 0.03 mg L-1, with a median value of 

0.02 mg L-1, and FN OP concentrations ranged from 0.002 to 0.02 mg L-1, with a median value 

of 0.005 mg L-1.  FN TP had a decreasing slope, but was likely not changing over time (p = 

0.22), while FN OP was extremely likely decreasing over time (p < 0.039) at a rate of -3.50 % 

yr- 1 (Figure 4).  Annual TP loads ranged from 0.001 to 0.03 106 kg yr-1, annual OP loads ranged 

from 0.001 to 0.01 106 kg yr-1 (Figure 5).  

Finally, annual FN SS concentrations ranged from 8.90 to 12.80 mg L-1, with a median 

value of 10.9 mg L-1. FN SS was extremely likely decreasing over time (p = 0.02) at rate of -1.20 

% yr-1 (Figure 4).  Annual SS loads ranged from 0.32 to 15.1 106 kg yr-1.  The largest magnitude 
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of loads for each constituent occurred in different years, where the largest magnitude for TN, 

NN, TP, OP, and SS occurred in 2008, 2016, 2015, 1993, and 2002, respectively (Figure 5).  

Figure 2: Average annual concentrations (dots) and flow normalized concentrations (blue lines) 

from WRTDS at the Poteau River near Loving, OK for total nitrogen (TN), nitrate plus nitrite as 

N (NN), total phosphorus (TP), orthophosphate (OP), and suspended sediment (SS) 

concentration; slopes and p-values are shown for trends in flow normalized concentrations.  
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Figure 3: Average annual concentrations (dots) and flow normalized concentrations (blue lines) 

from WRTDS at the Fourche Maline for total nitrogen (TN), nitrate plus nitrite as N (NN), total 

phosphorus (TP), orthophosphate (OP), and suspended sediment (SS) concentration; slopes and 

p-values are shown for trends in flow normalized concentrations. 
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Figure 4: Average annual concentrations (dots) and flow normalized concentrations (blue lines) 
from WRTDS at the Black Fork for total nitrogen (TN), nitrate plus nitrite as N (NN), total 

phosphorus (TP), orthophosphate (OP), and suspended sediment (SS) concentration; slopes and 

p-values are shown for trends in flow normalized concentrations. 
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          Figure 5: Total nitrogen (TN), nitrate plus nitrite (NN), total phosphorus (TP), 
orthophosphate (OP), suspended sediment (SS) loads, average annual discharge and total annual 

precipitation at the Black Fork (Site 2), Fourche Maline (Sites 3 and 4), and the Poteau River 
near Loving (Site 1) using WRTDS. 
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Discussion 

Lake Wister, Oklahoma, has been considered eutrophic since 1990, and there have been 

several efforts in the past 10+ years to reduce constituent concentrations and loads into Lake 

Wister.  In 2009, the PVIA developed an improvement strategy, which focused restoration into 

three zones including the watershed, the full lake, and Quarry Island Cove.  Internal loadings of 

OP to the reservoir were quantified in 2010, and this internal source was determined not to be a 

dominant P source to the reservoir (Haggard et al. 2012).  The maximum P flux in the reservoir 

was 3.75 mg m-2 d-1, and assuming half the lake area is anaerobic over sediments about half the 

time, maximum loads of P from the sediments would be 8,555 kg in 2010.  From the watershed, 

loads of TP and OP were approximately 182,200 and 58,200 kg, respectively, in 2010 (Figure 7).  

Therefore, about 95% of the TP load and 87% of the OP load to Lake Wister in 2010 was from 

the watershed, i.e., external sources.  

While the watershed was likely the dominant source of nutrients, high algal and 

cyanobacterial levels in Lake Wister were causing difficult and costly water treatment.  

Therefore, aluminum sulfate (alum) treatments in Quarry Island Cove began in 2014, and 

continued almost annually through 2019, to reduce P and organic matter in the water column of 

the cove.  While alum treatments have been used to control the release of P from the sediments 

in reservoirs for many years (Cooke et al. 1993; Lewandowski et al. 2003a; Huser et al. 2016a), 

managing both internal and external loads to the reservoir is important for optimal water quality 

improvement (Burger et al. 2007; Steinman et al. 2007; Zamparas and Zacharias 2014; Kim et al. 

2021). WRTDS outputs suggest an annual average of 524,000 kg, 107,100 kg, and 62.4 million 

kg per year of TN, TP and sediments, respectively, from the Poteau River, Fourche Maline, and 

Black Fork between 1993 and 2020.  Around 65% of the total loads originated from the Poteau 
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River, and the greatest loads over the study occurred in 2020 (Figure 7).  It is important to note 

that the Poteau River, Fourche Maline and Black Fork watersheds make up about 63% of the 

Lake Wister watershed, and total loads to Lake Wister would actually be greater than the 

magnitude estimated in this study.  Therefore, management of the external loads entering Lake 

Wister, in addition to the internal sources, will likely be needed to improve reservoir water 

quality.   

A reservoir model of Lake Wister suggested that a 78% and 71% external load reduction 

of P and sediments, respectively, was needed to meet water quality standards.  Additionally, if 

internal load reductions of P were achieved through lake management strategies (e.g., alum 

treatments), then external loads would only need to be reduced by 58% (Scott and Patterson 

2018).  Between 2011 and 2015, the model predicted an average annual load of TP and 

sediments to be 221,787 kg per year and 142.5 million kg per year, respectively, from the Poteau 

River and Fourche Maline.  However, WRTDS outputs from this study predicted about half of 

this amount in the same time period, with an average annual load of TP and sediments to be 

138,404 kg per year and 70.3 million kg per year, respectively.  These differences are likely 

attributed to slight differences in regression models used in load estimations, the period of data 

used to develop regression relationships, and the location of water quality data collection.  Scott 

and Patterson collected water quality data slightly downstream on the Poteau River near 

Heavener, which also includes the Black Fork watershed.  The Poteau River at Heavener has a 

watershed area of approximately double the Poteau River at Loving (1336 and 697 km2 at 

Heavener and Loving, respectively).  Accounting for watershed area, annual loads of TP were 

166 and 198 kg per year per km2 from Heavener and Loving, respectively, and annual loads of 

sediments were 0.11 and 0.10 kg per year per km2, respectively.   
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However, the average annual loads of TP and sediments between 2016 and 2020 

increased to 155,439 kg per year and 84.6 million kg per year, respectively, according to 

WRTDS outputs.  Constituent loads are highly related to the magnitude of rainfall and discharge; 

relationships between discharge and constituent loads at the Poteau River and Fourche Maline 

had R2 values greater than 0.70 and p-values less than 0.001.  Since discharge also increased 

since 2016 (Figure 5), this is likely the cause of increasing loads during this time.   

Several subwatersheds on the Fourche Maline and one on the Poteau River were 

identified as highest priority for management in the Lake Wister watershed, while subwatersheds 

on the Black Fork were low priority (Austin et al. 2018), and results from this study agree with 

this HUC-12 level monitoring.  At the Poteau River, FN P and SS concentrations have been 

decreasing over time while FN N concentrations have been increasing (Figure 2).  Water quality 

trends at the Poteau River were similar near the Arkansas border, which is only about 18 km 

upstream (see Chapter 1).  The decreasing trends in P and sediments are likely due to reductions 

in point source effluents and regulations implemented in Arkansas to manage poultry litter 

applications (Chapter 1).  However, the increasing FN N should be the focus of management on 

the Poteau River. 

While the largest magnitude of loads occur at the Poteau River, increasing FN P 

concentrations on the Fourche Maline are still a concern.  Austin et al. 2018, identified six 

subwatersheds as a priority for management on the Fourche Maline based on TP.  Therefore, the 

2.80 % yr-1 increase in FN TP (Figure 3) on the Fourche Maline should be the focus of 

management in Oklahoma, likely in the locations identified by Austin et al. 2018. 

WRTDS results also suggest the Black Fork to be a low priority watershed, since the 

Black Fork contributes the least amount of constituent loads to Lake Wister compared to the 
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Poteau River and Fourche Maline (Figure 5), and FN concentrations have been decreasing or not 

changing over the last several decades (see also Lasater et al. 2021).  The Black Fork watershed 

is primarily forested, with little human impacts, and is likely not a concern for water quality 

management in Lake Wister. 

Conclusions 

 Long term water quality trends and loads were analyzed for major tributaries entering 

Lake Wister, Oklahoma, where water quality has been a concern for several years.  The largest 

magnitude of loads came from the Poteau River, but FN P and sediments have decreased over 

time, which is a positive impact of watershed management and must continue.  However, FN N 

on the Poteau River has increased over time, and should be the focus of future management on 

the Poteau River.  While the magnitude of constituent loads from the Fourche Maline are less 

than the Poteau River, increasing FN P is a concern, and should be prioritized for management in 

Oklahoma.  The relatively undisturbed Black Fork watershed contributes the least amount of 

loads to Lake Wister, and FN concentrations are decreasing or not changing over time, 

suggesting a low priority for the Black Fork watershed.   
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Abstract 

Aluminum sulfate (alum) treatments have been used for decades to control the release of 

phosphorus (P) from bottom sediments in lakes and reservoirs.  However, the longevity of 

treatments has varied from less than a year up to 45 years due to insufficient aluminum (Al) 

dosages applied, saturation of alum flocs, and/or burial of alum flocs by incoming sediments.  

This study quantified sediment P fluxes under aerobic and anaerobic conditions at Quarry Island 

Cove at Lake Wister, Oklahoma, before and after treatments which occurred five times between 

2014 and 2019.  To measure P flux, sediment-water cores were collected from the cove and 

incubated for 10 days at room temperature under aerobic and anaerobic conditions, and P fluxes 

were estimated as the slope of increase in P mass over time divided by the area of the core.  

Sediment P fluxes were consistently greater under anaerobic conditions compared to aerobic 

conditions.  Aerobic P fluxes were not significantly different before or after alum treatments, and 

the magnitude of P fluxes under aerobic conditions was relatively low throughout the duration of 

the study (< 1.47 mg m-2 day-2). Under anaerobic conditions, P fluxes significantly decreased one 

week after alum treatments compared to a week before treatment. However, after 5 treatments 

across 6 years, sediment P fluxes under anaerobic conditions were not significantly different than 
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prior to any alum treatments in 2010 and 2014 (3 to 4 mg m-2 day-2).  The lack of overall 

reduction in anaerobic P fluxes over time is likely due to the magnitude of P and sediment loads 

entering Lake Wister from the watershed, where 92% of the total P load to Lake Wister from 

2010 to 2020 was from external sources.  Therefore, while alum treatments provide short term 

reductions in P fluxes at Quarry Island Cove, the effectiveness was short, suggesting external 

sources of P must be addressed.   

Introduction 

Cultural eutrophication due to excessive nutrients entering waterways has dramatic 

consequences to aquatic ecosystems (Smith et al. 1999).  Growing population and human 

activities have led to increases in landscape changes, agricultural production and waste, all of 

which contribute to shifts in nutrient cycling and increased availability of nitrogen (N) and 

phosphorus (P) (Anderson et al. 2002).  Nutrient enrichment, whether from landscape runoff 

and/or effluent discharges, increases trophic states of lakes and reservoirs.  Increasing trophic 

states correspond to increased biomass production, which often form nuisance or harmful algal 

blooms (HABs), contribute to hypoxia, and decrease biodiversity (Hallegraeff 1993; Porter et al. 

2013; Glibert 2017).   

 Increased algal production leads to taste and odor issues in water supplies, as well as 

potential for HABs related toxins, which are difficult to remove in water treatment processes 

(Dodds et al. 2008; USEPA 2015).  Additionally, seasonal variation in phytoplankton growth and 

community composition occur, leading to variation in source water quality and treatment 

approaches throughout the year (Chang et al. 2003; Xu et al. 2010; Rasconi et al. 2015).  The 

costs associated with drinking water treatment can increase greatly due to eutrophication and 

algal blooms (USEPA 2015).  For example, the City of Celina, Ohio, spent nearly $3.4 million 
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on operation and maintenance because of nutrient pollution in Grand Lake St. Mary’s, but this 

amount did not include costs associated with aluminum sulfate (alum), lime and sludge disposal 

(Davenport and Drake 2011).  In Waco, Texas, over $72 million was spent to address poor 

drinking water quality from 2002 to 2012 due to taste and odor problems, and an estimated $10.3 

million in revenue was lost to the city of Waco (Dunlap et al. 2015).  Therefore, proactive efforts 

to address algal blooms are essential for environmental and economic value of source water.  

 Algal production in lakes and reservoirs is limited by light, carbon dioxide, and 

particularly concentrations of N and/or P, or the ratio of N:P (Conley et al. 2009; Paerl et al. 

2016; McCormick et al. 2019).  Therefore, to address excess algal production in drinking water 

sources, remediation efforts typically focus on external loading of nutrients from the watershed 

or point sources (e.g. best management practices, total maximum daily load development, 

effluent limitations, etc.), and efforts often address inputs of both N and P (Carey and Migliaccio 

2009; Chaubey et al. 2010; Shenk and Linker 2013).  However, internal loading of nutrients, 

specifically P, can lead to continued algal production and source water degradation even when 

external nutrients are reduced (Doig et al. 2017; Lasater and Haggard 2017; Radbourne et al. 

2019).  While P concentrations in the bottom sediments ultimately originate from external 

nutrient sources, legacy P can be released back into the water column through various processes 

including wind resuspension (Kristensen et al. 1992), reductive dissolution (Mortimer 1942), 

organic matter mineralization (Anderson and Jensen 1992) and equilibrium P concentrations 

(EPC) (Haggard and Soerens 2006; Belmont et al. 2009). 

 Aluminum sulfate (alum, Al2(SO4)3) treatments have been used for decades to control the 

release of P from bottom sediments in lakes and reservoirs (Kennedy and Cooke 1982; Smeltzer 

1990; Cooke et al. 1993; Lewandowski et al. 2003b; Huser et al. 2016b). Through hydrolysis, 
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alum produces aluminum (Al) hydroxide flocs that immobilize dissolved and particulate P and 

settle onto the bottom sediments (Cooke et al. 1993).  Several studies have observed significant 

reductions in water column P concentrations, sediment P release rates, and abundance of algae 

with the use of alum (Smeltzer 1990; Welch and Cooke 1999; Steinman et al. 2004; Huser et al. 

2011).  Longevity of alum treatments have varied from less than a year up to 45 years (Huser et 

al. 2016c).  Sodium aluminate (NaAl(OH)4) is often applied with alum to maintain pH, since the 

hydrolysis of alum can result in a pH reduction (Smeltzer 1990; Cooke et al. 2005). 

The purpose of this study is to measure and analyze sediment P flux at Quarry Island 

Cove at Lake Wister, Oklahoma, before and after alum/NaAl(OH)4 treatments (hereafter, alum 

treatments).  The goal is to determine whether alum treatments are providing an effective remedy 

to reduce internal P loading.  We hypothesize that sediment P release rates will be greater under 

anaerobic conditions compared to aerobic, and that rates will be greater before the alum 

treatments compared to after.  Additionally, we hypothesize P release rates will decrease over 

time due to repeated alum treatments. 

Study Site Description 

 Lake Wister is an impoundment on the Poteau River and the Fourche Maline Creek in 

eastern Oklahoma (Figure 1), covering approximately 29.5 km2.  The US Army Corps of 

Engineers (USACE) started dam construction in 1946, and the reservoir was completed and 

operational by 1949.  Lake Wister has an average depth of 2 m and maximum depth of 15 m, and 

is an important reservoir for drinking water supply, recreation, fishing and waterfowl hunting for 

residents and tourists around eastern Oklahoma.  Lake Wister is listed on Oklahoma’s 303(d) list 

for chlorophyll-a, pH, total phosphorus (TP), turbidity and mercury (ODEQ 2020).  To address 

these water quality concerns, the Poteau Valley Improvement Agency (PVIA) developed an 
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improvement strategy in 2009, which breaks down restoration into three zones including the 

watershed, the full lake, and Quarry Island Cove.  Quarry Island Cove is at the northeast corner 

of Lake Wister (Figure 1), and the intake for the PVIA water treatment plant, which distributes 

drinking water to over 40,000 people in rural Oklahoma, is within the cove. 

 
 

Figure 1: Lake Wister in Oklahoma; Quarry Island Cove is on the north shore of Lake Wister.  

 

Historically high algal and cyanobacteria counts in Quarry Island Cove have led to 

difficult and costly treatment for PVIA, as well as produced disinfectant by-products.  In 2013, 

monthly sampling showed cyanobacteria counts exceeding 100,000 cells mL-1 across seven of 

the 12 months (PVIA 2014).  Additionally, sediment-water cores collected in July of 2009 

showed sediment P release rates up to 3.30 mg m-2 day-1 under anaerobic conditions (Haggard et 

al. 2012), which could be contributing to algal blooms in this drinking water source.  Over the 

last several years, the PVIA has been working to treat Quarry Island Cove, in efforts to inactivate 

P in the surface water and sediments and to prevent excessive algal growth (PVIA 2014).    
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Methods 

The PVIA treated the Quarry Island Cove with alum and NaAl(OH)4 at a rate of 284 mg 

m-2 alum and 97 mg m-2 NaAl(OH)4 on August 4th and 5th, 2014, July 16th and 27th, 2016, July 

27th and 28th, 2017, July 24th and 25th, 2018, and July 30th and 31st, 2019.  The treatment was 

conducted by spraying the alum treatment solution on the surface of the water, allowing the Al 

hydroxide flocs to settle on the bottom and P to co-precipitate and/or absorb to Al hydroxides 

formed in the lake water.  The NaAl(OH)4 provided a buffer to maintain pH in the cove, as well 

as provided additional Al. 

Sediment-water cores were collected from Quarry Island Cove on the north shore of Lake 

Wister (34.947237, -94.723735) before and after alum treatment most years (Figure 1).  In 2014, 

cores were collected on July 31st and August 5th; in 2016, cores were collected on July 21st and 

August 3rd.  In 2017, cores were collected approximately one month after (and not before) the 

cove was treated with alum (on September 11th, 2017).  In 2018, cores were collected on July 

16th and August 3rd, and to analyze the impacted of delayed sampling in 2017, cores were 

collected one month after alum treatment on September 14th, 2018.  In 2019, similar to 2018, 

cores were collected on July 12th, August 6th, and September 9th.  The final round of cores were 

collected on July 27, 2020 to analyze P release rates a year after the last treatment in 2019.   

Eight cores were collected on each sampling date using Plexiglas tubes (0.6 m long and 

7.9 cm inner diameter) inserted approximately 0.3 m into the sediment with a UWITEC corer.  

Rubber stoppers were placed on the top of the cores, and caps placed on the bottom end.  

Properly collected cores had relatively undisturbed sediment and clear overlying water.  
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 Upon return to the laboratory, the depth of the overlying water was adjusted so that each 

core contained 1 L of water.  The cores were then wrapped in Al foil to exclude light and 

incubated at room temperature (approximately 22°C) for 10 days.  All cores were bubbled with 

air overnight, then half of the cores were incubated under anaerobic conditions (bubbled with N2) 

and the other half under aerobic conditions (bubbled with air) for the duration of the experiment.  

Bubbling with N2 gas purges the dissolved oxygen (O2) from the water column and prevents O2 

from diffusing into the water due to positive pressure.  Light exclusion in all the cores limits 

algal growth and uptake of labile P. 

In 2014, an additional experiment was conducted on each core collected on July 31st 

(prior to treating the cove with Al).  After approximately 2 weeks of initial incubation, alum and 

NaAl(OH)4 were added to each core and incubated an additional 15 days under existing aerobic 

and anaerobic conditions.  Alum treatment rates to the cores were equal to the in-cove treatments 

on August 5th (284 mg m-2 alum and 97 mg m-2 NaAl(OH)4).   

 Throughout incubation, water samples were removed from the overlying water of each 

core at 1 to 3 day intervals.  The water was filtered (0.45 µm), acidified using concentrated 

H2SO4, and analyzed for soluble reactive P (SRP) using the automated ascorbic acid reduction 

technique (APHA, 2005).  The overlying water in the cores was maintained at 1 L by adding 

filtered (0.45 µm) water collected from Lake Wister with a measured SRP concentration.   

Sediment P release rates were calculated as changes in P mass in the overlying water as a 

function of incubation time (mg d-1), divided by the inside area of the sediment-water cores (mg 

m-2 d-1).  The P mass in the overlying water was corrected for water removal and addition 

throughout the duration of the experiment.  A two-way analysis of variance (ANOVA) was used 

to analyze the 2014 data, to determine whether release rates were different under aerobic and 
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anaerobic conditions, and before and after alum treatment in the cores and in the cove.  For all 

years of data, a mixed effect model for split plot design was used to analyze differences in P 

fluxes under aerobic and anaerobic conditions, and before, one week after and one month after 

alum treatments in the cove.  The mixed effect model was chosen to account for the fixed effects 

of sample dates and random variation P flux measurements.  To understand changes in P fluxes 

over time, P flux from cores collected in July of each year were compared using the Kruskall-

wallis test.  All comparisons used an alpha of 0.05. 

Results 

Alum Treatment Experiment in Cores and Cove in 2014 

After one night of aeration, SRP concentrations in the overlying water of all cores ranged 

from 0.007 to 0.012 mg L-1. Cores under anaerobic conditions reached an average SRP 

concentration of 0.285 mg L-1 on August 18th (i.e., after 18 days of incubation), while cores 

under aerobic conditions reached an average of 0.038 mg L-1 SRP.  SRP concentrations in the 

overlying water of anaerobic cores reached a plateau after approximately eight days of 

incubation.  However, SRP concentration in one core plateaued from days 5 to 12, and began to 

increase again until August 18th (Figure 2).   

The slope of SRP mass for anaerobic cores was greater compared to aerobic cores (Figure 

2).  The average P flux was 6.56 mg m-2 day-1 (range = 5.03 – 7.51 mg m-2 day-1) for anaerobic 

cores, and 0.35 mg m-2 day-1 (range = 0.00 – 0.57 mg m-2 day-1) for aerobic cores (Figure 2), and 

the average P flux under anaerobic conditions was significantly greater than aerobic conditions 

(p < 0.001).   
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Figure 2: Soluble reactive phosphorus (SRP) mass in overlying water over time in cores 

collected on July 31st, 2014. Aluminum sulfate and sodium aluminate (alum addition) was added 
to the cores at equal rates to Quarry Island Cove on August 18th.  Average P fluxes for the 

anaerobic and anaerobic cores are shown above the lines.  Average P flux after the alum addition 
was not significantly different than zero under both aerobic and anaerobic conditions. 

 

Following the alum treatment within the cores, SRP concentrations in the overlying water 

decreased dramatically to a range of 0.003 to 0.004 mg L-1 across anaerobic and aerobic cores.  

After 15 more days of incubation, the average SRP concentration in the overlying water was 

0.002 and <0.001 mg L-1 for cores under anaerobic and aerobic conditions, respectively.  The P 

flux for all cores was 0.00 mg m-2 day-1 (Figure 2), and the P fluxes under both conditions were 

not significantly different than the P fluxes of aerobic cores prior to alum treatment.     

Following the first alum treatment in Quarry Island Cove, another set of cores were 

collected from Lake Wister.  After one night of aeration, initial SRP concentrations in the 

overlying water of all cores ranged from 0.011 to 0.021 mg L-1.  SRP concentrations in the 

overlying water of the anaerobic cores reached an average of 0.033 mg L-1, while SRP 

concentrations in the overlying water of the aerobic cores reached an average of 0.016 mg L-1 

SRP.  Cores under anaerobic conditions had an average P flux of 0.41 mg m-2 day-2 (range = 0.00 
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– 0.94 mg m-2 day-2), and P fluxes under aerobic conditions were not significantly different than 

anaerobic conditions, with all cores showing no measurable release of P (e.g., 0.00 mg m-2 

day- 1).   

Sediment P Fluxes in Quarry Island Cover over Time 

Combing all years of P flux measurements, including P fluxes measured in 2010 

(Haggard et al. 2012), P fluxes were significantly greater under anaerobic (average = 5.12 mg 

m- 2 day-2) compared to aerobic (average = 0.39 mg m-2 day-2, Figure 3A).  Under aerobic 

conditions, no significant changes occurred in P fluxes before or after alum treatment, and all P 

fluxes were less than 1.47 mg m-2 day-2 (Figure 3B).  Under anaerobic conditions, the average P 

flux one week before alum treatments was 8.01 mg m-2 day-2, and was significantly greater than 

P fluxes one week and one month after alum treatments (average = 1.87 mg m-2 day-2 and 4.02 

mg m-2 day-2, respectively; Figure 3C).   
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Figure 3.  All sediment phosphorus (P) fluxes measured under aerobic and anaerobic conditions 
(A). Sediment P fluxes one week before, one week after, and one month after alum treatments 
under aerobic (B) and anaerobic conditions (C).  Different letters indicate statistically different 

means (p < 0.05). 

 

In July 2016, two years after the first alum treatment, the average P flux under anaerobic 

conditions was 15.8 mg m-2 day-2 (range = 12.9 – 19.7 mg m-2 day-2), and was the largest 

magnitude of P fluxes measured in this study (Figure 4).  P fluxes under aerobic conditions were 

significantly less, with an average of 0.66 mg m-2 day-2 (range = 0.00 – 1.41 mg m-2 day-2).  One 

week after the second alum treatment, the average P fluxes under anaerobic and aerobic 

conditions decreased to 3.63 mg m-2 day-2 (range = 2.70 – 4.60 mg m-2 day-2), and 0.29 mg m-2 

day-2 (range = -0.32 – 1.47 mg m-2 day-2), respectively. 
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Figure 4: Average sediment phosphorus (P) fluxes ± standard deviation under aerobic (top panel) 

and anaerobic (right panel) conditions each year of sample collection.  Vertical dotted lines 

indicate timing of alum treatment, and 2010 estimates of P fluxes are from Haggard et al., 2012.  

 

In September 2017, P fluxes were measured from cores collected one month after the 

third alum treatment.  Under anaerobic conditions, the average P flux was 7.22 mg m-2 day-2 

(range = 5.91 – 9.52 mg m-2 day-2). P fluxes under aerobic conditions were significant ly less, 

with an average of 0.28 mg m-2 day-2 (range = 0.00 – 0.57 mg m-2 day-2, Figure 3). 

In July 2018, a year after the third alum treatment, average P fluxes under anaerobic 

conditions were slightly less (average = 6.32 mg m-2 day-2; range = 4.71 – 8.00 mg m-2 day-2) 

than fluxes measured one month after the third alum treatment.  A week following the fourth 

alum treatment in 2018, P fluxes under anaerobic conditions decreased to an average of 2.17 mg 

m-2 day-2 (range = 1.74 – 2.88 mg m-2 day-2).  However, P fluxes measured one month after the 

fourth alum treatment increased to an average of 3.35 mg m-2 day-2 (range = 0.95 – 5.31 mg m-2 

day-2).  P fluxes under aerobic conditions were significantly less than anaerobic conditions with 

an average of 0.15 mg m-2 day-2 (range = 0.00 – 0.38 mg m-2 day-2), 0.15 mg m-2 day-2 (range = 
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0.00 – 0.37 mg m-2 day-2), and -0.06 mg m-2 day-2 (range = -0.14 – 0.00 mg m-2 day-2), the week 

before, week after, and a month after, respectively (Figure 4). 

In July 2019, a year after the fourth alum treatment, the average P flux under anaerobic 

conditions increased to 11.2 mg m-2 day-2 (range = 9.26 – 14.6 mg m-2 day-2).  Similar to years 

prior, a week after the alum treatment in 2019, P fluxes decreased to an average of 3.48 mg m-2 

day-2 (range = 0.00 – 8.56 mg m-2 day-2).  One month after the fifth alum treatment, the average P 

flux decreased to 2.15 mg m-2 day-2 (range = 1.15 – 3.74 mg m-2 day-2).  Again P fluxes under 

aerobic conditions were significantly less than anaerobic conditions with an average of -0.29 mg 

m-2 day-2 (range = -0.83 – 0.00 mg m-2 day-2), 0.38 mg m-2 day-2 (range = 0.11 – 0.69 mg m-2 

day- 2), and 0.07 mg m-2 day-2 (range = 0.00 – 0.26 mg m-2 day-2), the week before, week after, 

and a month after, respectively (Figure 4). 

In July 2020, a year after the fifth and final alum treatment in Quarry Island Cove, the 

average P flux under anaerobic conditions increased slightly to 3.32 mg m-2 day-2 (range = 1.53 – 

4.57 mg m-2 day-2).  P fluxes under aerobic conditions were significantly less, with an average of 

1.55 mg m-2 day-2 (range = 0.13 – 4.35 mg m-2 day-2, Figure 4). 

 To determine whether P fluxes decreased after five alum treatments, sediment P fluxes 

measured in July of each year were compared.  Under aerobic conditions, no significant changes 

in P fluxes occurred over time.  However, under anaerobic conditions, average P fluxes increased 

from 2010 to 2016, and decreased after 2016 (Figure 5).  While P fluxes in 2020 are significantly 

less than that in 2016, 2020 P fluxes are not significantly different than P fluxes measured in 

2010 and 2014 prior to any alum treatments. 
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Figure 5: Sediment phosphorus (P) fluxes under anaerobic conditions from July each year of 

sample collections. Different letters indicate significantly different means (p < 0.05). 

 

Discussion 

 In 2010, prior to any alum treatments in Quarry Island Cove, the average P flux 

under aerobic conditions was 1.13 mg m-2 day-2 (Haggard et al. 2012).  In 2014, a week before 

the first alum treatment of Quarry Island Cove, P fluxes under aerobic conditions were even less, 

with an average of 0.35 mg m-2 day-2.  Sediment P fluxes did not significantly change under 

aerobic conditions following the alum treatment in 2014, or any year after (Figure 3).  Therefore, 

no effect of alum treatment was observed on P fluxes under aerobic conditions throughout the 

duration of this study.  Additionally, P fluxes were relatively low throughout the study (<0.00 to 

1.47 mg m-2 day-2), and aerobic rates were on the lower end of P fluxes reported in North 

America for eutrophic and hypereutrophic reservoirs (<0.00 - 5.00 mg m-2 day-2) (Holdren and 

Armstrong 1980; James et al. 1995; Moore et al. 1998; Steinman et al. 2004; Haggard et al. 

2005a; Doig et al. 2017; Lasater and Haggard 2017; McCarty 2019). 
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Alum treatments have been used for decades in lake and reservoir management to control 

internal release of P (Kennedy and Cooke 1982; Kennedy et al. 1987; Lewandowski et al. 2003b; 

Huser et al. 2011).  When Al salts are added to water, hydrolysis occurs to produce Al 

hydroxides, which remove P by coagulation of particles, precipitation of AlPO4, and/or sorption 

of P to the Al hydroxide polymers (Recht and Ghassemi 1970; Cooke 1981).  Lab experiments 

involving alum treatments directly to sediment cores have resulted in reduced water column P 

concentrations and sediment P fluxes under both anaerobic and aerobic conditions (Steinman et 

al. 2004; Haggard et al. 2005a; Pilgrim et al. 2007).  In 2014, P flux was not measurable 

following alum treatment to the cores collected from Lake Wister, where P concentrations were 

less than 0.01 mg L-1 for the duration of the experiment (Figure 1).  While alum treatments in 

cores at the lab are often immediately effective, P concentrations are typically measured for less 

than 30 days following treatments.  In a study of Green Lake in Washington, sediment P release 

rates immediately decreased following alum treatment of sediment cores. However, P release 

rates began to increase again after 32 days of incubation (Degasperi et al. 2009), and release rates 

were nearly as high as the control by day 48.  Therefore, while short term benefits of in-core 

alum treatments have been observed, the longevity of alum treatments may not be adequately 

captured in many core incubation experiments.   

In 2010, prior to any alum treatments in Quarry Island Cove, P fluxes under anaerobic 

conditions ranged from 2.95 to 3.75 mg m-2 day-2, which were within the range of P fluxes 

measured in other regional reservoirs considered mesotrophic and eutrophic (Haggard et al. 

2012).  In 2014, P fluxes under anaerobic conditions measured one week prior to the first alum 

treatment exceeded those in 2010, ranging between 4.90 and 7.37 mg m-2 day-2.  Similar to the 

lab experiment conducted in 2014, the first alum treatment in Quarry Island Cove in 2014 
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successfully reduced P fluxes under anaerobic conditions (Figure 3).  However, in 2016, two 

years after the first alum treatment, P fluxes under anaerobic conditions were the greatest ever 

measured at Quarry Island Cove.  Across North America, anaerobic P fluxes in eutrophic lakes 

and reservoirs often range from 1 to 29 mg m-2 day-2 (Nurnberg 1988; Haggard et al. 2005a; 

Carter and Dzialowski 2012; Steinman and Ogdahl 2015; Doig et al. 2017; Lasater and Haggard 

2017), and P fluxes of 9 to 47 mg m-2 day-2 have been observed in hypereutrophic lakes and 

reservoirs (Nurnberg 1988; Auer et al. 1993; Penn et al. 2000; Carter and Dzialowski 2012).  

Thus, P fluxes at the cove in 2016 were within the range reported for eutrophic and 

hypereutrophic reservoirs, and it was apparent that the single alum treatment in 2014 did not 

reduce P fluxes in the long term. 

Each year where an alum treatment occurred, P fluxes under anaerobic conditions were 

reduced immediately following the alum treatment compared to prior to the treatment.  However, 

P fluxes typically increased when measured one or two years after the alum treatment.  In 2020, 

while P fluxes under anaerobic conditions increased only slightly compared to August 2019, P 

fluxes were similar to those measured in 2010, before the addition of any alum to the cove.  

Generally, P fluxes throughout the duration of the study increased to a maximum in 2016, then 

decreased back to original conditions in 2020.  Therefore, while short-term effectiveness of alum 

treatments was observed, five alum treatments across six years did not reduce P fluxes to less 

than original conditions.  

The longevity of alum treatments has been highly variable across studies, ranging from 

less than 1 year up to 45 years (Welch and Cooke 1999; Lewandowski et al. 2003b; Cooke et al. 

2005; Huser et al. 2011, 2016c; James 2017; Augustyniak et al. 2019; James and Bischoff 2019).  

In a study of 21 lakes across the United States, where alum treatments were successful, internal P 
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loads were reduced for 4 to 21 years for dimictic lakes and 5 to 11 years for polymictic lakes 

(Welch and Cooke 1999).  Of 114 lakes across the United States, Denmark, Germany and 

Sweden, the average alum treatment longevity was 21 years for deeper, stratified lakes and 5.7 

years for shallow, polymictic lakes (Huser et al. 2016c).   The reduced effectiveness of alum 

treatments (and consequential variability in longevity) is often attributed to insufficient alum 

dosages applied (Lewandowski et al. 2003b), saturation of alum flocs (James and Bischoff 

2019), and/or burial of alum flocs by incoming sediments (Welch and Cooke 1999).   

Quarry Island Cove was treated with five smaller doses of alum across several years, 

assuming the successive smaller doses would be more effective per quantity of material, due to 

covering over time by incoming fresh sediments (PVIA 2014). However, internal P fluxes were 

not less than initial conditions by the end of the five alum treatments.  In a similar study of 

hypereutrophic Lake Susser See in Germany, alum was added almost annually from 1977 to 

1992.  When sediment cores were collected between 1999 and 2002, P release rates were 

between 10 and 18.5 mg m-2 day-2, and there was no improvement to the trophic state of the lake.  

This was attributed to the small amount of alum added compared to external P loads 

(Lewandowski et al. 2003b).  Additionally, Cooke et al., 2005, suggests that multiple, small 

doses of alum would not reduce internal P fluxes as well as a single, large dose since the P 

remaining unfixed by alum each year would resettle and re-enrich the surface sediment layer, 

allowing for more internal loading of mobile P.   

In addition to internal P loadings, external sources from the watershed must be 

considered for effective lake and reservoir management (Welch and Jacoby 2001; Burger et al. 

2007; Steinman et al. 2007; Zamparas and Zacharias 2014) .  Several studies have suggested 

reduced effectiveness of alum treatments due to large amounts of P loads entering the waterbody 
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from the watershed, covering the alum floc on the bottom sediments and adding additional P to 

be released into the water column (Lewandowski et al. 2003b; James and Bischoff 2019).  

Impacts of external load reductions are often delayed due to the P accumulated in the sediments 

(Søndergaard et al. 2013); therefore, internal loads are addressed after external loads to 

accelerate lake/reservoir recovery. However, when internal sources are addressed before or 

without external sources, the attempt to reduce internal sources may be masked by external 

loading of P (Welch and Cooke 1999; Søndergaard et al. 2003; Haggard et al. 2012).   

Annual external loads of P and sediments were quantified from 1993 to 2020 for three 

major tributaries entering Lake Wister (Poteau River, Black Fork and Fourche Maline; Chapter 

2).  Between 2009 and 2020, annual external loads expressed a similar pattern to anaerobic P 

fluxes in Figure 4, where loads increased to a maximum in 2015 and 2016, then decreased again 

through 2018 (see Figure 5, adapted Lasater et al., 2021).  However, in 2019, external loads 

reached a similar magnitude to loads in 2015 and 2016.  Therefore, the high P fluxes observed in 

2016 may be attributed to the magnitude of P and sediment loads entering Lake Wister from the 

watershed in 2015 and 2016.  External loads were low in 2017, but increased again in 2018 and 

2019 (Figure 6).  Anaerobic sediment P fluxes measured in this study were maintained and even 

slightly decreased between 2018 and 2020 (Figure 5).  Therefore, the repetitive alum treatments 

to the cove may have helped maintain internal P loads through this time.  However, the lack of 

improvement in anaerobic P fluxes compared to initial conditions is likely attributed to large 

external loads of P and sediments entering Lake Wister and covering and/or saturating the alum 

floc in the cove. 
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Figure 6: Annual, external loads of total phosphorus (TP), soluble reactive phosphorus (SRP), 
and suspended sediment (SS) from the Black Fork, Fourche Maline and Poteau River entering 

Lake Wister between 2009 and 2020, adapted from Lasater et al., 2021. 

 

The average flux of TP entering Lake Wister from the watershed between 2010 and 2020 

was 0.17 mg m-2 day-1 (Lasater and Haggard 2021), while the average P flux from the sediments 

under anaerobic conditions was 5.25 mg m-2 day-1.  However, in terms of loads, P from the 

sediments was less due to the difference between lake and watershed area.  Total TP loads from 

the watershed between 2010 and 2020 was 1,580,291 kg, while total P load from these sediments 
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was 141,542 kg (using the average anaerobic P flux and assuming half of the lake area is 

anaerobic over the sediments about half of the time).  Therefore, about 8% of the total P load to 

Lake Wister between 2010 and 2020 was from the sediments, and internal P loads were less than 

1% of external loads, highlighting the need to address external loads to Lake Wister.  After 

significant reductions in external P loads, internal loads may dominate and respond more 

effectively to alum treatments (Wang et al. 2019).   

The largest magnitude of external P and sediment loads originate from the Poteau River 

(Figure 5). The Poteau River watershed in Arkansas has been listed as a priority watershed 

within the Arkansas Nonpoint Source Pollution Plan since 1998 (ANRC 2018), and several 

reaches of the Poteau River itself have been listed on the Arkansas 303(d) list for impairments 

from point and nonpoint sources (ADEQ 2018).  Therefore, several efforts to improve water 

quality on the Poteau River in Arkansas have been implemented, including limitations on 

municipal and industrial point sources and a total maximum daily load (TMDL) developed in 

2006.  Likely due to these efforts, flow-adjusted sediment and P concentrations have been 

significantly decreasing in the Poteau River since the early 1990’s (Chapter 1), which is positive 

for Lake Wister.  Adversely, flow-adjusted P concentrations in the Fourche Maline have been 

increasing and flow adjust sediments have not changed (Chapter 2). Ultimately, external loads 

entering Lake Wister are still likely contributing to internal P fluxes in Quarry Island Cove. With 

continued watershed management practices and more reductions in external P and sediment 

loads, the alum treatments would likely be more effective at reducing internal P loads and 

improving water quality in the cove.  

Conclusions 
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This study quantified sediment P fluxes under aerobic and anaerobic conditions in Quarry 

Island Cove of Lake Wister, Oklahoma, before and after alum treatments across 6 years.  

Combining all flux data throughout the study, anaerobic P fluxes were significantly greater than 

Aerobic P fluxes.  Aerobic sediment P fluxes were not significantly different after alum 

treatments, and the magnitude of P fluxes under aerobic conditions was relatively low throughout 

the duration of the study (< 1.47 mg m-2 day-2).  Under anaerobic conditions, alum treatments 

significantly decreased P fluxes on the short-term (i.e. 1 week after alum treatments). However, 

after 5 alum treatments across 6 years, sediment P fluxes under anaerobic conditions were not 

significantly different than prior to any alum treatments in 2010 and 2014.  Additionally, P 

fluxes under anaerobic conditions increased to a maximum of 15.8 mg m-2 day-2 in 2016, before 

decreasing back to initial conditions in 2020 (unlike our hypothesis).  The lack of overall 

improvement in anaerobic P fluxes over time is likely due to the magnitude of P and sediment 

loads entering Lake Wister from the Watershed.  Between 2010 and 2019, 92% of the total P 

loads to Lake Wister were from external sources.  Therefore, reductions in external loads prior or 

in addition to alum treatments would likely improve effectiveness and longevity of alum 

treatments for reducing sediment P fluxes.   
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Abstract 

Watershed models are widely used for prioritization of subwatersheds for watershed 

management.  The purpose of this report is to synthesize the literature related to subwatershed 

prioritization using watershed models, and to evaluate limitations and challenges in targeting 

subwatersheds using modeling techniques. Most often, watershed model predictions such as 

sediment yield, erosion rates, runoff and/or nutrient loads are placed into categories or ranked for 

subwatershed prioritization.  However, model calibration is often conducted at minimal sites on 

the large watershed scale and model outputs on the subwatershed scale or smaller are used for 

prioritization, but little data exists to validate the small-scale model outputs.  Additionally, model 

setup, calibration and methods chosen for manipulating model outputs can produce conflicting 

prioritization results.  Thus, it is important to define clear prioritization objectives and report 

techniques used in model setup and prioritization methods.  Future work is necessary in 

determining optimal methods for subwatershed prioritization and the ability of models to predict 

small-scale watershed data.   

 



 
 

83 

Introduction 

Of all water on the earth, less than 1% is accessible for human use, and the availability of 

this water is pertinent to human health, the environment and the economy (Jurkowski 2008).  

The increasing demand for water due to population growth, combined with anthropogenic 

impacts on water quantity and quality, all underline the need for sustainable management of 

water resources.  However, financial resources must be focused where needed to improve or 

maintain water quantity and quality. 

A watershed approach for managing water quality and quantity has been used since the 

1980s, focusing on an individual geo-hydrological unit to analyze and conserve the natural 

resources (USEPA 2008b).  With limitations in economic and human resources, there is a need 

to select priority watersheds for implementation of initial remediation efforts (Razavi Toosi and 

Samani 2017).  Watershed prioritization is a process of ranking sensitive watersheds for 

applications of management practices or restoration techniques, typically on the basis of sub-

watersheds within a larger watershed.   Sensitive watersheds can include areas where ecosystem 

services need to be protected, where soil erosion rates are high, or where degradation is caused 

by human disturbances (Malik and Bhat 2014; Fallah et al. 2016; Aguirre-Salado et al. 2017) 

The 1987 amendment to the Clean Water Act expanded the scope of water quality 

improvements to nonpoint source pollution from previously only addressing point sources 

(Copeland 2012).  This amendment required states to develop management plans and implement 

programs to reduce runoff from agricultural lands, construction sites and urban areas, resulting in 

an emphasis on best management practices (BMPs).  BMPs are commonly defined as any 

program, practice, design, or a combination of the latter, which prevent or mitigate nonpoint 

source pollution (NCFS 2017).  Several studies have analyzed the effectiveness of BMPs, 
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concluding their overall benefit in reducing pollutant loads and improving water quality (e.g. see 

Park et al. 1994; Arabi et al. 2006; Merriman et al. 2009; Rao et al. 2009).  The considerable 

amount of cost, labor and potential maintenance associated with implementing BMPs 

emphasizes the need to determine a selective approach for identifying smaller hydrological units 

and increasing the efficiency of management programs.  Watershed prioritization for 

implementation of BMPs has been carried out through a variety of methods (e.g. watershed 

modeling, multi-criteria decision making, morphometric analysis; Nooka Ratnam et al. 2005; 

Legge et al. 2013; Rahaman et al. 2015) using a number of different indicators (e.g. sediment 

yield, land use, socioeconomic factors; Javed et al. 2009; Newbold and Siikamaki 2009; Ayele et 

al. 2017).   

 The early literature for prioritizing watersheds focused on relatively simple physical 

characteristics of the watershed and water quality issues (Duda and Johnson 1985; Maas et al. 

1985; Young et al. 1989; Murray and von Gadow 1991).  Watershed characteristics generally 

consisted of runoff volume and soil erosion rates (Maas et al. 1985; Young et al. 1989; Murray 

and von Gadow 1991), and water quality concerns were related to areas with high nutrient 

transport (Duda and Johnson 1985; Maas et al. 1985; Young et al. 1989).  By the 1990s, 

watershed prioritization efforts began integrating remote sensing (RS) and geographic 

information systems (GIS) (Saha et al. 1992; Sharada et al. 1993; Biswas et al. 1999), powerful 

tools for delineation of sub-watersheds and analysis of geomorphometric properties (Farhan and 

Anaba 2016).  RS and GIS have developed into widely accepted techniques in watershed 

characterization and prioritization (Khan et al. 2001; Shrimali et al. 2001; Arun et al. 2005; 

Katiyar et al. 2006; Martin and Saha 2007; Fallah et al. 2016).   
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With increased understanding of hydrologic processes and nutrient dynamics, and the 

integration of RS and GIS, watershed modeling techniques have been increasingly used for 

subwatershed prioritization in the last couple of decades.  Therefore, the purpose of this report is 

to synthesize the literature related to subwatershed prioritization using watershed models, and to 

evaluate limitations and challenges in targeting subwatersheds using modeling techniques.  

Methods 

Studies regarding watershed prioritization using watershed modeling approaches, for the 

purpose of conservation activities or implementation of BMPs, will be synthesized.  To 

synthesize the current literature, web-based search engines will be used with keywords and 

phrases such as “watershed prioritization,” “subwatershed prioritization,” “prioritizing 

watersheds,” “hotspot prioritization,” “prioritizing erosion-prone areas,” “prioritizing critical 

source areas,” “priority management areas,” “watershed modeling,” and so on.  Web-based 

search engines such as ScienceDirect, Web of Science, and Google Scholar will be used.  

Literature will be confined to prioritization efforts directly related to watershed management 

planning (e.g. implementation of BMPs or conservation activities).   

Watershed Prioritization Techniques using Models 

Various models have been used for prioritizing subwatersheds within a larger watershed 

for management practices (Table 1).  Often times, models are calibrated and validated on the 

HUC-8 scale or larger, and then the calibrated models are used for predictions on the HUC-12/14 

scale or smaller.  Model predictions such as sediment yield, erosion rates, runoff and/or nutrient 

loads are then placed into categories or ranked for prioritization. For example, in the Damador 

catchment in India (10,878 km2), the Soil Water Assessment Tool (SWAT) was calibrated and 
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validated at four locations with watershed sizes between 21 and 95 km2, then runoff and 

sediment yield were predicted on the Hydrologic Response Unit (HRU) scale.  Sediment yield 

values for each HRU were then placed into predefined categories of slight (0-5 t ha-1 yr-1), 

moderate (5-10 t ha-1 yr-1), high (10-20 t ha-1 yr-1), very high (20-40 t ha-1 yr-1), and severe (40-80 

t ha-1 yr-1), then graphically displayed to show potential sources and priority areas (Kumar and 

Mishra 2015).   

Other prioritization methods from model outputs include: 

 Ranking soil loss, sediment yield, nutrient loads, and/or runoff for each 

subwatershed, placing into categories (e.g. low, medium, high), then graphically 

displaying results (Young et al. 1989; Tripathi et al. 2003; Kaur et al. 2004; 

Pandey et al. 2009; Robertson et al. 2009; Tibebe and Bewket 2010; Besalatpour 

et al. 2012; Saghafian et al. 2012; Mosbahi et al. 2013; Chen et al. 2014a; Sardar 

et al. 2014; Noor et al. 2016; Welde 2016; Ayele et al. 2017; Shivhare et al. 

2017) 

 Placing flow-weighted nutrient and sediment concentrations from subwatersheds 

into categories using percentile classifications, and graphically displaying the 

results (Pai et al. 2011b) 

 Estimating, ranking, and graphically displaying several subwatershed 

characteristics separately including sediment yield, runoff yield, sediment 

delivery ration, soil phosphorus, sediment-phosphorus index, and erosion 

tolerance index, and comparing high-risk areas of overlap among the parameters 

(Ghafari et al. 2017).  



 
 

87 

 Combining multiple model outputs.  For example, combining the sediment 

delivery and erosion risk from the High Impact Targeting (HIT) model, 

infiltration and groundwater recharge from SWAT, and the sensitivity of 

groundwater withdrawal from Michigan’s Water Withdrawal Assessment Tool 

(WWAT).  Then a knowledge-based weighting system is applied to combine 

model outputs with categorical criteria (e.g. opportunity for implementing 

conservation practices, connectivity to main stream, etc.) to calculate priority 

values for each subwatershed (Legge et al. 2013) 

 Combining sediment and/or nutrient load estimations with other qualitative 

parameters (e.g. community support for conservation, stakeholder value, 

implementation costs of management practices, land availability, watershed 

attributes, etc.) to develop a composite criterion, which is then ranked, separated 

into classes, and graphically displayed (Shriver and Randhir 2006; Jang et al. 

2013, 2015). 

 Combining with morphometric analysis and/or land use/land cover (LULC) 

analysis (Ajay et al. 2014; Shivhare et al. 2017). 

 Using multi-criteria decision making (MCDM) techniques with various 

aforementioned prioritization methods (Chung and Lee 2009; Gopinath et al. 

2016). 

Challenges of Watershed Models for Prioritization 

Often times, studies graphically display prioritization results from two or more 

parameters, but do not further discuss the final prioritization of subwatersheds (e.g. see Kaur et 

al. 2004; Pai et al. 2011a; Ghafari et al. 2017).  One subwatershed may be high priority for one 
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parameter but low priority for another parameter, but a final weighted prioritization may not be 

established.  To determine the final ranking of subwatersheds in these situations, it may be useful 

to develop an overall compound parameter or develop other techniques to better account for 

differences in prioritization across multiple target parameters.    

Pai et al. 2011b discussed an important consideration when using stream reach outputs 

from watershed models.  Downstream subwatersheds can express higher priority due to load 

accumulation, and this must be adjusted for when ranking subwatersheds for prioritization.  For 

example, a study in the Pocono Creek Watershed in Pennsylvania, subwatersheds were 

prioritized using SWAT for flow concerns (i.e. flood hazard and decreased base flow) (Kalin and 

Hantush 2009).  The authors noted that the geographical proximately of a subwatershed to the 

watershed outlet affected their prioritization results, and this was visually seen in the priority 

maps.  The bias identified by the authors of this study must be accounted for in all prioritization 

efforts, since the ultimate goal is to analyze the individual contribution of subwatershed based on 

management activities, LULC changes, water quality changes, etc., and not the spatial location 

within the larger watershed.  Pai et al. 2011b addressed this bias by subtracting the nutrient and 

sediment loads from upstream subwatersheds to determine individual subwatershed 

contributions.  

 Only a few studies have reported the inclusion of point source contributions in watershed 

prioritization (Randhir et al. 2001; Saraswat et al. 2009; Pai et al. 2011b).  However, the lack of 

point source information can cause subwatershed priorities to deviate from typical land-use 

relationships (e.g., a high priority subwatershed that is primarily forested) (Pai et al. 2011a), and 

underestimate areas with large nonpoint source contributions.  The incorporation of point source 
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data can help to better define small-scale pollution sources and improve precision of watershed 

modeling and prioritization techniques (Robertson et al. 2009). 

More often than not, watershed models are calibrated and/or validated at the larger-scale 

watershed, and are then used to predict parameters at the subwatershed scale (or smaller) where 

prioritization is conducted (e.g. see Table 1).  However, there is no validation of the model 

predicted results at the smaller scale.  This is challenging, since data are not always available at 

all (or any) subwatershed outlets to validate the model results.  This may cause difficulty in 

convincing watershed managers and stakeholders to act on model-generated prioritization results 

(Pai et al. 2011b).  Potential solutions include generating small-scale data in order to 

calibrate/validate the model, or using other surrogate methods to validate the identified priority 

subwatersheds.  For example, Pai et al. 2011b analyzed relationships between model generated 

subwatershed pollutant concentrations and the subwatershed’s percentage of forest and pasture 

acreage.  A positive relationship was identified between pollutant concentration and pasture 

acreage, while a negative relationship was identified between pollutant concentration and forest 

acreage.  This was consistent with expectations, and provided a simple way to validate the 

subwatershed prioritization (Pai et al. 2011a).   

While the use of additional information or surrogate methods would strengthen 

prioritization results, watershed models can still provide valuable insight into watershed 

behaviors and changes, and help identify priority areas of concern.  Priority subwatersheds were 

compared between a calibrated and uncalibrated SWAT model in the Saugahatchee Creek and 

Magnolia River watersheds in Alabama, and the Zrebar Lake watershed in Iran (Niraula et al. 

2012; Imani et al. 2019).  Priority areas were similar between calibrated and uncalibrated models 

across all sites, and non-matching areas were typically lower priority.  However, all SWAT 
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models were calibrated and validated at the watershed outlet, and Niraula et al. 2012 suggests the 

results may change if the models are calibrated at various locations within the watershed, and 

further studies are necessary. 

On a few occurrences, watershed models were calibrated with one or more parameters, 

but different parameter(s) were used for prioritization (Shriver and Randhir 2006; Chung and 

Lee 2009; Tibebe and Bewket 2010; Mosbahi et al. 2013; Chen et al. 2014a; Xu et al. 2016).  In 

these cases, the model was typically calibrated and validated with flow and sediment yields, but 

then nutrient outputs were used for prioritization. Similar to calibration/prioritization scale 

differences, it is difficult to assume acceptable model performances when calibration/validation 

data are not available.   Therefore, caution must be taken when prioritizing subwatershed with 

parameters that have not been calibrated.   

Few studies have compared prioritization results from watershed models with other 

prioritization techniques (e.g., LULC analyses, morphometric analyses, and MCDM).  In the 

Nagwan watershed in India, sediment yield generated from SWAT was used to prioritize 

subwatersheds and compared to priority subwatersheds determined from a subjective model 

based on erosivity determinants (e.g., slope, soil type, LULC, etc.).  The subjective model 

produced reverse priorities for 67-93% of the subwatersheds, and the SWAT generated results 

were considered to be superior due to its ability to account for the impact of landuse and soil 

types on runoff and erosion (Kaur et al. 2004).  In the Kangsabati basin in India, SWAT model 

outputs were used to validate four different MCDM techniques (i.e., VIKOR, TOPSIS, SAW, 

and CF).  Priority subwatersheds identified by SWAT agreed best with priority subwatersheds 

from VIKOR, but differed from results generated by TOPSIS, SAW, and CF, likely due to 

assumptions made in weight assignments for variables (Bhattacharya et al. 2020). However, 



 
 

91 

again SWAT models in both aforementioned studies were only calibrated and validated at the 

watershed outlet (Table 1), making it difficult to justify the subwatershed model outputs.    

The setup, calibration and validation of watershed models can vary greatly across studies, 

leading to variable outputs and results.  This was evident when four independently developed 

SWAT models and a SPARROW model were compared for identification of priority areas in the 

Maumee River watershed in the U.S (Evenson et al. 2021).  Most often, the models disagreed 

regarding priority areas, with only between 16 and 46% of subwatersheds being identified as 

priority in more than one model. The authors suggest that identification of priority areas using 

watershed models would benefit from comprehensive uncertainty analyses. This was consistent 

with a study in the Saugahatchee Creek watershed in Alabama, where SWAT and the 

Generalized Watershed Loading Function (GWLF) produced varied priority subwatersheds 

(though not as pronounced as Evensen et al. 2021) (Niraula et al. 2013).  Additionally, in the 

Xiangxi River watershed in China, priority areas differed across SWAT models developed with 

different DEMs, and in the Mississippi/Atchafalaya River Basin in the U.S., priority areas varied 

with SPARROW model parametrization (Robertson et al. 2009).   

In the Gully Creek Watershed in Canada, SWAT was compared to the event-based 

Agriculture Non-Point Source (AGNPS) pollution model for identifying priority areas and 

seasons for sediment and P loading.  Both models agreed that summer did not constitute a “hot-

moment” for sediment and P, but SWAT identified winter and AGNPS identified spring as hot-

moments for sediment and P.  This study identifies the need for including seasonal variations in 

priority areas (Shrestha et al. 2021).   

 Even with a well calibrated/validated watershed model, the method chosen for 

manipulating model outputs and determining priority subwatersheds can produce variable 
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results.  For example, in the Saginaw River watershed in Michigan, SWAT model outputs were 

used to compare four methods for targeting priority subwatersheds, 1) the concentration impact 

index (CII), 2) Load Impact Index (LII), 3) Load per Subbasin Area Index (LPSAI), and 4), Load 

per Unit Area Index (LPUAI) (Giri et al. 2012).  The CII and LII methods identify priority areas 

based on pollutant concentration and pollutant loads, respectively, in the subwatershed reaches 

(including upstream watersheds).  The LPSAI method identifies priority areas based on the 

pollution load for each subbasin, while the LPUAI is based on the average pollutant load per unit 

area. These different targeting techniques identified different areas for high, medium, and low 

priority, and based on simulated BMP implementation, various targeting techniques were better 

at reducing various constituent loads of interest.  Therefore, clear objectives for prioritization 

must be identified (e.g., reducing nitrogen loads), so the appropriate targeting method will be 

selected. 

  A drawback of using watershed models for subwatershed prioritization is the complexity 

and quantity of data required, which may not be practical in data scarce areas (Aher et al. 2014).  

In this case, other prioritization techniques may need to be explored such as morphometric 

analyses, land use/land cover analyses, MCDM, or a combination of methods.  However, in the 

hydrologic community, there is an ongoing debate on the use of simple or detailed index-based 

methods for prioritization, or complex watershed models (Rudra et al. 2020).  Thus, continued 

research on optimal prioritization techniques is necessary.  

Conclusions 

 Watershed models are widely used for prioritization of subwatersheds for watershed 

management.  However, model calibration is often conducted at minimal sites on the large 

watershed scale and model outputs on the subwatershed scale or smaller are used for 
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prioritization, but little data exists to validate the small-scale model outputs.  The use of 

additional information or surrogate methods would likely strengthen prioritization results.  

Additionally, model setup, calibration and methods chosen for manipulating model outputs can 

produce variable prioritization results.  Thus, it is important to define clear prioritization 

objectives and report techniques used in model setup and prioritization methods.  Future work is 

necessary in determining optimal methods for subwatershed prioritization and the ability of 

models to predict small-scale watershed data.   
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Table 1: Watershed models used for subwatershed prioritization, country the study was conducted, total watershed size, scale of calibration and validation, number of sites for 

calibration and validation, parameters used for calibration, scale of subwatershed prioritization, parameters used for prioritization and citations.  For the priority scale, values with 

~ are average values based on the total watershed size and the number of delineated subwatersheds.  If the scale or number of sites used for calibration and validation were not 

discussed in the study, it is listed as “Unknown.”  SY= Sediment Yield, TP= Total Phosphorus, TN= Total Nitrogen, Q= Flow/Runoff, SL= Sediment Loads, SS=Suspended 

Solids, GW= Groundwater, ST=Soil Type, LC= Land Cover. 

Model(s) Country Watershed Size (km2) 
Calibrated/Validated 

Scale  (km2) 

Calibration/ 

Validation 

Sites 

Calibration 
Parameter(s) 

Priority Scale (km2) 
Prioritization 
Parameter(s) 

Citation 

SWAT India 10,878 21 - 95 4 Q/SY HRU SY Kumar and Mishra, 2015 

SWAT/QUAL2kw China 2,027 Unknown  Unknown Unknown 80 Subwatersheds (~25) TP Loads Chen et al. 2014 

SWAT Iran 1,560 1,560 1 Q/Sediment 144 Subwatersheds (~10) Q/SY Ghafari et al. 2017 

HCT and 

Benefit/Cost Model United States 320 None None None 20 Subwatersheds (~16) ∆SL/$Invested Jang et al. 2013 

HCT and 

Benefit/Cost Model United States Southeast Ecoregion None None None HUC-8 ∆SL/$Invested Jang et al. 2015 

SWAT India 95.76 95.76 1 Q/SY 15 Subwatersheds (~6) SY Kaur et al 2004 

SWAT/HIT/WWAT  United States 1,156 

Subbasin (size 

unknown) 7 Q 15 Subwatersheds (~77) SY/GW/ST/LC Legge et al. 2013 

SWAT India 1,776 Unknown  1 Q/SY 15 Subwatersheds (8-300) SY Uniyal et al. 2020 

SWAT Algeria 24,000 Unknown  Unknown Q 27 Subwatersheds (0.3 - 229.5) SY Mosbahi et al. 2013 

SWAT China 10,200 10,200 1 Q/SY 24 Subbasins Q/SY Yu et al. 2021 

SWAT China 3,099 None None None 27 Subbasins TN/TP Xu et al. 2016 

SWAT United States 17,000 17,000 1 Q/SY/NL 252 HUC-12 Subwatersheds Q/TSS/TN/TP Evenson et al. 2021 

SPARROW United States 17,000 Unknown  
1,100 Stations 

in US Q/SY/NL 252 HUC-12 Subwatersheds Q/TSS/TN/TP Evenson et al. 2021 

SWAT/AGNPS Canada 14 Unknown  4 Q/SY/P Subwatersheds SY/P  Shrestha et al. 2021 

SWAT Iran 900 900 1 Q/SY 37 Subwatersheds (0.09 - 72) SY Noor et al 2016 

SWAT/GWLF United States 570 Unknown  1 Q/SY/NL Subwatersheds Q/TSS/TN/TP Niraula et al. 2013 

SWAT United States 1,960 HUC-12 and HUC-8 7 (7 Q, 3 WQ) Q/S/TP/NO3 28 Subwatersheds (HUC-12) S/TP/NO3 Pai et al. 2011 

SWAT India 6,293 ~30 - 5,300 4 Q/SY 202 Subwatersheds (~30) SY Sardar et al. 2014 

SWAT 

India, China, 

Nepal 1,775 Unknown Unknown Unknown 17 Subwatersheds (~69) SY Shivhare et al. 2017 

SWAT United States 1,870 1,784 1 Q 209 Subwatersheds (~9) Q/SY/NL/Other Shriver et al. 2006 

SWAT Iran 5,560 Unknown  2 Q/SY/NL 32 Subwatersheds SY/TN/TP Babaei et al. 2019 

SWAT Ethiopia 15,000 Unknown  Unknown  Q Unknown  Q Worku et al. 2020 

GeoWEPP Turkey 170 Unknown  Unknown  Unknown  85 Subwatersheds SY Dutal and Reis 2020 

InVEST SDR Tunisia 720 Unknown 24 Reservoirs Sedimentation 17 Subwatersheds SY Bouguerra and Jebari 2017 

SWAT India 92.46 92.46 1 Q/SY/NL 

12 Subwatersheds (0.54 - 

17.23) SY/NL Tripathi et al. 2003 

SWAT Iran 830 830 1 Q/SY 26 Subbasins SY/N/P Raeisi et al. 2020 

SWAT Ethiopia 29,404 29,404 1 Q/SY 47 Subwatersheds (~625) SY Welde 2016 

SWAT Ethiopia 287 287 1 Q/SY 22 Subwatersheds (~13) SY Ayele et al. 2017 
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Table 1 (Cont.) 

WLP 

United 

States 906 Unknown  Unknown Unknown Uknown 

Pollutant Travel 

T ime/Other Randhir et al. 2001 

WEPP India 28 

28 (Not 

validated) 1 Q/SY 7 Subwatersheds (~4) SY Pandey et al. 2009 

SWAT Ethiopia 1,060 1,060 1 Q 

20 Subwatersheds 

(~53) SY Tibebe and Bewket 2010 

SWAT Iran 2,133 Uknown 1 Q 

55 Subwatersheds 

(~39) Q Besalatpour et al. 2012 

SPARROW 

United 

States 

Mississippi/Atchafalaya 

River Basin > 820 425 TN/TP HUC-8 TN/TP Robertson et al. 2009 

HSPF Korea 287 ~72 4 
Q/Climate 

Data 
11 Subwatersheds 

(~11) Q/TN/SS/TP/Other Chung and Lee 2009 

SWAT 

United 

States 43491 43491.00 4 Q/P/N HRU SY/P  White et al. 2009 

WERM India 995 Unknown  Unknown  Unknown  Unknown  Geomorphic Characteristics Panhalkar and Pawar 2011 

WEPP Iran 69 69 1 Q/SY 16 Subwatersheds Q/SY Saghafian et al. 2015 

SWAT 

United 

States 2,400 Unknown  3 Q/ST/P HRU SY/P  Busteed et al. 2009 

SWAT India 43,900 Uknown 4 Q/SY 57 Subwatersheds SY Pandey and Palmate 2019 

SWAT China 4426 2027 1 Q/SY/P ≤ 500 Pollutant Loads Wang et al. 2016 

HYSTAR 

United 

States 3.29 3.29 1 Weatger/Q Grids  Q Her and Heatwole, 2018 

TREX Japan 137 Unknown  2 Q/SY 

21 Subwatersheds (< 

13) Q/SY Wei et al. 2017 

SWAT India 2,656 Unknown  1 Q 

35 Subwatersheds (< 

190) Q/SY/LULC/Morphometric Parupalli et al. 2019 

SWAT 

United 

States 180 and 44.8 180 and 44.8 1 each Q/SY/TP/TN HRU Q/SY/TP/TN Niraula et al. 2012 

SWAT Kenya 9,500 Subwatershed 14 Q/SY HRU/Subwatershed SY Hunink et al. 2013 

SWAT 

United 

States 142 Unknown 1 Q/SY/N/P HRU SY/N/P Giri et al. 2016 

SWAT 
United 
States 22,260 6,060 1 Q/SY/TN/TP Subbasins SY/TN/TP Giri et al. 2012 

SWAT India 84,818 Subwatershed 3 Q/SY 23 Subwatersheds SY Dutta and Sen, 2018 

SWAT 

United 

States 6,300 Uknown Uknown Uknown 68 Subwatersheds N/P/Socioeconomic Data Keeler et al. 2019 

SWAT India 9,658 ~9,658 1 Q/SY 38 Subwatersheds SY Bhattacharya et al. 2020 

SWAT Iran 89 89 1 Q/TN/TP HRU Q/TN/TP Imani et at. 2019 

SWAT 

United 

States 3,105 

Subbasin (size 

unknown) 4 Q/P/SY HRU P Winchell et al. 2015 

SWAT Ethiopia 320 Uknown 1 Q 24 Subwatersheds SY Naqvi et al. 2019 

SWAT Iran 5,343 5,343 1 Q/TSS 

17 Subbasins (1 - 

792) Q/SY Saghafian et al. 2012 
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Constituent Loads in Small-Scale Watersheds 

A.L. Lasater1, M. O’Hare1, B.J. Austin2, E. Scott3, and B.E. Haggard1,2 

1Biological and Agricultural Engineering Department, University of Arkansas, Fayetteville, 

Arkansas 72701 
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Abstract 

Discharge monitoring stations are often costly and difficult to install, operate and 

maintain, especially in small streams.  The purpose of this study was to introduce a cost-efficient 

method for remotely monitoring streamflow in small-scale watersheds to provide continuous 

discharge measurements across multiple sites and flow conditions.  Within the Upper Poteau 

River Watershed (UPRW) in Arkansas, 12 sites were selected at bridge crossings near the 

outflow of HUC-12 or HUC-14 subwatersheds.  A HOBO water level logger was deployed at 

each site to obtain continuous stage records, and HOBO barometric pressure transducers were 

installed within 16 km of each sample site to account for fluctuations in atmospheric pressure.  

SonTek-IQ acoustic Doppler instruments were deployed to measure discharge during high flow 

events, and roving discharge monitoring stations were installed at each site to allow for easy 

rotation of the SonTek-IQs among sites between flood events.  Once roving discharge 

monitoring stations are installed at each site, one or more SonTek-IQ can be rotated among sites 

to capture high-flow discharge measurements; therefore, a SonTek-IQ is not required for every 

site of interest.  The high-flow data captured during SonTek-IQ deployment, and baseflow 

discharge measurements collected on a monthly basis, were used to develop rating curves with a 

combination of simple linear regression, locally weighted regression (LOESS), and Manning’s 
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equation. The rating curves well represented measured flows, with Nash-Sutcliffe efficiencies 

(NSE) ranging between 0.87 and 0.98.  Additionally, water quality samples were collected across 

the range of flow, and constituent loads were estimated using Generalized Additive Models 

(GAMs), where the best fit GAM was determined to be spline based smooth functions of 

streamflow (Q) and day of year (DOY).  Both instantaneous Q (Qi) and mean daily Q (Qd) well 

predicted constituent loads (NSEs > 0.87), and did not predict significantly different loads across 

sites (except site 14).  Therefore, both Qi and Qd were considered adequate for load estimation 

methods.  This method provides an opportunity to collect continuous records of flow across 

multiple, remote, small-scale watersheds, and in conjunction with constituent concentrations and 

load estimations, can be used to calibrate and validate watershed models. 

Introduction 

Earth’s freshwater resources are essential for human well-being, ecosystem services and 

economic activity.  While only representing a small fraction of the global water supply, 

freshwater provides sources for drinking water and irrigation, opportunities for sports and 

recreation, and habitat for over 100,000 plant and animal species (Aylward et al. 2005; Dudgeon 

et al. 2006).  Due to increasing population and land use changes, human activity has been a 

major influence on freshwater ecosystems (Sala et al. 2000; Dudgeon et al. 2006).  When 

combined with climate change impacts such as increasing temperatures and variations in 

hydrologic cycles, large amounts of stress are applied to freshwater quantity and quality 

(Jimenez Cisneros et al. 2014).  Therefore, efforts to monitor freshwater ecosystems are 

increasingly important for sustainable water management. 

 Regular, long-term streamflow data can be used to understand changes in hydrology and 

trends in natural disturbances (e.g. flooding and drought) in freshwater ecosystems (Dai and 
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Trenberth 2002; Erwin and Hamilton 2005; Haritashya et al. 2006; Peterson et al. 2013; Chen et 

al. 2014b).  This information can help to develop effective policy, allocate water supplies and 

assess the effectiveness of management practices.  For example, the Ecological Limits of 

Hydrologic Alteration (ELOHA) framework was developed by synthesizing decades of global 

streamflow data (Poff et al. 2010), and ELOHA is used to determine empirical relationships 

between flow alterations and ecological responses across streams.  This extensive streamflow 

database and framework has now been applied in numerous case studies to implement policy, 

manage flows, and achieve river condition goals (Martin et al. 2015; Solans and García de Jalón 

2016; Zhang et al. 2016; Stein et al. 2017). 

When nutrient and sediment concentrations are monitored in conjunction with 

streamflow, water quality trends can be evaluated adjusting for discharge (Hirsch et al. 1982; 

Helsel and Hirsch 1991), and constituent loads can be estimated (Cohn et al. 1989; Migliaccio et 

al. 2010a).  Constituent loads and streamflow measurements are important for calibrating and 

validating watershed and reservoir models (Silberstein 2006), which can be used to predict 

various water resource scenarios under the impact of environmental and management changes, as 

well as develop total maximum daily loads (TMDLs).  Watershed models help to establish 

watershed management plans and pollution prevention strategies (Erwin and Hamilton 2005), as 

well as identify priority areas of concern within a watershed (e.g. see Tripathi et al. 2003; Pai et 

al. 2011; Welde 2016).   

Discharge monitoring stations are often costly and difficult to install, operate and 

maintain, especially in small streams.  Discharge estimations are typically conducted using the 

velocity-area method (i.e. velocity across the stream multiplied by the cross sectional area), 

where velocity is measured through various techniques including current meters, dilution 
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gauging or acoustic Doppler current profilers (Dobriyal et al. 2017).  However, velocity 

measurements are typically instantaneous and must be collected manually in the stream, which 

can be dangerous under some flow conditions or difficult in numerous, remote streams.  

Additionally, it can be difficult to ensure velocity measurements are representative of the entire 

flow profile of a given stream.  Discharge is sometimes estimated using hydrologic control 

structures (e.g. a weir or flume), where flow is calculated based on changes in flow depth 

(Turnipseed and Sauer 2010).  However, hydrologic control structures are impractical for 

monitoring numerous, small-scale streams across a watershed.   

Due to costs and feasibility associated with discharge estimations, monitoring data is 

often limited on small-scale streams and watersheds within the area of interest.  Therefore, 

watershed models are often used to predict constituent concentrations and flow conditions at 

small-scale streams, but data to validate these outputs are typically unavailable (Pai et al. 2011b; 

Welde 2016; Chapter 4).  The purpose of this study is to introduce a cost-efficient method for 

remotely monitoring streamflow and estimating constituent loads in small-scale watersheds by: 

 collecting continuous stage measurements using pressure transducers,  

 collecting continuous discharge measurements using roving discharge stations, 

 combining stage and discharge data to develop rating curves, and 

 using rating curves and constituent concentrations to estimate constituent loads. 

This monitoring method provides continuous discharge measurements across multiple streams 

and flow conditions.  The flow data, in conjunction with constituent concentrations and loads, 

can be used to calibrate and validate watershed models and evaluate water quantity and quality 

across small-scale watersheds were data is typically limited.  This method was implemented 
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across the Upper Poteau River Watershed (UPRW) in Arkansas, where non-point source 

pollution is an increasing concern, and identification of priority subwatersheds (i.e. small-scale 

pollution sources) is imperative (ANRC 2018).   

Methods 

Study Site Description 

The UPRW (HUC 11110105) occupies an area of 1,400 km2 in Arkansas (Figure 1). In 

2001, land use in the area was 60.0% forested, 6.3% urban, 25.9% agriculture, 3.7% grassland, 

and 0.8% open water (USGS 2001).  In 2016, forested area increased to 65.3%, agriculture area 

decreased to 21.9%, and urban area was 6.4%, grassland was 4.0%, and open water was 0.9% 

(USGS 2016).  The headwaters of the Poteau River begin near Waldron, Arkansas, and flow 

west into Oklahoma, near Loving, Oklahoma. The two main tributaries to the Poteau River 

within the UPRW in Arkansas are the Black Fork and the James Fork.  

The UPRW has been listed as a priority watershed within the Arkansas Nonpoint Source 

Pollution Plan since 1998, and has been a focus of trans-boundary water quality issues for the 

last several decades (ANRC 2018).  In 2017, this 1,400 km2 watershed contained over 350 

poultry farms and produced nearly 100 million birds (USDA 2017).  Portions of the Poteau River 

are listed on the Arkansas 303 (d) list for dissolved oxygen, turbidity, chlorides, sulfates and total 

dissolved solids (ADEQ 2018).  A TMDL was developed in 2006 for the Poteau River, which 

concluded a 35% reduction in total phosphorus (TP) from non-point sources was necessary for 

water quality protection (USEPA 2006).   

For this study, 12 sites were selected at bridge crossings near the outflow of HUC-12 or 

HUC-14 subwatersheds within the UPRW for implementing the streamflow monitoring 
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technique (Figure 1, Table 1). Sites were selected to represent a range of land use and baseflow 

water quality conditions.  Catchment land use ranged from 23 to 92.3% forested, 1.1 to 7.7% 

urban, and 0 to 61.4% agriculture (mostly pasture).  Barren land represented less than 1% of 

catchment area for all watersheds, and the remainder of the watershed areas were open water, 

shrubs, and grasslands (USGS 2016).  Catchment area ranged from 7 to 193 km2 across all sites 

(Table 1).  Additionally, the three U.S. Geological Survey (USGS) discharge monitoring stations 

in the UPRW were monitored for water quality parameters (Figure 1, Table 1).   

 
Figure 1: Monitoring sites in the Upper Poteau River Watershed in Arkansas.  Site numbers 

correspond to site ID’s in Table 1. 
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Table 1: Monitoring site ID’s (corresponding to Figure 1), names, locations, watershed areas, 
and land use in the area. 

1 % Forest (%F) includes deciduous, evergreen, and mixed forest; 2 % Urban (%U) includes open 
space, low, medium and high intensity development; 3 % Agriculture (%Ag) includes pasture, 
hay, and cultivated crops. *Indicates where a SonTek-IQ was deployed. 

 

Data Collection 

A HOBO water level logger (i.e., pressure transducer; Onset Computer Corporation, 

Bourne, Massachusetts) was deployed at each site (except USGS stations, Sites 1,8, and 14) in 

December 2017 to obtain continuous stage records, and HOBO barometric pressure transducers 

were installed within 16 km of each sample site to account for fluctuations in atmospheric 

pressure.  The HOBOs were installed and maintained according to standard operating procedures 

(OCC 2018), where the HOBO water level loggers were typically suspended within a polyvinyl 

Site 

ID  Site Name Lat N Long W 

Watershed 

Area (km2) %F1 %U2 %AG3 

James Fork Watershed- HUC 1111010508 

1 USGS 07249400- James Fork 35 09.755 94 24.424 381 50.3 4.8 40.8 

2 Prairie Creek 35 05.709 94 17.776 70 23.0 5.1 61.4 

3 Lower Cherokee Creek 35 04.839 94 16.013 80 45.1 6.0 46.4 

4 Cherokee Creek Headwaters* 35 01.379 94 16.985 14 84.5 1.1 9.4 

5 James Fork Headwaters* 35 01.984 94 19.315 39 84.7 1.2 8.9 

6 Lower James Fork* 35 02.820 94 20.302 95 69.9 3.5 18.3 

Lower Poteau River Watershed- HUC 1111010506 

7 Upper Sugar Loaf Creek 35 01.177 94 25.285 7 88.6 1.6 1.3 

Headwaters Poteau River Watershed- HUC 1111010501 

8 
USGS 07247000- Poteau 
River 

34 55.129 94 17.918 527 63.7 5.6 21.3 

9 Lower Poteau River* 34 55.666 94 10.124 193 51.6 7.7 32.0 

10 Poteau River Headwaters* 34 53.769 94 03.975 39 52.7 5.5 33.1 

11 Ross Creek* 34 51.647 94 11.910 77 71.8 4.6 13.9 

12 Upper Jones Creek* 34 51.895 94 12.835 73 84.8 2.7 2.2 

Black Fork Watershed- HUC 1111010502 

13 Haw Creek 34 47.257 94 30.924 62 90.3 1.8 1.1 

14 USGS 07247250- Black Fork 34 46.428 94 30.748 245 88.3 3.5 9.8 

15 Big Creek* 34 42.970 94 33.006 60 92.3 6.2 0.0 
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chloride (PVC) pipe attached to a bridge post, and atmospheric HOBOs were bound to trees 

outside of the stream channel (Figure 2A and 2B, respectively).  Sensors were set to record 

measurements on 15-minute intervals, and data were downloaded from the HOBOs on a monthly 

basis.   

 
Figure 2: A) Pressure transducer installation on a bridge post, B) atmospheric pressure transducer 

attached to a tree outside of floodplain, C) SonTek-IQ attached to concrete block in stream 
channel, D) SonTek-IQ in stream channel, and E) ammo can attached to tree outside of the flood 

plain to store battery. Photos by B.J. Austin and A.L Lasater, used with permission.  

 

SonTek-IQ acoustic Doppler instruments (SonTek/Xylem Inc., San Diego, California), 

were deployed to measure discharge during high flow events.  SonTek-IQs measure the velocity 

of water using the Doppler shift and internally calculate discharge once calibrated to the stream 

channel geometry.  Roving discharge monitoring stations were installed at each site to allow for 

easy rotation of the SonTek-IQs among sites between flood events.  Roving discharge 

monitoring stations include a concrete base staked into the streambed, a container to store the 

battery and wiring (e.g. an ammo can), and PVC pipe from the concrete base up the stream bank 
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and to the battery container (Figure 2 C-E).  The battery container is attached to a tree outside of 

the floodplain (Figure 2E).   

Once roving discharge monitoring stations are installed at each site, one or more SonTek-

IQ can be rotated among sites to capture high-flow discharge measurements; therefore, a 

SonTek-IQ is not required for every site of interest.  Rating curves can be developed for all sites 

using the high-flow data captured during SonTek-IQ deployment, and baseflow discharge 

measurements collected on a monthly basis using velocity-area methods, since the SonTek-IQ 

flow measurements are not reliable when water depths are less than 0.45 m (SonTek-IQ 2017). 

Water samples were collected across the range of discharge measurements (i.e., baseflow 

and stormflow) to estimate constituent loads.   Water samples were analyzed at the Arkansas 

Water Resources Center Water Quality Lab (AWRC WQL) for nitrate-nitrogen (NO3-N), 

chloride (Cl), fluoride (Fl), soluble reactive P (SRP), TP, total nitrogen (TN), total suspended 

solids (TSS), and sulfate (SO4
2-).  The equipment, methods and method detection limits for the 

certified AWRC lab are available online (AWRC 2021). 

Rating Curve Development 

Select data from the SonTek-IQs (peak flows, 75% of peak flows, and 50% of peak 

flows, on the rising and falling limbs) were combined with baseflow discharge measurements 

(e.g. using velocity-area methods) and the associated instantaneous stage to develop rating 

curves.  Rating curves were developed using simple linear regression, locally weighted 

regression (LOESS), and Manning’s equation.  Nonparametric LOESS regression was used to fit 

the range of measured flow and stage data with a sampling proportion of 0.5.  Below the range of 
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measured flow data, 2-point regression was applied to estimate low flows, and Manning’s 

equation was used for flow estimations above of the range of measured data (Equation 1):  

𝑄 = (
𝐾

𝑛
)𝐴𝑅

2
3√𝑆 

where Q is the flow (ft3/s), K is a constant equal to 1.49 ft1/3/s , n is the surface roughness 

(s/ft1/3), A is the cross-sectional area of flow (ft2), R is the hydraulic radius (ft), and S is the slope 

of the channel (ft/ft).   

To estimate A and R from Manning’s equation, an unsteady flow analysis was conducted 

in the Hydrologic Engineering Center’s River Analysis System (HEC-RAS) (USACE 2016).  

With inputs including the stream channel survey, LOESS rating curve data, and a stage 

hydrograph, the unsteady flow analysis computes the A and the wetted perimeter (WP) for a 

range of user defined depths.  The R at each depth is then computed as A divided by the WP.   

 The best fit model for each rating curve was evaluated using the root mean square error 

(RMSE), where the lower the RMSE, the better the rating curve.  To determine how well the 

observed data versus the simulated fits the 1:1 line, and to determine relative magnitude of the 

residual variance, the Nash-Sutcliffe efficiency (NSE) was calculated for each model.   An NSE 

of 1 indicates a perfect match of modelled data to observed data.  The rating curve was then used 

to develop a record of continuous, instantaneous flow on a 15-minute time interval. 

Constituent Load Estimations 

Generalized additive models (GAM), in the mgcv package in R (R Core Team 2016; 

Wood 2017), were applied for constituent load estimations using log transformed constituent 

concentrations, log transformed flow and day of year (DOY) to capture seasonality.  Three 
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primary methods were used to estimate constituent loads to compare the use of instantaneous 

flow (Qi) or mean daily flow (Qd) in load estimation.  For the first method (M1), constituent 

concentrations were multiplied by the corresponding instantaneous flow (Q i) to get instantaneous 

load (Li).  For each constituent, several GAMs were generated to explore relationships and 

interactions between predictor variables Qi and DOY (Table 2), and the best fit GAM was 

identified by the minimum Akaike information criterion (AIC) and significance of each predictor 

variable (p < 0.05).  Daily loads were estimated by integrating the Li across each day, and then 

summed to estimate monthly and yearly loads. 

Table 2: Generalized Additive Models for Load Estimations, where s() is a spline based smooth 
function of the predictor variable, and ti() produces a tensor product interaction. Q is log 

transformed daily or instantaneous flow, and DOY is the day of year. 

  

 

 

 

For the second method (M2), mean daily flows (Qd) were estimated by averaging Qi for 

each day.  The load for each day (Ld) was then estimated by using Qd to predict Ld from best fit 

GAM relationship of Qi and Li from M1.  Daily loads were then summed to estimate monthly 

and yearly loads.  For the last method (M3), loads were estimated by multiplying measured 

constituent concentrations by the corresponding Qd, developing a new GAM relationship 

between loads and Qd, and using Qd of each day to predict Ld.  Again, Ld was summed to 

estimate monthly and yearly loads.  Across all three methods, 95% confidence intervals were 

estimated for daily, monthly and yearly load estimations. 

ID Generalized Additive Model 

1 s(Q) + s(DOY) 

2 ti(Q, DOY) 

3 ti(Q) + ti(DOY) + ti(Q, DOY) 

4 ti(Q) + ti(Q,DOY) 

5 s(Q) 
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Results 

Selection of SonTek-IQ Data 

Since all instantaneous flow measurements obtained by the SonTek-IQ were not 

necessary for rating curve development, on first attempt, peak flows and corresponding stages 

were selected from every high flow event measured.  Peak flows were paired with baseflow 

measurements and LOESS regressed against stage to develop a rating curve for each site.  

However, the data was sparse and left large gaps in the relation (Figure 3A).  On second attempt, 

peak flows and 75% of peak flows (on the rising and falling limbs of the hydrograph) were 

paired with baseflow measurements and LOESS regressed (Figure 3B).  However, again there 

was a gap in the data across the mid-range stage measurements.  Therefore, peak flows, 75% of 

peak flows, and 50% of peak flows (on the rising and falling limbs of the hydrograph) were then 

paired with baseflow measurements and LOESS regressed (Figure 3C).  In this scenario, the 

range of flows better represented the range of stages, leaving less gaps in the data. 
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Figure 3: Combination of baseflow measurements and data selected from SonTek-IQ continuous 

measurements for rating curve development where A) includes baseflow measurements and peak 

flows, B) includes baseflow measurements, peak flows and 75% of peak flows, and C) includes 

baseflow measurements, peak flows, 75% of peak flows, and 50% of peak flows.  D) Hysteresis 

showing peak flow occurring approximately one hour before peak stage, and E) final selection of 

data from SonTek-IQ for rating curve development. Data consists of averages around the peak, 

75% of peak, and 50% of peak stages and flows and baseflow measurements. 
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However, upon analysis of individual high-flow events, hysteresis was observed across 

the majority of sites and events.  In the terms of this study, hysteresis typically occurred as a 

delay in the peak stage following the peak flow (Figure 3D).  Peak stages were typically delayed 

by an hour, so to account for this delay, the final approach for data selection consisted of 

averaging the five values (on 15-minute intervals) around the selected stages and flows.  

Therefore, the final rating curves consisted of the averages around the peak flows, 75% of the 

peak flows, and 50% of the peak flows from the SonTek-IQ, averages around the corresponding 

stages, and baseflow measurements (Figure 3E).  The averaging also helped to minimize noise in 

the data.   

Rating Curve Development 

For all sites, the range of measured stage data slightly exceeded the range of measured 

flow data.  Therefore, flow must to be projected when the stage is less than or greater than the 

range of stage data captured by flow measurements.  For sites where SonTek-IQ’s were 

deployed, 89 to 99% of stage data were within the range of measured flow (Figure 4), estimated 

as the sum of flows below and above the range of measured data divided by the total sum of 

flows over the 3 year period.  Less than 1% of stage data exceeded the maximum stage 

associated with a measured flow, and less than 11% of stage data fell below the minimum stage 

associated with a measured flow.  This is equivalent to less than 6 days of stage data exceeding 

maximum measured flow and less than 115 days of stage data below minimum measured flow 

throughout the 3 years of monitoring (Table 3).  Site 15 had the lowest portion of stage data 

represented by flow (89%), while all other sites with SonTek-IQ deployment had greater than 

95% of stage data represented by flow.  Sites 3 and 13 did not have baseflow measurements nor 
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SonTek-IQ deployment, and Sites 2 and 7 only had discharge measured during baseflow 

conditions.   

 
Figure 4: All stage measured, stage measured by flow, and stage sampled for water quality 

analyses across all non-USGS sites.  The bold value in the top left corner of each plot 
corresponds to site numbers in Table 1. The values above stage measured by flow and stage 

sampled indicate the percentage of stage data measured by flow and water quality analyses, 
respectively. 
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Table 3: Percentage of stage measurements outside the range of flow and water quality samples, 

and equivalent number of days with values greater than or less than flow and water quality 

samples over the three year period (1,095 total days). 

 

To project flows below the range of measured data, 2-point regression was used between 

the minimum measured flow value and the origin.  The slopes of 2-point regression ranged from 

0.041 to 3.101 ft2 s-1 across all sites (Table 4).  The 2-point regression was used for less than 

11% of the total flow at sites with SonTek-IQ deployment.  The maximum percentage of total 

flow that had to be predicted on the lower end occurred at site 15 (10.4%), but all other sites 

were less than 5% of the total flow.  Therefore, the projections below the range of measured data 

likely had little influence on estimated total monthly and/or annual flows. 

 Using A and R values from HEC-RAS, an average n was back-calculated using measured 

flow values and Manning’s equation.  The average n, as well as estimated WP and R values from 

HEC-RAS, were used to project flow above the range of measured data.  Manning’s n values 

ranged from 0.002 and 0.071 (Table 4).  Across all sites, it was necessary to use Manning’s 

equation to predict high flows for less than 1% of flows.   

Site 
ID 

Stage Measurements Outside the Range of Flow 
Stage Measurements Outside the Range of 

Measured Water Quality 

% Greater 
Days 

Greater % Less 
Days 
Less % Greater 

Days 
Greater % Less 

Days 
Less 

2 12.5 134 4.5 49.3 0.0 0.1 1.9 20.5 

3 100.0 453 0.0 0.0 0.1 0.3 5.9 26.2 

4 0.0 0.0 1.2 12.9 0.1 0.7 2.2 24.5 

5 0.5 5.5 1.2 12.9 0.0 0.3 1.6 17.0 

6 0.3 2.9 3.9 42.3 0.0 0.3 1.6 17.2 

7 17.8 194 20.0 213 0.0 0.4 2.9 30.3 

9 0.0 0.0 0.1 0.6 0.2 2.1 0.1 0.6 

10 0.0 0.0 0.4 4.6 0.1 0.6 3.0 32.5 

11 0.0 0.0 3.3 35.9 0.0 0.5 3.6 39.1 

12 0.2 2.4 3.3 35.8 0.0 0.1 2.8 29.9 

13 100 1106 0.0 0.0 0.0 0.4 4.0 43.7 

15 0.2 2.1 10.4 115 0.0 0.2 3.6 39.1 
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Table 4: Slopes of 2-point regression for projecting below the range of measured data, 
percentage of total flow projected below measured data, average Manning’s n estimated using 
HEC-RAS and used to project flow above the range of measured data, percentage of total flow 

projected above measured data, and LOESS RMSE’s for the range of measured data. NA’s are 
listed for sites where SonTek-IQ’s were not deployed. 

 

 

 

 

 

 

 

 

For the range of measured stage and flow data, LOESS regression was applied with a 

sampling proportion of 0.5.  The RMSE’s from LOESS regression ranged from 3.6 to 379 across 

all sites (Table 3).  While normal distributions are not required for LOESS regression, the large 

amount of spread in the data at site 5 justified a square root data transformation (Figure 5).  A 

square root transformation was chosen due to its ability to handle zero values.  Final rating 

curves for each site were developed by combining the 2-point regression, LOESS regression, and 

Manning’s equation data (Figure 5).   

 

 

Site ID 

2-Point 

Regression 
Slopes 

 Average 
Manning's n 

LOESS 
RMSE 

2 NA NA NA 

3 NA NA NA 

4 0.041 0.05 183 

5 0.953 0.022 52.2 

6 0.211 0.031 3.63 

7 NA NA NA 

9 0.306 0.071 210 

10 0.080 0.002 153 

11 2.371 0.023 379 

12 0.109 0.036 25.8 

13 NA NA NA 

15 3.101   0.025  189 
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Figure 5: Final rating curves for all non-USGS sites with measured flow data.  The bold value in 
the top left corner of each plot corresponds to site numbers in Table 1.  Models were developed 

using LOESS regression across the range of measured flow data, 2-point regression to project 
flow less than the minimum measured value, and Manning’s equation to project flow greater 

than the maximum measured value. 
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Figure 6: Manual and SonTek-IQ measured flows with predicted flows from rating curves.  The 
bold value in the top left corner of each plot corresponds to site numbers in Table 1. 

 

The performance of the rating curve models were evaluated by visualizing the predicted 

flows over time in conjunction with the measured flows (Figure 6).  Additionally, Nash-Sutcliffe 

efficiencies for all sites ranged between 0.87 and 0.98 (Figure 5).  Overall, model predicted 

flows well represented measured flows.  
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Constituent Load Estimations 

Constituent loads were estimated at all sites where continuous records of flow were 

available (i.e., USGS stations and sites where a SonTek-IQ was deployed).  For all sites, the 

range of measured stage data slightly exceeded the range of stages represented by water quality 

data.  Therefore, constituent concentrations and loads must to be projected when the stage is less 

than or greater than the range of stage data captured by water quality data.  For sites where 

SonTek-IQ’s were deployed, 95 to 99% of stage data were within the range of measured water 

quality data (Figure 4).  At the USGS sites, 98 to 99% of stage data were within the range of 

water quality data.  At all sites, less than 1% of stage data exceeded the maximum stage 

associated with water quality data, and less than 6% of stage data fell below the minimum stage 

associated with a water quality data.  This is equivalent to less than 3 days of stage data 

exceeding maximum measured water quality data and less than 44 days of stage data below 

minimum measured water quality data throughout the 3 years of monitoring (Table 3).   

The best fit GAM for each site was identified based on the lowest magnitude AIC, while 

also ensuring each predictor variable was significant (p < 0.05).  Across all sites and parameters, 

GAM 1 most commonly outperformed other GAMs for each method (M1, M2, and M3), 

followed by GAM 3 (approximately 43% and 29% of the time GAM 1 and GAM 3 were best, 

respectively; Figure 7). GAM 2 was never the best fit model, and GAM 4 and 5 were the best fit 

model approximately 8 and 19% of the time, respectively.  With best fit GAMs for each site and 

parameter, NSE and R2 values were always greater than 0.85 and p values were always less than 

0.01 (Appendix A).    

When GAM 1 was not the best fit model for a certain site/parameter, GAM 1 was still 

always significant (p < 0.01), and NSE and R2 values were still greater than 0.85 (Appendix A).  
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Additionally, R2 and NSE values either didn’t change or were less than 10% different compared 

to the best fit GAM, and AIC changed by a maximum of 50.  Therefore, while the best fit GAM 

may not have always been GAM 1, GAM 1 was still significant and well predicted constituent 

loads; so, for consistency and simplicity, GAM 1 was applied across all sites, parameters, and 

methods (i.e., M1, M2 and M3).   

 
Figure 7: Frequencies of best fit generalized additive models (GAM) 1-5, corresponding to 

GAMs listed in Table 2, for each load estimation methods (1-3) and for each parameter: total 
nitrogen (TN), total phosphorus (TP), nitrate plus nitrite (NN), soluble reactive phosphorus 

(SRP), total suspended solids (TSS), fluoride (Fl), chloride (Cl), and sulfate (SO4). 

 

Methods 1 and 2 for constituent load estimations applied the same data for GAM 

development (using Qi), while M3 used Qd.  In general, GAMs using Qi in M1 and M2 

performed slightly better than GAMs using Qd in M3, based on R2 and NSE values (Appendix 

A).  However, as stated previously, models were always significant and R2 and NSE values were 

always above 0.85.  When converting data back to non-log transformed, and comparing observed 

versus predicted data for each method, M1 still generally performed the best (average NSE = 

0.80, range = 0.04 – 0.99).  With M2, observed loads were estimated using constituent 
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concentrations and Qd, and loads were predicted using GAM from M1 (with Qi), but M2 almost 

always performed the most poorly (average NSE = 0.55, range = -0.59 – 0.97).  Method 3 

generally had higher NSE values compared to M2, but slightly smaller NSE values compared to 

M1 (average NSE = 0.76, range = -0.10 – 0.99). Plots of log transformed observed versus 

predicted daily loads from each method are shown in Appendix B.   

An ANOVA and Tukey’s HSD test were conducted to determine if the three methods of 

constituent load estimations produced significantly different means of daily loads. Across most 

sites and parameters, there were no significant difference among daily loads predicted by M1, 

M2, and M3 (p > 0.05).   However, at site 14, M3 and M2 produced significantly greater daily 

loads compared to daily loads produced by M1 for TN, NN, SRP Fl, Cl, and SO4
2-.  In general, 

M1 still produced greater NSE values for these parameters compared to M2 and M3.  Daily loads 

for each method were then summed to estimate monthly and annual loads with 95% confidence 

intervals (Appendix C and D, monthly and annual loads, respectively).  The difference in loads 

predicted by M1, M2 and M3 is evident for Site 14, but most other sites show minimal 

differences in loads and confidence intervals.   

Discussion 

Rating Curve Development 

Continuous discharge measurements are imperative towards water resources 

management, and currently these data are limited or nonexistent on small-scale streams.  Over 

the last couple decades, efforts to predict flow in ungauged watersheds have been an active area 

of research (Hauet et al. 2008; Royem et al. 2012; Atieh et al. 2017; Tegegne and Kim 2020), 

with techniques often involving hydrologic models (Gitau and Chaubey 2010; Tegegne and Kim 
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2020), instantaneous flow measurements and rating curves (Harmel et al. 2006b), or regression 

relationships between watershed/stream characteristics and flow (Chen and Chiu 2004; 

Gianfagna et al. 2015).  However, these efforts can be data intensive (Razavi et al. 2013), 

unreliable (e.g., with indirect measurements), or logistically unfeasible across numerous, remote 

sites.  The proposed methods discussed in this study provide an opportunity to fill this data gap 

by collecting continuous records of flow across multiple, remote, small-scale watersheds.   

 A variety of methods have been used to successfully collect flow measurements for use in 

rating curve development.  The most common flow measurement techniques include direct 

measurement methods (e.g., timed volume), velocity-area methods (e.g., float method, dilution 

gaging, trajectory method, current meters, acoustic Doppler current profilers, and 

electromagnetic method), formed constriction methods (e.g., weirs and flumes), and non-contact 

methods (e.g., remote sensing and particle image velocimetry) (Gravelle 2015; Dobriyal et al. 

2017).  Direct and formed constriction methods are impractical across numerous sites, and these 

can be expensive and difficult to operate.  Non-contact methods not only are costly, but do not 

directly measure streamflow, and require extensive ground-checking and validation.   

While acoustic Doppler instruments (e.g., the SonTek-IQ) are costly, they are highly 

accurate, and the proposed method allows for direct installation of the instrument into the stream, 

removing the need for technicians to measure instantaneous flow during dangerous conditions.  

Additionally, the SonTek-IQs can be rotated among numerous sites between flood events, so a 

SonTek-IQ does not have to be purchased for every monitoring site of interest.  The proposed 

method also removes the logistical hindrance of trying to measure peak flows at numerous, 

remote sites, when often peak flows are maintained for only a couple hours or less in small-scale 

streams.    
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Nonlinear regression analyses are common practice for rating curve development 

(Westphal et al. 1999; Reitan and Petersen-øverleir 2008; Fenton 2018; Tamagnone et al. 2019), 

but few studies have applied the use of locally weighted regressions such as LOESS.  The benefit 

of locally weighted regression is the ability to fit the curve-linear shape of measured stage and 

discharge data, as well as compute uncertainty bounds around the predictions.  Across 500 

streams in United Kingdom, nonparametric LOWESS regression was used to fit rating curves 

and estimate discharge uncertainty, which resulted in a robust and versatile framework for 

hydrologic analyses (Coxon et al. 2015).  Additionally, for a low-gradient subcatchment in 

Louisiana, the use of artificial neural networks (ANN) and local nonparametric regression 

(LOESS) were compared for modelling rating curves. While the ANN performed slightly better 

than LOESS, both techniques agreed well with the observed discharge measurements (Habib and 

Meselhe 2006).   

Extension of rating curves outside the range of measured data is often necessary when 

developing continuous records of flow.  When a SonTek-IQ was deployed this study, at least 

89% of all stage measurements were captured by flow data, meaning less than 11% of the time 

were flow measurements required to be predicted outside the range of measured data.  Extension 

of rating curves is often done using the existing model, developing a new model using 

watershed/stream characteristics, or using Manning’s equation (Sivapragasam and Muttil 2005).   

Since Manning’s equation is a common practice for predicting flow in ungauged streams, and 

hydrological information can be estimated from existing stage-discharge relationships, 

Manning’s equation was chosen for the purpose of extending rating curves in this study.  While 

rating curves and extrapolation with Manning’s equation has often been adapted (Leonard et al. 
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2000; Leon et al. 2006; Pan et al. 2016), the need for extrapolation in the proposed methods 

could be reduced with continued or extended deployments of the SonTek-IQs.   

The downfall of many typical rating curve techniques is the inability to accurately 

represent hysteresis in the stage-discharge relationships. As occurred in this study, hysteresis 

typically appears as higher flows at a given stage on the rising limb of a hydrograph compared to 

the same stage on the falling limb, creating a loop in the rating curve. This can be observed in 

Figure 5 for site 8, where the majority of data points from the largest storm event were included 

(i.e., measurements above 6 ft stage) to increase the sample size on the higher end.  Historically, 

two methods have been used to incorporate hysteresis into rating curves including 1) separate 

rating curves for the rising and falling limbs of hydrographs, and 2) the Jones formula (Jones 

1916).  The first method of developing separate rating curves often produces separation in the 

discharge hydrograph (Tawfik et al. 1997), so the Jones formula has been widely applied to 

adjust a single rating cure for unsteady flow (Perumal et al. 2004; Petersen-øverleir 2006).  

However, the Jones equation requires accurate identification of hydraulic parameters such as 

channel resistance, bed slope, channel length and friction law, and has shown significant error 

near peak flow where large hysteresis occurs (Perumal and Raju 1999). 

While the selection of data across the hydrograph and the use of LOESS regression in 

this study may not adequately capture hysteresis, it provides a method to essentially average the 

flows on the higher ends of measured stage.  Additionally, the purpose of these data is to 

estimate daily flows for use in constituent load estimations and model calibration/validation (on 

a daily scale or larger).  Therefore, the averaging of the instantaneous measurements seems 

acceptable.  However, if the data are to be used on a finer times scale (i.e., hourly, 15-minute, 
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etc.), then a different approach to the rating curve models may be necessary to accurately 

represent hysteresis. 

 The purchase and installation cost of a typical USGS monitoring gage is around $25,000, 

with a minimum operating cost of around $15,000 per year (personal communication with 

Michael Norris, USGS). Therefore, to monitor 8 streams (i.e., the number of streams where 

SonTek-IQs were installed in this study), the total costs for 3 years would minimally be 

$560,000. However, using the method developed in this study, a $9,000 SonTek-IQ is not 

required for each site.  Additional equipment and installation costs, besides the SonTek-IQ, is 

about $1,200 per site.  Therefore, assuming the purchase of 3 SonTek-IQs, 8 sites would cost 

about $36,000 for purchase and installation.  We also estimated operation and maintenance costs 

to be about $110,000 for 3 years, assuming salary and benefits of a typical lab technician 

working half of their time maintaining this project, resulting in a total project cost of $146,000.  

This is about 25% of the cost required if USGS gages systems were used, and may even be less, 

since minimum estimations were used for USGS estimations.  Additionally, adding more sites to 

this monitoring method would only require HOBOs and equipment for HOBO and SonTek-IQ 

installation (~$1,200 per site), since SonTek-IQs can be rotated among sites.  Therefore, the 

monitoring method developed in this study is a cost efficient way to develop continuous records 

of flow across numerous, small-scale streams. 

 Some limitations were recognized while implementing this monitoring method across the 

UPRW in Arkansas.  No flow measurements were collected at sites 2 and 11, since the streams 

were too deep to wade through for baseflow discharge measurements and SonTek-IQ 

installation.  Additionally, sites were limited to locations near bridge crossings in order to collect 

water samples. Therefore, monitoring sites must be investigated thoroughly before selecting, to 
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ensure the streams are an appropriate depth under baseflow conditions for equipment installation.  

Since this monitoring method seeks to fill the data-gap on small-scale streams, this should be 

feasible for most streams of interest.   

Equipment malfunction and loss is always a risk in stream monitoring efforts, especially 

during flood events.  At site 12, a SonTek-IQ was lost during a storm event in January of 2020 

(Figure 6, where maximum flow occurred).  The streambed at site 12 consists mostly of cobbles 

and boulders, and likely a large boulder shattered the concrete base where the SonTek-IQ was 

installed, allowing for pieces to break free and the SonTek-IQ to be washed away during the 

flood.  Therefore, a different installation method for SonTek-IQs should be explored for sites 

with similar streambeds as site 12.  A reinforced concrete base, with wire or rebar, may provide a 

stronger base under these conditions.   

At site 1, a SonTek-IQ was installed for a short period of time before realizing the loose, 

shale sediment covered the SonTek-IQ during each high flow event.  This caused poor and 

limited flow measurements from the SonTek-IQ, and a rating curve was not produced for this 

site.  Therefore, streams with loose substrate similar to site 1 may not provide optimal conditions 

for monitoring with the proposed method.  However, deployment time was limited at this site, 

and a longer deployment could have provided more usable data for rating curve development.   

Long-term monitoring data is essential for understanding changes in natural 

environments, including trends, cycles and identification of rare events (Burt et al. 2014).  

However, due to fluctuations in streambeds and cross-sectional areas of streams over time, rating 

curve relationships can also change over time (Tomkins 2014).  Using this monitoring method, 

SonTek-IQs would likely need to be redeployed in order to update rating curve relationships for 

long-term monitoring.  Stage measurements can easily be continued for extended time periods, 
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and SonTek-IQ stations can remain in streams for simple removal and reinstallation when 

necessary.   

Constituent Load Estimations 

Water quality data and constituent load estimations are critical for managing surface 

water resources for both human and ecological health.  A variety of methods have been applied 

for estimating constituent loads, including linear interpolation techniques (Migliaccio et al. 

2010b), ratio estimators (Rousseau et al. 2006), and regression-based techniques (Lee et al. 

2016).  Many of the methods currently used were developed by the USGS, and are often multiple 

regression models relating constituent concentrations to daily discharge, time, and season 

(Runkel et al. 2004; Robertson and Saad 2011).  However, the use of GAMs, while widely 

applied in environmental studies due to its ability to handle non-normal distributions (Ravindra 

et al. 2019), have rarely been applied to constituent load estimation techniques (Wang et al. 

2011; Hagemann et al. 2016).   

 GAMs expand beyond regression models and generalized linear models by applying 

smoothing functions to predictor variables, as opposed to linear or polynomial functions (Wood 

2017).  In the Wachusett Reservoir Watershed (WRW) near Boston, the GAM framework 

improved explanatory and predictive capacity for estimating nitrate, TP, and total organic 

carbon, compared to linear models, and ultimately produced more accurate load estimations 

(Hagemann et al. 2016).  The best fit GAMs for nitrate and TP in the WRW included a 

combination of sine and/or cosine of Julian day, smooth functions of Qd and time, and a flow-

derived function to capture hysteresis effects.  In the present study, the GAM selected across all 

sites and constituents included solely smooth functions of Q and DOY.  Our results suggested 

these explanatory variables were adequate, explaining at least 85% of the variance across all sites 



 
 

129 

and constituents.  While a term to capture hysteresis was not explored in this study, as expressed 

in Hagemann et al., 2016, it could improve the performance of load estimations if adequate data 

is available across the rising and falling limbs of water quality hydrographs. 

 The use of Qd as opposed to Qi in load estimation techniques is a historically common 

practice (Haggard et al. 2003; Runkel et al. 2004; Migliaccio et al. 2010a; Lee et al. 2016).  

Often termed the “big river” approach for load estimations, using Qd in load regression 

techniques assumes the instantaneous water quality samples represent the daily average 

concentration (Robertson and Roerish 1999).  However, in small-scale streams, concentrations 

and streamflow can change rapidly (on a sub-daily scale), and an instantaneous water quality 

sample may not reflect daily concentrations.  Similarly, mean daily flow may underestimate flow 

conditions if storm events occur on an hourly scale (as opposed to a daily scale for large rivers).  

Therefore, this study compared the use of Qi and Qd in load estimations for a wide range of 

stream sizes (watersheds ranging from 14 to 527 km2, Table 1).  GAMs using Qi slightly 

outperformed GAMs using Qd, but most sites and parameters showed no significant difference in 

daily loads predicted using Qi and Qd.  Only one site (Site 14) showed significantly different 

means between M1 and M3 for all parameters except TP and TSS, with M3 (using Qd) generally 

predicting greater constituent loads compared to M1.  Therefore, while M1 generally performed 

better, both M1 and M3, with the use of Qi and Qd, respectively, are likely adequate for load 

estimations efforts.     

 Assessing the accuracy of load estimations can be difficult without high frequency water 

quality data.  Therefore, loads can be compared by applying other methods using the same data 

set, or comparing to relevant sources in the literature (Rousseau et al. 2006).  Constituent loads 

of TN, TP, NN, SRP and TSS at the three USGS sites in this study were compared to loads 
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estimated using the Weighted Regressions on Time, Discharge, and Season (WRTDS) model 

from Chapter 2.  The WRTDS framework uses a weighted regression model with concentration, 

Qd, and sine/cosine of time in decimal years (Hirsch et al. 2010; Hirsch and De Cicco 2015).  At 

site 14, daily and monthly loads predicted by GAM-M3 and WRTDS agreed fairly well for all 

constituents (average NSE = 0.68; min NSE = 0.40; max NSE = 0.97).  At site 8, daily and 

monthly loads predicted by GAM-M3 and WRTDS agreed well for all constituents except NN; 

NSE values for NN were less than one for daily and monthly loads, while all other constituents 

had NSE values greater than 0.70.  At Site 1, constituent loads from GAM-M3 and WRTDS only 

agreed well for TP and TSS (NSE > 0.52).  For TN, NN, and SRP, NSE values were always less 

than one, and generally differed the most on the higher end of load estimations.  The lack of 

agreement between GAM-M3 and WRTDS for some sites and constituents is likely due to the 

difference in load estimation techniques and data used to develop models.  While WRTDS and 

GAM-M3 use the same source of flow data from the USGS gages, the water quality data was 

collected and measured by two different entities.  Additionally, the regression relationships 

developed in WRTDS are based on long-term data (20+ years), whereas the GAM relationships 

in this study use only 3 years of data.  While the WRTDS and GAM results may not agree in all 

cases, the comparison was conducted to ensure similar order of magnitudes of load estimations.  

Ultimately, GAMs are beneficial for short-term data collection since WRTDS requires long-term 

datasets.      

 Nutrient and sediment loads were also quantified at sites 1 and 8 between 2011 and 2013 

using the USGS Load Estimator (LOADEST) platform (McCarty et al. 2016).  LOADEST 

develops regression models for estimating constituent loads based on time, discharge and/or 

season (Runkel et al. 2004), and similar to GAMs, can be used with short-term datasets. Over the 
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two year period of study in McCarty et al., 2016, the average annual TP and TSS loads at Site 1 

were 43,000 kg and 25,050,000 kg, respectively, and 70,000 kg and 21,300,000 kg, respectively, 

at Site 8.  Over the three year period in this study (using GAM-M3), the average annual TP and 

TSS loads at Site 1 were 61,200 kg and 26,100,000 kg, respectively, and 82,000 kg and 

23,750,000 kg, respectively, at Site 8.  Therefore, a similar magnitude of TP and TSS loads were 

found in this study as McCarty et al., 2016, providing a reasonable validation of the GAM load 

estimation technique.  However, GAMs provide more flexibility compared to LOADEST and 

other regression models by relaxing the normal-distribution assumption and using smooth 

functions of predictor variables.  Additionally, GAMs can simplify the model selection process, 

since LOADEST and other regression techniques often require selecting from numerous models 

with higher order predictor variables.   

 Finally, 95% confidence intervals were generated for constituent load estimations 

(Appendix C).  In general, 95% confidence intervals were greater at higher magnitudes of 

monthly constituent loads across sites.  The larger magnitude loads are often related to higher 

flows, where storm sampling introduces more levels of measurement uncertainty compared to 

base flow sampling (Harmel et al. 2006a).  Additionally, when the largest magnitude of flows 

occur, water quality and flow data are more scarce compared to baseflow data (especially in 

short-term data collection projects), leading to a larger uncertainty in the load estimations.  

Therefore, it is important to capture water quality samples across the range of flow and in as 

many high flow events as possible, in order to minimize the error associated with loads under 

high flow conditions.   
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Conclusions 

The purpose of this study was to introduce a cost-efficient method for remotely 

monitoring streamflow and estimating constituent loads in small-scale watersheds.  Continuous 

stage measurements were collected from 12 sites across the UPRW using pressure transducers, 

and continuous discharge measurements were collected from 8 sites during high flow conditions 

using roving discharge stations, capturing at least 89% of stage measurements.  Rating curves 

were developed for sites with stage and discharge measurements using LOESS regression, with 

NSE values greater than 0.88 across sites.  Manning’s equation and two-point regressions were 

used to predict flows above and below the range of measured flow, respectively.  Rating curves 

were used to develop continuous records of flow across the three year monitoring period.  Water 

quality samples were collected across the range of flow, and constituent loads were estimated 

using GAMs, where the best fit GAM was determined to be spline based smooth functions of Q 

and DOY.  Additionally, Qi and Qd both well predicted constituent loads (NSEs > 0.87), and did 

not predict significantly different loads across sites (except site 14).  Therefore, both Q i and Qd 

were considered adequate for load estimation methods.  Ultimately, this study provides a cost-

efficient method for collecting continuous discharge measurements and constituent load 

estimations across small-scale watersheds.  This method can provide data for 

calibrating/validating watershed models at small-scales, and provide finer scale data for 

understanding land use impacts on water quality.  Additionally, the data from this study will help 

to prioritize small watersheds of concern in the UPRW for watershed management. 
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Appendix 

Appendix A:  Best fit generalized additive model (GAM, from Table 2) for each site and parameter: 

total nitrogen (TN), nitrate plus nitrite (NN), total phosphorus (TP), soluble reactive phosphorus 
(SRP), total suspended solids (TSS), fluoride (Fl), chloride (Cl), and sulfate (SO4

2-). Where GAM 
1 is not the best fit GAM, the statistics for GAM 1 are shown in the third column.  P-values for 

GAMs were always less than 0.01, so they are not listed in the tables.  

Constituent Load Methods 1 and 2:  

    Best Fit GAM GAM 1 

Site Parameter GAM R2 NSE AIC GAM R2 NSE AIC 

Site 1 

TN 1 0.99 0.99 -135     

TP 1 0.98 0.98 6     
NN 4 0.97 0.97 77 1 0.96 0.96 108 

SRP 1 0.96 0.96 114     

TSS 3 0.99 0.99 15 1 0.98 0.98 35 

Fl 3 0.94 0.96 107 1 0.91 0.92 150 

Cl 3 0.99 1.00 -198 1 0.99 0.99 -194 

SO4 3 0.99 0.99 -99 1 0.98 0.98 -75 

Site 4 

TN 5 0.97 0.98 16 1 0.98 0.98 14 

TP 1 0.97 0.98 50     

NN 5 0.86 0.86 125 1 0.87 0.88 123 

SRP 1 0.94 0.95 109     

TSS 5 0.95 0.95 70 1 0.96 0.97 64 

Fl 3 0.97 0.97 22 1 0.95 0.95 49 

Cl 3 0.99 0.99 -89 1 0.99 0.99 -79 

SO4 5 0.99 0.99 -91 1 0.99 0.99 -94 

Site 5 

TN 3 0.98 0.99 2 1 0.96 0.97 22 

TP 1 0.94 0.94 98     

NN 1 0.92 0.93 58     

SRP 1 0.90 0.93 133     

TSS 1 0.96 0.97 71     

Fl 3 0.98 0.99 -17 1 0.94 0.94 37 

Cl 1 0.99 0.99 -95     

SO4 5 0.96 0.96 -38 1 0.96 0.97 -41 

Site 6 

TN 5 0.98 0.98 5 1 0.98 0.98 1 

TP 1 0.97 0.98 52     

NN 5 0.87 0.87 132 1 0.88 0.89 128 

SRP 1 0.93 0.94 125     

TSS 1 0.97 0.98 64     

Fl 1 0.98 0.98 -23     

Cl 1 0.99 1.00 -123     

SO4 1 0.99 1.00 -102         
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Constituent Load Methods 1 and 2, Continued:  

    Best Fit GAM GAM 1 

Site Parameter GAM R2 NSE AIC GAM R2 NSE 

AI

C 

Site 8 

TN 5 0.98 0.98 -96 1 0.98 0.98 -98 

TP 4 0.98 0.98 -39 1 0.98 0.98 -29 

NN 3 0.91 0.94 201 1 0.86 0.87 226 

SRP 3 0.95 0.95 111 1 0.95 0.95 117 

TSS 1 0.98 0.99 -14     

Fl 3 0.90 0.91 134 1 0.89 0.90 146 

Cl 5 0.87 0.87 74 1 0.87 0.88 74 

SO4 1 0.98 0.98 -89         

Site 9 

TN 1 0.96 0.97 -16     

TP 1 0.98 0.98 -10     

NN 1 0.89 0.91 31     

SRP 1 0.95 0.96 32     

TSS 1 0.98 0.99 21     

Fl 1 0.97 0.97 1     

Cl 3 0.96 0.96 -40 1 0.95 0.97 -31 

SO4 1 0.98 0.99 -68         

Site 10 

TN 1 0.99 0.99 -39     

TP 1 0.98 0.98 7     

NN 1 0.92 0.92 137     

SRP 1 0.96 0.97 72     

TSS 3 0.99 0.99 13 1 0.97 0.98 37 

Fl 1 0.98 0.98 -19     

Cl 1 0.99 0.99 -69     

SO4 4 0.99 0.99 -72 1 0.99 0.99 -66 

Site 11 

TN 1 0.99 0.99 -63     

TP 3 0.98 0.98 -3 1 0.98 0.98 5 

NN 4 0.96 0.97 20 1 0.96 0.97 22 

SRP 5 0.97 0.97 33 1 0.97 0.98 28 

TSS 1 0.99 0.99 -6     

Fl 3 0.98 0.98 -13 1 0.96 0.98 29 

Cl 1 0.99 0.99 -81     

SO4 1 0.98 0.98 -39         
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Constituent Load Methods 1 and 2, Continued:  

    Best Fit GAM GAM 1 

Site Parameter GAM R2 NSE AIC GAM R2 NSE AIC 

Site 12 

TN 3 1.00 1.00 -233 1 1.00 1.00 -233 

TP 3 0.99 0.99 -41 1 0.98 0.98 -28 

NN 3 0.98 0.98 30 1 0.97 0.98 45 

SRP 3 0.97 0.97 10 1 0.97 0.97 19 

TSS 5 0.98 0.98 -1 1 0.98 0.98 -5 

Fl 3 0.92 0.93 130 1 0.92 0.92 136 

Cl 3 1.00 1.00 -255 1 1.00 1.00 -226 

SO4 3 0.99 0.99 -102 1 0.99 0.99 -104 

Site 14 

TN 5 0.99 0.99 -94 1 0.99 0.99 -98 

TP 1 0.96 0.96 31     

NN 3 0.95 0.95 100 1 0.95 0.95 104 

SRP 1 0.94 0.95 97     

TSS 3 0.97 0.97 33 1 0.97 0.87 38 

Fl 3 0.89 0.91 162 1 0.88 0.89 175 

Cl 1 0.99 0.99 -195     

SO4 4 0.98 0.98 -67 1 0.98 0.98 -64 

Site 15 

TN 5 0.99 0.99 -39 1 0.99 0.99 -39 

TP 5 0.94 0.94 68 1 0.94 0.95 68 

NN 5 0.96 0.97 21 1 0.96 0.97 23 

SRP 5 0.94 0.95 33 1 0.96 0.97 35 

TSS 5 0.85 0.86 140 1 0.85 0.86 141 

Fl 4 0.89 0.91 79 1 0.89 0.90 80 

Cl 4 1.00 1.00 -121 1 1.00 1.00 -120 

SO4 5 0.99 0.99 -58 1 0.99 0.99 -56 
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Constituent Load Method 3: 

    Best GAM GAM 1 

Site Parameter GAM R2 NSE AIC GAM R2 NSE AIC 

Site 1 

TN 4 0.99 0.99 -146 1 0.99 0.99 
-

134 

TP 1 0.98 0.98 18     

NN 4 0.97 0.98 73 1 0.96 0.96 107 

SRP 3 0.97 0.97 70 1 0.96 0.96 113 

TSS 3 0.98 0.98 62 1 0.97 0.98 76 

Fl 3 0.94 0.95 113 1 0.91 0.92 149 

Cl 1 0.99 0.99 -194     

SO4 3 0.99 0.99 -96 1 0.98 0.98 -76 

Site 4 

TN 5 0.98 0.98 13 1 0.98 0.98 10 

TP 1 0.97 0.98 42     

NN 5 0.86 0.87 126 1 0.87 0.88 122 

SRP 1 0.94 0.96 106     

TSS 1 0.95 0.96 66     

Fl 4 0.97 0.98 18 1 0.95 0.96 47 

Cl 1 0.99 0.99 -62     

SO4 5 0.99 0.99 -92 1 0.99 0.99 -91 

Site 5 

TN 3 0.98 0.99 -15 1 0.96 0.97 20 

TP 4 0.94 0.96 93 1 0.93 0.94 99 

NN 1 0.90 0.92 64     

SRP 1 0.91 0.94 138     

TSS 1 0.95 0.96 88     

Fl 3 0.98 0.99 -15 1 0.95 0.97 37 

Cl 1 0.99 0.99 -83     

SO4 5 0.96 0.96 -40 1 0.96 0.96 -41 

Site 6 

TN 1 0.98 0.99 -2     

TP 5 0.96 0.97 57 1 0.97 0.97 52 

NN 5 0.86 0.86 133 1 0.87 0.89 128 

SRP 5 0.92 0.93 125 1 0.93 0.94 118 

TSS 5 0.96 0.96 82 1 0.96 0.97 76 

Fl 1 0.98 0.98 -23     

Cl 1 0.99 0.99 -118     

SO4 1 0.99 1.00 -85         
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Constituent Load Method 3, Continued: 

    Best Fit GAM GAM 1 

Site Parameter GAM R2 NSE AIC GAM R2 NSE AIC 

Site 8 

TN 5 0.98 0.98 -88 1 0.98 0.98 -91 

TP 4 0.98 0.98 -17 1 0.97 0.98 -12 

NN 3 0.90 0.93 202 1 0.85 0.86 225 

SRP 3 0.94 0.95 118 1 0.94 0.95 122 

TSS 1 0.98 0.98 12     

Fl 3 0.89 0.90 136 1 0.88 0.89 146 

Cl 3 0.88 0.89 67 1 0.87 0.87 74 

SO4 1 0.98 0.98 -89         

Site 9 

TN 1 0.95 0.95 -3     

TP 1 0.97 0.98 -5     

NN 1 0.86 0.88 35     

SRP 1 0.94 0.95 34     

TSS 1 0.96 0.97 47     

Fl 1 0.97 0.97 -6     

Cl 3 0.94 0.95 -36 1 0.93 0.95 -20 

SO4 1 0.978 0.981 -61         

Site 10 

TN 3 0.99 0.99 -50 1 0.99 0.99 -42 

TP 1 0.98 0.98 4     

NN 3 0.95 0.97 109 1 0.92 0.93 131 

SRP 1 0.97 0.97 57     

TSS 3 0.96 0.97 45 1 0.96 0.96 57 

Fl 4 0.98 0.99 -29 1 0.98 0.98 -24 

Cl 1 0.99 0.99 -75     

SO4 1 0.99 0.99 -62         

Site 11 

TN 1 0.99 0.99 -59     

TP 1 0.98 0.98 6     

NN 3 0.98 0.98 -6 1 0.96 0.97 13 

SRP 1 0.97 0.98 25     

TSS 1 0.98 0.99 25     

Fl 3 0.98 0.98 -16 1 0.96 0.98 33 

Cl 1 0.99 0.99 -91     

SO4 1 0.98 0.98 -38         
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Constituent Load Method 3, Continued: 

    Best Fit GAM GAM 1 

Site Parameter GAM R2 NSE AIC GAM R2 NSE AIC 

Site 12 

TN 1 1.00 1.00 -231     

TP 3 0.98 0.99 -58 1 0.97 0.97 -26 

NN 3 0.96 0.97 22 1 0.96 0.97 37 

SRP 3 0.95 0.95 8 1 0.94 0.95 18 

TSS 4 0.96 0.96 -3 1 0.97 0.97 -4 

Fl 3 0.87 0.88 135 1 0.86 0.86 141 

Cl 3 1.00 1.00 -244 1 1.00 1.00 

-

226 

SO4 5 0.99 0.99 -102 1 0.99 0.99 

-

104 

Site 14 

TN 5 0.98 0.98 -86 1 0.98 0.99 -92 

TP 1 0.86 0.86 39     

NN 3 0.95 0.95 99 1 0.94 0.95 104 

SRP 3 0.93 0.94 104 1 0.93 0.94 104 

TSS 1 0.96 0.97 60     

Fl 3 0.89 0.91 162 1 0.87 0.89 175 

Cl 3 0.99 0.99 -212 1 0.99 0.99 

-

198 

SO4 3 0.98 0.99 -81 1 0.98 0.98 -65 

Site 15 

TN 5 0.99 0.99 -32 1 0.99 0.99 -32 

TP 5 0.95 0.96 69 1 0.95 0.96 70 

NN 5 0.97 0.97 24 1 0.97 0.97 26 

SRP 5 0.96 0.96 33 1 0.96 0.96 35 

TSS 5 0.86 0.87 143 1 0.87 0.89 144 

Fl 1 0.93 0.94 69     

Cl 1 1.00 1.00 -121     

SO4 4 0.99 0.99 -60 1 0.99 0.99 -57 
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Appendix B: Measured versus predicted constituent loads from each method (M1 = red, M2 = 

blue, and M3 = green) for total nitrogen (TN), nitrate plus nitrite (NN), total phosphorus (TP), 

soluble reactive phosphorus (SRP), total suspended solids (TSS), fluoride (Fl), chloride (Cl), and 

sulfate (SO4
2-) at each site. For M1, instantaneous loads are in g/m, and for M2 and M3, daily 

loads are in kg/day. 

Site 1:  
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Appendix C: Monthly loads (kg/month) for each method (M1 = red, M2 = blue, and M3 = green) 

for total nitrogen (TN), nitrate plus nitrite (NN), total phosphorus (TP), soluble reactive 

phosphorus (SRP), total suspended solids (TSS), fluoride (Fl), chloride (Cl), and sulfate (SO4
2-) 

at each site.  
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Appendix D: Annual loads (kg/year) for each method (M1 = red, M2 = blue, and M3 = green) for 

total nitrogen (TN), nitrate plus nitrite (NN), total phosphorus (TP), soluble reactive phosphorus 

(SRP), total suspended solids (TSS), fluoride (Fl), chloride (Cl), and sulfate (SO4
2-) at each site.  
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Chapter 6: Validation of the Soil Water Assessment Tool (SWAT) at Small-Scale 

Watersheds Mostly Unsatisfactory  

Abbie Lasater1, and Brian E. Haggard1,2 

1Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, 

AR 72701 

2Arkansas Water Resources Center, University of Arkansas, Fayetteville, AR 72701 

Abstract 

Due to cost and feasibility with water quality and discharge estimates, monitoring data is 

often limited or nonexistent on small-scale streams and watersheds. Therefore, watershed models 

are often calibrated on the subbasin scale or larger, constituent loads and flow conditions are 

predicted at the watershed scale or smaller, but data to calibrate or validate these small-scale 

model outputs are typically unavailable.  The purpose of this study was to calibrate a SWAT 

model using larger watershed scale data (i.e., HUC-8/10) and validate the model with smaller 

watershed scale data (i.e., HUC-12/14), to analyze the ability of SWAT to predict flow and 

constituent loads at a small-scale watersheds where data is typically unavailable.  Ultimately, the 

large-scale calibration was mostly satisfactory or better, but the small-scale validation was 

mostly unsatisfactory.  With poor validation results at the HUC-12 and HUC-14 watershed scale, 

it is difficult to justify using the model outputs for subwatershed prioritization or other watershed 

modeling efforts (i.e., BMP evaluation and TMDL development).  Therefore, it may be 

necessary to begin collecting more small-scale data for use in SWAT calibration/validation. 
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Introduction 

Non-point source (NPS) pollution is a highly recognized threat to freshwater ecosystems, 

caused by diffuse sources transporting nutrients and sediments into waterbodies primarily 

through human alteration of landscapes (i.e., urban development and agricultural land use) 

(Daniel et al. 1998; Jonge et al. 2002; Sun et al. 2012).  Fertilizers and other chemicals used in 

agricultural, residential and urban areas enter waterbodies through runoff and seepage, as well as 

sediments from construction sites and eroding streambanks.  Excess inputs of nutrients and 

sediments jeopardize drinking water sources, aquatic life habitats, and aesthetic quality of 

freshwater ecosystems for recreation (Anderson et al. 2002).  With increasing pressures of 

climate change and population growth, sustainable management of water resources becomes ever 

more imperative.   

While point sources of pollutants are easily identified and highly regulated, NPS are more 

difficult to monitor and manage.  In the 1987 amendment to the United States Clean Water Act, 

the scope of water quality improvements was expanded to NPS pollution, and states were 

required to develop management plans and implement programs to reduce runoff from 

agricultural lands, construction sites and urban areas (Copeland 2012).  Since this initiative, there 

has been significant effort to accurately identify small-scale, diffuse pollutant sources for water 

quality improvement and best management practice (BMP) implementation (Katiyar et al. 2006; 

White et al. 2009; Tripathi et al. 2013).  

 Watershed prioritization is a process of ranking sensitive watersheds for applications of 

BMPs or restoration techniques, typically on the basis of subwatersheds within a larger 

watershed.  Sensitive watersheds can include areas where ecosystem services need to be 

protected, where soil erosion rates are high, or where degradation is caused by human 
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disturbances (Malik and Bhat 2014; Fallah et al. 2016; Aguirre-Salado et al. 2017).  Watershed 

modeling, especially the Soil Water Assessment Tool (SWAT), is a common technique used for 

subwatershed prioritization, where indicators such as sediment yield, nutrient loads, and land use 

help determine priority areas (White et al. 2009; Darwiche-Criado et al. 2017; Farhan et al. 2017; 

Ghafari et al. 2017).  However, due to cost and feasibility with water quality and discharge 

estimates, monitoring data is often limited or nonexistent on small-scale streams and watersheds. 

Therefore, watershed models are often calibrated on the subbasin scale or larger, constituent 

loads and flow conditions are predicted at the watershed scale or smaller, but data to calibrate or 

validate these small-scale model outputs are typically unavailable (Pai et al. 2011b; Welde 2016; 

Chapter 4). 

If small-scale model outputs are inaccurate, pollution sources and priority areas could be 

incorrectly identified, and time, effort, and funds invested in BMP implementation could be 

ineffective. Therefore, the purpose of this study is to calibrate a SWAT model using larger 

watershed scale data (i.e., HUC-8/10) and validate the model with smaller watershed scale data 

(i.e., HUC-12/14), to analyze the ability of SWAT to predict flow and constituent loads at a 

small-scale watersheds where data is typically unavailable.   

Methods 

Study Site Description 

The Poteau River Watershed (HUC 11110105, PRW) originates on the western edge of 

Arkansas and flows into Oklahoma, south of the Arkansas River Valley (Figure 1).  In Arkansas, 

the Poteau River Watershed drains an area of 1,400 km2, which is 56% forested, 21% grassland, 

19% transitional and 2% urban/suburban (Arkansaswater.org 2017).  The headwaters of the 
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Poteau River originate near Waldron, Arkansas, flowing west into Oklahoma, near Loving, 

Oklahoma.  The two main tributaries of the Poteau River within Arkansas are the Black Fork and 

the James Fork (to the south and north, respectively).  

 The PRW has been listed as a priority watershed within the Arkansas Nonpoint Source 

(NPS) Pollution Management plan since 1998, and thus has been the focus of trans-boundary 

water quality issues for the last several decades.  Several reaches of the Poteau River have been 

identified as impaired on the 2018 303(d) list for dissolved oxygen, nutrients, anions and 

turbidity from municipal and industrial point sources and surface erosion (ADEQ 2018).  The 

2018-2023 NPS Pollution Management Plan aims at reducing pollutant loads in this priority 

watershed to decrease impairments and restore designated uses (ANRC 2018).  For this study, 

water quality and streamflow data were collected from 8 sites on the outlets of HUC-12/14 

subwatersheds and 3 sites at USGS stations on the outlets of HUC-8/10 subwatersheds within the 

Upper PRW (UPRW) (Figure 1, Table 1). Data collection methods are detailed in Chapter 5.  
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Figure 1: Monitoring sites in the Upper Poteau River Watershed in Arkansas; numbers near 

streamgages correspond to site ID’s in Table 1. 

Table 1: Monitoring site ID’s (corresponding to Figure 1), names, locations, watershed areas, 
and land use in the Upper Poteau River Watershed. 

1 % Forest (%F) includes deciduous, evergreen, and mixed forest; 2 % Urban (%U) includes open 
space, low, medium and high intensity development; 3 % Agriculture (%Ag) includes pasture, 

hay, and cultivated crops; 4 % Grassland (%G) includes grassland and shrubs. 

 

Site 

ID  Site Name Lat N Long W 

Watershed 

Area (km2) %F1 %U2 %AG3 %G4 

James Fork Watershed- HUC 1111010508 
 

1 USGS 07249400- James Fork 35 09.755 94 24.424 381 49.7 4.8 33.2 10.9 

2 Cherokee Creek Headwaters 35 01.379 94 16.985 14 84.5 1.1 9.4 2.8 

3 James Fork Headwaters 35 01.984 94 19.315 39 84.7 1.2 8.9 2.4 

4 Lower James Fork 35 02.820 94 20.302 95 69.9 3.5 18.3 6.9 

Headwaters Poteau River Watershed- HUC 1111010501  

5 USGS 07247000- Poteau River 34 55.129 94 17.918 527 63.7 5.6 21.3 7.8 

6 Lower Poteau River 34 55.666 94 10.124 193 51.6 7.7 32.0 7.7 

7 Poteau River Headwaters 34 53.769 94 03.975 39 52.7 5.5 33.1 8.6 

8 Ross Creek 34 51.647 94 11.910 77 71.8 4.6 13.9 9.3 

9 Upper Jones Creek 34 51.895 94 12.835 73 84.8 2.7 2.2 4.4 

Black Fork Watershed- HUC 1111010502  

10 USGS 07247250- Black Fork 34 46.428 94 30.748 245 88.3 3.5 9.8 4.0 

11 Big Creek 34 42.970 94 33.006 60 92.3 6.2 0.0 1.4 
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SWAT/QSWAT Model Description 

The Soil Water Assessment Tool (SWAT) is a continuous-time, processed based river 

basin model used to assess nonpoint source problems around the globe (Gassman et al. 2007).  

SWAT operates on a basin scale and predicts the impacts of land management and agriculture on 

water resources.  Primary components of the SWAT model include weather, hydrology, soil 

properties, plant growth, nutrients, pesticides, bacteria, pathogens and management practices.  

Watersheds are divided into subwatersheds in SWAT, and further divided into hydrologic 

response units (HRUs) to analyze water resources (Arnold et al. 2012).  SWAT has been used for 

a variety of applications including total maximum daily load (TMDL) development (Borah et al. 

2006), assessing effectiveness of conservation activities (Arabi et al. 2008), and prioritizing 

subwatersheds to address water quality issues (Pai et al. 2011b).  QSWAT is a QGIS interface 

for SWAT and was used in this study (Dile et al. 2020).   

QSWAT Model Setup 

Topography of the UPRW was defined using a digital elevation map (DEM) at 10 m 

spatial resolution from the USGS National Elevation Dataset.  The average elevation was 162 m, 

with a minimum of 120 m and a maximum of 812 m.  The average slope across the watershed 

was about 11%, and 24% of the watershed fell within the 0-2% slope class, 33% of the 

watershed fell within the 2-8% slope class, and 43% of the watershed fell within the >8% slope 

class.   

The entire PRW was simulated in QSWAT, since an individual outlet must be selected to 

delineate the watershed, but the focus of this study was on the upper portion of the watershed in 

Arkansas.  A DEM-based approach was used to delineate subwatersheds and HRUs within the 

PRW.  A threshold of 2 km2 was used, which is the area required to form a stream (i.e., a cell in 
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QSWAT was made into a stream if it had at least the threshold area draining into it).  Subbasins 

were defined as the areas draining into each stream reach, and a total of 1,313 subbasins were 

delineated in the PRW.  QSWAT created HRUs using all unique combinations of soil, land 

cover, and slope in each subwatershed, with slope bands defined as 0-2%, 2-8%, and >8%. A 

threshold of 10 acres was used to merge non-dominant HRUs with dominant HRUs, and a total 

of 15,953 HRUs were generated across the PRW.  Currently, there is no universally accepted 

method for HRU thresholds, but higher computational power is required with more HRUs.  

Therefore, there must be a balance between computational cost and representation of spatial 

variability across the watershed (Gitau 2003). 

Land use and land cover data were obtained from the 2016 National Land Cover 

Database. Land use changes over time can be simulated in QSWAT to simulate processes such 

as runoff and pollutant loads in response to changes in land use.  However, the period of interest 

for this study was 2017 to 2020, and land use data past 2016 was not available.  Therefore, it was 

assumed that land use remained the same from 2016 through 2020.   

Soil characteristics were obtained from the Soil Survey Geographic (SSURGO) soil 

database, as SSURGO is the most comprehensive soils database currently for Arkansas.  The soil 

series are classified into hydrologic groups, and 23% of the watershed was group A, 62% of the 

watershed was group B, and 15% of the watershed was group D.  Infiltration rates decrease as 

hydrologic groups move from A to D.   

Weather data was obtained from the National Oceanic and Atmospheric Administration 

(NOAA) Climate Data Online (CDO) for years 2012 through 2020.  Weather stations were 

located in Abbott, Waldron, and Fort Smith, Arkansas, where Waldron and Fort Smith contained 

precipitation and temperature data, while Abbott only contained precipitation data.  An inverse 
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distance weighted spatial interpolation method was used by QSWAT to determine daily 

precipitation at the centroid of each subwatershed.  Other climatic inputs including solar 

radiation, relative humidity, and wind velocity were generated by QSWAT’s weather generator, 

and evapotranspiration was simulated using the Penman-Monteith method (Penman 1948; 

Monteith 1965).  

Ponds were simulated in QSWAT using the National Hydrography Dataset from the 

USGS, identifying 10,894 ponds/waterbodies in the PRW.  However, QSWAT only allows one 

pond per subwatershed, therefore, pond properties (i.e., surface area, volume, and drainage area) 

were aggregated for each subwatershed.  Ponds were assumed to have a depth of 2 m, based on 

the average minimum depth of water (Deal et al. 1997), and were 75% full at the start of the 

simulation.  Drainage areas of the ponds were assumed to be 0.00131 ha per m3 of storage of 

ponds (Deal et al. 1997; Saraswat et al. 2009). 

Point sources identified and operating in the UPRW between 2012 and 2020 included 

waste water treatment plants (WWTPs) in Waldron, Huntington and Mansfield, and Tyson, Inc. 

in Waldron.  The Waldron plants discharge into a tributary of the Poteau River upstream from 

monitoring site 6, and the Huntington and Mansfield WWTPs discharge into Cherokee Creek 

downstream of site 2. Point source effluent data were acquired from the Arkansas Department of 

Environmental Quality, which began prior to 2012, but only 2012 through 2020 was used for this 

study.  The frequency of data varied across facilities, so to avoid bias, data were aggregated on 

an annual scale.   

Constituents used to characterize point source inputs in QSWAT include flow, total 

suspended solids (TSS), organic and mineral phosphorus (P), ammonia (NH3)-, nitrate (NO3)- 

and organic- nitrogen (N), carbonaceous biochemical oxygen demand (CBOD), and dissolved 
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oxygen (DO).  Assumptions for point source effluents in Arkansas are described in Pai et al.  

2011, where a review of nutrient forms in WWTP effluents was conducted.  Total P (TP) effluent 

from WWTPs were assumed to be 20% organic and 80% inorganic P.  Land application of 

sludge was not available, so it was not included in the model inputs.  Nitrogen forms are 

typically reported as ammonia-nitrogen from point sources, so NO3-N and organic N were 

estimated based on a ratio of 4:75:21 for NH4-N:NO3-N : organic N (Pai et al. 2011b). However, 

it is understood that assumptions in point source effluents produce uncertainty in the model. 

The monitoring locations in the UPRW are mostly forested followed by agriculture land 

and urban area.  Default forest management was used, where forests were considered mature 

without harvest or planting operations.  Since urban areas were less than 8% across the 

watershed, default urban management was also used, where Bermuda grass growing season and 

fertilization were scheduled by heat units.   

Pasture management practices are outlined in Pai et al. 2011 for Benton and Washington 

counties in Arkansas, and these methods for grazing and poultry litter application were adapted 

for Scott, Sebastian and Polk counties in this study.  In 2017, the total cattle population in Scott, 

Sebastian and Polk counties were 21,968, 27,875, and 37,916, respectively (USDA-NASS 2018).  

Based on the percentage of watershed falling within each county, the watershed cattle population 

was 8,809, 9,756, and 834 in Scott, Sebastian and Polk counties, respectively.  Intake averages 

while grazing on Bermuda were 10.88 kg d-1 and 10.43 kg d-1 while grazing on Tall Fescue.  

Total daily consumption rate of grass in a subwatershed was obtained by multiplying the daily 

consumption rate by the number of cows in each subwatershed, and then divided by the pasture 

area to obtain grazing density (kg day-1 ha-1).  Grazing densities were 5.2, 5.7, and 0.5 kg day-1 

ha-1 for Scott, Sebastian, and Polk counties, respectively (Table 2).  Grazing was scheduled for 
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105 days starting May 15, 59 days starting October 1, and 43 days starting March 1.  Manure 

deposition was estimated at 4.32 kg day-1, which was converted to 2.0, 2.3, and 0.2 for Scott, 

Sebastian, and Polk counties, respectively (Table 2).  Poultry litter was uniformly applied across 

pasture area at a rate of 2.6 Mg ha-1 year-1 (Sharpley et al. 2009). 

Three to 5 years of warmup is typical for SWAT model simulations (Rostamian et al. 

2008; Pai et al. 2011b; Bressiani et al. 2015; Mengistu et al. 2019).  Historic weather data (prior 

to 2012) was used to run QSWAT with a variety of warmup periods in the PRW.  Five years of 

warmup did not produce different results for total flow and constituent loads compared to lengths 

longer than 5 years (i.e., up to 30 years where weather data was available).  Therefore, the model 

was run from 2012 to 2020, with the first 5 years as warmup. 

QSWAT Model Sensitivity Analysis, Calibration, and Validation 

Sensitivity analysis, calibration, and validation of the SWAT model was conducted using the 

SWAT- Calibration and Uncertainty Program (SWAT-CUP).  SWAT models contains a large 

number of calibration parameters, so it is important to identify parameters that greatly impact the 

outputs.  Therefore, a global sensitivity analysis was done using the Latin hypercube (LH) 

method in SWAT-CUP, where a t-test is used to identify the relative significance of each 

parameter, and then the parameters are ranked from least to most sensitive.  Sensitivity analyses 

were conducted individually for each site and constituent of interest with a total of 53 parameters 

used across the literature for SWAT calibration (Appendix A) (Santhi et al. 2001; White and 

Chaubey 2005; Ahl et al. 2008; Ndomba et al. 2008; Saraswat et al. 2013; Shawul et al. 2013; 

Wallace et al. 2018; Mengistu et al. 2019). 
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Calibration was conducted using daily flow and constituent loads (i.e., TP, TN, and TSS) at 

each monitoring location between 2018 and 2020.  Streamflow was calibrated first, followed by 

sediment, then TN and TP.  Some calibration parameters are at the whole watershed scale 

(Appendix A) and had to be manually adjusted to minimize error across the calibration sites 

(e.g., parameters related to sediment routing, ADJ_PKR and SPCON).  Similarly, some 

calibration parameters impacted multiple outputs (e.g., flow and sediments) and had to be 

manually adjusted to minimize error across outputs.  All three years of data were used for 

calibration and validation.  While more years of monitoring data may improve model 

performance, several studies have used three year calibration/validation techniques in SWAT due 

to data availability (Reungsang et al. 2007; Karamouz et al. 2008; Andrade et al. 2013).  To test 

the significance of the small-scale watershed data, the SWAT model was calibrated on the larger 

scale (i.e., the 3 USGS gauges) and validated at the small-scale (HUC-10/HUC-12 

subwatersheds, remaining 8 sites).  Calibration and validation was evaluated based on 

recommended model evaluation statistics (i.e., Nash-Sutcliffe efficiency (NSE), percent bias 

(PBIAS), and the root mean square error standard deviation ratio (RSR).  Additionally, daily 

observed and simulated outputs (i.e., flow, sediment, TN and TP) were summed on a monthly 

and annual time scale and compared with NSE, PBIAS, and RSR values. Thresholds and their 

evaluation criteria (Table 2) will be used for each statistic (Moriasi et al. 2007).  This 

information was used to determine the ability of SWAT to predict flow and constituent loads in 

small-scale watersheds (i.e., HUC-10/HUC-12). 
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Table 2: Performance ratings for evaluating model results (Moriasi et al. 2007) 

 

 

 

 

Results 

Calibration at Site 1 

The top five sensitive parameters for flow, sediments, TN and TP at Site 1 (Table 3) were 

used as starting points for calibration.  For streamflow, the top five parameters were related to 

groundwater, stream channel, and overland flow processes and included the baseflow alpha 

factor (ALPHA_BF), hydraulic conductivity in the main channel alluvium (CH_K2), Manning’s 

n for the main channel (CH_N2) curve number (CN2), and Manning’s n for the overland flow 

(OV_N), and were all adjusted on the HRU or subwatershed scale based on the calibrated value 

(Table 3).  Daily streamflow calibration was considered satisfactory (Table 4, Figure 2), while 

monthly and annual comparisons were unsatisfactory (Table 4, Figures 3 and 4).  The lowest 

model performance occurred at Site 1 (Table 4) compared to the other calibration sites, and flows 

were typically over predicted within the lower range of flows. 

  

Rating NSE RSR 
PBIAS (%) 

Flow Sediment TN, TP 

Very Good 0.75 - 1.00 0.00 - 0.50 ≤ ±10 ≤ ±15 ≤ ±25 

Good 0.65 - 0.74 0.51 - 0.60 ±10 - ±15 ±15 - ±30 ±25 - ±40 

Satisfactory 0.50 - 0.64 0.61 - 0.70 ±16 - ±25 ±31 - ±55 ±41 - ±70 

Unsatisfactory < 0.50 > 0.70 > ±25 > ±55 > ±70 
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Table 3: Top five sensitive parameters (descriptions in Appendix A) for each process (flow, 
sediments, total nitrogen (TN), total phosphorus (TP)), calibration method, and calibrated values 

at Site 1. 

 

 

 

 

 

 

 

 

 

 

*Calibration methods in SWAT-CUP are either relative (parameter is multiplied by 1 + calibrated 

value), replace (parameter is replaced by calibrated value), or additive (calibrated value is added 
to parameter). 

  

Process 
Top 5 Sensitive 

Parameters 
Calibration 

Method* 
Calibrated 

Value 

Flow 

ALPHA_BF Replace 0.996 

CH_K2 Replace 119.9 

CH_N2 Replace 0.020 

CN2 Relative -0.099 

OV_N Relative 0.459 

Sediments 

USLE_K Replace 0.776 

USLE_P Replace 0.743 

ADJ_PKR Replace 2.620 

BIOMIX Replace 0.145 

SPCON Replace 0.018 

TN 

NPERCO Replace 0.198 

CDN Replace 2.610 

SOL_CRK Replace 0.670 

SDNCO Replace 0.110 

ERORGN Replace 0.830 

TP 

P_UPDIS Replace 39.00 

PHOSKD Replace 101.0 

SOL_BD Replace 1.316 

ERORGP Replace 0.960 

RS5 Replace 0.006 
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Table 4: Calibration statistics at Site 1 for each constituent (flow, sediments, total nitrogen (TN), 
total phosphorus (TP)) and average simulated and observed values on the daily, monthly and 

annual scale. 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Observed daily streamflow, sediment, total nitrogen (TN), and total phosphorus (TP) 

loads versus SWAT simulated values at calibration sites; numbers represent Site IDs listed in 

Table 1.  

Scale Process NSE PBIAS RSR 
Average 

Simulated 

Average 

Observed 

Daily 

Flow (cms) 0.52 30.2 0.69 9.9 7.6 

Sediments (tons) 0.29 -40.2 0.84 50.1 83.8 

TN (kg) 0.32 0.2 0.82 652.0 650.5 

TP (kg) 0.48 -0.3 0.72 164.0 164.7 

Monthly 

Flow (cms) 0.48 30.2 0.71 302 231 

Sediments (tons) 0.38 -40.4 0.77 1519 2551 

TN (kg) 0.24 0.2 0.87 19851 19803 

TP (kg) 0.70 -0.3 0.54 4996 5014 

Annual 

Flow (cms) -0.24 30.2 0.91 3634 2782 

Sediments (tons) -2.50 -40.4 1.53 18312 30618 

TN (kg) -0.85 0.2 1.11 238212 237643 

TP (kg) 0.77 -0.3 0.39 59961 60169 
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Figure 3: Observed monthly streamflow, sediment, total nitrogen (TN), and total phosphorus 

(TP) loads versus SWAT simulated values at calibration sites; numbers represent Site IDs listed 

in Table 1.  

 
Figure 4: Observed annual streamflow, sediment, total nitrogen (TN), and total phosphorus (TP) 

loads versus SWAT simulated values at calibration sites; numbers represent Site IDs listed in 

Table 1.  
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The top five sensitive parameters for sediment (Table 3) were related to both upland and 

channel erosion, including the university soil loss equation (USLE) k factor (USLE_K), the 

USLE support practice factor (USLE_P), the peak rate adjustment factor for sediment routing in 

the subbasin (ADJ_PKR), the biological mixing efficiency (BIOMIX), and linear parameter for 

the maximum amount of sediment that can be re-entrained during channel sediment routing 

(SPCON).  Parameters ADJ_PKR and SPCON are on the whole watershed scale, so they were 

manually adjusted to optimize all sites, and the final values were 1.0 and 0.008, respectively.  In 

addition to the lowest model performance occurring at Site 1, sediment performance specifically 

had the lowest performance.  Sediment calibration was considered unsatisfactory on the daily, 

monthly and annual scale (Table 4, Figures 2-4).  The best performance occurred on the monthly 

scale, but was still considered unsatisfactory.  

The top five sensitive parameters for TN (Table 3) were related to denitrification, infiltration, 

and sediment loading, including the nitrate percolation coefficient (NPERCO), denitrification 

exponential rate coefficient (CDN), potential crack volume of the soil profile (SOL_CRK), 

denitrification threshold water content (SDNCO), and the organic N enrichment ratio for loading 

with sediment (ERORGN).  Parameters CDN, SDNCO and NPERCO are on the watershed scale, 

so these were adjusted manually to optimize outputs across all sites, and a final value of 0.01, 

0.71 and 0.01 were used, respectively.  TN calibration was considered unsatisfactory based on 

NSE and RSR, but satisfactory based on PBIAS on all time scales (Table 4, Figures 2-4).  

Finally, the top five sensitive parameters for TP (Table 3) were related to plant uptake of 

P, soil properties, runoff, and in-stream processes, including the P uptake distribution parameter 

(P_UPDIS), P soil partitioning coefficient (PHOSKD), moist bulk density of the soil (SOL_BD), 

phosphorus enrichment ratio for loading with sediment (ERORGP), and the organic P settling 
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rate in the reach (RS5).  Watershed scale parameters, PHOSKD and P_UPDIS, were adjusted 

manually to optimize outputs across all sites, and values of 196.5 and 0.5 were used, 

respectively.  While TP performance was slightly better than TN, it was still considered 

unsatisfactory at the daily scale based on NSE and RSR, but satisfactory based on PBIAS (Table 

4).  However, on the monthly and annual scale, TP was considered satisfactory.   

Calibration at Site 5 

For streamflow, the top five parameters (Table 5) were related to soil properties, stream 

channel, and overland flow processes and included CN2, available water capacity of the soil 

layer (SOL_AWC), OV_N, saturated hydraulic conductivity (SOL_K), and average slope length 

(SLSUBBSN), and were all adjusted on the HRU or subwatershed scale based on the calibrated 

value.  Daily streamflow calibration was good based on NSE and RSR and very good based on 

PBIAS (Table 6).  Additionally, monthly and annual calibration were good and very good, 

respectively.   
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Table 5: Top five sensitive parameters (descriptions in Appendix A) for each process (flow, 
sediments, total nitrogen (TN), total phosphorus (TP)), calibration method, and calibrated values 

at Site 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Calibration methods in SWAT-CUP are either relative (parameter is multiplied by 1 + calibrated 

value), replace (parameter is replaced by calibrated value), or additive (calibrated value is added 
to parameter).   

  

Process 
Top 5 Sensitive 

Parameters 

Calibration 

Method* 

Calibrated 

Value 

Flow 

CN2 Relative -0.175 

SOL_AWC Relative 0.895 

OV_N Relative 0.028 

SOL_K Relative 0.963 

SLSUBBSN Relative -0.418 

Sediments 

USLE_K Replace 0.638 

CH_N2 Replace 0.015 

USLE_P Replace 0.589 

ESCO Replace 0.136 

EPCO Replace 0.722 

TN 

NPERCO Replace 0.390 

CDN Replace 0.015 

SDNCO Replace 0.695 

ANION_EXCL Replace 0.825 

ERORGN Replace 0.955 

TP 

SOL_BD Replace 1.100 

PHOSKD Replace 151.0 

ERORGP Replace 0.725 

P_UPDIS Replace 17.00 

RS5 Replace 0.002 
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Table 6: Calibration statistics at Site 5 for each constituent (flow, sediments, total nitrogen (TN), 
total phosphorus (TP)) and average simulated and observed values on the daily, monthly and 

annual scale. 

 

The top five sensitive parameters for sediment (Table 5) were related to both upland and 

channel erosion, including USLE_K, CH_N2, USLE_P, the soil evaporation compensation factor 

(ESCO), and the plant uptake compensation factor (EPCO).  Sediment calibration was 

considered very good based on NSE and RSR and good based on PBIAS on the daily, monthly 

and annual scale (Table 6, Figures 2-4).  In general, sediments were slightly over predicted by 

the model.  

The top five sensitive parameters for TN (Table 5) were related to denitrification, infiltration, 

and sediment loading, including NPERCO, CDN, SDNCO, the fraction of porosity which anions 

are excluded (ANION_EXCL), and ERORGN.  TN calibration was considered satisfactory 

based on NSE and RSR, and very good based on PBIAS on all time scales (Table 6, Figures 2-

4).  

Finally, the top five sensitive parameters for TP (Table 5) were related to plant uptake of 

P, soil properties, runoff, and in-stream processes, including SOL_BD, PHOSKD, ERORGP, 

Scale Process NSE PBIAS RSR 
Average 

Simulated 

Average 

Observed 

Daily 

Flow (cms) 0.71 2.9 0.54 13.3 12.9 

Sediments (tons) 0.77 19.4 0.48 79.0 66.1 

TN (kg) 0.50 -6.5 0.63 893.0 956.0 

TP (kg) 0.60 -60.0 0.65 81.2 203.2 

Monthly 

Flow (cms) 0.69 2.9 0.55 404 392 

Sediments (tons) 0.83 19.5 0.41 2402 2010 

TN (kg) 0.62 -6.5 0.61 27187 29077 

TP (kg) 0.50 -60.0 0.70 2473 6179 

Annual 

Flow (cms) 0.81 2.9 0.36 4856 4711 

Sediments (tons) 0.81 19.5 0.36 28862 24129 

TN (kg) 0.38 -6.5 0.64 326248 348934 

TP (kg) -0.79 -60.0 1.09 29676 74148 
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P_UPDIS, and RS5.  TP calibration was considered satisfactory on the daily and monthly scale 

(Table 6, Figure 2 and 3), but TP was unsatisfactory on the annual scale, where TP was under 

predicted by the model (Figure 4).   

Calibration at Site 10 

 For streamflow, the top five parameters (Table 7) were related to soil properties, stream 

channel, and overland flow processes including CN2, SOL_K, SLSUBBSN, SOL_AWC, and 

ESCO, and were all adjusted on the HRU scale based on the calibrated value (Table 7). The 

ESCO factor was sensitive for both streamflow and sediments, so it was manually adjusted to a 

value of 0.678 to optimize both processes.  Streamflow calibration was good based on NSE and 

RSR and very good based on PBIAS on the daily scale (Table 8, Figure 2).  On the monthly and 

annual scales, streamflow calibration was very good (Figure 3 and 4).   
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Table 7: Top five sensitive parameters (descriptions in Appendix A) for each process (flow, 
sediments, total nitrogen (TN), total phosphorus (TP)), calibration method, and calibrated values 

at Site 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Calibration methods in SWAT-CUP are either relative (parameter is multiplied by 1 + calibrated 
value), replace (parameter is replaced by calibrated value), or additive (calibrated value is added 
to parameter).  

  

Process 
Top 5 Sensitive 

Parameters 

Calibration 

Method* 

Calibrated 

Value 

Flow 

CN2 Relative -0.089 

SOL_K Relative 0.866 

SLSUBBSN Relative -0.366 

SOL_AWC Relative 0.184 

ESCO Replace 0.678 

Sediments 

USLE_K Replace 0.891 

USLE_P Replace 0.841 

CH_N2 Replace 0.052 

ESCO Replace 0.906 

EPCO Replace 0.196 

TN 

CDN Replace 2.355 

ERORGN Replace 0.525 

ANION_EXCL Replace 0.985 

SDNCO Replace 0.215 

NPERCO Replace 0.361 

TP 

ERORGP Replace 0.960 

SOL_BD Replace 1.316 

PHOSKD Replace 101.0 

P_UPDIS Replace 39.00 

PPERCO Replace 15.90 
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Table 8: Calibration statistics at Site 10 for each constituent (flow, sediments, total nitrogen 
(TN), total phosphorus (TP)) and average simulated and observed values on the daily, monthly 

and annual scale. 

 

Besides ESCO, the other top sensitive parameters for sediment were USLE_K, USLE_P, 

CH_N2, and EPCO (Table 7).  All parameters were adjusted on the HRU scale, except for 

Manning’s n, which was on the subwatershed scale.  Sediment calibration was considered 

satisfactory based on NSE and RSR and good based on PBIAS on the daily scale. (Table 8, 

Figure 2).  On the monthly and annual scales, sediment calibration was very good (Figure 3 and 

4).   

The top five sensitive parameters for TN (Table 7) were related to denitrification, infiltration, 

and sediment loading including CDN, ERORGN, ANION_EXCL, SDNCO, and NPERCO. TN 

calibration was considered satisfactory based on NSE and RSR and very good based on PBIAS 

on the daily and monthly scale (Table 8, Figure 2 and 3).  On the annual scale, TN was 

considered satisfactory based on NSE, very good based on PBIAS, and good based on RSR 

(Table 8, Figure 4).   

Scale Process NSE PBIAS RSR 
Average 

Simulated 

Average 

Observed 

Daily 

Flow (cms) 0.65 8.5 0.60 7.3 6.7 

Sediments (tons) 0.61 -5.6 0.63 11.3 12.0 

TN (kg) 0.63 -22.1 0.61 99.7 127.9 

TP (kg) 0.62 -32.2 0.61 12.8 18.8 

Monthly 

Flow (cms) 0.55 8.5 0.66 222 204 

Sediments (tons) 0.77 -5.6 0.47 343 363 

TN (kg) 0.58 -22.1 0.64 3035 3896 

TP (kg) 0.68 -32.2 0.56 388 573 

Annual 

Flow (cms) 0.86 8.5 0.31 2664 2456 

Sediments (tons) 0.82 -5.6 0.34 4122 4367 

TN (kg) 0.60 -22.1 0.52 36422 46761 

TP (kg) 0.60 -32.2 0.53 4664 6881 
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Finally, the top five sensitive parameters for TP were related to plant uptake of P, soil 

properties, and runoff including ERORGP, SOL_BD, PHOSKD, P_UPDIS, and P  percolation 

coefficient (PPERCO).  TP calibration was considered satisfactory based on NSE and RSR and 

good based on PBIAS on the daily scale (Table 8, Figure 2). On the monthly and annual scale, 

TP calibration was considered good (Table 8, Figure 3 and 4). 

Validation at Small-Scale Watersheds 

 Once calibration the large scale was considered acceptable, validation was conducted at 

eight sites on small-scale watersheds over the same 3-year time span.  Validation on the daily 

scale was variable across sites and calibration statistics (NSEs ranged from < -100 to 0.60), and 

the lowest validation performance occurred at site 9 (Table 9, Figure 5). Based on NSE and RSR, 

streamflow validation was unsatisfactory at all sites except for sites 6 and 7, where streamflow 

calibration was satisfactory (Table 9).  Sediment validation was satisfactory at sites 6, 7 and 8, 

but unsatisfactory at the remainder of sites.  TN validation was only satisfactory at site 6, but the 

remainder of the sites were unsatisfactory.  Finally, TP validation was only satisfactory at site 7.  

However, based on PBIAS, several sites and constituents were considered satisfactory or better 

(Table 9). 
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Table 9: Validation statistics for each constituent (flow, sediments, total nitrogen (TN), total 
phosphorus (TP)) and average simulated and observed values on the daily scale. 

 

Site Process NSE PBIAS RSR 

Average 

Daily- 

Simulated 

Average 

Daily- 

Observed 

2 

Flow (cms) 0.38 35.00 0.79 0.4 0.3 

Sediments (tons) -2.19 208.90 1.79 1.5 0.5 

TN (kg) 0.17 -36.50 0.91 8.3 13.2 

TP (kg) 0.25 19.60 0.85 2.3 1.9 

3 

Flow (cms) 0.32 10.60 0.83 1.2 1.1 

Sediments (tons) 0.04 -53.50 0.98 0.3 7.0 

TN (kg) 0.09 -60.80 0.95 18.2 46.9 

TP (kg) 0.04 -75.50 0.98 0.4 14.3 

4 

Flow (cms) 0.37 29.60 0.79 0.3 2.2 

Sediments (tons) 0.21 3.00 0.89 19.5 19.2 

TN (kg) 0.17 -41.70 0.91 91.2 158.2 

TP (kg) 0.22 -36.50 0.88 28.7 45.8 

6 

Flow (cms) 0.57 -31.50 0.65 4.4 6.4 

Sediments (tons) 0.59 -34.80 0.64 21.3 32.8 

TN (kg) 0.54 -33.60 0.68 425.0 640.5 

TP (kg) 0.45 -69.80 0.74 45.3 146.9 

7 

Flow (cms) 0.50 -32.50 0.70 0.9 1.4 

Sediments (tons) 0.59 -23.60 0.64 4.0 5.3 

TN (kg) 0.45 -18.40 0.74 74.4 91.6 

TP (kg) 0.50 -63.50 0.70 8.5 22.9 

8 

Flow (cms) 0.46 -52.70 0.85 2.2 4.5 

Sediments (tons) 0.60 -2.60 0.63 12.2 12.1 

TN (kg) 0.39 -31.40 0.92 159.0 223.7 

TP (kg) 0.33 -77.80 0.78 9.3 37.7 

9 

Flow (cms) -1.39 20.10 1.55 2.2 1.8 

Sediments (tons) -22342 7515 150 5.6 0.7 

TN (kg) -0.27 -79.10 1.15 16.1 77.2 

TP (kg) -23.50 -25.70 4.69 2.4 3.2 

11 

Flow (cms) 0.39 -44.70 0.78 1.9 3.4 

Sediments (tons) 0.36 -64.90 0.80 1.5 4.4 

TN (kg) 0.16 -80.80 0.92 19.8 103.1 

TP (kg) 0.39 -67.60 0.78 1.7 5.4 
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Figure 5: Observed daily streamflow, sediment, total nitrogen (TN), and total phosphorus (TP) 
loads versus SWAT simulated values at validation sites; numbers represent Site IDs listed in 

Table 1. 

 

Validation at the small-scale watersheds on the monthly scale typically had lower 

performances across sites compared to daily validation. Based on NSE and RSR, streamflow 

validation was unsatisfactory at all sites, but based on PBIAS, streamflow validation was 

satisfactory at site 3 and 9 (Table 10, Figure 6).  Sediment validation was good at site 7 and very 

good at site 8 based on all statistics. However, sediment validation was unsatisfactory at the 

remainder of sites.  TN validation was satisfactory at site 7 based on NSE and RSR, and very 

good based on PBIAS.  The remainder of the sites were unsatisfactory based on NSE and RSR, 

but some sites were satisfactory or better based on PBIAS.  At site 2, TP validation was 

satisfactory based on NSE and RSR, and very good based on PBIAS, but the remainder of the 
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sites were unsatisfactory.  Similar to TN, some sites were satisfactory or better based on PBIAS 

for TP (Table 10). 

Table 10: Validation statistics for each constituent (flow, sediments, total nitrogen (TN), total 
phosphorus (TP)) and average simulated and observed values on the monthly scale. 

Site Process NSE PBIAS RSR 

Average 

Monthly- 

Simulated 

Average 

Monthly- 

Observed 

2 

Flow (cms) 0.42 35.70 0.75 13 10 

Sediments (tons) -2.87 209.10 1.94 47 15 

TN (kg) 0.26 -36.10 0.84 254 397 

TP (kg) 0.55 19.80 0.64 70 58 

3 

Flow (cms) 0.42 11.60 0.75 38 34 

Sediments (tons) 0.01 -53.30 0.98 98 209 

TN (kg) -0.05 -60.70 1.01 553 1405 

TP (kg) -0.07 -75.50 1.02 105 429 

4 

Flow (cms) 0.43 30.50 0.75 87 66 

Sediments (tons) 0.26 2.90 0.85 591 574 

TN (kg) 0.17 -36.10 0.98 2777 4741 

TP (kg) 0.32 -36.30 0.81 873 1371 

6 

Flow (cms) 0.46 -31.40 0.73 133 195 

Sediments (tons) 0.54 -35.00 0.67 648 997 

TN (kg) 0.38 -33.60 0.77 12940 19499 

TP (kg) 0.25 -75.20 0.88 1381 4472 

7 

Flow (cms) 0.37 -32.00 0.78 28 41 

Sediments (tons) 0.72 -23.30 0.52 121 158 

TN (kg) 0.59 -17.50 0.63 2264 2745 

TP (kg) 0.19 -63.60 0.89 258 686 

8 

Flow (cms) -0.04 -50.90 1.00 66 134 

Sediments (tons) 0.75 1.60 0.49 370 364 

TN (kg) 0.07 -28.30 0.95 4832 6742 

TP (kg) -0.21 -80.50 1.08 284 1137 

9 

Flow (cms) -0.11 20.00 0.85 68 56 

Sediments (tons) -1174 7510 106 1730 22 

TN (kg) -0.60 -79.10 1.25 484 2320 

TP (kg) -1.56 -29.60 1.58 71 96 

11 

Flow (cms) -1.84 -44.70 1.08 58 104 

Sediments (tons) 0.36 -64.90 0.78 47 134 

TN (kg) -0.55 -80.80 1.23 602 3139 

TP (kg) 0.21 -67.60 0.88 53 163 
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Figure 6: Observed monthly streamflow, sediment, total nitrogen (TN), and total phosphorus 

(TP) loads versus SWAT simulated values at validation sites; numbers represent Site IDs listed 
in Table 1. 

 

On the annual scale, validation statistics were poor across most sites and constituents.  

However, at site 7, sediment validation was considered good based on NSE and PBIAS, and very 

good based on RSR (Table 11).  Additionally, sediment validation at site 8 were very good 

across all calibration statistics.  The remainder of the sites were considered unsatisfactory across 

all constituents, except for some sites and constituents using PBIAS (Table 11, Figure 7).  In 

general, TN and TP were under predicted by the model on the annual scale.  
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Table 11: Validation statistics for each constituent (flow, sediments, total nitrogen (TN), total 
phosphorus (TP)) and average simulated and observed values on the annual scale. 

Site Process NSE PBIAS RSR 

Average 

Annual- 

Simulated 

Average 

Annual- 

Observed 

2 

Flow (cms) -7.21 35.70 2.34 156 115 

Sediments (tons) -23.80 209.10 4.06 562 182 

TN (kg) -4.17 -36.10 1.86 3043 4766 

TP (kg) -1.62 19.80 1.33 842 703 

3 

Flow (cms) -2.15 11.60 1.45 455 408 

Sediments (tons) -2.14 -53.30 1.45 1175 2519 

TN (kg) -53.56 -60.70 6.03 6634 16869 

TP (kg) -3.17 -75.50 1.67 1263 5147 

4 

Flow (cms) -5.71 30.50 2.11 1046 801 

Sediments (tons) -0.82 2.90 1.10 7097 6896 

TN (kg) -5.62 -41.40 2.10 33322 56901 

TP (kg) -7.24 -36.30 2.10 10476 16457 

6 

Flow (cms) -0.41 -31.40 0.97 1605 2341 

Sediments (tons) 0.09 -35.00 0.78 7779 11964 

TN (kg) -117.00 -33.60 1.20 155279 233988 

TP (kg) -2.93 -69.10 1.67 16569 53674 

7 

Flow (cms) -2.31 -32.00 1.49 338 497 

Sediments (tons) 0.69 -23.30 0.45 1453 1894 

TN (kg) 0.32 -17.50 0.68 27177 32943 

TP (kg) -2.86 -63.30 1.60 3098 8238 

8 

Flow (cms) -3.78 -50.90 1.78 795 1619 

Sediments (tons) 0.99 1.60 0.07 4440 4371 

TN (kg) -1.58 -28.30 1.31 58011 80895 

TP (kg) -5.62 -75.00 2.10 3406 13648 

9 

Flow (cms) -0.62 20.00 1.04 810 675 

Sediments (tons) -97666 7510 255 20759 272 

TN (kg) -17.50 -79.10 3.66 5805 27837 

TP (kg) -4.56 -29.60 1.93 852 1147 

11 

Flow (cms) -3.28 -44.70 1.69 693 1253 

Sediments (tons) -1.69 -64.90 1.34 563 1607 

TN (kg) -9.09 -80.80 2.59 7225 37663 

TP (kg) -12.53 -67.60 3.00 634 1957 
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Figure 7: Observed annual streamflow, sediment, total nitrogen (TN), and total phosphorus (TP) 

loads versus SWAT simulated values at validation sites; numbers represent Site IDs listed in 
Table 1. 

 

Discussion 

 Watershed models are often calibrated at the HUC-8 or HUC-10 scale where monitoring 

data is frequently available.  However, model outputs are often used on the HUC-12 scale or 

smaller without data to validate the model at this scale (e.g., see Chapter 4).  Therefore, this 

study sought to calibrate a watershed model at the large-scale and assess its performance on the 

small-scale through validation with HUC-12 and HUC-14 watershed data.  

 Sensitivity analyses in the UPRW identified numerous parameters representing several 

watershed processes, similar to many SWAT studies (Arabi et al. 2008; Dechmi et al. 2012; 

Jajarmizadeh et al. 2017).  For streamflow, the most sensitive parameters were related to 
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Manning’s roughness, hydraulic conductivity, and groundwater processes.  Across all three sites, 

CN2 was highly sensitive, suggesting the importance of runoff for streamflow. For sediment 

loads, overland and instream erosion parameters were highly sensitive.  All three sites expressed 

sensitivity toward denitrification, infiltration and sediment loading for TN.  For TP, plant uptake, 

soil properties and runoff were sensitive.  Instream processes for TP were sensitive at the James 

Fork and Poteau River, but not on the Black Fork. 

 Calibration was satisfactory or better at the Poteau River and Black Fork, but the James 

Fork did not perform as well. Streamflow at the James Fork was satisfactory on the daily scale, 

but based on NSE and RSR, sediments and nutrients were unsatisfactory.  However, based on 

PBIAS, calibration of all parameters were satisfactory.  Similar results occurred in a previously 

developed SWAT model for the Poteau River and James Fork, where the James Fork showed 

mixed results and was considered satisfactory based on PBIAS and NSE, but unsatisfactory 

based on R2 and RSR (Saraswat et al. 2013).   While model evaluation statistics developed by 

Moriasi et al. 2007 are widely used for SWAT modelling, based on evaluations developed by 

Parajuli et al. 2009, the daily calibration at the James Fork would be considered fair or better. 

Additionally, SWAT models have been developed and reported with calibration results similar to 

the James Fork (Santhi et al. 2001; White and Chaubey 2005; Parajuli et al. 2009).  

Prior to calibration, the SWAT model performance at the James Fork produced NSE 

values between 0.15 and 0.46, PBIAS between ± 2 and 51, and RSR between 0.74 and 0.92 

across constituents.  Therefore, calibration efforts improved model predictions compared to the 

base model.  Calibrated model outputs were generally under predicted at the upper end of 

observations and over predicted at the lower end of observations, occurring at greater magnitudes 

for sediment and nutrient loads compared to streamflow.  Daily observed and predicted loads 
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were highly related to streamflow (R2 > 0.73, p < 0.001), and calibration improvements of 

streamflow would also likely improve constituent load performances.  Inadequate spatial 

coverage of precipitation data is often a source of poor calibration results (Arnold et al. 2012), 

and the James Fork monitoring site is around 40 km from the closest precipitation gage.  

Therefore, finer scale rainfall data could improve the James Fork calibration results. 

While SWAT models have frequently been calibrated on the daily, monthly and annual 

scale, some studies have shown better calibration results at the monthly scale compared to daily 

(Golmohammadi et al. 2014).  Across 31 studies calibrated on the monthly scale in Brazil, NSE 

values were considered satisfactory or better 94% of the time, but in 26 studies calibrated on the 

daily scale, NSE values were considered satisfactory or better 75% of the time (Bressiani et al. 

2015).  In the War Eagle Creek watershed in Arkansas, a SWAT model calibrated on the 

monthly scale outperformed a calibration on the daily scale (Sudheer et al. 2007).  Therefore, it 

may be worth attempting calibration at the James Fork on the monthly scale to try and improve 

model performance.   

At the Poteau River and the Black Fork, calibration was generally satisfactory or better 

across all constituents and scales.  Evaluation statistics at the Poteau River were similar to the 

previously developed SWAT model for the Poteau River and James Fork, where calibration was 

also satisfactory or better on the monthly scale (Saraswat et al. 2013).  Both the Black Fork and 

Poteau River fall within evaluation statistics of other SWAT models in the literature (Moriasi et 

al. 2015; Merriman et al. 2018; Mengistu et al. 2019), and specifically with SWAT models used 

for prioritization of subwatershed or critical source areas (Niraula et al. 2012; Kumar and Mishra 

2015; Imani et al. 2019). 
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Overall, 77% of statistics were considered satisfactory or better, and on the daily scale 

(the scale of calibration) 80% of statistics were satisfactory or better.  Therefore, the model 

calibration was considered acceptable.  Only the James Fork had performances on the daily scale 

that were considered unsatisfactory, therefore, the model outputs in this watershed should be 

handled with caution.   

When the model was validated at eight HUC-12 and HUC-14 watersheds over the same 

time period, only 24% of all statistics were considered satisfactory or better.  According to 

PBIAS 47% were satisfactory or better, but for NSE and RSR, only 14% and 10%, respectively, 

were satisfactory or better. Typically SWAT models are temporally validated at one or more 

sites where calibration occurred, and validation performances are as good as or better than the 

calibration period (White and Chaubey 2005; Ahl et al. 2008; Shawul et al. 2013; dos R. Pereira 

et al. 2016; Bai et al. 2017).  Therefore, the poor validation results at the small-scale watersheds 

are concerning.   

The best validation results occurred at sites 6 and 7, where daily evaluations statistics 

were generally considered satisfactory.  Sites 6 and 7 are upstream from the calibration site 5 on 

the Poteau River, and have similar land use distributions as site 5 (Table 1).  However, the lowest 

validation performance occurred at site 9, which is just downstream of the Lake Hinkle dam in 

the Poteau River watershed. The model greatly over predicted sediment loads and under 

predicted nutrient loads at site 9, thus the model is not adequately representing reservoir impacts 

on this small stream.  Since data is typically limited on small impoundments (as was true for 

Lake Hinkle), it can be difficult to calibrate small reservoir dynamics in SWAT.  With 

monitoring data downstream of the Lake Hinkle dam, the dam outputs could be adjusted to 

improve model performance.   
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 Both calibration and validation results were generally worse at the annual scale compared 

to monthly and daily.  This could be due to the low sample size for evaluation statistics, since 

only 3 years of data were used in the study.  Additionally, Sudheer et al., 2007 show that 

calibrating a SWAT model on the monthly scale and calculating the model’s performance on the 

daily scale can be inaccurate. The same may be true for annual model performances in this study, 

since the model was calibrated on the daily scale.    

  There could be unfortunate implications if small-scale watershed outputs were used from 

this SWAT model calibrated at the large-watershed scale.  If subwatersheds were prioritized 

based on nutrient and sediment loads, high priority could be designated to watersheds that are 

actually not a concern (e.g., Jones Creek would be high priority based on sediment loads, but 

monitoring data actually show low sediment loads).  Therefore, time and money could be 

invested towards watershed management practices in areas that may not need improvements, and 

areas in need of management may be missed.  To our knowledge, the majority of watershed 

models used for subwatershed prioritization are developed in this manner (Chapter 4), and could 

be inaccurately prioritizing areas of concern.   

While actual monitoring data at the small-scale watershed would likely be the best 

method for validating model performances, small-scale watershed data is expensive and difficult 

to collect and is rarely available.  Pai et al., 2011 validated SWAT model results in the Illinois 

River watershed by analyzing correlations between subwatershed pollutant concentrations and 

percentage of land use to confirm the expected trend of increasing concentrations with increasing 

pasture land.  However, subwatersheds with point source discharges may deviate from this 

relationship (e.g., a forest dominated watershed could be high priority), so this validation metric 

must be used with caution when considering point and nonpoint pollution.   
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 The previously developed SWAT model for the Poteau River watershed, which was 

calibrated at same locations on the James Fork and Poteau River as this study, was successfully 

validated temporally, and model outputs between 2008 and 2010 were used to prioritize critical 

source areas within the UPRW (Saraswat et al. 2013).  Small-scale watershed data (HUC-12 

scale) was then collected across the UPRW between 2011 and 2010, and baseflow concentrations 

were compared to the SWAT model outputs from the prioritization time period.  Significant 

relationships were observed between monitoring data and model outputs for nitrate and TP, but 

not TSS, and the linear slopes were not close to one.  However, the monitoring data and model 

outputs suggested the same sites as high or low priority, which the authors used as validation for 

the model’s ability to prioritize HUC-12 subwatersheds (Massey et al. 2013). Therefore, it would 

be interesting to determine if small-scale monitoring sites in this study fell in the same 

prioritization categories as those determined from the SWAT model developed here. 

Future Work 

In this study, SWAT was calibrated at the large scale watershed and validated at the 

small-scale.  The opposite scenario could be tested, where the model is calibrated at the small-

scale watershed and validated at the large scale.  Additionally, a spatial combination could be 

used, where some of the small and large scale watersheds are used for calibration and the rest for 

validation.  Priority subwatersheds could then be compared across the different 

calibrated/validated models to determine the importance of the small-scale watershed data for 

prioritization using SWAT models.   

The monitoring data in this study did not encompass the highly urban area in the northern 

portion of the UPRW.  It would be interesting to select more monitoring sites on the HUC-12 

and HUC-14 scale across the UPRW, including the urban dominated area, and compare priorities 
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determined from baseflow monitoring to SWAT outputs (similar to Massey et al., 2013, but with 

more monitoring sites encompassing more of the UPRW area and the HUC-14 scale).   

Conclusions  

Ultimately, the large scale calibration was mostly satisfactory or better, but the small- 

scale validation was mostly unsatisfactory.  With poor validation results at the HUC-12 and 

HUC-14 watershed scale, it is difficult to justify using the model outputs for subwatershed 

prioritization or other watershed modeling efforts (i.e., BMP evaluation and TMDL 

development).  Therefore, it may be necessary to begin collecting more small-scale data for use 

in SWAT calibration/validation. 
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Appendix 

Appendix A: Parameters used in sensitivity analyses and calibration of SWAT model.  

Parameter Scale Description Model Range 

CN2 HRU Initial SCS runoff curve number for moisture condition II 0-11 

Alpha_BF Subwatershed Baseflow alpha factor 0-1 

GW_Delay Subwatershed Groundwater delay time 0-500 

GWQMN Subwatershed Threshold depth of water in the shallow aquifer required for return flow to occur -1000-2 

ESCO HRU Soil evaporation compensation factor 0.01-1 

OV_N HRU Manning's "n" for overland flow 0.001-0.5 

SOL_AWC HRU Available water capacity of the soil layer 0-1 

SURLAG Watershed Surface runoff lag coefficient 0-20 

SOL_K HRU Saturated hydraulic conductivity 0-200 

SLSUBBSN HRU Average slope length 0-100 

HRU_SLP HRU Average slope steepness 0-1 

GW_REVAP Subwatershed Groundwater "revap" coefficient 0.02-2 

CH_K2 Subwatershed Effective hydraulic conductivity in the main channel alluvium 0-200 

SOL_ALB HRU Moist soil albedo 0-1 

EPCO HRU Plant uptake compensation factor 0.01-1 

CH_N2 Subwatershed Manning's "n" for the main channel 0.001-0.50 

BIOMIX HRU Biological mixing efficiency 0-1 

RSDIN HRU Initial residue cover 0-100 

SPCON Watershed Maximum amount of sediment that can be reentrained during channel sediment routing 0.0001-0.01 

USLE_P HRU USLE equation support practice factor 0-1 

PRF_BSN Watershed Peak rate adjustment factor for sediment routing in the main channel 0-2 

SPEXP Watershed Exponent parameter for calculating sediment reentrained in channel sediment routing 1-2 

CH_COV1 Subwatershed Channel erodibility factor 0-1 

USLE_K HRU USLE equation soil erodibility K factor 0-1 

CH_ERODMO Subwatershed Erosivity of channel 0-1 

REVAPMN HRU Threshold depth of water in the shallow aquifer for percolation to the deep aquifer 0-2 

ANION_EXCL HRU Fraction of porosity (void space) from which anions are excluded 0-1 
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Appendix A (cont.) 

ERORGP HRU P enrichment ratio for loading with sediment 0.0-1 

PPERCO Watershed P percolation coefficient 10-17.5 

PSP Watershed P availability index 0.0-1 

SOL_BD HRU Moist bulk density 1.1-1.9 

AI2 Watershed Fraction of algal biomass that is phosphorus 0-1 

BC4 Watershed Rate constant for decay of organic P to dissolved P 0.01-0.70 

CMN Watershed Rate factor for humus mineralization of active organic nutrients (N and P) 0.001-0.1 

RS5 Subwatershed Organic P settling rate in the reach at 20°C 0.001-0.1 

PHOSKD Watershed P soil partitioning coefficient  0-500 

P_UPDIS Watershed P uptake distribution parameter 0-100 

SOL_CRK HRU Potential or maximum crack volume of the soil profile 0-1 

NPERCO Watershed Nitrate percolation coefficient 0.01-1 

CDN Watershed Denitrification exponential rate coefficient  0-3 

SNDCO Watershed Denitrification threshold water content 0-2 

ADJ_PKR Watershed Peak rate adjustment factor for sediment routing in the subbasin 0-1 

CH_N1 Subwatershed Manning's "n" for the tributary channels 0.001-0.5 

CH_K1 Subwatershed Effective hydraulic conductivity in tributary channel alluvium 0-200 

RCN Watershed Concentration of N in rainfall 0-50 

SHALLST_N HRU Initial concentration of nitrate in shallow aquifer 0-100 

RS4 Subwatershed Rate coefficient for organic N settling in the reach at 20°C 0.001-0.1 

BC2 Subwatershed Rate constant for biological oxidation of NO2 to NO3 in the reach 0.1-1 

RCHRG_DP HRU Deep aquifer percolation fraction 0-1 

ERORGN HRU Organic N enrichment ratio for loading with sediment 0-1 

HLIFE_NGW HRU Half-life of nitrate in the shallow aquifer 0-30 

BC1_BSN Watershed Rate constant for biological oxidation of NO2 to NO3 0.1-1 

BC3_BSN Watershed Rate constant for hydrolysis of organic N to ammonia 0.02-0.4 
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Conclusions 

 In the UPRW, increasing OP at the James Fork and increasing TN at the James Fork and 

Poteau River must be managed.  The relatively undisturbed Black Fork serves as a benchmark 

for watersheds with point and nonpoint sources, and is important to continue monitoring.  The 

Poteau River contributes the largest amount of loads to Lake Wister, and while loads from the 

Fourche Maline are less, the increasing P concentrations on the Fourche Maline are a concern.  

Ultimately, the magnitude of loads from the LWW to Lake Wister is likely minimizing the 

effectiveness of alum treatments in the reservoir.  After 5 alum treatments across 6 years, internal 

P fluxes were not different than prior to any alum treatments.  Thus, it is important to address 

external P sources prior to or in conjunction with alum treatments.   

When watershed models are used for subwatershed prioritization, model calibration is 

often conducted at minimal sites on the large watershed scale and model outputs on the 

subwatershed scale or smaller are used for prioritization, but little data exists to validate the 

small-scale model outputs.  Therefore, a method was developed to monitor streamflow and 

estimate constituent loads in small-scale watersheds by using inexpensive pressure transducers to 

collect continuous records of stage, deploying SonTek-IQs during high flow events, and 

developing rating curves with a combination of simple linear regression, LOESS regression, and 

Manning’s equation. Additionally, water quality samples were collected across the range of flow, 

and constituent loads were estimated using GAMs, where the best fit GAM was determined to be 

spline based smooth functions of Q and DOY.  This method provides an opportunity to collect 

continuous records of flow across multiple, remote, small-scale watersheds, where data is 

typically unavailable. 
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When a SWAT model was calibrated using larger watershed scale data (i.e., HUC-8/10) 

and validated with the aforementioned smaller watershed scale data (i.e., HUC-12/14), the large 

scale calibration was mostly satisfactory or better, but the small-scale validation was mostly 

unsatisfactory.  With poor validation results at the HUC-12 and HUC-14 watershed scale, it is 

difficult to justify using the model outputs for subwatershed prioritization or other watershed 

modeling efforts (i.e., BMP evaluation and TMDL development).  Therefore, it may be 

necessary to begin collecting more small-scale data for use in SWAT calibration/validation. 
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