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Abstract

The two-terminal reliability problem is a classical reliability problem with applications in

wired and wireless communication networks, electronic circuit design, computer networks,

and electrical power distribution, among other systems. However, the two-terminal relia-

bility problem is among the hardest combinatorial problems and is intractable for large,

complex networks. Several exact methods to solve the two-terminal reliability problem have

been proposed since the 1960s, but they have exponential time complexity in general. Hence,

practical studies involving large network-type systems resort to approximation methods to

estimate the system’s reliability. One attractive approach for quantifying the reliability of

complex systems is to use signatures, but even signature-based approaches in computing

exact network reliability may become computationally prohibitive as the number of com-

ponents grows, and simulation-based approximations, such as Monte Carlo algorithms, are

generally required. Nonetheless, the computation of the network’s signature poses a major

challenge in terms of computational time, especially when considering large, heterogeneous

networks. Motivated by this, we propose a MC-survival signature based method to estimate

two-terminal reliability for heterogeneous networks through multi-objective optimization.

We formulate the problem of estimating the multi-dimensional survival signature of a net-

work with heterogeneous components as a repeated multi-objective maximum capacity path

problem and we present a fast and memory-efficient, Dijkstra-like algorithm to solve it.

To the best of our knowledge, this is the first work to point out the relationship between

the multi-dimensional survival signature computation and a multi-objective optimization

problem. We empirically validate our method and perform computational experiments to

compare its performance against two other approaches. The results of the experiments shows

that our method is much faster than the other two approaches and can be used with a larger

number of replications so to improve the accuracy of the reliability estimation.
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1 Introduction

Networks underpin every aspect of today’s global economy and social organization from

global vaccine supply chains to the Internet, from transportation and communication to

protein-protein interactions, from underwater earthquake monitoring systems to autonomous

vehicles, and from pandemic spread modeling to illegal supply chains (such as drugs and

human trafficking). Network models constitute such a powerful analytical tool for analyzing

interactions between components of a system and their reactions on the system itself that

virtually every system can be naturally represented by a network. It is impossible, therefore,

to overestimate the importance of creating mechanisms to understand complex networks, be

it to sustain and protect or to disrupt and destroy them.

One can make a distinction when studying network reliability regarding the causes of

network failure. Some failures are consciously caused by hostile agents who intend to de-

stroy, disrupt, or take control over the network. This type of attack can be carried out by

terrorist groups or adversary nations, but hacker attacks on virtual networks are of particu-

lar importance since they are becoming more frequent, more sophisticated, and potentially

disastrous. The shutdown of major fuel pipelines, the take over of hospitals’ data centers,

and the disruption of meat plants this year, all due to cyberattacks, are just some of the

latest examples.

In this paper, however, we focus on network failures caused by random events such as

environmental conditions, wearout, or battery depletion. Network reliability in this sense

is concerned with the probability that a system will be operating at a required level after

some time in the presence of these random events. Such a general definition can be taken

under different perspectives and opens up a wide variety of questions which in turn creates

a numerous set of paths to address each of these questions, hence the massive literature on

network reliability.

Network failure can be defined in different ways depending on the application. One of

the most commonly used models, however, is the two-terminal model, which considers a
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network operational as long as two pre-defined nodes can communicate with each other.

Thus, in this model, a failure occurs when the two specified nodes are no longer connected.

The two-terminal reliability problem is a classical reliability problem with applications in

wired and wireless communication networks, electronic circuit design, computer networks,

and electrical power distribution, among other systems. With the emergence of massive

networked structures with thousands or even millions of components, efficient algorithms for

computing or estimating network reliability remain an important research topic.

The two-terminal reliability problem, like many network reliability problems, has been

proven to be intractable for large, complex networks. Several exact methods to assess two-

terminal reliability have been proposed since the 1960s, and, in general, they are based on

enumeration of minimal paths or cuts, sum of disjoint products, factorization, or binary

decision diagrams. Hence, practical studies involving large network-type systems resort to

approximation methods to estimate the system’s reliability such as failure frequency approx-

imation [1] and Monte Carlo simulation [2, 3, 4].

One attractive approach for quantifying the reliability of complex systems is to use sig-

natures [5, 6, 7]. The signature of a system is a function of only its design and its definition

of failure. It thus allows for a separation of the structure’s impact from the random com-

ponents failure’s impact on the system’s reliability [8]. Nevertheless, even signature-based

approaches in computing exact network reliability may become computationally prohibitive

as the number of components grows, and simulation-based approximations, such as Monte

Carlo (MC) algorithms, are generally required.

Still, the combined use of MC with signatures is advantageous compared to estimating

the system reliability directly using crude MC (i.e., in which the system’s state is repeat-

edly evaluated after sampling each component’s time to failure). For instance, combined

MC/signature approaches have been shown to have bounded relative error whereas crude

MC may have unbounded relative error [9]. Nonetheless, the computation of the network’s

signature poses a major challenge in terms of complexity/computational time, especially
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when considering large, heterogeneous networks. With this motivation, Boardman and Sul-

livan [10] presented a combined MC/signature approach to estimate the coverage reliability

of a wireless sensor network — albeit one with homogeneous components — in which a

uni-dimensional signature can be estimated by a MC algorithm that amount to solving

a maximum capacity path/route problem (see [11, 12, 13]) at each iteration. To solve this

problem, they proposed an algorithm based on Dial’s implementation of Dijkstra’s algorithm.

Building on the work of Boardman and Sullivan [10], we extend this results to the case

of a two-terminal system with heterogeneous components, which require the use of a multi-

dimensional survival signature. To the best of our knowledge, this is the first work to

point out the relationship between the multi-dimensional survival signature computation

and multi-objective optimization problem. We formulate the problem of estimating the sig-

nature of a network with heterogeneous components as a repeated multi-objective maximum

capacity path problem and we present a fast and memory-efficient, Dijkstra-like algorithm

to solve it based on an extension of the work of [14]. Therefore, the main contribution of this

paper is twofold: (1) the relationship between the computation of multi-dimensional sur-

vival signature and a multi-objective optimization problem; (2) a fast and memory-efficient

algorithm to estimate the two-terminal reliability of heterogeneous systems.

The remaining of this paper is organized as follows. Section 2 provides background

material and summarizes the literature related to network reliability with a focus on two-

terminal reliability problems as well as signatures. In Section 3 we introduce three approaches

to deal with the problem of estimating two-terminal reliability for heterogeneous networks. In

Section 4, we conduct computational experiments to validate and demonstrate our algorithms

of Section 3. Finally, Section 5 presents our conclusions and directions for future research.

2 Background and Literature Review

In a network where some elements fail independently of the other components according

to a known probability, the two-terminal reliability problem is to determine the probability
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that there is at least one functional path between two specified terminal nodes s and t. The

two-terminal reliability problem is a special case of the K-terminal reliability problem, which

is to determine the probability that there is a functional path between every pair of the K

terminal nodes. The two-terminal and the K-terminal reliability problems have been shown

to be #P-Complete, and therefore at least as hard as any NP-Complete problem [15, 16, 17].

Many exact approaches to solve the two-terminal reliability problem have been proposed

since the late 1950s. We refer the reader to [18] and [19], for a summary of early research

in this area and to [20] for a general view of more recent results. Although exact algorithms

have proven effective for small networks or networks with special structures (such as trees

or series-parallel), approximation algorithms are more commonly used for large, generally

structured networks. Both exact and approximation algorithms are usually based on one

or more of the following methods: (1) sum of disjoint products (SDP), (2) cut and path-

based state enumerations, (3) factoring algorithm, and (4) binary decision diagram (BDD).

Classes (1) and (2) are closely related since SDP algorithms requires enumeration of minimal

cuts in advance, and their major drawback is that their complexity is usually exponential

[21]. Factoring algorithms have generally exponential time complexity as well [22], while

BDD-based algorithms require large memory capacity and some pre-processing, which can

present limitations when solving large, dense networks [23]. Other approaches to solve two-

terminal reliability problems include neural networks [24, 25], decomposition algorithms [26],

the cross-entropy method [27], evolutionary optimization techniques [28], failure frequency

approximation [1], and various Monte Carlo simulation based methods [2, 3, 4].

Among the SDP methods, Jane and Yuan [29] proposed an algorithm for the generalized

capacitated version of the two-terminal reliability problem, Datta and Goyal [30] proposed

an exact SDP technique based on the Inclusion-Exclusion Principle, and Caşcaval and Floria

[31] presented a method that combines SDP with multiple variables inversion to transform

a structure function into a sum of disjoint products. Minimal cut sets were used by [32] and

[22]. Gebre and Ramirez-Marquez [32] proposed an algorithm based on set-replacement and
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element inheritance to obtain a network’s minimal cut set while Silva et al. [22] presented a

bounding algorithm based on ordered subset of minimal cuts and minimal paths to compute

the all-terminal reliability upper and lower bounds. The multi-state two-terminal reliability

at specified demand level problem was investigated in [33, 34]. Ramirez-Marquez et al. [33]

proposed an algorithm to obtain the multi-state equivalent of binary path sets, while Zhang

and Shao [34] presented a diameter-constrained approximation algorithm.

The use of BDD is a more recent approach and is efficient at manipulating Boolean

expressions. Sebastio et al. [35] proposed a BDD bounding algorithm for the two-terminal

reliability problem. Their algorithm is based on a novel search strategy to find important

minimal paths and minimal cuts. Nevertheless, BDD-based algorithms have their specific

drawbacks. Many of the BDD methods still rely on finding minimal cut/path sets and

hence can have exponential time complexity. The memory requirement is another major

disadvantage of BDD algorithms. In fact, the study conducted by Lê et al. [21] is focused on

the memory usage when solving the two-terminal reliability problem through a BDD-method.

They propose a strategy to minimize the impact of memory usage without significantly

increasing the computational time.

More recent studies have applied signature-based approaches for computing or approxi-

mating reliability problems and specifically two-terminal reliability problems. An interesting

example of this trend is the algorithm present in [23] and expanded in [36]. In [23], Reed

proposes an exact dynamic programming algorithm to compute a system’s signature based

on a reduced ordered binary decision diagram (ROBDD) representation of the system. The

algorithm demonstrated empirical gains compared to enumerative algorithms. Nonetheless,

the BDD representation may be exponential in size [37, 38]. Reed et al. [36] address the K-

terminal reliability problem by extending from the algorithm presented in [23] and combining

it with BDD classical methods such as boundary set partition and factorization. Although

efficient for most of the benchmark examples, this algorithm is constrained by significant

memory usage in some cases (particularly in networks with a large number of edges) and it
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applies only to undirected networks with unreliable edges and completely reliable nodes.

2.1 Signatures

In this section we introduce the concept of signatures, a technique that has been widely

used for analyzing and comparing the reliability of multi-component system. To formally

introduce these concepts, consider a system in n components and let x be the state vector

whose elements are

xi =


1, if component i operates,

0, if component i has failed,

and suppose the system’s structure function Ψ is defined by

Ψ(x1, x2, . . . , xn) =


1, if the system operates,

0, if the system has failed.

(1)

Although structure functions provide one characterization of a system, they are difficult

to compute and to compare [39]. These difficulties motivated seeking more practical forms

to describe the system’s dependence on its components. A very useful approach has been

the use of signatures, the first of which was the system signature.

2.1.1 System Signature and D-Spectrum

The notion of a system signature was introduced by Samaniego [5] for coherent systems —

i.e., in which all components can affect the system state and the structure function Ψ(x)

is non-decreasing in the component state vector x — composed of binary elements with

independently and identically distributed (i.i.d.) failure times. System signature is also

referred to as destruction spectrum (D-spectrum) [6, 8, 40] since these two characterizations

are equivalent. Under the assumption of i.i.d. component lifetimes, the signature s of a

coherent system of order n is an n-dimensional vector whose ith element is the probability

6



si = P{T = W(i)}, (2)

where T is the system lifetime and W(1),W(2), . . . ,W(n) are the order statistics of n i.i.d.

component lifetimes. In other words, si represents the probability that the ith component

failure causes the system to fail. Note that the signature vector s does not depend on the

common lifetime distribution of the components and is, therefore, a pure measure of the

system’s design [5, 39, 41].

The computation of si is based on permutations of the components’ failure times. Under

the i.i.d. lifetimes assumption, the n! permutations of (1, 2, . . . , n) are equally likely outcomes

of the order in which components fail. Hence, we can (in theory) generate all n! permutations

and assess for each permutation which ordinal failure number cause the system to fail. Then,

si is the proportion of permutations in which the ith failure causes the system’s failure. We

now formalize this alternative definition of the system signature according to [42].

Definition 2.1. Let 1, 2, . . . , n, be the components of the system subject to failure. Denote

by π = (1, 2, . . . , n) a permutation of system components. Suppose that initially they all

are up. Then, begin to turn them down by moving along π from left to right. Fix the

first component ir when the system state becomes DOWN. The ordinal number r of this

component in the permutation is called anchor of π and denoted by r(π).

Because the n! permutations are equally likely, the system signature is given by

si =
number of permutations with r(π) = i

n!
, i = 1, 2, . . . , n. (3)

Once the system signature is computed, the reliability of the system can be calculated

by

P{T > t} =
n∑

i=1

siF (i)(t) =
n∑

i=1

si

i−1∑
j=0

(
n

j

)
[F (t)]j[F (t)]n−j, (4)
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where T is the system lifetime, F (t) is the common lifetime CDF of components i, . . . , n and

F (t) = 1 − F (t) is the common reliability function [42]. System signature and D-spectrum

have been extensively used in applications such as comparison of coherent systems [39, 42, 43],

lifetime estimation [44], analysis of queueing systems [45], and reliability [46, 47, 48, 49, 50].

For the case of multi-state systems, Gertsbakh, Shpungin and Spizzichino [51] explain

that for systems with ν states (ν > 2) in n binary components, the signature is a joint

probability distribution for (ν−1) ordered, {1, . . . , n}-valued random variables and therefore

(ν−1) can be interpreted as a dimension for the signature. Following this understanding, the

D-spectrum is sometimes defined as a multi-dimensional signature. In our work, we use the

term multi-dimensional signature to refer to the signature of a system with heterogeneous

components, that is, a system with multiple classes of components. To avoid ambiguity, we

use the term multi-state signature for a system with more than two possible states, and the

term multi-dimensional signature for a system with more than one type of components.

2.1.2 Survival Signature

The survival signature was introduced by Coolen and Coolen-Maturi [7] as an extension of

the notion of system signature to the case of independent but not identically distributed

components’ lifetime, but preserving the main idea of separating the contribution of the

system’s structure from the components’ failure probability to the system reliability [42].

Hence, for the case of i.i.d. components’ lifetime, the survival signature is closely related to

the system’s signature. Let us first define the survival signature for the i.i.d. case.

Let φ(l), for l = 0, . . . , n, denote the probability that the system functions if exactly l of

its components function, and let the vector whose entries are the φ(l), for l = 0, . . . , n, be

denoted by Φ. Let Sl denote the set of state vectors in which xi = l for exactly l components,

and observe that |Sl| =
(
n
l

)
. Given the component’s i.i.d. failure time, all vectors in Sl are

equally likely, and therefore
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φ(l) =

(
n

l

)−1 ∑
x∈Sl

Ψ(x), l = 0, 1, . . . , n, (5)

as shown by Coolen and Coolen-Maturi [7].

It is straightforward to show (see [7]) that survival signature and system signature satisfy

the relationship

φ(l) =
n∑

j=n−l+1

sj, (6)

The right-hand side of Equation (6) denotes the probability that at least (n − l + 1) com-

ponent failures are required for the system to fail, which is equal to probability that the

system functions when there are exactly l components functioning, i.e., the left-hand side of

Equation (6).

Although the survival signature can be applied to systems with i.i.d. components, the

fundamental contribution of the survival signature is the generalization of the theory of

signatures to system with multiple types of components. Following [7], consider a system

with K ≥ 2 types of components, where components of the same type have i.i.d. failure

times and failure times of components of different types are independent but not identically

distributed. Let nk denote the number of components of type k, where the nk values satisfy∑K
k=1 nk = n. Let x = (x1,x2, . . . ,xK) denote the state vector, where the subvectors

xk = (xk1, x
k
2, . . . , x

k
nk

) represent the states of the components of type k.

Let φ(l1, l2, . . . , lK) denote the probability that a system functions if exactly lk ∈ {0, 1, . . . ,

nk} of its type-k components function for each k ∈ {1, 2, . . . , K}. For K > 1, let Φ denote

the K-dimensional survival signature, which is a multi-dimensional matrix whose entries are

φ(l1, l2, . . . , lK) for all the values of l1, l2, . . . , lK . Note that the multi-dimensional survival

signature is a representation of a system with heterogeneous components and should not be

confused with the multi-state D-spectrum or multi-state signature discussed in the previous

subsection.
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For k ∈ {1, 2, . . . , K}, let Sk
l ⊆ {0, 1}nk denote the set of type-k state vectors xk satisfying∑nk

i=k x
k
i = lk, and observe that |Sk

l | =
(
nk

lk

)
. Let Sl ⊆ {0, 1}n denote the set of whole-system

state vectors x = (x1,x2, . . . ,xk) satisfying xk ∈ Sk
l for all k ∈ {1, 2, . . . , K}. Given that

components of type k have i.i.d. failure times all state vectors xk ∈ Sk
l are equally likely and

therefore

φ(l1, l2, . . . , lK) =

[
K∏
k=1

(
nk

lk

)−1
]
×
∑
x∈Sl

Ψ(x). (7)

Given the survival signature Φ, Coolen and Coolen-Maturi [7] showed that

P{T > t} =

n1∑
l1=0

· · ·
nK∑

lK=0

[
φ(l1, . . . , lK)

K∏
k=1

((
nk

lk

)
[Fk(t)]nk−lk [1− Fk(t)]lk

)]
, (8)

where Fk(t) denotes the time-to-failure CDF for component of type k ∈ {1, 2, . . . , k}. Com-

puting Equation (8) is challenging because it requires evaluating all
∏K

k=1(nk + 1) elements

of Φ.

Some of the most important developments of the theory of survival signature are summa-

rized next. In [52], the authors presented general results for coherent systems with multiple

types of dependent components. In [53], Coolen-Maturi et al. introduced a joint survival

signature for multiple systems with multiple types of components and with shared compo-

nents between systems. In [54], the authors used the survival signature in nonparametric

predictive inference for system reliability. Aslett et al. [55] applied the survival signature

with Bayesian inference for system reliability. Eryilmaz and Tuncel [56] generalized the

survival signature to unrepairable homogeneous multi-state systems with multi-state com-

ponents, while in [57], the survival signature is used to study system reliability when failed

components can be replaced by functioning components of the same type already in the

system.

Still, the computation of the survival signature as well as the computation of the reliability

for systems of realistic size poses a major challenge in terms of run-time and even in terms
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of memory/storage and hence, in many problems, simulation methods are preferred. In [58],

for instance, the authors present three simulation based algorithms for reliability estimation

using survival signature.

3 Methodology

Although many other variants have been considered, the first K-terminal reliability problems

considered undirected binary networks with nodes completely reliable and binary-state edges.

By contrast, we define our problem over a directed network with perfectly reliable and binary-

state nodes. In general, these assumptions are without loss of generality as undirected edges

and/or unreliable edges can be accommodated by standard network transformations.

Consider a directed network G = (N ,A) with node set N , where |N | = n, and arc set

A, where |A| = m, and let Γ−i = {j ∈ N : (j, i) ∈ A} and Γ+
i = {j ∈ N : (i, j) ∈ A} denote,

respectively, the set of predecessors and successors of node i ∈ N . Nodes fail according to a

specified probability distribution but arcs are completely reliable and therefore cannot fail.

However, when a node fails all arcs that have this node as an extreme point are extinguished.

The network has two specified nodes: the source s and the sink or terminal t. These nodes

cannot fail and their connectivity determines the state of the network, that is, the network

is operational whenever there is a functional path from s to t and the network is failed when

all the s-t paths have failed.

The nodes of the network can be classified according to their failure distribution. There

are ne nodes that fail independently according to a failure CDF, Fe(t); we denote this subset

of nodes by Ne. Nodes in different groups are fully independently regarding failure. Besides

s and t, the network can also have a subset of nodes that are completely reliable. To simplify

the presentation of our methods, we consider networks with only two groups of nodes subject

to failure, N1 and N2, and we assume without loss of generality that n1 ≤ n2.

For convenience, we recall the definition of the multi-dimensional survival signature for

the case in hand. Let φ(l1, l2) denote the probability that the network is functioning given
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that exactly l1 nodes fromN1 and l2 nodes fromN2 are functioning. For |N1| = n1 and |N2| =

n2, we denote the survival signature of the network, Φ, as the (n1 +1)×(n2 +1) matrix whose

entries are φ(l1, l2) for l1 = 0, 1, . . . , n1, and l2 = 0, 1, . . . , n2. We assume both that φ(0, 0) =

0, that is, the network is failed when none of its nodes are functioning, and that φ(n1, n2) = 1,

that is, the network is functioning when all of its nodes are functioning. Additionally, we

observe that this system cannot be deteriorated when the number of functioning nodes

increases, which implies that the network thus defined is a coherent system.

Note that, provided Φ, F1(t), and F2(t), one can estimate the reliability of the network

at any time t through Equation (8), which specializes to

P{T > t} =

n1∑
l1=0

n2∑
l2=0

[
φ(l1, l2)

2∏
k=1

((
nk

lk

)
[Fk(t)]nk−lk [1− Fk(t)]lk

)]
. (9)

The main difficulty in this approach lies in obtaining the values of φ(l1, l2) for every combi-

nation of l1 and l2. We analyze three different approaches to this problem: a naive approach,

a single-objective optimization method, and a multi-objective optimization method. These

three approaches follow the same framework to estimate the two-terminal reliability, differ-

ing only on the method to estimate the survival signature. The common framework used by

the three approaches is presented below. We begin our discussion by the simplest and more

intuitive method, the naive approach.

Algorithm 1: ReliabilityEstimation

1 Initialization and network generation

2 . Initialize variables and generate network

3 Survival signature estimation

4 . Estimate survival signature according to one of the three approaches

5 Reliability estimation

6 . Estimate the reliability of the system through Equation (9)
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3.1 Naive Approach

Nodes within the same group (N1 or N2) are equally likely to fail in any order. Hence each of

the n1! permutations of nodes in N1 are equally likely outcomes of the order of node failures.

Similarly, there are n2! equally likely outcomes of the order of node failure in N2.

In each replication of the Naive approach, we independently simulate a random permu-

tation of failure times for all nodes in N1 and all nodes in N2. From each pair of simu-

lated permutations, we extract a state vector corresponding to each l1 = 0, 1, 2, . . . , n1 and

l2 = 0, 1, 2, . . . , n2 and assess the structure function for every one of the state vectors formed.

For every combination of l1 and l2, we count the number of state vectors for which the net-

work is up and divide this number by the number of replications simulated, which gives the

estimate of φ(l1, l2). The Naive approach is formally stated below.

First, independently simulate a permutation of N1 and a permutation of N2 M times.

Let

q1
i = k if i ∈ N1 is the kth node to fail in N1, and

q2
i = k if i ∈ N2 is the kth node to fail in N2.

(10)

For l1 = 0, . . . , n1 and l2 = 0, . . . , n2, define x(l1, l2) such that components i ∈ N1 are up if

q1
i > n1 − l1 and are down otherwise, and similarly components i ∈ N2 are up if q2

i > n2 − l2

and are down otherwise. Thus, the state vector x(l1, l2) represents the case where the last

l1 components in the sampled permutation of N1 and the last l2 components in the sampled

permutation of N2 are up, and all remaining components are down.

Next, evaluate Ψ(x(l1, l2)) for all l1 = 0, . . . , n1 and l2 = 0, . . . , n2. Recall that our

definition of failure is based on s-t connectivity. In the Naive approach, we assess the structure

function for every state vector by running a breadth-first search (BFS) from s and verifying

if t can be reached. Then,

Ψ(x(l1, l2)) =


1 if the BFS reaches t,

0 otherwise.

(11)
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For every replication j = 1, . . . ,M, we will obtain a state vector for every combination of l1

and l2. Let xj(l1, l2) denote the state vector for replication j. Then, we can estimate φ(l1, l2)

by

φ(l1, l2) =

∑M
j=1 Ψ(xj(l1, l2))

M
. (12)

The Naive approach is summarized in Algorithm 2. This approach requires a BFS run

M × (n1 + 1) × (n2 + 1) times with each BFS having a O(m) complexity, where m is the

number of edges in the network. The overall complexity is therefore O(n1n2mM).

Algorithm 2: Naive-SurvSig

1 Φ← 0
2 for j = 1 to M do
3 . Simulate a permutation of N1 and a permutation of N2

4 . Represent the permutations according to Equation (10)
5 for l1 = 0 to n1 do
6 for l2 = 0 to n2 do

7 . turn down components q1
i for i = 1, . . . , n1 − l1,

8 and components q2
i , for i = 1, . . . , n2 − l2

9 . Run a BFS from node s

10 if the BFS reaches t then
11 φ(l1, l2) ← φ(l1, l2) + 1
12 end

13 end
14 φ(l1, l2) ← φ(l1, l2)/M

15 end

16 end
17 return Φ

It is worth mentioning that there are potential improvements that could be used with the

Naive method. For example, we could replace the loop over l2 with a bisection search noting

that Ψ(xj(l1, l2)) must be nondecreasing in l2 when l1 is fixed (because Ψ is nondecreasing

in x). The resulting approach, which we refer to as Naive-bisection would improve upon the

complexity of the Naive by changing the n2 to log n. We did not pursue this improvements
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however because we believe the methods based on optimization to be presented next are

superior with respect to the Naive approach, and therefore the gains that could be obtained

with the Naive approach would be overshadowed by the other approaches anyway.

3.2 Single-Objective Optimization Approach

As we have noted in the previous discussion, the bottleneck operation of the Naive approach

is the use of breadth-first search to assess the state of the network at every changing of a

component’s state. In the single-objective optimization (SO) method, we extend the work of

Boardman and Sullivan [10] and avoid the use of repeated BFS by solving an optimization

problem. We explain the main ideas underlying the approach in the following lines.

Consider the Algorithm Naive-SurvSig again, and suppose we fix the value of l1. Then,

the loop on l2 could alternatively attempt to identify the maximum value of l2, l∗2, for which

Ψ(x(l1, l2)) = 0. Once l∗2 is obtained, we would have that

Ψ(x(l1, 0)) = Ψ(x(l1, 1)) = · · · = Ψ(x(l1, l
∗
2)) = 0, and

Ψ(x(l1, l
∗
2 + 1)) = Ψ(x(l1, l2 + 2)) = · · · = Ψ(x(l1, n2)) = 1,

(13)

since Ψ is nondecreasing in x.

The problem of finding l∗2 can be formulated as an instance of the single objective max-

imum capacity path problem discussed by [11, 12]. Boardman and Sullivan [10] solved a

similar maximum capacity path problem as a subroutine in evaluating the D-spectrum of a

network with homogeneous components. For fixed l1, we can adapt their approach to find l∗2.

The single-objective optimization approach is based on solving the single-objective maximum

capacity path problem once for each value of l1 = 0, 1, . . . , n1, with the additional consider-

ation that the l1 components from N1 that are up are uncapacitated, which we represent by

assigning “∞” as their capacity.

To formalize the single-objective optimization approach, independently simulate a per-

mutation of N1 and a permutation of N2, and record these permutations according to Equa-
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tion (10). Then, for fixed l1, associate a weight ui to each node i ∈ N according to

ui =


q2
i , i ∈ N2,

0, if i ∈ N1 and q1
i ≤ n1 − l1,

∞, otherwise.

(14)

In our implementation, we substitute ∞ by a number larger than max{q1
i : i ∈ N1} and

max{q2
i : i ∈ N2}, such as the total number of nodes, n, in the network.

Let P denote the set of all directed paths p from s to node t. The value l∗2 is then obtained

by solving the maximum capacity path problem

v∗ = max
p∈P
{min{uk : k ∈ p}}, (15)

and setting l∗2 = n2 − v∗. In Equation (15), min{uk : k ∈ p} selects the smallest node

capacity in the s-t path p since a path capacity is determined by its smallest node capacity,

and then maxp∈P selects the largest capacity among all s-t paths. Therefore, v∗ represents

the capacity of the last s-t path to fail, or more specifically, v∗ represents the number of

node failures that would cause the system to fail.

Pollack [11] observed that any shortest path algorithm, such as Dijkstra’s, could be used

to solve the maximum capacity path problem with the following slight modification: for the

maximum capacity path problem with arc capacities wi,j, (i, j) ∈ A, the label of a node is

initialized as d(i) = 0 for all i ∈ N \ {s}, and d(s) = ∞, and the labels are updated (when

considering an arc (i, j) leaving a node i whose label has been made permanent) according

to

d(j) = max{d(j),min{d(i), wi,j}}. (16)

Additionally, a node label with maximum value is made permanent in each iteration instead

of minimum value, as in the case of shortest path. The case with node capacities ui, i ∈ N ,
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can be transformed to the arc-capacitated case by setting wi,j = min{ui, uj}, ∀(i, j) ∈ A,

resulting in the update in Equation (16).

In this work we use the heap version of Dijkstra’s algorithm to solve the maximum

capacity path problem in Equation (15). Algorithm 3 is an adaptation of the Heap-Dijkstra

algorithm presented in [59]. The binary heap, H, used in Algorithm 3 allows us to efficiently

manipulate the nodes i ∈ N with their associated labels. Specifically, H performs the

following operations: (1) find and return a node of maximum label; (2) insert a new node

i with its label; (3) increase the label of a node i from its current value to value; and (4)

delete a node with maximum label. Those operations are denoted by find-max(H), insert(i,

H), increase-key(value, i, H), and delete-max(H), respectively.

Algorithm 3: SO-MaxCapPath(G)

1 d(j) := 0 ∀ j ∈ N \ {s}
2 d(s) :=∞, pred(s) := 0
3 insert(s,H)
4 while H 6= ∅ do
5 i := find-max(H); delete-max(H) // Γ+

i is the set of successors of node i

6 for j ∈ Γ+
i do

7 value := min{d(i), uj}
8 if d(j) < value then
9 if d(j) = 0 then

10 d(j) := value, pred(j) := i
11 insert(j,H)

12 end
13 else
14 d(j) := value, pred(j) := i
15 increase− key(value, j,H)

16 end

17 end

18 end

19 end
20 return d(t)
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Algorithm 4: SO-SurvSig

1 Φ← 0
2 for j = 1 to M do
3 . Simulate a permutation of N1 and a permutation of N2

4 for l1 = 0 to n1 do

5 . Update ui, i ∈ N , according to Equation (14)

6 v∗ = SO-MaxCapPath(G)

7 l∗2 = n2 − v∗

8 for l2 = 0 to n2 do

9 if l2 > l∗2 then

10 φ(l1, l2)← φ(l1, l2) + 1

11 end

12 end

13 end

14 end
15 Φ = Φ/M.
16 return Φ

Algorithm 4 states the SO approach. Noting that the SO-MaxCapPath algorithm provides

l∗2 for each value of l1, we can populate the corresponding row of the survival signature matrix,

φ(l1,−) according to Equation (13) by simply adding 1 to any entry for which l2 > l∗2.

We demonstrate the SO approach with the following example. Consider the network

in Figure 1(a). For this network, n = 10 nodes, N1 = {1, 3, 5, 7} is represented in red,

N2 = {2, 4, 6, 8} is represented in blue. Suppose that in jth replication of the SO-SurvSig

algorithm, we generate the permutation P1 = {5, 7, 3, 1} for N1, and P2 = {2, 4, 8, 6} for N2.

Therefore, for these permutations, node 5 is the first node to fail in N1, followed by nodes 7,

3, and 1 respectively, and node 2 is the first node to fail in N2, followed by nodes 4, 8, and

6 respectively.

For every value of l1, the algorithm associates to each node i ∈ N a capacity ui according

to Equation (14); for l1 = 2, the algorithm obtains the network in Figure 1(b). Then, the

algorithm solves the maximum capacity path problem. At termination, Algorithm 3 provides

a tree of maximum capacity paths rooted in s, and v∗ = 4 is the capacity of the s-t path
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(a) Heterogeneous s-t network. (b) Network for l1 = 2.

(c) Maximum capacity tree

Figure 1: Computation of row of survival signature corresponding to l1 = 2 using the SO
method.

in this tree. Therefore, for any l2 > l∗2 (= n2 − v∗ = 4 − 4 = 0), the network is up. The

structure function evaluation resulting from P1 and P2 is shown in Table 1, where the row

corresponding to l1 = 2 is highlighted in blue. Observe that the only value of l2 for which

the network is down is 0, which corresponds to l∗2 = 0, and is formatted in red.

Next, we analyze the complexity of the SO approach. Using a binary heap, operations

insert, increase-key, and delete-max require O(log n) time, while the other operations require

O(1) time [59]. The initialization portion of SO-MaxCapPath algorithm requires O(n) time;

operations find-max and delete-max may be performed n times for a total time complexity

of O(n log n); the operations in lines 10-11 and 14-15 may be performed, in the worst case,

for every arc in the network, where the assignment operations (lines 10 and 14) have O(1)
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Table 1: Structure function for permutations P1 = {5, 7, 3, 1} and P2 = {2, 4, 8, 6} computed
with the SO method.

Ψ(xj(l1, l2))
l1\l2 0 1 2 3 4

0 0 0 0 1 1
1 0 1 1 1 1
2 0 1 1 1 1
3 1 1 1 1 1
4 1 1 1 1 1

complexity and the heap operations have O(log n) complexity, and hence the overall com-

plexity of the while loop is O(m log n). Therefore, the overall complexity of Algorithm 3 is

O(m log n). In Algorithm 4, the dominating factor is the For loop over n1, and for every

iteration of the loop, the algorithm solves a maximum capacity path problem using Algo-

rithm 3; the algorithm repeats this process M times. Therefore, the overall time complexity

of the single-objective optimization approach is O(n1m log(n)M).

3.3 Multi-Objective Optimization Approach

In comparing the two previous approaches, although the SO method has the same worst-

case complexity as the Naive approach with bisection search, one can conjecture that the SO

approach tends to be faster because it avoid some of the unnecessary work performed by the

Naive approach. For instance, the Naive algorithm runs a new BFS for every combination of

n1 and n2, completely disregarding the information obtained in the previous BFS run. By

contrast, the SO algorithm is able to reduce much of this effort by solving an optimization

problem with a slightly worse complexity than the one required by a BFS, but for every

row of the survival signature instead of for every entry of the matrix. The multi-objective

optimization approach (MO) extends the idea of the SO approach by solving a single multi-

objective optimization problem (instead of n1 + 1 single-objective optimization problems) to

evaluate the structure function matrix (e.g., in Table 1) in each replication.

As with the Naive and SO approaches, we begin each replication by generating q1
i , i ∈ N1,
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and q2
i , i ∈ N2 according to Equation (10). To every node i ∈ N , associate two weights

according to

uei =


qei , i ∈ Ne,

∞, i ∈ N /Ne,

e = 1, 2. (17)

Again, in our implementation, we substitute ∞ by n, and hence the largest value of uei ,

e = 1, 2, is n.

In order to compute the survival signature for the jth replication, we must determine all

combinations of l1 and l2 for which the network is down. In the MO approach, we determine

these combinations by solving the bi-objective maximum capacity path problem, which can

be defined as follows. For a network with weights u1
i and u2

i associated to each node i ∈ N ,

let P denote the set of all s-t paths. For p ∈ P , define capacities

c1(p) := min{u1
i : i ∈ p} and c2(p) := min{u2

i : i ∈ p}.

Similarly to the SO approach, these capacities represent, respectively, the number of node

failures in N1 and in N2 that would destruct the path p, that is, it would be necessary c1(p)

failures in N1 or c2(p) failures in N2 to destruct the s-t path p.

Define a path p from s to i as a non-dominated path if there does not exist any other path

p′ from s to i such that c1(p′) ≥ c1(p) and c2(p′) ≥ c2(p) with at least one strict inequality,

and define a non-dominated point as the image of a non-dominated path in the objective

space. Then, the bi-objective maximum capacity path problem can be defined as

max
p∈P
{c1(p), c2(p)}, (18)

and a solution to this problem provides a set Ω of non-dominated points (v∗1, v
∗
2), which can

be used to represent the values of (l1, l2) for which Ψ(x(l1, l2)) = 0, for all l1 = 0, 1, . . . , n1

and l2 = 0, 1, . . . , n2. Letting (v∗1, v
∗
2) denote such a non-dominated point, the network
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is up (i.e., Ψ(x(l1, l2)) = 1) for every point (l1, l2) with v∗1 > n1 − l1 and v∗2 > n2 − l2.

Furthermore, the existence of such a non-dominated point is guaranteed for any (l1, l2) in

which the Ψ(x(l1, l2)) = 1. We record this result in the following theorem.

Theorem 3.1. Ψ(x(l1, l2)) = 1 if and only if there exists a non-dominated point (v∗1, v
∗
2)

such that v∗1 > n1 − l1 and v∗2 > n2 − l2.

Proof. (⇒) Suppose Ψ(x(l1, l2)) = 1. Then by definition of x(l1, l2), the system is up when

all components i ∈ N1 with q1
i > n1 − l1, and all components i ∈ N2 with q2

i > n2 − l2 are

up, and the remaining components in N1 and N2 are down. Thus, there exists an s-t path

p such that c1(p) > n1 − l1 and c2(p) > n2 − l2. Either p is a non-dominated path or it

is dominated by some other s-t path, and there exists a non-dominated point (v∗1, v
∗
2) with

v∗1 ≥ c1(p) and v∗2 ≥ c2(p). Therefore, v∗1 > n1 − l1 and v∗2 > n2 − l2.

(⇐) Conversely, suppose that there exists a non-dominated point (v∗1, v
∗
2) such that v∗1 >

n1 − l1 and v∗2 > n2 − l2. Then, there exists an s-t path p with capacity c1(p) = v∗1 and

c2(p) = v∗2, and hence c1(p) > n1− l1 and c2(p) > n2− l2. Thus, for all i ∈ p, q1
i > n1− l1 and

q2
i > n2 − l2, that is, all components i ∈ p are up with respect to the state x(l1, l2). Because

x(l1, l2) contains an s-t path of functioning components, Ψ(x(l1, l2)) = 1.

Bi-objective and multi-objective shortest path problems have been studied since the 1980s

with [60] and [61], and some of the more recent works in this area includes [14, 62, 63].

We build our MO-MaxCapPath algorithm (given in Algorithm 5) by modifying the BDi-

jkstra algorithm essentially in the same way we modified the Dijkstra’s algorithm for the

shortest path problem to solve the single-objective maximum capacity path problem in the

SO approach. In the MO approach, labels associated with each node i ∈ N contain the

value of both c1(p) and c2(p) for a candidate s-i path, i.e., a potencial non-dominated path

from node s to node i. Let d1
i and d2

i respectively denote stored values of c1(p) and c2(p)

for the candidate s-i path, where the values d1
s = d2

s = ∞ and d1
i = d2

i = 0 are initialized

in similar fashion to Algorithm 3. After it is possible to conclude that a candidate s-i path
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p is non-dominated, the values (d1
i , d2

i ) are made permanent, and a new label is proposed

for each node j ∈ Γ+
i based on adding the arc (i, j) to the end of p in similar fashion to

Equation (16).

The correctness of the BDijkstra algorithm has been proved for the bi-objective shortest

path problem in [14]. Because our extension of this algorithm is analogous to the extension

of Dijkstra’s algorithm from (single-objective) shortest path to maximum capacity path,

we have chosen not to prove it again here. Instead, we explain the steps of BDijkstra in

the context of the bi-objective maximum capacity path problem and provide an empirical

validation of the algorithm in the next section.

Algorithm 5: MO-MaxCapPath

1 . Set Ni = 0, d1
i = 0, d2

i = 0, InH[i] = False, i ∈ N \ {s}
2 . Set Ns = 0, d1

s =∞, d2
s =∞, l = (s,∞,∞,−,−)

3 insert(l, H); InH[s] = True

4 while H 6= ∅ do
5 l∗ = find-max(H), delete-max(H)

6 d1
i∗ = 0, d2

i∗ = 0 // i∗ is the node with label l∗

7 Ni∗ = Ni∗ + 1, L[i∗][Ni∗ ] = l∗, InH[i∗] = False

8 lnew = NewCandidateLabel(i∗, l∗)

9 if lnew 6= Null then

10 insert(lnew, H), InH[i∗] = True

11 d1
i∗ = lnew.d1, d2

i∗ = lnew.d2

12 end

13 RelaxationProcess(i∗, H, l∗)

14 end
15 return L[t]

Following the notation of [14], the data structure used in Algorithm 5 to store the non-

dominated points for i ∈ N is denoted by L[i]. Since multiple non-dominated points may be

associated with each node i ∈ N , L[i] is dynamically increased by one point each time a new

non-dominated point associated with i is found. The total number of non-dominated points

associated with i, Ni, is not known until termination. At termination, L[i] contains non-
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dominated points L[i][1], L[i][2], . . . , L[i][Ni], which were stored in lexicographically decreasing

order. Non-dominated points are represented by labels of the form

(i, d1, d2, j, r), (19)

where i denotes the the node to which the non-dominated point is associated, d1 and d2

denote, respectively the capacity of node i for the first and second objectives, j denotes the

predecessor of node i in the respective non-dominated path, and r denotes the position in

L[i] of the non-dominated label j that allows the corresponding non-dominated path to i to

be obtained.

As in the BDijkstra algorithm of [14], Algorithm 5 maintains a heap, H, that stores at

most one candidate label for each node i ∈ N , and therefore has a maximum size of n.

The candidate label of node i is not in L[i] since a label is stored in L only when the label

becomes permanent. This is an important invariant in the method of [14], i.e., the label l in

H associated with node i is not dominated by any label in L[i], for all i ∈ N . Additionally,

the candidate label for node i is the lexicographic maximum among all paths to node i that

can be created by a known non-dominated path to some predecessor node j ∈ Γ−i plus the arc

(j, i). The heap performs the same basic operations previously discussed, but now on labels:

find-max(H), delete-max(H), insert(l, H), and increase-key(l, H), and labels are extracted from

the heap in lexicographic maximum order, i.e., a label l∗ = (i, d1, d2, j, r) is extracted from

the heap if, for any other label l in the heap, l∗.d1 > l.d1 or l∗.d1 = l.d1 and l∗.d2 > l.d2.

The label l∗ extracted from the heap in an iteration becomes permanent and is added to

L[i] since (1) l∗ is not dominated by any label in L[i] according to the mentioned invariant, and

(2) there is no non-explored path from s to i whose pair of capacities dominates (d1, d2). Item

(2) is proved in [14]. Then, the non-dominated (permanent) labels of any node are determined

in lexicographic decreasing order, and once l∗ is extracted from the heap, it is added to the

end of L[i]. With this, in the dominance test it is only necessary to check the if last label in
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L[i] dominates the l∗. Once a label l∗ associated with a node i is extracted from the heap,

the algorithm must check if other labels associated with successors of i can be improved.

This is accomplished with the relaxation process (see procedure RelaxationProcess). Observe

that in the dominance test, the relaxation process only checks if a candidate label associated

with node j is not dominated by the last label inserted into L[j].

Solving the bi-objective maximum capacity path problem provides us with the set of

non-dominated points Ω. Then, we can populate Φj by looping over Ω and adding 1 to every

entry that satisfies the condition v∗1 > n1 − l1 and v∗2 > n2 − l2. Algorithm 6 states the MO

approach.

We now establish the complexity of Algorithm 5. We first analyze the work performed

for every iteration of the while loop. When a node label l∗ is made permanent, the algo-

rithm performs a find-max operation in O(1), a delete-max operation in O(log n), a series of

assignment operations each having complexity O(1), and, when the label returned by New-

CandidateLabel is not Null, the algorithm performs an insert in O(log n) and another series

of assignment operations in constant time. The work performed in one iteration of the while

loop is therefore O(log n) plus the complexity of NewCandidateLabel and RelaxationProcess.

The algorithm performs an iteration of the while loop Ni times for every i ∈ N , and since

Ni ≤ n1 +1 (because every non-dominated point must have a different value of d1
i ), the work

performed for all nodes is O(nn1 log n) plus the complexity of NewCandidateLabel and Relax-

ationProcess. In every iteration, function NewCandidateLabel performs a series of comparisons

and assignments in constant time |L[j]| ≤ Nj times for every j ∈ Γ−i . Because NewCandidate-

Label is called exactly Ni times for each node (i.e., once for every label made permanent),

the total work for node i is O(Ni

∑
j∈Γ−

i
Nj) = O(n1

∑
j∈Γ−

i
n1) = O(n2

1|Γ−i |). Therefore,

the total time due to NewCandidateLabel is O(
∑

i∈N n
2
1|Γ−i |) = O(n2

1

∑
i∈N |Γ

−
i |) = O(n2

1m),

noting that
∑

i∈N |Γ
−
i | = m.
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1 Function NewCandidateLabel(i∗, l∗):
2 d1 = 0, d2 = 0; lnew = Null // Γ−

i is the set of predecessors of node i

3 for j ∈ Γ−i do

4 for l ∈ L[j] do

5 f1 = min{l.d1, u1
i∗ , u

1
j}

6 f2 = min{l.d2, u2
i∗ , u

2
j}

7 if f1 > d1 or f1 == d1 and f2 > d2 // lexmax cand label

8 then

9 if f1 < l∗.d1 and f2 > l∗.d2 // non-dom cand label

10 then

11 d1 = f1; d2 = f2

12 lnew = (i∗, d1, d2, j, r) // r is the position of l in L[j]

13 end

14 end

15 end

16 end
17 return lnew

1 Procedure RelaxationProcess(i∗, H, l∗):
2 for j ∈ Γ+

i do

3 f1 = min{l∗.d1, u1
i∗ , u

1
j}

4 f2 = min{l∗.d2, u2
i∗ , u

2
j}

5 if f1 > d1
j or f1 == d1

j and f2 > d2
j // Relaxation (i∗, j)

6 then

7 if Nj == 0 or f1 < L[j][Nj].d
1 and f2 > L[j][Nj].d

2 // non-dom. label

8 then

9 d1
j = f1; d2

j = f2

10 l = (j, d1
j , d

2
j , i
∗,Ni∗) // Ni∗ is the position of l∗ in L[i∗]

11 if InH[j] == False then
12 insert(l, H)

13 InH[j] = True

14 end
15 else
16 increase-key(l, H)
17 end

18 end

19 end

20 end 26



Algorithm 6: MO-SurvSig

1 Φ← 0
2 for j = 1 to M do
3 . Simulate a permutation of N1 and a permutation of N2

4 . Update ui, i ∈ N , according to Equation (17)

5 Ω = MO-MaxCapPath(G) // Ω stores all (v∗1 , v
∗
2) points

6 for (v∗1, v
∗
2) ∈ Ω do

7 for l1 = 0 to n1 do

8 for l2 = 0 to n2 do

9 if v∗1 > n1 − l1 and v∗2 > n2 − l2 then

10 φ(l1, l2)← φ(l1, l2) + 1

11 end

12 end

13 end

14 end

15 end
16 Φ = Φ/M.
17 return Φ

Each iteration, for every j ∈ Γ+
i , RelaxationProcess performs a sequence of constant time

operations and either an insert or increase-key operation in the worst case with complexity

O(log n). Like the NewCandidateLabel, RelaxationProcess is called Ni times for each i ∈ N ,

which amounts to a total complexity of O(
∑

i∈N
(
Ni log n|Γ+

i |
)
). Noting that Ni = O(n1)

and
∑

i∈N |Γ
+
i | = m, this complexity reduces to O(n1m log n). Comparing the results above,

the overall complexity of Algorithm 5 is O(nn1 log n+ n2
1m+ n1m log n), which is O(n2

1m+

n1m log n) provided that n < m. The overall complexity of the MO approach is therefore

O ((n2
1m+ n1m log n)M).

We now illustrate the MO approach with the following example. Consider the network

in Figure 2(a). For this network, n = 10, N1 = {1, 3, 5, 7} and N2 = {2, 4, 6, 8}. Suppose

that in the jth replication, the algorithm generates the permutations P1 = {5, 7, 3, 1} and

P2 = {2, 4, 8, 6} for N1 and N2, respectively. The algorithm then updates the values of u1
i

and u2
i , i ∈ N , according to Equation (17) (see Figure 2(b)), and solves the corresponding bi-
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objective maximum capacity path problem (see Figure 2(c)). The solution of the bi-objective

maximum capacity path problem shows that there are three non-dominated paths from s to

t: p1 = s - 4 - 8 - t, p2 = s - 1 - 6 - t, and p3 = s - 3 - 7 - t, with respective non-dominated

points (∞, 2), (4, 4), and (2,∞); these are the points stored in Ω. The algorithm then loops

over the these points populate the survival signature matrix. Consider the first point stored

in Ω, (∞, 2). The network is up for every point (l1, l2) such that ∞ > 4− l1 and 2 > 4− l2,

that is, the network is up for l1 > ∞(l1 ≥ 0) and l2 > 2 (this area is outlined in red in

Table 2). Similarly, point (v∗1, v
∗
2) = (4, 4) (yellow) and (v∗1, v

∗
2) = (2,∞) (blue). The brown

region is where the three other regions overlap.

(a) Heterogeneous s-t network. (b) Network after the updating of ui.

(c) Maximum capacity path graph

Figure 2: Computation of survival signature using MO approach.
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Table 2: Structure function for permutations P1 = {5, 7, 3, 1} and P2 = {2, 4, 8, 6} computed
with the MO method.

Ψ(xj(l1, l2))
l1\l2 0 1 2 3 4

0 0 0 0 1 1
1 0 1 1 1 1
2 0 1 1 1 1
3 1 1 1 1 1
4 1 1 1 1 1

4 Computational Experiments

4.1 Validation of Approaches

First, we validate the Naive approach by verifying that the survival signature obtained by

it when all permutations of N1 and N2 are considered is the exact survival signature. For

this, we compare the survival signature obtained through the Naive approach with the exact

survival signature for a small bridge system obtained from [58]. The reliability block diagram

(RBD) of this system is depicted in the Figure 3(a). This system is composed of six elements

subject to failure, numbered 1 through 6. For this system, N1 = {1, 2, 3}, and N2 = {4, 5, 6}.

We represent this system as a two-terminal network in Figure 3(b), where we appended

artificial nodes s and t. The analytical value of the survival signature is also provided in [58]

and can easily be verified.

(a) Reliability block diagram of the first system
used for validation. The network was obtained
from the paper by [58].

(b) Network representation of validation system
with nodes s and t appended.

Figure 3: Bridge system and corresponding s-t network

Table 3 presents the analytical survival signature versus the survival signature obtained

through the Naive approach when we set Algorithm 2 to run all 36 possible combinations of

29



N1 and N2. From Table 3 it is clear that the survival signature obtained through the Naive

approach is indeed the exact survival signature of the system.

Table 3: Analytical survival signature versus survival signature obtained through Naive
approach for the bridge system of Figure (3).

(a) Analytical survival signature.

l1\l2 0 1 2 3
0 0 0 0 0
1 0 0 1/9 1/3
2 0 0 4/9 2/3
3 1 1 1 1

(b) Exact survival signature with Naive approach.

l1\l2 0 1 2 3
0 0 0 0 0
1 0 0 0.111111 0.333333
2 0 0 0.222222 0.666666
3 1 1 1 1

The next step in our validation process is to verify the consistency of the survival signature

obtained by the three methods; for this, consider the network of Figure (4). This network

is composed by n = 20 nodes and m = 30 arcs. Nodes s, 6, 7, 10, 12, 13, 17, and t are

completely reliable, while the remaining nodes are subject to failure and can be grouped into

two groups according to their failure probability distribution. Nodes 1, 3, 5, 8, 14, and 16

have failure probability distribution F1(t) and nodes 2, 4, 9, 11, 15, and 18 fail according to

F2(t).

Figure 4: Network used to compare the results from the three methods.

Observe that since we have six elements in each group, it would be necessary to generate
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6! × 6! = 518400 permutations in order to compute the exact survival signature, which

would already require a considerable computational effort for such a small example. We

estimated the survival signature using the three approaches with M = 50000 replications.

We set the same seed to the random number generator used by all the algorithms so that

the three algorithms generate the same permutations in the same order. The results from

the algorithms are equal and the estimated survival signature for this system is shown in

Table 4.

Table 4: Survival signature estimate obtained by the three methods using the same random
sequences

Φ̂
l1\l2 0 1 2 3 4 5 6
0 0 0 0.0665 0.20016 0.39894 0.49952 1
1 0.16728 0.16728 0.20056 0.31688 0.49886 0.63234 1
2 0.40106 0.40106 0.40106 0.50076 0.65582 0.79968 1
3 0.64976 0.64976 0.6662 0.69962 0.8168 0.93396 1
4 0.86712 0.86712 0.87852 0.90054 0.9339 1 1
5 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1

4.2 Comparison of Approaches

We now proceed to discuss the results of our computational experiments. All experiments

were accomplished with C++ on an Intel® Core i7-4500U CPU with 4 × 1.8 GHz processor

and 8 GB RAM running on an Ubuntu 20.04 OS. In these experiments we considered the

random geometric graph (RGG) shown in Figure (5). This network contains 350 nodes,

including 149 in N1 (marked in blue), 199 in N2 (marked in red), and nodes s and t. For

both classes of nodes, the failure distribution is a Weibull with scale parameter λ = 100.

The failure distribution F1(t) has a shape parameter β1 = 2.5 while the failure distribution

F2(t) has a shape parameter β2 = 3.0. This network was created according to the following

procedure: locate node s with coordinates xs = 0 and ys = 10 and node t with coordinates

xt = 10 and yt = 0. For any other node i ∈ N , randomly generate coordinates xi and yi
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between 0 and 10 according to a uniform distribution, and create and arc from node i to

node j ∈ N if and only if xi ≤ xj and the Euclidean distance between i and j is smaller

than or equal to 2. For this example, the procedure generated m = 3231 arcs.

We estimated the survival signature and the reliability (see Figure (6) for M = 1000) of

this network using the three proposed approaches with the same seed for the random number

generator and for different numbers of replications: M = 1000, 10000, and 50000, but with a

processing time limit of six hours, after which we censored the experiment. Tables 5–7 show

the results. In each table, the first column indicates the number of replications of the exper-

iment, the second column indicates the total processing time (which includes initialization

and network generation, survival signature estimation, and reliability estimation), the third

column indicates the survival signature estimation time and the corresponding percentage

with respect to the total time, and the last column indicates the average time per replication.

Figure 5: Network with n = 350, where n1 = 149, n2 = 199, and m = 3231 arcs.

Table 5: Performance analysis of the Naive approach for 1000, 10000, and 50000 replications.

M Total Time (sec) Surv. sig. estim. (sec)/(%) Time per replic. (sec)
1000 3537.398 3533.8 (99.9%) 3.53
10000 n/a n/a n/a
50000 n/a n/a n/a
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Figure 6: Reliability estimated with the three methods for MO = 1000 replications (blue),
and reliability curves (red) calculated with the 95% upper and lower bound on the survival
signature.

Table 6: Performance analysis of the SO approach for 1000, 10000, and 50000 replications.

M Total Time (sec) Surv. sig. estim. (sec)/(%) Time per replic. (sec)
1000 1043.65 1041 (99.7%) 1.04
10000 10716.031 10683 (99.69%) 1.07
50000 n/a n/a n/a

Table 7: Performance analysis of the MO approach for 1000, 10000, and 50000 replications.

M Total Time (sec) Surv. sig. estim. (sec)/(%) Time per replic. (sec)
1000 5.31 3.228 (60.79%) 3.228×10−3

10000 30.829 28.725 (93.17%) 2.872×10−3

50000 145.995 143.82 (98.51%) 2.876×10−3

From Table 5, it follows that the survival signature estimation is indeed the bottleneck op-

eration in estimating the two-terminal reliability through the Naive approach, corresponding

to more than 99% of the processing time for only one thousand replications. The experiments

with ten thousand and fifty thousand replications were censored after six hours, but since the

algorithm processing time increases approximately linearly with the number of replications,

one can estimate the time needed for the algorithm to complete the censored experiments.

The Naive-SurvSig would take approximately ten hours to complete the 10000 replication

experiment, and fifty hours to complete the 50000 replication experiment. Tables 6 and

7 show that the SO approach is indeed faster than the Naive approach (approximately 3
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times faster), and the MO approach is the fastest approach, more 1000 times faster than the

Naive and more than 300 times faster than the SO approach. By the complexity analysis in

Section 3.1, we anticipate that using Naive-bisection would be faster than Naive, but not by

more than a factor of n2. Thus, we would expect the time per iteration for Naive-bisection to

be no better than 3.53/199 ≈ 1.77× 10−2 seconds per replication, which is still substantially

slower than the MO approach.

We have performed more experiments with the MO algorithm using the same network but

substantially increasing the number of replications. We have solved this problem for 100000,

500000, and 1000000 replications. The results show that the algorithm scales very well and

maintains an approximately constant time per iteration of 2.8×10−3 seconds. This allowed

us to run the 1000000 replications in approximately 50 minutes. The MO approach can

therefore be used to solve two-terminal reliability problems in large, heterogeneous networks

with a large number of replications to improve accuracy, which would not be possible with

the other two approaches.

5 Considerations and Future Research

In this paper, we proposed a MC-signature method (which we refer to as the MO approach)

to estimate the survival signature and the two-terminal reliability of networks with het-

erogeneous components based on solving a multi-objective optimization problem. To the

best of our knowledge, this is the first work to point out the relationship between the multi-

dimensional survival signature computation and a multi-objective optimization problem. We

discussed two other approaches to estimate the two-terminal reliability: the Naive approach

based on performing breadth-first search, and the SO approach based on solving a single-

objective optimization problem. These three approaches are equivalent in the sense that

they generate the same output but require different amounts of time. The computational

complexity of the three approaches are shown in Table 8.

We validated the three approaches for consistency by solving the same problem with the
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Table 8: Complexity of Naive, SO, and MO approaches.

Approach Complexity
Naive O(n1n2mM)
Naive-bisection O(n1m log(n)M)
SO O(n1m log(n)M)
MO O ((n2

1m+ n1m log n)M)

three methods generating the same random permutations, which produced the same result

for the three approaches. Then we performed computational experiments to compare the

performance of the methods. The MO method proved to be the fastest and to scale well as we

increase the number of replications. The experiments demonstrated that the MO can offer

an efficient way of estimating the two-terminal reliability for large, complex, heterogeneous

networks. As immediate future research directions, we consider the following topics:

1. The literature provides opportunities for enhancements in terms of worst case complex-

ity for the MO approach; for instance, Sedeno-noda and Colebrook [14] presented an

improvement to the NewCandidateLabel that would reduce its complexity to O(n1m),

presumably reducing the overall complexity of our MO approach to

O ((n1m+ n1m log n)M) = O(n1m log(n)M),

which would equal the complexity of the SO and Naive-bisection approaches.

2. Other implementations of Dijkstra’s algorithm, such as Dial’s implementation, may be

able to yield better empirical results for the SO problem. A Dial’s implementation of

the MO problem is also possible, but the number of buckets (and thus the memory and

time complexity) appears to increase substantially in this case.

3. It may be possible to improve the Naive or Naive-bisection based on realizing that l∗2

(i.e., the maximum value of l2 for which Ψ(x(l1, l2)) = 0 for fixed l1) must be non-

increasing as l1 increases; thus, if l∗2 is obtained according to Equation (13) for row l1,

the search in row l1 + 1 need only consider l2 = 0, 1, . . . , l∗2. Also, it may be possible to
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improve SO approach by using one iteration’s permutation labels to initialize the next

iteration.

4. More computational experiments are needed to investigate the algorithm’s efficacy on

larger networks, special types of networks, and different ratios of n1/n2.

Finally, we are also contemplating the possibility of generalizing this work to more than

two classes of nodes, as well as to other reliability problems, such as K-terminal or coverage

reliability.
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