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ABSTRACT

The advancement of information technology in coming years will bring significant

changes to the way sensitive data is processed. But the volume of generated data is rapidly

growing worldwide. Technologies such as cloud computing, fog computing, and the Internet

of things (IoT) will o↵er business service providers and consumers opportunities to obtain

e↵ective and e�cient services as well as enhance their experiences and services; increased

availability and higher-quality services via real-time data processing augment the potential

for technology to add value to everyday experiences. This improves human life quality and

easiness. As promising as these technological innovations, they are prone to security issues

such as data integrity and data consistency. However, as with any computer system, these

services are not without risks. There is the possibility that systems might be infiltrated

by malicious transactions and, as a result, data could be corrupted, which is a cause for

concern. Once an attacker damages a set of data items, the damage can spread through

the database. When valid transactions read corrupted data, they can update other data

items based on the value read. Given the sensitive nature of important data and the critical

need to provide real-time access for decision-making, it is vital that any damage done by

a malicious transaction and spread by valid transactions must be corrected immediately

and accurately. In this research, we develop three di↵erent novel models for employing fog

computing technology in critical systems such as healthcare, intelligent government system

and critical infrastructure systems. In the first model, we present two sub-models for using

fog computing in healthcare: an architecture using fog modules with heterogeneous data,

and another using fog modules with homogeneous data. We propose a unique approach for



each module to assess the damage caused by malicious transactions, so that original data

may be recovered and a↵ected transactions may be identified for future investigations. In

the second model, we introduced a unique model that uses fog computing in smart cities to

manage utility service companies and consumer data. Then we propose a novel technique

to assess damage to data caused by an attack. Thus, original data can be recovered, and

a database can be returned to its consistent state as no attacking has occurred. The last

model focus of designing a novel technique for an intelligent government system that uses

fog computing technology to control and manage data. Unique algorithms sustaining the

integrity of system data in the event of cyberattack are proposed in this segment of research.

These algorithms are designed to maintain the security of systems attacked by malicious

transactions or subjected to fog node data modifications. A transaction-dependency graph

is implemented in this model to observe and monitor the activities of every transaction. Once

an intrusion detection system detects malicious activities, the system will promptly detect

all a↵ected transactions. Then we conducted a simulation study to prove the applicability

and e�cacy of the proposed models. The evaluation rendered this models practicable and

e↵ective.
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1.1 Fog Computing

To address these issues and the inadequacies of cloud computing, there is need for a

new, more e↵ective platform. Fog computing is one platform that can be used to manage the

IoT. Fog computing is a virtualization architecture that handles fundamental distinguishing

1

Introduction1

The  Internet  of  Things  is  the  future  of  the  internet  and  the  future  is  here.  However,

current  infrastructure  is  a  thing  of  the  past  and  building  stable  and  reliable  infrastructure  for

future  IoT  systems  necessitates  consideration  of  the  rapid  growth  in  the  number  of  connected

IoT  devices.  According  to  estimates,  by  the  year  2025  the  number  of  connected  IoT  devices

will  be  75  billion  [1]  and  produce  about  79  zettabytes  of  data  every  day  [2].  Further  estimates

indicate  that  by  2030  the  number  of  connected  devices  will  reach  125  billion  [3].

The  information  systems  currently  in  use  cannot  adequately  process  and  transfer  to

the  cloud  the  huge  amount  of  data  generated  by  this  growth.  Systems  are  further  com-

promised  by  the  limitations  and  restrictions  on  bandwidth.  The  rise  in  the  number  of  IoT

devices  will  create  more  sensitive  and  real-time  IoT  usage  in  connected  car  technologies,

real-time  production  line  monitoring,  health  monitoring,  and  video  conferencing  and  fur-

ther  compromise  data  processing  in  an  inadequate  infrastructure.  These  applications  need

low-latency  and  location  awareness  for  optimal  operations  [4].  The  cloud  and  internet  in-

frastructure  and  resources,  in  their  current  form,  are  simply  incapable  of  managing  the  huge

amount  of  data  produced  by  this  growth  in  the  internet  of  things  [5].



services closer to the ground. Fog computing can process large amounts of data, handle

storage, and networking services, and handle real-time acquisition and location awareness

[6, 7]. Fog computing improves privacy and data security as data is stored and processed

close to end users at the base of the network, between the devices and the cloud [8, 9].

1.2 Characteristics of Fog Computing

There are many characteristics of fog computing that are making it more popular in

the field of technology, particularly in light of the IoT expansion. It is an upgrade on cloud

computing with more features that are useful for new technological challenges.

Fog computing supports cloud computing and allows analytics resources to conduct

intensive and extended term analytics [10]. Fog computing is close to the user, at the edge

of the network thus ensuring low latency and e�cient services, a characteristic critical to

applications such as interactive sessions, networked games, healthcare applications, and video

streaming which require low latency and location awareness.

Another indication of the benefits of fog computing is the geographical spread and

high number of fog nodes. These are set to support moving vehicles and other mobile appli-

cations Fog computing provides a critical foundation for the new innovations in autonomous

vehicles, ensuring quality services in connected cars technologies.

Fog computing, at the edge of the cloud and geographically spread, will prove to be

beneficial in increasing bandwidth e�ciency while improving data privacy. In fog computing

data is processed at the fog node which means the need to send large amounts of data to the

cloud is significantly reduced thus minimizing the consumption of bandwidth and maximizing

the privacy of data because sensitive information will not be transmitted [6, 8, 9].
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1.3 Fog Computing in Healthcare Systems

There are numerous challenges facing worldwide healthcare systems [11, 12]. Fog

computing capabilities can help address these challenges. Inadequacies in current systems

render the use of cloud computing technology in many current healthcare applications inef-

fective. For instance, the transmission of data from the sensors to the cloud and from the

cloud to hospitals is slow on cloud computing. This is specifically important as healthcare

systems often require urgent on-the-fly, responses that command data processing to increase

e�ciency. Slow data transmission compromises the e�ciency of healthcare systems. [13].

Further healthcare data is sensitive and protected by the Health Insurance Portability

and Accountability Act of 1996 (HIPAA) [14, 15] so the minimization of data transfer sup-

ports and guarantees data security. For this very reason, healthcare providers often prefer

data storage remain within the organization. This increase in e�ciency for both patient and

provider is impetus for healthcare systems to adopt fog computing [16].

Fog computing is also used by some [17] to pre-process data before it is transmitted

to the cloud initiating faster response to patient needs. To take advantage of fog computing,

[18] introduced a novel hierarchical computing architecture for IoT-based patient monitor-

ing systems targeted at the execution of machine-learning data analytics. [19] utilized fog

computing technology to collect data traces on patient movement so that patients can access

faster and more e�cient services, at low latency, in the event of a medical emergency.

Fog computing is increasingly applied in the healthcare industry, attracting the at-

tention of many healthcare technology researchers as will be discussed in Chapter 2. One of

the most important issues in both fog computing and healthcare is the preservation of data
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security and the privacy of end users of the system and patients. There are numerous studies

that strive to address the security issues of fog computing in a healthcare setting [20], but

there are still aspects of this issue that need further attention, such as assessment of data

damaged by malicious attacks and determination of a method of secure data recovery after

it has been damaged by malicious transactions.

1.4 Fog Computing in Critical Infrastructure Systems

Fog computing in smart city utilities, will enable the IoT and smart devices to pro-

cess data faster, setting up quicker decision making and saving time. This also means the

aggregation of data will be limited to the indispensable data in the cloud. The processing

of huge amounts of data is required in smart cities and many countries around the world

developing these cities, fog computing has compelling potential for the processing of. smart

meters, tra�c data, city activities, and utilities data and. E�ciently processed data will ac-

commodate sustainable living in very developed cities [21]. However, it is important to note

that it would be unrealistic to rely entirely on fog computing for processing large volumes of

data. Cloud computing will necessarily continue to be used in the e↵orts to ensure successful

smart cities.

Fog computing can be used by service providers and utility to manage and analyse

consumer data e�ciently, ensuring customers access to improved services. Many research

studies exist on increasing the e↵ectiveness of fog computing in smart cities and solving

technical issues arising in the processing of volumes of data, especially those that require

integration to the cloud [22]. IoT devices like smart meters in modern smart cities will not

only generate a lot of data but the diversity of that data will have to be processed in real-
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time [23]. While data in large quantity is generally very valuable, archaic technology will not

harness the full value of data collected in smart cities. The current cloud is insu�cient for

handle such amount of data, especially tasks like processing the aggregate data, analysis and

storage [24] and while data security and privacy issues have been documented by researchers,

damage assessment and data recovery in the event of a cyberattack continue to require study

and innovation.

1.5 Intelligent Environment Systems (Governments as example)

Governments around the world are focusing on intelligent environmental systems

aimed at both conserving the environment and improving the lives of humans. Fog computing

makes it possible to build these systems and optimize the benefits of environmental systems

including provision of high-quality services. Still, there are risks involved in developing

intelligent environmental or government systems. Perhaps the worst of those risks are data

protection and data recovery in the event of a data breach.

In fact, one of the major concerns as regards government system data is the sensitiv-

ity of that data; any data breach could expose the country to attack from enemy states or

terrorists. [25]. Some of the sensitive data domiciled in intelligent government systems in-

clude tra�c control systems, video-conference applications, and real-time surveillance camera

monitoring, and they require real-time processing and location awareness. Therefore, data

damage assessment and recovery are essential in preventing data breaches as well as building

a secure and dependable database. In a government data environment, the transmission

of crucial data is common and needs to occur in a safe system secure from intrusion. For

instance, an attack on a tra�c control system or real-time surveillance camera monitor-
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ing application would paralyze their vital functions like real-time processing and location

awareness. The repercussions of damaged government data systems may include destruction

of property or even loss of life and manipulation of economic systems. So, in addition to

developing appropriate mechanisms for adaptation of fog computing in intelligent systems,

developing adequate security features capable of responding to attacks by providing fast and

accurate damage assessment and recovery techniques is of cardinal importance.

1.6 Computing System Security

Securing a computing system is critical in every situation and industry. There are

three key phases required to ensure a system is protected and secure. The first phase is

data protection. Techniques like access control, encryption, auditing, and authentication are

applied to the system to secure and protect the data. The second phase is an intrusion and

compromise detection system This can be software or a device that monitors the system

with the goal of sensing any malicious activities or policy violations and raising an alarm

so that it can be addressed. The most vital component of this phase is timely detection

and notification of the system compromise [26]. This phase uses an Intrusion Detection

System (IDS) which can observe system activity and alerts the person who is in charge of

any unusual activity. This requires more assistance from the third phase, which includes

damage assessment and data recovery ensuring the integrity and accessibility of the data in

the system.

The third phase is critical in detecting any further transgressions on the system and

making sure that the database has been restored and is secure. This phase can be divided

into two important stages: damage assessment and data recovery. Damage assessment is
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the primary process in this phase and is used to identify compromised transactions and data

items. Data recovery restores the damaged data to its last consistent state before the attack.

To make this possible, log files must retain information about the changes applied to data

items by various transactions in the system [27].

Delay time is computed in the damage assessment stage from the moment the IDS

identifies a malicious transaction until all transactions or data items a↵ected by the intro-

duction of the malicious transaction have been identified. During this time, the system will

be unavailable so, we aim to minimize the this process requires as much as possible. Time

latency for the data recovery stage is computed from the moment all a↵ected transactions

have been received until all data items have been recovered. During this time only the

a↵ected data items will be unavailable for use so as before, we aim to minimize the time

required for this process.

The system is not capable of assessing all damaged data through the damage assess-

ment and data recovery algorithms with the use of log files on each fog node independently in

a fog computing environment. For instance, as shown in Fig. 1.1, if the Intrusion Detection

System (IDS) identifies T3 in Fog1 and T8 in Fog2 as malicious transactions and if every

involved fog node individually tests their local log files, the system will then just detect T5

and T6 as a↵ected transactions in Fog1 and T10 as an a↵ected transaction in Fog2. How-

ever, T7 and T8 in Fog3, dependent on the a↵ected transactions in Fog1, and T9 in Fog2,

dependent on the a↵ected transactions in Fog3, have been a↵ected and will not be detected

by these independent assessments. So to confirm that all a↵ected transactions in the system

are detected there must be collaboration between fog nodes.
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Figure 1.1: An example of the necessity of having cooperation between fog nodes to obtain
accurate data damage assessment.

L
notation could indicate any possible operation.

1.7 Summary of Contributions

Securing any computing system is necessary for the protection and security of the

system and its data. To that end, three primary phases are essential to ensure a system

is protected and secure [27]. The first phase in data protection utilizes methods including

access control, auditing, authentication, and encryption. The second phase focuses on intru-

sion detection and utilizes software or a device that observes the system with the intent of

detecting any malicious activity or policy violations. If intrusion of the system occurs, the

third phase, which includes damage assessment and data recovery, ensures the integrity and

availability of system data. This third phase is essential in detecting any additional data

corruption and in ensuring the system is returned to a secure state.

The main objective of this research is to demonstrate the ability of the proposed

algorithms to detect data damaged in an attack in systems maintaining extremely sensi-

tive databases and employing fog computing environments. Critical infrastructure systems,

smart cities, intelligent government systems, and healthcare systems are among those where
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databases store sensitive information. They are prime targets for attacks.

The first goal of this research is the construct of two models for fog computing based

on healthcare systems. The first architecture will use fog modules with heterogeneous data,

and the second will use fog modules with homogeneous data. A unique approach to damage

assessment will be proposed for each module.

Traditional damage assessment and data recovery algorithms usually delete data af-

fected by an attack to guarantee the integrity of the database. In the proposed algorithms

the a↵ected data will be identified and retained for use in any future investigation. Sup-

pose, for instance, a critical patient information system was attacked. A treating physician,

unaware of the data violation, administers medication to a patient with life-threatening aller-

gies. Identifying, and retaining the original, a↵ected data has the potential to avoid further

consequences.

The second goal is to introduce a unique model that uses fog computing to manage

utility service companies and consumer data in the infrastructure systems of smart cities. A

novel technique to detect and assess data items that are a↵ected by a malignant attack will

be proposed. This proposal will generate a method for recovery of the original data and a

strategy for returning the database to a state consistent with that prior to the transgression.

The construct of a damage audit table, a structure, that will be used to collect data needed

in the recovery process, will be implemented.

The third goal of this research is to design a novel model for an intelligent government

system that will use fog computing technology to control and manage the data in the entire

system. Unique algorithms that will sustain the integrity of data in the system in the event of

a cyberattack, are proposed for this segment of the research. These algorithms are intended
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to maintain the security of systems experiencing the execution of a malicious transaction

or modified data in the database of fog node. A transaction dependency graph will be

implemented in this model to observe and monitor all transactions and quickly detect all

a↵ected transactions if a malicious transaction is found.
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Literature  Review2

2.1  Fog  Computing

The  benefits  of  cloud  computing  are  synonymous  to  its  advantages  especially  to  busi-

nesses  and  other  related  entities.  One  such  benefit  revolves  around  the  reduction  of  workload

as  well  as  the  administrative  burden  of  system  maintenance  and  data  management.  Work

is  made  easier,  cheaper,  and  fast  with  cloud  computing.  The  need  for  low  latency,  mobility

support,  and  geo-distribution  and  location  awareness  must  be  addressed  with  the  chang-

ing  needs  of  database  management  [6].  This  development  pushed  for  the  implementation

of  a  new  infrastructure  by  Cisco  Systems  known  as  fog  computing  in  2014.  Bonomi  et  al.

[28]  advised  that  fog  computing  is  just  an  addition  or  an  enhancement  on  cloud  comput-

ing  technologies  that  are  central  to  edge  computing  technologies  to  handle  issues  facing  the

computing  system  such  as  high  latency  and  inflexibility.

Fog  computing  as  a  computing  infrastructure  has  elicited  the  attention  of  the  academia

and  other  interests  such  as  for  industrial  research  [29,  30,  31,  32].  Several  researchers  devel-

oped  architecture  models  for  the  fog  system  as  discussed  in  Section  [33,  34]  in  general  survey

or  study  of  the  challenges,  issues,  and  future  direction.

2.1.1  Fog  Computing  Features

Fog  computing  has  been  known  to  advance  the  features  of  cloud  computing  to  improve

database  operations.  The  first  feature  associated  with  fog  computing  concerns  location,



which can be termed as the edge of networks. This feature enhances the quality of services

provided that are high and reduces the latency from high to low, a factor that helps save time

and system performances. Application areas include the healthcare industry through the

monitoring applications used for patients, gaming, and online streaming of videos. Mobility

is a substantial feature in fog computing that is promoted through the broad dispersion of

fog nodes, hence enhancing its geographical accessibility. An example of the applicability of

these characteristics is in moving vehicle services. This application makes fog a vital keystone

in the provision of high-quality services for associated car technologies. Fog’s feature of being

located at the edge of the cloud and its widespread geographical distribution help increase

bandwidth e�ciency, privacy, and security of sensitive data. Most of the local data in a

database system are processed by fog nodes, which indicates that a reduction in the amount

of data sent to the cloud for processing will help reduce the consumption of bandwidth.

This activity ensures the maximization of privacy related to sensitive data transmission

[6, 8]. Therefore, fog computing should work as a proper, appropriate platform for numerous

sensitive Internet of Things (IoT) services and applications, which could include connected

vehicles, electricity automation systems, and smart cities.

In their study regarding the present direction of patterns for technology usage and

the development of enabling technologies, Vaquero et al. [35] proposed a comprehensive

definition of fog computing, that is, “a scenario in which a large number of heterogeneous

ubiquitous and decentralized devices communicate and there exists potential cooperation

among themselves and with the network to complete storage and processing tasks without

third party intervention. They further provided an explanation for why a subscribed com-

munication model is required when data only requires to be sent or published. This helps
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reduce tra�c in the network, keep congestion problems at the edge of the network, and have

a positive influence on privacy protection.”

The importance of preprocessing whereby data gets changed and the movement of

data to the cloud utilizing computing technologies such as smart gateway was discussed by

Aazam et al. [17]. They devised a new infrastructure for smart gateway, which was mainly

concerned with smart homes and would enable the connection to IoT devices. They also

proposed a new architecture for a smart gateway using fog computing. Ivan et al. [36]

investigated the merits of fog computing for services in various dimensions. The services in-

clude electricity networks, IoT, CPS, and automation of buildings. They studied an updated

model for fog computing and its security issues.

2.1.2 Fog Computing Security and Privacy Issues

Cloud computing may not help resolve security and privacy issues, such as data pro-

tection, data availability, authentication, and user communication, leaving the role to fog

computing [37]. The combination of crucial data enhances privacy and security because most

of the data are processed locally at the edge of the network [38]. Security is enhanced as the

distance of the data sent is minimized, making fog computing systems advantageous. The lo-

cal processing and minimization of that distance minimizes the transmission of sensitive data

over the network, hence reducing the susceptibility to eavesdropping [39]. Several security

and privacy issues can be mitigated by integrating fog computing with IoT infrastructure

[40].

However, security and privacy issues have largely contributed to the research and

contributions of novel concepts and improvement solutions [37, 41, 42]. The utilization of fog

13



computing in smart grids, cities, and intelligent systems such as healthcare and government

systems to enhance the quality of services provided, and supply security and privacy to

consumers has also attracted the attention of researchers [43, 44, 45, 46, 36, 47, 48].

A fog computing architecture was mentioned in [49], in which the cloud and IoT have

to be provided with end-to-end security. Fog computing architecture relies on fog nodes

responsible for managing data and providing communication services in the system. The

fog node design should encompass functional security measures to provide reliable security

and protection, and achieve a dependable end-to-end computing infrastructure. The estab-

lishment of trusted fog nodes means that a safe network can be placed on top of the node

infrastructure. This method leads to the formation of a basis for security between one node

and another, a node to a thing, and finally the connection between a node and a cloud.

Zhu et al. proposed a scheme for enhancing privacy by using methods such as blind

signature that would ensure anonymity in the authentication processes using the set condi-

tions in the system [44]. Billing problems in smart cities would be resolved by their recom-

mended encryption methods to aggregate smart meter readings in the cloud. This model

has its discrepancies that subject customer data to susceptibility to insider and electronic

attacks.

Lyu et al. also addressed the element of smart cities and smart meter readings [45] by

suggesting a new framework for aggregating smart meter reading safely through fog nodes to

the cloud. The proposed framework involves the addition of statistical noise that is simply

irregularities in the data to enhance the data privacy of their clients. The specific technique

applied here is the Gaussian noise technique to enable the encryption of data and attain

customer privacy.
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Mohammed et al. [50], provided an encryption-based scheme to avert rogue fog

computing nodes and stop them from risking end-user data security while upholding reduced

time latency and communication overhead between the cloud and the fog nodes. They also

proposed a blockchain-encryption-based scheme integrating the CP-ABE algorithm with

blockchain technology for the detection of rogue fog nodes federated with other fog nodes.

When rogue fog nodes are detected, they are ousted, making them incapable of accessing

data encrypted with the fog federation’s attributes; data stored in fog nodes in the same

federation or in the cloud are made safe from the rogue. They also relied on blockchain

technology to perform authorization in a distributed manner and track the encrypted data

through fog federations [51].

2.1.3 Fog Computing Architecture in Critical Infrastructure and Intelligent

System

Fog computing has been widely applied in the healthcare industry, which has attracted

the attention of numerous researchers [11, 18]. Azimi et al.[18] presented a new hierarchical

computing architecture of monitoring systems for patients based on IoT to benefit from

fog and cloud computing by facilitating the partitioning and executing machine learning

data analytics. A gateway, which acts as a bridging point between the sensor infrastructure

network and the Internet, is needed for the IoT-based healthcare systems to work e↵ectively

according to Amir et al. [19]. To achieve all these, sensor nodes have been utilized to collect

data traces on patient movement, utilizing body area networks that are transferred using fog

gateways that help provide quick services in medical emergency situations at low latency.

Akrivopoulos et al. [11] designed a smart-phone-based application that would help
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gather ECG signals from the patient, where the smartphone would act as a fog node. In this

case, the patient has maximal control over his health data and can distribute the information

to his doctors for health status monitoring purposes. Vora et al. [52] devised a new structure

of using fog computing to monitor patients for ambient assisted living.

Vijayakumar et al. [53] described the use of fog computing in the detection and pre-

vention of diseases such as mosquito-borne illnesses. This application was achieved through

smart wearable devices or sensors that collect information that are later analyzed and shared

through fog computing. Vijayakumar et al. recommended a fog-based health monitoring and

risk assessment system that can be applied to di↵erentiate mosquito-borne diseases and cre-

ate alerts whenever an emergency arises. This system comprises a cyber space, where data

processing is undertaken, and a physical space, which contains the user’s information and

environmental factors.

Smart cities and grids have been encompassed and have relied on fog computing to

be adopted e↵ectively. Naranjo et al. [54] devised a new architecture for the utilization

of fog computing in smart cities. The recommended architecture can run the applications

on IoT devices jointly for functions such as computing, routing, and communicating with

one another through the smart city environment. This architecture decreases latency, and

improves the provision of energy and the e�ciency of services among things with diverse

capabilities.

Tang et al. [55] also made provisions that smart cities would require a new com-

puting paradigm to drive IoT services and applications. They recommended a hierarchical

distributed fog computing architecture to allow or support the incorporation of numerous

infrastructure constituents and services in forthcoming smart cities.
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To advance the smart city concept, Amaxilatis et al. [56] developed an application for

smart water metering that would supply data in real time such as consumption on demand

as well as bidirectional to end users from metering devices. This application enhances the

infrastructure in the concept of smart cities through fog computing.

Aazam et al. [46] discussed the architecture of industrial IoT, which can be described

as the use of the IoT in the manufacturing industry for applications such as smart sensors,

actuators, and robots. Finally, smart homes have been on the rise according to Froiz et

al. [57] owing to technological advancements such as fog computing, which assists in the

development of IoT applications. Technologies such as WiFi and ZigBee need to be used

for these smart homes to communicate with IoT nodes as well as the cloud. Fog computing

must be a solution that provides essential support closer to the end users to ensure local,

real-time processing for sensitive, complex tasks.

A distributed fog computing architecture coordinator was proposed in [58] for IoT

applications in the smart grid. The key objective of this fog computing coordinator is to

occasionally collect information of fog computing nodes, such as information on the remaining

resources and tasks. Job management is also achieved through the fog computing coordinator

such that all computing nodes can work together on complex tasks. A programming model

for fog- based architecture was also proposed. The introduction of fog node coordination

is the major di↵erence between their proposed architecture and the traditional one. Fog

node coordination aims to enhance the collaboration among fog nodes to meet di↵erent

requirements in the smart grid.
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2.2 Database Security

A computing system needs to be secured to guarantee the protection and security of

the system and its data. Database security does not only comprise the technical aspects but

also moral and ethical as well as legal issues, in which specific laws exist to help regulate

information disclosure according to Pernul [59]. The three principles of database security can

be described as secrecy, integrity, and availability of stored data. To achieve this objective,

three primary phases are essential to ensure that a system is protected and secure [27].

The first phase applied in the protection of data relies on methods such as access control,

auditing, authentication, and encryption. This first phase involves data that are at rest

and not moving. Security is provided for such data including limiting access at entry and

endpoints. Access control of data also involves password management or classification of

sensitive data.

The second phase relevant to the protection of data emphasizes the detection of

intrusion and relies on devices that assess the system to detect any malicious activity or

policy violations. Forms of intrusion include misuse of authority such as theft of media

or modification of data, logical inference and aggregation that concerns the sensitivity of

data, masquerade that involves unauthorized access by an intruder masquerading to be an

authorized user, or even bypassing of controls such as passwords, browsing, or through Trojan

horses according to Pernul [59]. This second phase involves data that are in transit. In this

phase, the security of the system borders as well the monitoring of the movement of data

and identifying threats are ensured.

In the case of system intrusion, the third phase, which includes damage assessment
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and data recovery, safeguards the integrity and availability of the system data. This third

stage is critical in the detection of any additional data corruption and ensuring that the

system reverts to a secure state. This phase involves data that are already being utilized.

Detection encompasses user monitoring for those who have access to sensitive data.

This research objectively demonstrates the ability of the proposed algorithms in the

detection of system data that are damaged in an attack while maintaining very sensitive

databases and applying fog computing environments. Critical infrastructure systems, smart

cities, intelligent government systems, and healthcare systems are vulnerable to attacks

because of the sensitivity of the information stored in their databases.

2.2.1 Damage Assessment and Data Recovery

Research has studied damage assessment and data recovery in traditional databases.

Models and mechanisms for data recovery following cyberattacks have been proposed [60,

61, 62, 63, 64]. However, academic contribution to damage assessment and data recovery in

modern database infrastructure, such as fog and edge computing, appears lacking. Damage

is usually caused by elements such as computer viruses, Trojan horses, logic bombs, or trap

doors. Recovery can be termed as rolling back of transactions to revert the database to its

previous normal state. This approach should be undertaken immediately after databases

are a↵ected to reduce denial of service as well as ensure the accuracy of the algorithms on

databases in question. Kaddoura et al. [65] recommended the use of a single matrix for

damage assessment and recovery of algorithms. Other techniques such as parsing of the

database log to check for the a↵ected transactions were recommended by [66]. Damage

assessment usually takes place after the set preventive measures fail to prevent malicious
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attacks. Malicious attacks generally intend to damage data stored on the database system.

Damage can occur to the whole system of specific objects that are di�cult to detect according

to Liu at el. [67].

Panda at el. [60] recommended the data dependency method instead of transaction

dependency. Every read and write operation of a transaction must be classified into one of

five di↵erent types grounded on the data dependency between each operation. A directed

graph, whose function is characterized by o↵ering up data items that have been a↵ected in

the database, is utilized.

The column dependency-based approach presented by Chakraborty et al. [68] deduces

the relationship between transactions to determine which transactions a↵ected by malicious

attacks need to be recovered. In this approach, the recovery of data after attacks, which

is usually time consuming, takes less time than traditional approaches. Chakraborty et

al. suggested a recovery method that would take the a↵ected transactions as input and

implement the recovery in two stages: compensation and re-execution. They deduced from

their experiments that when malicious transactions increase in the database, the second

stage of their recovery scheme also increases.

Liu and Yu [67] intended to advance the e�ciency of damage assessment and repair in

distributed database systems. First, they identified the challenges and complications faced

by those systems. Then, they proposed an algorithm for distributed damage assessment and

repair. A local damage assessment and recovery (DAR) was adopted on each site. Later, they

adopted an Executor to scan the local log to detect and clean any sub transaction a↵ected

by a malicious transaction. Additionally, a local DAR Manager on each site cooperates with

the Executor to guarantee global coordination between all sites on the system through the
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generation of a coordinator for any cleaning transaction.

Panda et al. [69] used the data dependency-based approach to assess the damage that

could occur from electronic attacks and then return the database to a consistent state. They

introduced two algorithms. In the first one, damage assessment and recovery algorithms are

e↵ected simultaneously, resulting in considerable delays due to blocking the system until the

whole procedure is complete. The second algorithm handles this because the system will

be soon available after all the a↵ected and damaged data are identified and blocked. Fu et

al. [61] introduced new dependencies that relied on analyzing inter transaction dependency

relationships to resolve damage assessment. They proposed and evaluated four di↵erent

dependency relationships between transactions that could transfer the damage.

Ammann et al. [66] also introduced algorithm sets and recommended a mechanism

that would only work on the damaged portions of the database to restore the log files

immediately when proposed damage is assessed and perform data recovery algorithms. These

algorithms can only operate while the database is available during repair, but the database

must be unavailable during repair especially when the initial algorithm is performing. This

approach also o↵ers o✏ine analysis of databases and how the process provides data for the

repair of damaged transactions.

In [63], approaches were o↵ered by the authors for data recovery that is maliciously

attacked through the addition of Before-Image Tables (BI Tables). These BI Tables cannot

be modified by any user at any point or time and have values of all deleted and updated

data items. The old value from the BI Tables is rolled back whenever the system detects

an update to a data item made by a malicious attacker. They claimed that this approach

can trace the data as they spread through di↵erent machines. The BI Tables are utilized to
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repair the damaged data without even assessing the log file.

Zuo and Panda [70] consequently introduced two dissimilar methods for the detection

of a↵ected transactions in the distributed database system. The first method utilized the

peer-to-peer model, which is much useful when assessing a single point of failure, rather

than multiple failure points in the system. The second method is a centralized model whose

e�ciency is high in the case of a large-scale distributed database system as a result of the

minimization of network communications among the sites.

Haraty et al. [65] proposed an algorithm that would track transactions that read

from one another and then keep this information in a single matrix. The advantage of this

approach is that time is not wasted, and recovery is fast, unlike the traditional methods that

would roll back all transactions up to the end. The use of a single 2D matrix helps store

dependencies between transactions by identifying the a↵ected segment of the database.

Additionally, Sobhan and Panda [71] recommended a new logging protocol that

records all the necessary information for the full repair of a database that is updated by

committed but a↵ected transactions. Lala and Panda [72] devised a damage assessment

model as well as four associated data structures to hasten accurate data recovery. These rely

on dependency relationships among the transactions, which in turn update the database.

Similar sentiments or recommendations were echoed by Panda and Zhou [73] to devise ac-

curate, fast methods for damage assessment. Two approaches, which include the use of

transaction dependency relationships to determine the a↵ected transactions, were recom-

mended in the attacked database. The other second approach considers data dependency

relationships to identify the data items a↵ected by the attack for future use in terms of

recovery.
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The most targeted sites for attacks are those that contain sensitive information such

as E-government sites. In the case of a malicious attacks, such sites require fast damage

assessment as well as recovery of data. Kurra et al. [74] recommended a model that could

advance damage assessment and recovery through minimal log access using multiple agents,

which helps save time.

Rao and Patel in [62] introduced a methodology for data recovery based on the

inclusion of application specific metadata to form transaction dependencies. For the best

performance, a column-based transaction dependency is used in this method. Their model

restores only a↵ected transactions and skips malicious transactions and valid transactions.

2.2.2 Data Dependency versus Transaction Dependency

A collection of operations or tasks, such as reading and writing, can be termed as

a transaction. Every operation has limits, such as minimum processing units that cannot

be further divided. Whenever a data item is written by a transaction, it is possible for it

to be read by another transaction. This situation creates a dependency between those two

transactions. For example, transaction Tx reads data item D1 and then writes data item

D2. Similarly, Ty reads item D2, making transaction Ty dependent on Tx. Owing to this

form of dependency, if Tx becomes a↵ected by a malicious attack, Ty will also be a↵ected.

Thus, in a fog computing environment, a data item that is informed by any transaction in a

fog node can be read by any other.

Therefore, damage assessment relies on either data dependency or transaction depen-

dency. Data dependency assesses if data items in the database are written after reading

data items that are a↵ected by an intrusion. By contrast, transaction dependency situates
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a transaction that is most likely to be a↵ected if a data item that is to be read is written by

a malicious of an a↵ected transaction according to Haraty et al. [65]. In the study of Panda

and Yalamanchili [75], transaction dependency focuses on malicious transactions for system

recovery. Transactions a↵ected by malicious transactions are also placed in line for recovery.

These transactions that are malicious of those that are dependent on them are usually un-

done. Others that are a↵ected by malicious transactions are redone. Untouched transactions

have nothing done to them because they are neither dependent on malicious transactions

nor a↵ected by them. Transaction dependency is a self-healing system according to Xia et

al. [76]. Consequently, data dependency has all the data items a↵ected by malicious trans-

actions returned to their previous state that could be the values of the data. Therefore, data

dependency methods for database recovery undo and redo the a↵ected operations or rather

transactions, and do not undo all the transactions according to Zheng [77].

2.2.3 Flushing the Data

Fog computing is known to have storage limitations, and this calls for the periodic

flushing and removal of data and corresponding log files of fog nodes and their permanent

storage in the cloud [29, 78]. Each fog node, therefore, will have e�cient and automated

access to its own cloud space. In specific cases, further assessment of the flushed data needs

to be undertaken using the proposed algorithm. However, assumptions are made that this

action will be executed at optimal intervals when the proposed approach has been launched

and all a↵ected transactions detected or the IDS has provided clearance to the flushed data.

The advantages of this [29] are its capability to enhance the runtime e�ciency of

the proposed algorithm because the size of the fog database used in our approach is likely
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to be diminished. Another advantage is the improved e�cacy in detecting a↵ected trans-

actions among all data that is flushed to the cloud because all the data will be in one

high-performance machine. Flushing is, however, meant to be performed when the database

is in a secure state and the commitment of all transaction is complete.
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3  Ensuring  Data  Integrity  in  Fog  Computing  Based  Healthcare  Systems

Model

Some  of  the  following  paragraphs,  figures,  and  algorithms  that  will  be  introduced  in

this  chapter  have  been  already  published  in  our  work  [43]  as  shown  in  the  publications  and

reprint  permissions  chapter  7.

3.1  Introduction

The  future  of  the  internet  will  be  in  the  Internet  of  things  (IoT),  which  is  evidenced

by  the  significant  increase  in  wearable  technology,  smart  homes  and  buildings,  connected

vehicles,  and  smart  grids.  The  estimated  number  of  connected  IoT  devices  in  2030  is  nearly

125  billion,  which  will  produce  an  enormous  amount  of  data  [3].  Due  to  the  limitation  and

restriction  of  bandwidth,  as  well  as  the  rapid  growth  in  the  amount  of  data  produced,  the

current  information  system  architecture  will  be  inadequate  for  managing  and  moving  that

volume  of  data  to  the  cloud.  In  many  scenarios,  it  could  be  impractical  to  do  so,  especially

with  the  increasing  number  of  IoT  devices  in  use.  Additionally,  our  current  society  has

incorporated  a  lot  of  sensitive  and  real-time  applications  of  IoT  as  integral  parts  of  our  lives

for  instance,  through  the  use  of  connected  car  technologies,  video  conference  applications,

health  monitoring,  and  real-time  production  line  monitoring,  all  applications  requiring  low-

latency  and  location  awareness  in  order  to  provide  satiable  and  high-quality  services  [4].

The  need  for  a  new  platform  will  become  necessary  to  address  the  above-mentioned

issues.  For  that  purpose,  fog  computing,  introduced  by  Cisco,  is  a  virtualization  architec-



ture that provides many fundamental distinguishing services close to the ground, including

the ability to process copious amounts of data, storage, and networking services, making

fog computing especially appropriate for many sensitive applications that require real-time

acquisition and location awareness [6]. It enhances privacy and security because the data is

kept and computed close to end users at the edge of the network, between the end devices

and a cloud [8].

Fog computing has several unique characteristics that will not only establish it as an

extension of the cloud, but will also provide extra privileges over the cloud. The first feature

is its location at the edge of networks, providing end users with high-quality services and low

latency. Many current applications require location awareness and low latency to provide

a higher quality of services and performances, such as healthcare applications, networked

games, video streaming, and interactive sessions. Another essential characteristic is the

widely dispersed and significant numbers of fog nodes that will be geographically available,

a design that supports mobility in many applications, including service in moving vehicles.

This will make fog an important cornerstone of providing high-quality services for connected

car technologies. Both fog’s location at the edge of the cloud and its geographically wide-

spread distribution will also contribute to the benefits of increasing bandwidth e�ciency

and enhancing the privacy and security of sensitive data. Most of the data will be processed

locally at the fog node, meaning that the amount of data needing to be sent to the cloud for

processing will be diminished, helping to minimize bandwidth consumption and maximize

the privacy of transmitting sensitive data [6, 8].

The healthcare system faces several challenges [11, 12] that some features of fog

computing mentioned above may be able to solve. Therefore, the healthcare system can
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capitalize on fog computing to create better experiences and services for both patients and

providers. One of the most crucial issues in both the fields of fog computing and healthcare

is preserving the security and privacy of consumer or patient data. While several studies

have sought to solve the security issues of fog computing in a healthcare environment [20],

there are still aspects of this issue that should be given further attention, such as assessment

of the damage data could su↵er from malicious attacks and determination of how to securely

recover data from malicious transactions. Damage assessment and data recovery are essential

in creating secure and reliable databases, particularly for the transmission of sensitive data,

such as that of the healthcare environment. For example, if an intrusion detection system

(IDS) detects malicious transactions in the system, any other transactions that read this data

will also be a↵ected, resulting in any doctor’s decision made based on a↵ected transactions,

potentially putting a patient in danger of harm. To the best of our knowledge, there has

been no previous work done on the development of damage assessment and data recovery

methods for fog computing systems. We present two models for using fog computing systems

that manage healthcare data: architecture using fog modules with heterogeneous data, and

a second architecture using fog modules with homogeneous data, using unique approaches

for each module for assessing the damage caused by malicious transactions, for accurately

recovering data, and for identifying a↵ected transactions for future investigation.

3.2 The Models

In this section, we introduce two possible architectures for using fog computing to

manage healthcare data. For each architecture, we propose suitable algorithms to determine

the e↵ect of an attack on the system and identify data damaged either directly or indirectly
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so that they can be recovered quickly. We assume in both cases that the intrusion detection

system (IDS) is responsible for detecting the malicious transactions in the system and will

provide a list of these transactions. In addition, each fog node in both architectures must

have its own log file. Both architectures proposed here also use a strict serializable history,

and the log files cannot be modified by users at any time.

3.3 Model Notations

Table 3.1 shows the description of notation to be used in our proposed approaches.

Table 3.1: Notation used in our proposed approaches description.

Notation Description
FDR The main fog node, which is accessed by the health care

providers to read and write about the patients.
FM Fog node for specific monitors used to collect the data from

the patients using the IoT devices, e.g. Fog of Heart Moni-
tors.

MT L List of detected malicious transactions done by IDS.
A↵ Lfdr List of all a↵ected transactions that have been detected in

FDR.
A↵ Lfdrj List of all a↵ected transactions that have been read by FDR

from FMj.
A↵ Lfmj List of all a↵ected transactions that are detected by the

proposed algorithm in the fog node FMj.
A↵ Lfdrcloud List of all a↵ected transactions that done by cloud over the

flushed data of FDR fog node.
A↵ Lfdrcloud,j List of all a↵ected transactions that done by cloud over the

flushed data of fog node j and have been read by FDR node.
A↵ Lcloud,j List of all a↵ected transactions that done by cloud over the

flushed data of fog node j.
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3.4 The First Proposed Architecture: Fog Nodes with Homogeneous Data

In this model, data will be written to one fog node, which can be read by multiple

fog nodes. The patient data will be collected using end-users and Internet of things (IoT)

devices, such as sensors, and sent to the proper fog node, which we call fog monitors (FM).

For example, information about a patient’s heart rate will be sent to the Fog of Heart

Monitors, and his or her blood pressure reading will be sent to the fog of blood pressure

monitors. Therefore, each fog node FM will contain only homogeneous data.

Additionally, in this model there is a main fog node, known as the Fog for Doctor

Reports (FDR), which has access to read any necessary data from the other fog nodes (FMs).

Healthcare providers, however, will only have access to the main node. When a doctor wants

to check patient records, he or she must read the patient’s data from the FDR and write

reports, concerns, and prescriptions based on that data, as shown in Fig. 3.1. We assume

that each fog node will have the ability to perform some basic operations with the data, such

as calculating a patient’s average body temperature over a certain time frame or aggregating

the totals of selected data values.

3.4.1 Damage Assessment Algorithm for the First Model.

Once the IDS detects all malicious transactions in the system, it will send to each

fog node a list of malicious transactions that have been detected on it. Let us say that a

malicious transaction Ti has been detected by the IDS on Fog1. Fog1 will then perform the

following procedures:
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Figure 3.1: First proposed architecture “fog nodes with homogeneous data”.

3.4.1.1 First procedure:

Fog1 will check its local log to confirm whether Ti is still in its local database (DB).

• If Ti is not in the DB, it has been flushed to the permanent storage in the cloud.

In this case, the list of malicious transactions will be forwarded to the cloud to identify

all a↵ected transactions by checking data received from all fog nodes. (This step will

be more e↵ective and e�cient via cloud computing, since all data is now in one high-

performance machine that saves time by reducing unnecessary communication between

the fog nodes.) After the cloud receives those lists, it will scan the flushed logs to

identify any a↵ected transaction that is dependent on any of the damaged transactions

from the list.
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Once the cloud finishes the damage assessment procedure and identifies all a↵ected

transactions, it will create a list of a↵ected transactions A↵ Lcloud,j for each fog node

in the system which has a↵ected transaction in its flushed data. The A↵ Lcloud,j lists

will be sent to their corresponding fog nodes to be used as input for our proposed

algorithms to do further detection. The cloud will identify all a↵ected transactions

read by the FDR, since the FDR log file is flushed to the cloud along with the data.

• If Ti is still in the local DB of Fog1, then the second procedure will be performed, as

outlined below, to detect any additional a↵ected transactions.

3.4.1.2 Second procedure:

Three algorithms will be launched once the fog receives the list of malicious trans-

actions MT L, detected by the IDS, or A↵ Lcloud,j that is sent from the cloud. The first

algorithm, Algorithm 3.1, allows FM fog nodes to further detect all damaged transactions

and mark them as a↵ected. This algorithm will also confirm whether the main fog node

(FDR) has read any of these identified transactions. If so, the algorithm will send a list

A↵ Lfdrj to the FDR to use as input for further detection. The other two algorithms,

Algorithms 3.2 and 3.3, are for the main fog node FDR. The Algorithm 3.2 could run si-

multaneously with Algorithm 3.1 once MT L, A↵ Lfdrcloud ,or A↵ Lfdrcloud,j list is received,

to ensure fast detection of all a↵ected transactions. The FDR fog node will not launch

Algorithm 3.3 until any list of a↵ected transactions from the FM fog nodes is received.

To illustrate the first model, suppose the IDS system detects Ti, Alice’s body tem-

perature, as a malicious transaction that is collected by the end user Sj1. Sj1 is connected
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Algorithm 3.1 FM Fog Nodes Assessment Algorithm

Input:

• List of detected malicious transactions MT L done by IDS, or A↵ Lcloud,j list from
the cloud.

• The local FM log file.

Output:

• List of all a↵ected transactions A↵ Lfmj that will be detected by our proposed
algorithm in the Fog node FMj.

• A↵ Lfdrj List of all a↵ected transactions that have been read by FDR.

The Algorithm:
1: Creates a new a↵ected-transactions list A↵ Lfmj and initializes to null where j is the

current fog node ID.
2: Creates a new a↵ected list A↵ Lfdrj and initializes to null.
3: Takes MT L / A↵ Lcloud,j as input
4: Copies all malicious / a↵ected transactions Ti that exist in FMj from MT L / A↵ Lcloud,j

list to A↵ Lfmj list
5: if A↵ Lfmj 6= ; then
6: Scan the local log and
7: for every Tk 2 FMj that is dependent on any Ti 2 A↵ Lfmj do
8: Mark TK as a↵ected transaction
9: Add TK to the A↵ Lfmj list
10: end for
11: for every Ti 2 A↵ Lfmj do
12: Check if Ti has been read by FDR
13: Add Ti to the A↵ Lfdrj list
14: end for
15: end if
16: Send A↵ Lfdrj to FDR to do further detection
17: Send A↵ Lfmj for data recovery.
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Algorithm 3.2 FDR Fog Node Assessment Algorithm ”1”

Input:

• List of detected malicious transactions MT L, A↵ Lfdrcloud,j, or A↵ Lfdrcloud.

• The local FDR log file.

Output:

• List of all a↵ected transactions A↵ Lfdr.

The Algorithm:
1: Creates a new a↵ected-transactions list A↵ Lfdr and initializes to null
2: Takes MT L / A↵ Lfdrcloud,j / A↵ Lfdrcloud as input
3: Copies all malicious / a↵ected transactions Ti that exist in FDR from the input list to

A↵ Lfdr list
4: if A↵ Lfdr 6= ; then
5: Scan the local log and
6: for every Tk 2 FDR that is dependent on any Ti 2 A↵ Lfdr do
7: Mark TK as a↵ected transaction
8: Add TK to the A↵ Lfdr list
9: end for
10: end if
11: Send A↵ Lfdr for data recovery.

Algorithm 3.3 FDR Fog Node Assessment Algorithm ”2”

Input:

• A↵ Lfdrj list of a↵ected transactions received from other fog node FMj.

• The local FDR log file.

Output:

• List of all a↵ected transactions A↵ Lfdr.

The Algorithm:
1: for each a new a↵ected list that is received from FMj do
2: Creates a new a↵ected-transactions list A↵ Lfdr and initializes to null
3: Takes A↵ Lfdrj as input
4: if A↵ Lfdrj 6= ; then
5: Scan the local log and
6: for every Tk 2 FDR that is dependent on any Ti 2 A↵ Lfdrj do
7: Mark TK as a↵ected transaction
8: Add TK to both list the A↵ Lfdr and A↵ Lfdrj
9: end for there is no a↵ected transaction has been read from FMj

10: end if
11: Send A↵ Lfdr for data recovery.
12: end for
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to the fog node (FMj). Now assume that FMj has performed some local operations on its

data before the detection, as a matter of general routine, including Ti, such as:

1. Aggregate all the patients’ body temperature readings over a certain time Tagg,j

2. Calculate Alice’s average body temperature Tavg,j over the last six hours.

If FDR reads Ti, Tagg,j, and Tavg,j from FMj, then any transaction Tj 2 FDR that

is dependent on Ti , Tagg,j , or Tavg,j will be a↵ected. Note that there is no way FDR can

know that Tagg,j and Tavg,j are dependent on Ti, since they were calculated locally on the

FMj node. Therefore, any transactions that belong to FDR and are dependent on Tagg,j or

Tavg,j will not be detected by FDR itself until FDR gets a list of all a↵ected transactions

from FMj. Assume, for the following transactions T1j , T2j, and T3j 2 FDR, that:

• T1j is the doctor’s report, that is dependent on the malicious transaction Ti;

• T2j is dependent on Tagg,j to do any kind of study or to make a budget of the hospital;

• T3j, the prescription given to Alice, is dependent on Tavg,j and has some side e↵ects

that may a↵ect other data, such as heart rate or blood pressure.

Now suppose the IDS has already detected all malicious transactions including Ti and sent

them as list MT L to the system. Then the first procedure will check each malicious trans-

action on MT L to determine whether it has been flushed to the cloud. Suppose, however,

that Ti is still on the local DB of FMj. In that case, the second procedure will pursue further

detection.

Thus, the FDR will run Algorithm 3.2 while all other a↵ected fog nodes FMj run

Algorithm 3.1 simultaneously. As Algorithm 3.1 runs, each a↵ected FM fog node will create
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two lists:

• A↵ Lfmj will get a copy of all malicious transactions that exist in FMj from MT L

list. All detected damage transactions in FMj will be added to this list.

• A↵ Lfdrj which will contain all a↵ected transactions read by FDR and detected by

Algorithm 3.1 in FMj.

In lines 6 - 10, the algorithm will go through every transaction in the log of FMj

to confirm whether any of them are dependent on malicious or a↵ected transactions from

the list A↵ Lfmj. If so, these transactions will also be marked as a↵ected and added to

A↵ Lfmj. Thus, Tagg,j and Tavg,j will be added to A↵ Lfmj, since they are both dependent

on the malicious transaction Ti.

In lines 11 - 14, this loop of algorithm is to check only the final A↵ Lfmj list of all

malicious and a↵ected transactions and confirm whether any have been read by FDR. If so,

these will be added to A↵ Lfdrj. Therefore, Ti , Tagg,j, and Tavg,j will be added to A↵ Lfdrj,

since they have been read by FDR. A↵ Lfdrj will then be sent to FDR to use as input for

Algorithm 3.3 to do further detection, while A↵ Lfmj will be sent for data recovery.

Once Algorithm 3.3 receives A↵ Lfdrj, it will create a new a↵ected list, A↵ Lfdr.

The algorithm will go through all transactions in the FDR log to determine whether any

depend on the malicious or a↵ected transactions from A↵ Lfdrj. If so, these will be marked

as a↵ected transactions and added to both A↵ Lfdr and A↵ Lfdrj. T1j, T2j, and T3j will

thus be detected by the end of this loop, and all three will be added to both lists. Then

A↵ Lfdr will be sent for data recovery.
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3.5 The Second Proposed Architecture: Fog Nodes with Heterogeneous Data

In this model, we assume that all fog nodes have the same capability as well as the

ability to perform basic operations on data. However, in the “fog nodes with heterogeneous

data” model, there is no main fog node; each hospital department will have its own fog node.

Thus, when a patient is moved from one department to another, his or her data will also be

moved to the fog node of that department, as shown in Fig. 3.2. The healthcare providers in

each department will have only access to patient data through their own fog node and will

write records or reports based on this information. All patients’ data will be collected using

end users and IoT devices, such as sensors, and will be sent to the local fog node FM in the

same department.

This model can be applied outside of hospitals as well, since patient data in smart

cities will likewise move from one fog node to another while patients are traveling. Write op-

erations can also be accessed from all nodes. Thus, unlike the “fog nodes with homogeneous

data” model, malicious transactions in the “fog nodes with heterogeneous data” model could

spread quickly and cause severe data damage. In order to resolve this issue, the fog nodes

need to cooperate with each other.

3.5.1 Damage Assessment Algorithm for the Second Model.

3.5.1.1 First procedure:

As in the first model, when malicious transactions are detected by the IDS, the af-

fected fog node will scan for the presence of that transaction in its local DB. If the transaction

is not there, that means it has been flushed to the cloud. The full procedure in such a case
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Figure 3.2: Second proposed architecture “fog nodes with heterogeneous data”

is similar to that explained in section 3.4.1.1.

3.5.1.2 Second procedure:

Our proposed Algorithm 3.4 will be performed in case one of following list is received:

• The list of malicious transactions MT L.

• The list of a↵ected transactions from another Fog node A↵ Lfmxj.

• The list of a↵ected transactions that has been detected by cloud in the flushed data

A↵ Lcloud,j that might damage another transaction still residing in the local DB.

To illustrate the proposed algorithm for the second model, consider the following

example: Suppose that Bob has just arrived at the emergency room with a medical issue.
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Algorithm 3.4 Damage Assessment Algorithm for the Second Model

Input:

• Malicious transactions list MT L, A↵ Lfmxj from another fog, or A↵ Lcloud, j.

• The local log file.

Output:

• List of all a↵ected transactions A↵ Lfmj.

• Sub-lists of a↵ected transactions for each FMx that has been read any damaged
data from FMj.

The Algorithm:
Once FMj receives any of the input list

1: Creates a new a↵ected list A↵ Lfmj and initializes to null where j is the current fog node
ID.

2: Copy all malicious / a↵ected transactions Ti that exist in FMj from the received list to
A↵ Lfmj list

3: Scan the local log and
4: for every Tk 2 FMj that is dependent on any Ti 2 A↵ Lfmj do
5: Mark TK as a↵ected transaction
6: Add TK to the A↵ Lfmj list
7: end for
8: for every Ti 2 A↵ Lfmj do
9: if Ti has been read by any other FMX then
10: Check If A↵ LfmjX list does not exist, Then
11: Creates a new a↵ected list A↵ LfmjX and initialize to null where x is the id of aimed

Fog node that reads the a↵ected transaction.
12: Add Ti to the A↵ Lfmjx list
13: end if
14: end for
15: Send A↵ LfmjX to proper FMx to do further detection
16: Send A↵ Lfmj for data recovery.

All of Bob’s data will thus be sent to the Fog of the Emergency Room (FogER). A few hours

later, however, the doctors decided to move Bob to the Intensive Care Unit (ICU) because

his heart rate was not steady according to sensor S1 (call this transaction T1). Bob’s data

will then also be moved to the Fog for the Intensive Care Unit (FogICU). While Bob was

in the ER, the physicians performed their tests and wrote report (T2) and, based on that

report, the nurses gave Bob some antiarrhythmic medication (T3) to stabilize his heart rate.
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Thus, transaction T2 is dependent on transaction T1, and T3 is dependent on T2. Suppose,

also, that medication T3 has some side e↵ects, such as abdominal pain (T4), hemoptysis

(T5), or hypoglycemia (T6). These three transactions should be taken into account.(This is

an example of why a↵ected and damaged transactions should not be deleted, but instead

kept and marked as a↵ected). Once Bob arrives in the ICU, he develops a reaction to the

antiarrhythmic medication T3. The critical care specialist, based on the data and reports T1,

T2, and T3 from the ER, decides to give Bob alternative antiarrhythmic medication TICU1.

Subsequently, the critical care specialist realizes that Bob has no heart issue and his

heart rate is normal. In the meantime, however, the IDS has notified the FogER that T1 is

a malicious transaction. There is then no way for FogICU to detect T2 and T3 as a↵ected

transactions, since they depend on T1 and they are done locally at FogER. Nevertheless,

FogER will be the only fog node in the entire system that can detect T2 and T3. Thus, when

FogER receives the malicious transaction list including T1, the model’s first procedure will

confirm whether T1 has been flushed to the cloud. Suppose that T1 is still in the local DB

and has not been flushed yet. FogER will then launch Algorithm 3.4, as described in the

second procedure. The first line of the algorithm will create the A↵ LFMER list to identify

all a↵ected transactions in the FogER. T1 will be copied to this list, since it still resides in the

local DB. Next, lines 3 - 7 will scan the log file, starting from T1, and check each transaction

sharing data dependency with T1 or with any other transactions in the list. The algorithm

will find T2 in this way, mark it as an a↵ected transaction, and add it to A↵ LFMER.

When the algorithm examines the next transaction in the log for data dependency with any

a↵ected transactions from A↵ LFMER, it will now take T2 into consideration because T2

has just been added to the list. Thus, T3 will be detected, marked as a↵ected, and added to
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A↵ LFMER.

After all transactions in the log file have been scanned and examined, lines 8 - 12

of Algorithm 3.4 will confirm whether each a↵ected transaction has been read by another

fog node (to which it was moved when the patient was moved). If so, a sub-list of a↵ected

transactions will be created for each a↵ected fog node, and add to the list the a↵ected

transaction that has been read. In our example, transactions T1, T2, and T3 have been

moved to FogICU , so FogER will create a new sub-list A↵ LFMERICU and add T1, T2, and

T3 to that sub-list. Finally, A↵ LFMERICU will be sent to the FogICU for further detection,

and the main a↵ected list A↵ LFMER will be sent for data recovery. Once FogICU receives

A↵ LFMERICU , it will use the list as input in the same algorithm, and TICU1 will be

detected as an a↵ected transaction, since there is data dependency between TICU1 and the

a↵ected transactions T1, T2, and T3. The process continues until all a↵ected transactions

are detected.

3.6 Experiments and Evaluation

3.6.1 Setup and Introduction

In the experiments, a personal computer with 16 gigabytes of RAM and a Dual-Core

Intel Core i7 processor with a speed of 3.1 GHz was used. The whole system environment was

simulated using Java to prove the model and algorithms’ applicability and e�ciency. The

quality of the proposed algorithms was evaluated by performing experiments considering

di↵erent factors, including the number of transactions in each log file and the number of

attacking transactions and fog nodes in the system. The communication delay between fog
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nodes in the experiments was ignored since we used a local personal computer.

For the first model, we implemented di↵erent factors in order to draw a comparison

between the two proposed models: the fog model using heterogeneous data, and the fog model

using homogeneous data. We calculated the total time required, from initial detection of

malicious transactions by the (IDS), to assess and detect all a↵ected transactions in the

system. Furthermore, we recommended the model most suitable, or proper, considering

circumstance and other factors, for use in the healthcare system or a similar environment .

For the second and third models we simulated two primary systems. The first system

represents distribution by private, trusted fog nodes. The second simulated system repre-

sents distribution by public, non-trusted fog nodes. Then we applied our proposed damage

assessment and data recovery schemes, with minor modification, to both so that we might

study the di↵erences between them. Our goal is to show which model is more e�cient, again

considering circumstance and other factors, for use with each scheme.

The factors we used for all models are as follow:

1. Number of transactions in each log files:

• 100 transactions

• 500 transactions

• 1000 transactions

2. Set of a↵ected transactions in the whole system:

• Less than 5 a↵ected transactions.

• 10 to 15 a↵ected transactions.
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• 30 to 35 a↵ected transactions.

3. The number of fog nodes in each model

• 5 fog nodes.

• 10 fog nodes.

• 15 fog nodes.

• 20 fog nodes.

3.6.2 Simulation

We simulated the whole environment for each proposed model to prove the applica-

bility and e�ciency of our models and algorithms. Then we evaluated the quality of the

proposed algorithms by experimenting with di↵erent factors such as number of transactions

in each log file, the number of a↵ected transactions in the whole system, and the number of

fog nodes in the system. We sought answers to the following:

• How e�cient are the proposed damage assessments algorithms to detect all a↵ected

transactions and data items in the systems.

• Compute the total time for each proposed damage assessment algorithm once the

malicious transactions list has been received until all a↵ected transactions have been

identified. During this time the system will be unavailable so, we aim to minimize this

time as much as possible.

• How e�cient are the proposed data recovery algorithms to return the damaged data

to consistent state.
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• Compute time latency for each proposed data recovery algorithm from the a↵ected

transactions list has been received until the whole data items have been recovered.

During this time only the a↵ected transactions and data items will be unavailable to

be use so, we aim to minimize this time as much as possible.

Since our work is novel in the context of damage assessment in fog computing, there is no

existing work that we can compare the performance of the proposed systems against. For this

reason, the aim is to implement, test, and evaluate the proposed models and prove that they

are not only applicable but also accurate, scalable, and reasonable in the reported delays.

However, in some models , we compare the performance of the proposed sub-models against

each other to see which model is better for di↵erent circumstances.

3.6.3 Data-set

3.6.3.1 Log Files:

Since there is no available data-set for the log files of fog node computing, and this

work is novel, we generated random log files, vary in length, for every fog node in the system.

The contents of the log files may be di↵erent for each model based on given assumptions.

For example, in the first model the read operations and their values, as seen previously in

the section 3, will be added to the log files for that model. We performed our experiments

based on the three log file sizes described above, beginning with 100 transactions in each

log file and following through with 500, and finally 1000. The data dependency between the

fog nodes was inserted arbitrarily into the log files. Here is an example of the generated log

files: [ r1(361,688) r2(345,669) w4(372,607,689) r5(207,651) w1(227,688,688) w2(345,669,621)
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r3(399,653) r4(282,634) w5(207,651,612) c1 c2 w3(399,653,635) r4(361,688) w5(374,678,643)

w3(279,657,640) c4 c5 c3 r6(238,689) w7(207,612,636) r8(356,641) r9(323,683) w6(238,689,604)

w7(262,679,633) w8(356,641,654) w9(323,683,635) w6(345,621,636) c7 c8 c9 w6(286,646,677)

c6 w10(313,663,685) r10(351,604) c10 ] Below we explain the notations used for read, write,

and commit operations respectively.

• r2(345,669): is reading operation where rtransaction number (data item, value)

• w2(345,669,621): is writing operation where wtransaction number( data item, old value,

new value)

• c2 : The transaction 2 has been committed which means it is successfully completed.

3.6.3.2 Graphs

We used the adjacency list for directed graph representation due to its speed and

space e�ciency technique [79]. In this situation, we represent the transaction T as vertex

V in the directed graphs. If there are |T | in the log files, then each list can have up to

|T | � 1 transactions depend on the transaction dependency that we explained previously.

Each vertex in the adjacency list can be reached in constant time since we need only to refer

to an array.

Regarding the space complexity of the adjacency list, it is the best case scenario

of graph representation techniques for storing the directed graph in the computer. This

technique will save substantial space. Thus, the adjacency list will only take up to ⇥(V +E)

space, where V is the set of vertices which in our models is the number of transactions in

the log file T , and E is the set of edges which are the dependencies between two transactions
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[80]. Additionally, the adjacency list allows us to easily insert a new edge or vertex without

extra cost as we are using a linked list structure and this representation is more informatic

and provides easier tracking of any adjacent nodes of node.

All local and global directed graphs were built simultaneously when the log files

were generated based on transaction-dependency relationships between the transactions, as

previously explained in Chapter 5. With each log file, two graphs were generated, one for

the model where there is no trusted fog node (no global graph) in the system and the other

one for the model where there is a trusted fog node in the system. The global graphs for

the trusted fog node were also generated for any transaction that accessed a data item from

another fog data service node in the system, as we elucidated in Chapter 5. The log files

and graphs were manually rechecked and examined as ground truth to ensure the correctness

and accuracy of the algorithms.
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3.6.4 Evaluation First Model: Ensuring Data Integrity in Fog Computing Based

Healthcare Systems

In the healthcare systems model, we introduced two sub-models for fog computing

systems that manage healthcare data. The first one is an architecture using fog computing

with homogeneous data; the second one is an architecture using fog computing with hetero-

geneous data. Then for each sub-model we proposed appropriate algorithms to determine

the e↵ect of an attack on the system and identify damaged data.

In this experiment our goal was to determine two important points. First, for each

model we needed to study the behavior of the damage assessment algorithm as it detected

a↵ected data items with varying factors designed for the experiment. Second, we performed

experiments to highlight the di↵erences between the two models. Which is the better per-

forming of the two and which factors influence that outcome?

As we mentioned in the simulation section, we generated di↵erent sets of log files.

Each set represented the number of fog nodes in the system with a di↵erent number of

transactions in the log file. So, in the experiment we began with a fixed number of fog nodes

each time and a di↵erent number of transactions in each log file. Each time a malicious

transaction was randomly inserted the results were classified into three di↵erent sets, of

a↵ected transactions. The first set is a set of less than five identified, a↵ected transactions.

Ten to 15 identified, a↵ected transactions made up the second set. The third set of identified,

a↵ected transactions numbers twenty to twenty-five. This transaction clustering is important

in making a fair and reasonable comparison of the proposed algorithms as they are impacted

by other factors including the number of fog nodes and the number of transactions in each log
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file. Each transaction in each set was repeated approximately twenty times. Then the total

time, from insertion of the malicious transaction until all a↵ected data items in the system

were identified, was computed. The time required for each set to identify the damaged

transactions was then averaged. This average was calculated for use in investigating and

evaluating our approach. We compared the results, determining the factor or factors having

a greater or lesser impact to the algorithms.

• First Sub-Model “Fog Node Distribution with Homogeneous Data”

3.6.4.1 First Experiment: The impact of log file size on di↵erent number of fog

nodes in the homogeneous data model:

Figs. 3.3, 3.4, 3.5, and 3.6 explain the relationship between the number of transactions

in each log file, the number of a↵ected transactions, and the average time required by our

system to detect all a↵ected data items in the whole system. The average time was calculated

by averaging the detection time each set required to complete the tasks. The results show

that a log file of 100 transactions will take the system approximately 34 to 36 ms to detect all

a↵ected data items in the whole system no matter the number of a↵ected transactions. The

delay time in detecting all a↵ected data items in log files of 500 transactions increased by

approximately 21- 23 ms. The delay time for the system to identify all a↵ected transactions

in log files of 1000 transactions was only around 17 to 18 ms more than that, when compared

to 500 transaction log files, and almost the double the time the system required to identify

the a↵ected transactions in log files of 100 transactions. So, the length of time the system

remains unavailable is considerably impacted by the number of transactions in the log files.

This applies regardless of the number of fog nodes or the number of a↵ected transactions in
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each log file.
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Figure 3.3: The impact of log file size on five fog nodes in the homogeneous data model.
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Figure 3.4: The impact of log file size on ten fog nodes in the homogeneous data model.
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Figure 3.5: The impact of log file size on fifteen fog nodes in the homogeneous data model.
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Figure 3.6: The impact of log file size on twenty fog nodes in the homogeneous data model.
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3.6.4.2 Second Experiment:The impact of a variable number of fog nodes and

sets of a↵ected transactions on various size of log files in the homoge-

neous data model:

This experiment was designed to evaluate the performance of our detection algorithm

in identifying all data items a↵ected by the introduction of a malicious transaction. Figs.

3.7, 3.8, and 3.9 summarize the relationship between the number of fog nodes and the

sets of a↵ected transactions. Again, each log file was fixed in sets of 100, 500, and 1000

transactions. The goal of this experiment was to discover and study the impact of the

di↵erent sets of a↵ected transactions and the various number of fog nodes to our damage

assessment algorithm.

Figs. 3.7, 3.8, and 3.9 show that our algorithm performs essentially the same regard-

less of log file size. The damage assessment algorithm detected all a↵ected data items with

a marginal change in time required to complete the task, either increasing or decreasing by

less than 0.5 ms, when the number of fog nodes increased. This held true regardless of log

file size. Furthermore, the number of a↵ected transactions in each set had only slight impact

on delay time: at roughly 0.5 to 1 ms.

Figs 3.7 through 3.9 further illustrate that the set of five a↵ected transactions entailed

less time than the other two sets for all variants of log file size and number of fog nodes.

Additionally, the set of ten to fifteen a↵ected transactions, for the most part, exacted less

time than the set of twenty to twenty-five. The little change that occurred here was due to

the algorithm computation.

In brief, these experiments have shown that the earlier IDS identifies malicious trans-
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actions, the more e�cient and faster damage assessment can be made and that the size of

the log file has the most impact on delay time.
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Figure 3.7: The impact of a variable number of fog nodes and sets of a↵ected transactions
on log files of 100 T in the homogeneous data model.
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Figure 3.8: The impact of a variable number of fog nodes and sets of a↵ected transactions
on log files of 500 T in the homogeneous data model.

52



70.0000

72.0000

74.0000

76.0000

78.0000

80.0000

82.0000

5 Nodes 10 Nodes 15 Nodes 20 Nodes

Av
er

ag
e 

De
la

y (
m

s)

Number of Fog Nodes in the System

1000  T

Less than 5 10-15 20 - 25

Figure 3.9: The impact of a variable number of fog nodes and sets of a↵ected transactions
on log files of 1000 T in the homogeneous data model.

• Second Sub-Model: “Fog Nodes Distribution with Heterogeneous Data”

3.6.4.3 Third Experiment: The impact of log file size on di↵erent number of

fog nodes in the heterogeneous data model:

This experiment uses the same variables as the experiment described in section 3.6.4.1.

We computed the average time the algorithm exacts to identify all a↵ected data items in

the whole system. The number of fog nodes was fixed to five, then to ten, fifteen, and

twenty, respectively. The numbers of transactions on each log file varied from 100 to 500,

then to 1000. The results were classified in di↵erent sets as indicated in Figs. 3.10, 3.11,

3.12, and 3.13. The results show that a 100 transaction log file, results in a delay time

around 36 to 42 ms for detection of all a↵ected data items in the whole system for less than

five a↵ected transactions. And the delay time to detect the same set in a 500 transaction

53



log file increased to 51 to 79 ms. A 1000 transaction log file with fewer than five a↵ected

transactions, rendered a delay time of 100 to 119 ms in identification of all a↵ected data

items. This increase in delay time as it relates to the number of transactions in the log file

remains consistent regardless of the number of fog nodes or a↵ected transactions in each log

file. As the number of transactions in the log files has a major e↵ect on delay time, system

availability becomes further compromised as the transaction count per log file increases.
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Figure 3.10: The impact of log file size on five fog nodes in the Heterogeneous data model.
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Figure 3.11: The impact of log file size on ten fog nodes in the Heterogeneous data model.
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Figure 3.12: The impact of log file size on fifteen fog nodes in the Heterogeneous data
model.
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Figure 3.13: The impact of log file size on twenty fog nodes in the Heterogeneous data
model.

3.6.4.4 Fourth Experiment: The impact of di↵erent sets of a↵ected transactions

on various number of fog nodes in the heterogeneous data model:

The second experiment was implemented to observe the impact of the di↵erent sets

of a↵ected transactions in the heterogeneous data model. Figs. 3.14, 3.15, 3.16, and 3.17

represent the results. The findings observed in this experiment are di↵erent than that of the

experiments in section 3.6.4.2 for the homogeneous data model. The results here show that

a log file of 100 transactions produces, a delay time in ms that jumped from the thirties

for detecting the set of less than five a↵ected transactions to the fifties for ten to fifteen

a↵ected transactions, and into the seventies for twenty to twenty-five a↵ected transactions.

The delay time to detect the a↵ected data items in a log file of 500 varied from the small set

of a↵ected transactions to the larger set, ranging from ms in the 70’s for the set of less than
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five a↵ected transactions to ms in the 150’s for the set of 20 to 25. The 1000 transaction log

files registered a delay time around the 100’s to 170’s ms to identify all a↵ected data items

. So, unlike the homogeneous data model, in this model the number of a↵ected transactions

in the system has significant e↵ect on the total time the system remains unavailable.
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Figure 3.14: The impact of di↵erent sets of a↵ected transactions on five fog nodes in the
heterogeneous data model.
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Figure 3.15: The impact of di↵erent sets of a↵ected transactions on ten fog nodes in the
heterogeneous data model

Figure 3.16: The impact of di↵erent sets of a↵ected transactions on fifteen fog nodes in
the heterogeneous data model.
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Figure 3.17: The impact of di↵erent sets of a↵ected transactions on twenty fog nodes in
the heterogeneous data model.

3.6.4.5 Fifth Experiment: The impact of a variable number of fog nodes and sets

of a↵ected transactions on various size of log files in the heterogeneous

data model:

Investigation was also conducted into the relationship between the number of fog

nodes and the di↵erent sets of a↵ected transactions. Figs. 3.18, 3.19, and 3.20 describe

the results. The number of transactions on each log file here was fixed to 100, then 500,

and finally to 1000. The objective was to study the impact of the di↵erent sets of a↵ected

transactions with a variable number of fog nodes while keeping a fixed number of transactions

in the fog file. As we see in these figures, the performance of the proposed algorithm generated

roughly the same outcome with all di↵erent log file sizes. We found that the time needed for

our damage assessment algorithm to detect all a↵ected data items increased by 1 - 10 ms,

when the number of fog nodes increased. This remained consistent regardless of log file size.
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Figure 3.18: The impact of a variable number of fog nodes and sets of a↵ected transactions
on log files of 100 T in the heterogeneous data model.
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Figure 3.19: The impact of a variable number of fog nodes and sets of a↵ected transactions
on log files of 500 T in the heterogeneous data model.

60



0.0000

50.0000

100.0000

150.0000

200.0000

5 Nodes 10 Nodes 15 Nodes 20 Nodes

Av
er

ag
e 

De
la

y (
m

s)

Number of Fog Nodes in the System

1000 T

Less than 5 10-15 20 - 25

Figure 3.20: The impact of a variable number of fog nodes and sets of a↵ected transactions
on log files of 1000 T in the heterogeneous data model.

3.6.4.6 Sixth Experiment: Fog Nodes Distribution with Homogeneous Data

Model versus Heterogeneous Data Model:

These experiments were executed to demonstrate the di↵erence between the two pro-

posed models and to discover, in consideration of all variables, which of the two is the better

performer. Figs. 3.21, 3.22, and 3.23 illustrate an overall comparison of the average total

time latency in milliseconds between these models . The result, supported by these figures,

indicates that the first model, the homogeneous model, performs better with all di↵erent

sets of a↵ected transactions.

However, with the smaller set of less than five a↵ected transactions and smaller log

file of 100 transactions, the di↵erence was slight; the first model exceeded the second by only

1 - 3 ms ( Fig. 3.21). With the same smaller set of less than five a↵ected transactions the

di↵erence between the two models was a more significant 10 to 20 ms when the number of

61



transactions increased from 100 to 500. Increasing the size of log files to 1000 transactions

again rendered a significant di↵erence of 20 to 30 ms. Figs. 3.22 and 3.23 illustrate the

clearly meaningful di↵erence between the two models with the introduction of the two larger

sets of a↵ected transactions. Briefly, the first model required less time than the second

model, by half in log files of 500 transactions, and by a third in log files of 1000 transactions.

The explanation for that lies in the number of fog nodes that will be a↵ected by the

malicious transaction. With the small set of less than five a↵ected transactions, the damage

will usually only a↵ect an average of up to three fog nodes. In the worst case, the architecture

of the first model will prevent the damage of one malicious transaction from spreading to

more than two fog nodes .

But in the second model the larger set of a↵ected transactions could impact a greater

number of fog nodes. So each log file in each a↵ected fog node must be scanned in the second

model, while the first model need only scan two fog nodes at most, the initial a↵ected Fog

Monitor node and the FDR fog node if it read the damaged data items. This scanning

requirement is also the reason that causes the variations in delay time in the second model.

As shown in Fig. 3.23 there are noticeable di↵erences in average delay time from one group of

fog nodes to another in the second model with 1000 transactions. For example, if a malicious

transaction a↵ected fifteen transactions in the system, then all those a↵ected transactions

could be in one fog node or in five fog nodes or more.

In closing, the model with homogeneous data stabilizes the results and speeds the

detection process, minimizing the system’s unavailability. Although, the model with hetero-

geneous data is needed as well because it is more appropriately applicable to most situations.
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Figure 3.21: Comparison between homogeneous data model and heterogeneous data model
on a set of less than five a↵ected transactions
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Figure 3.22: Comparison between homogeneous data model and heterogeneous data model
on set of 10 to 15 a↵ected Transactions

63



10.000

30.000

50.000

70.000

90.000

110.000

130.000

150.000

170.000

100 T 500 T 1000 T 100 T 500 T 1000 T 100 T 500 T 1000 T 100 T 500 T 1000 T

5 Nodes 10 Nodes 15 Nodes 20 Nodes

Av
er

ag
e D

el
ay

 (m
s)

20 -25 Affected Transactions

M1 M2
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on a set of 20 -25 a↵ected Transactions
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4  Ensuring  Data  Integrity  in  Fog  Computing  Based  Critical  Infrastructure

Systems  Model

Some  of  the  following  paragraphs,  figures,  and  algorithms  that  will  be  introduced  in

this  chapter  have  been  already  published  in  our  work  [48]  as  shown  in  the  publications  and

reprint  permissions  chapter  7.

4.1  Introduction

These  days  the  Internet  of  Things  (IoT)  is  prevalent  and  trending  as  evidenced  by  the

significant  increase  in  wearable  technology,  smart  homes  and  buildings,  connected  vehicles,

and  smart  grids.  The  estimated  number  of  connected  IoT  and  smart  devices  by  2025  is

expected  to  become  75  billion  worldwide  [1].  This  will  produce  an  enormous  amount  of  data

that  are  predicted  to  total  more  than  79  zettabytes  [2].  Due  to  the  limitation  and  restriction

of  bandwidth,  as  well  as  the  rapid  growth  in  the  amount  of  data  produced,  the  current

architecture  of  internet  systems  will  be  inadequate  to  manage  and  move  that  volume  of  data

to  the  cloud.  In  many  scenarios,  this  will  be  impossible  to  do,  especially  with  the  increasing

number  of  IoT  devices  in  use.  Furthermore,  some  sensitive  and  real-time  applications  play

integral  roles  in  our  lives,  such  as  connected  car  technologies,  video  conference  applications,

and  health  monitoring  devices,  all  of  which  require  low-latency  and  location  awareness  to

provide  satisfying  and  high-quality  services  [4].

In  addition,  IoT  devices  such  as  smart  meters  in  modern  smart  cities  will  not  only

produce  a  massive  amount  of  data  but  the  heterogeneity  of  that  data  will  need  to  be  processed



in real-time [23]. This data will not be valuable enough without exploiting the maximum

benefits from other technologies. It is unmanageable and nearly impossible for the cloud to

handle by itself so many kinds of tasks, such as processing the aggregate data, analyzing

them, and storing them [24]. For that reason, fog computing was presented by Cisco [6].

Fog computing is a decentralized computing infrastructure that allows end users’ data to be

computed, stored, and promoted on other applications and network services that are located

between the data source and the cloud computing data centers.

Fog computing technology is trending these days because it has several characteristics

that can improve the e�ciency of transporting data to the cloud. This is very significant in

the age of cloud processing because it complements cloud computing and allows analytics to

perform resource, intensive, and extended term analytics [10]. One of the essential charac-

teristics of fog computing is its location at the edge of networks, providing end users with

high-quality services and low latency. Many current devices and applications, such as smart

meters, networked games, and video streaming, require location awareness and low latency

to provide a higher quality of service and performance. Alternative fundamental characteris-

tics are the widely dispersed and significant numbers of fog nodes that will be geographically

available. This design supports mobility in many applications, including service in moving

vehicles. The utilization of fog computing will also contribute to the benefits of conserving

bandwidth and enhancing the privacy and security of sensitive data. Most of the data will

be processed locally at the fog node, meaning that the amount of data needing to be sent

to the cloud for processing will be diminished, thereby minimizing bandwidth consumption

and maximizing the privacy of transmitting sensitive data [8, 9].

In the potential for smart cities, fog computing will help the IoT and smart meter
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devices process the data and make quick decisions to take the right action within a critical

time-frame and to aggregate only the indispensable data for the cloud. Services and utility

companies, such as water and electric companies, can exploit fog computing technology to

manage and analyze the volume of consumers’ data. There are many existing studies on how

to expand the e�ciency of fog computing in smart cities and to solve technical issues related

to the large volume of data that needs fusion and integration to the cloud [22]. Moreover,

while security and privacy issues have been addressed by many researchers, other aspects

need more attention, such as a case in which a protection system fails during a cyberattack

and costumers’ data need to be recovered. This study aims to detect all transactions that

are a↵ected by any malicious transaction, recover the correct value of data, and ensure the

integrity of consumer data in a fog computing environment in smart cities.

4.2 The Model

In this section, a unique architecture for using a distributed fog node system in smart

cities to manage the consumer data of utility services will be proposed. Then, coopera-

tive algorithms will be pro↵ered for identifying, assessing, recovering, and restoring all the

damaged and a↵ected data created by an attack. The goal is the restoration of a reliable

database. In the proposed model, it is assumed that the Intrusion Detection System (IDS)

is responsible for detecting malicious transactions in the system and providing a list of those

transactions to the damage assessment algorithms. Each fog node in the proposed architec-

ture must have its own log file and use a strict serializable history. All operations in the

log file need to be in the same order in the history. The log files cannot be user modified

at any time. Since the log files will contain a record of every modification to the value of
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any data item that is updated by write operations, all read operations are also required to

be stored in the log files to identify the data dependencies between the operations and the

transactions and among the detections of the victim fog nodes in the systems.

4.3 Model Nations

Table 5.1 shows a list of the notations and descriptions to be used in our proposed

approach.

Table 4.1: Notation used in our proposed approach description

Notation Description
pub fog The public fog nodes that are accessed by customers and utilities

providers.
usc fog The private fog node for each utility service company.
MT L The list of detected malicious transactions done by IDS.
DA Table The damage audit table, which is a data structure that will be cre-

ated by the damage assessment algorithms to collect any data about
transactions that are needed to do the data recovery, such as the valid
and invalid read data items, data written, and the accessed fogs.

DI L The damage item list that will contain all damaged data items that
are identified by our proposed damage assessment algorithms.

DIT Fogx The Fogx damage item table, where x is the ID of the secondary
a↵ected fog node, which reads some of the damage data items from
another fog node.

VIT Fogx The valid data items table that will be created by algorithms 3 or 4 to
add to it all recovered data items for the secondary a↵ected fog node
Fogx. It will be sent to Fogx to use it as input on algorithm 4.

wi(A, v1, v2) The write operation of the transaction Ti; v1 is the before image,
which represents the old value of the data item A before the update.
And v2 is the after image, which is the new value of data item A after
the update.

ri(A, v) The read operation of transaction Ti where A is the data item and v
is the current value of A.

ci The transaction Ti has been committed which means it is successfully
completed and it will be recorded to the database.

ai The transaction Ti has been aborted and it will not a↵ect the
database.
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4.4 The Proposed Architecture

In the proposed model, each smart city will have several public fog nodes (pub fog),

which will be e�ciently distributed to guarantee the quality of service at each point and

in all corners of the city. Private fog nodes will be included, with at least one private fog

node for utility service companies (usc fog), such as water, electricity, and gas utilities. The

usc fog nodes should be e↵ectively located in the center of the whole distributed system to

ensure a reliable connection to all pub fog nodes and provide di↵erent routes should one

of the pub fog nodes disconnect for any reason. Consumers will be able to send queries

to pub fog nodes only. Data may be retrieved from the local database if available there.

Otherwise, the queries will be forwarded to the appropriate usc fog node. Consumers are

not allowed to directly connect the usc fog nodes for security reasons. All queries related

to those nodes will come through the pub fog nodes. Customer utility usage data will be

collected from smart homes and buildings using IoT devices and smart meters. Usage data

will be sent to the nearest e�cient pub fog nodes based on several factors, such as location

and load balance.

It is assumed that each pub fog node in the system will have the ability to perform

some essential data operations, such as calculating customer average usage over a specific

time frame or aggregating the totals of selected data values. Those operations are funda-

mental to optimization of the network bandwidth since the data sent over the network will

be diminished by aggregating the necessary data.

Additionally, as most customer data will be processed locally, at the edge of the

network, it will enhance privacy and security by reducing sensitive data transmittal. Each
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Figure 4.1: The proposed architecture.

utility usc fog node receiving the data will also perform some essential computations, such

as calculating the daily bill and average daily customer usage. These computations by

the utilities are important in improving the quality of services in each city as the need for

expansion of services in peak seasons may become evident and shortages avoided. Utilities

may use data to plan fuel purchases or raise consumer awareness regarding consumption and

conservation. We assume that the city and all fog nodes in the system are in the same time

zone and use the same o�cial local time.
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4.5 The Proposed Damage Assessment Algorithms

4.5.1 Algorithm 1: The Main Damage Assessment Algorithm

The IDS is responsible for identifying the attacking transactions and sending a list

of them to the victim fog node. Whenever one or more malicious transactions are found on

any fog node in the system, the IDS will detect them and send them as a list (MT L) to

that fog node to be used as input in the proposed schemes. Once the fog node receives the

list, it will launch Algorithm 1, which is the main damage assessment algorithm.

As soon as Algorithm 1 is launched, it will create the damage audit table (DA Table)

and damage data item list (DI L). Both will be initialized to null. Then, the algorithm

will scan the local log file of the victim fog node, Fog1, beginning from the first attacking

transaction of (MT L) list, Ti. Ti will be added as a new record into DA Table since it is

the first attacking transaction. If the attacking transaction updates at least one data item,

then this data item will be damaged, and any other updating transactions that read this

data will be a↵ected as well. It important to collect and store all data items that have been

updated and damaged by the attacking transactions. Then, all transactions that have read

those damaged data items can be identified, and data dependency can be declared between

the transactions and the fog nodes in the entire system.

One of the main functionalities of this algorithm will be the collection of data before

damage occurs, and store those images, which represent the pre-attack value of the data

item, in the written data column on the DA Table. These images will be used later in the

recovery algorithm. Simultaneously, those damaged data items will be added to the damaged

item list to determine data dependency.
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Also, the algorithm will examine every transaction in the log file following, the first

attack, to determine whether any other transaction is an attacking transaction, or a data

access transaction from another fog node, or an updating write transaction. In the case

where the transaction is an attacking transaction, the algorithm will perform as in the first

attacking transaction. However, if the transaction is an access transaction from another fog

node (Fogx), the algorithm will check every data item that has been read by Fogx. A new

damage item table for Fogx (DIT Fogx) will be created and all damaged data items that

have been read by Fogx as well as the transaction identification and timestamp of each data

item, will be added to the DIT Fogx.

Since a fog node may access the same data multiple times, it is essential to know the

transaction ID and time of access (timestamp); this will make it easy to find on its log file

and confirm that the damaged data items were not corrected later on in the fogx by valid

updating. In the meantime, the DA Table will be updated indicating that Fogx has read

the damaged data item, so when the recovery algorithm has successfully corrected the value

of the damaged data item, it will send the correct value to Fogx to use as input for its own

recovery algorithm.

If the transaction is an updating transaction (Tw), and not an attacking transaction

belonging to the malicious transaction list, then it must be added to the DA Table and

examined to accomplish two goals. The first goal is to determine data dependency. All read

operations must be checked to confirm whether Tw has read any of the damaged data items

that already exist to the damaged item list. If so, those damaged data items will be added

to the invalid read column of Tw, and undamaged data items will be added to the valid read

column. Then, all the write operations will be checked to determine whether any have read
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Algorithm 4.1 The Main Damage Assessment Algorithm

1: Create a new DA table and initialize to null
2: Create a new DI L and initialize to null
3: for every Ti the local log starting from the first attacking transactions of MT L do
4: if Ti is attacking transaction then
5: add it as a new record into DA Table every wi (A, v1, v2)
6: add (A, v1) pair to data written column
7: add A to the DI L if it is not there
8:
9: else if Ti is transaction from another fog node x then every data item A read by Ti

10: if A 2 DI L then
11: if DIT Fogx does not exist then
12: Create a new DIT Fogx where x is the ID of aimed fog node that reads the

a↵ected transaction
13: Mark Ti as a↵ected transaction
14: Add Ti and A into DIT Fogx
15: Update the last column of DA Table
16: end if
17: end if
18:
19: else if Ti is updating transaction then
20: add it as a new record into DA Table every ri (A, v)
21: if A 2 DI L then
22: add A to invalid read column
23: add (A, v) to valid read column
24: end if
25:
26: for every wi (A, v1, v2) do
27: if invalid read column of Ti 6= ? then
28: add (A, v2) to data written column
29: add A to the DI L if it is not there check If (A 2 DI L)
30: add (A, v2) to data written column
31: delete A from DI L
32: end if
33: end for
34: if ci is found & (both invalid read and data written columns of Ti) = ? then
35: delete the record of Ti from DA Table
36: else if ai is found then
37: delete the record Ti from DA Table
38: end if
39: end if
40: end for
41: Send DIT Fogx to Fogx to do further detection
42: Send DA Table & DI L for data recovery (algorithm 3)
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damaged data items. If so, that means the damage has spread and the written data item is

also corrupted. Therefore, it will be added to the damaged item list, if it is not already there.

However, if the transaction Tw updates any data item, (A), without reading any items from

the damaged item list, then the data item (A) will be further checked evaluate its inclusion

in the damaged item list. If (A) was updated without reading a corrupted transaction,

that means it is a valid write and the data item (A) has been refreshed, so (A) must be

removed from the damaged item list as in steps(28-30). The new value will be added to the

data written column, accomplishing the second goal of adding the non-attacking updating

transaction to the DA Table. Steps (31-34) will remove the unnecessary records from the

damaged audit table in the case where the Tw is aborted or both invalid read and data

written columns of Tw are empty. Finally, the damage item table DIT fogx will be sent to

fogx to do further detection, while the damage audit table and damage item list will be sent

to Algorithm 3, which is the main data recovery algorithm.

4.5.2 Algorithm 2: Secondary Fog Node Damage Assessment Algorithm

This algorithm is similar to the previous one, which is Algorithm 1, but there are

some di↵erences. The main di↵erence in the input of this algorithm is the damage item

table (DIT Fogx), which is one of the outputs of Algorithm 1. Let us say that fog1 is the

main victim fog node in the system, and it was attacked and maliciously updated in the

transaction Ti, which wrote the data item Z. Later on, the transaction Tj indicated that

fogx has accessed fog1 and read Z. Then, fogx updated some other data items, such as N

and M, on its database based on data item Z. Here we call fogx the secondary a↵ected fog

node. Once the secondary a↵ected fog node in our example (fogx) receives the damage item
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table (DIT fogx) that contains Z as a damaged data item, its transaction ID (Tj), and its

timestamp say 9:00:00 AM, it will create a new damage audit table and initialize it to null.

Note that this algorithm will use the received damage item table (DIT fogx) to store and

track the damage data items instead of creating a new damage item list. The list data

structure will not be supportive here since the exact time and transaction ID of the damage

data items must be known.

The algorithm will scan the log file and start from the first a↵ected transaction from

the received table. Therefore, whenever an a↵ected transaction that belongs to DIT fogx is

found, the steps (3-12) will insert it as new record to the damage audit table and check each

read operations if its belong to DIT fogx then add it to the invalid read column; otherwise,

it will be added to the valid read column. Moreover, for the write operations, the updated

data items along with its new values will be added to the data written column as well as

they will be added to the DIT fogx table if they are not there. In our example, data items

N and M will be added to the DIT fogx and the data written column in DA Table. The

rest of the algorithm is the same as Algorithm 1 except when any data damage is found, the

time of its occurrence must be taken into account. Therefore, if fogx reads the data items M

and N at any time before 9:00:00 AM and then updates some other data item value, those

updating transactions will not be a↵ected. In a like manner, the damage item table, if there

is one, will be sent to fogy while the damage audit table and damage item list will be sent

to Algorithm 4, which is data recovery algorithm for the secondary fog node. The process

continues until all the a↵ected transactions in the entire system are detected.
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Algorithm 4.2 Secondary Fog Node Damage Assessment

Once Fogx receives the DIT Fogx
1: Create a new DA table and initialize to null
2: for every Ti in the local log starting from the first a↵ected transaction on DIT Fogx do
3: if Ti 2 DIT Fogx && mark as a↵ected then
4: add a record for Ti into DA Table
5: for every ri (A, v) do
6: if A 2 DIT Fogx then
7: add A to invalid read column
8: add (A, v) to valid read column
9: end if
10: end for
11: for every wi (A, v1, v2) do
12: add (A, v2) pair to data written column
13: add A into DIT Fogx if it is not there
14: end for
15: else if Ti is transaction from another fog node y then
16: for every data item A read by Ti do
17: if A 2 DIT Fogx & Ti Timestamp � Timestamp of damaged data item trans-

action then
18: if DIT Fogy does not exist then
19: Create a new DIT Fogy where y is the ID of aimed fog node that reads the

a↵ected transaction
20: Mark Ti as a↵ected transaction
21: Add Ti and A into DIT Fogy
22: Update the last column of DA Table
23: end if
24: end if
25: end for
26: else if Ti is updating transaction then
27: add it as a new record into DA Table
28: for every ri (A, v) do
29: if A 2 DIT Fogx & Ti Timestamp � Timestamp of damaged data item trans-

action then
30: add A to invalid read column
31: add (A, v) to valid read column
32: end if
33: end for
34: for every wi (A, v1, v2) do
35: if invalid read column of Ti 6= ? then
36: add (A, v2) to data written column
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37: add a record of Ti into DIT Fogx with data item A if it is not there check If
(A 2 DIT Fogx)

38: add (A, v2) to data written column
39: delete A from DIT Fogx
40: end if
41: end for
42: if ci is found & (both invalid read and data written columns of Ti) = ? then
43: delete the record of Ti from DA Table
44: else if ai is found then
45: delete the record Ti from DA Table
46: end if
47: end if
48: end for
49: Send DIT Fogy to Fogy to do further detection
50: Send DA Table & DIT Fogx for recovery (algorithm 4)

4.6 The Proposed Data Recovery Algorithms

4.6.1 Algorithm 3: The Main Data Recovery Algorithm

Immediately after Algorithm 1 has accomplished its task and sent the damage audit

table (DA Table) and damage item list (DI L) to the main data recovery algorithm, which is

Algorithm 3, all the data items in the main victim fog node will be available to be used except

the damaged data items. Therefore, the availability of the system will be increased. Once

Algorithm 3 receives the damage audit table, it will scan only the records of the DA Table

that reads invalid data items. Whenever a record of the data items in the invalid read column

is found, the algorithm will perform three important steps. In the first step, it will take each

data item A in the invalid read column and scan the data written column upward, beginning

from the former record of DA Table, to find the last updated value of A, which must have

the correct value. Then, this value will be added as a pair (A, v) to the valid read column,

and data item A will be deleted from the invalid read column and so on until all the data

items in the invalid read column in the same record have been recovered. The second step
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is to recompute each data item in the data written column in the same record by reading

the new values from the valid read column. Certainly, after those two steps are successfully

completed, all the data items in that record should have the correct values, as no attacking

has occurred. The last step is to check the last column in the same record, which is the

column (fog ID), to find out if any data item from that record has been read by another fog

node in the system; if so, a new valid data items table (VIT Fogx) will be created for each

a↵ected fog node if it does not exist yet. Then, the transaction ID along with the correct

new values of each accessed data item will be added to VIT Fogx. As soon as all the records

in the damage audit table have been examined and all three steps are checked, the VIT Fogx

table will be sent to the corresponding fog node Fogx. Finally, in steps 14-18, the new log

that has just been generated while the data recovery algorithm is in process will be checked

to make sure all the data items have correct and valid values.

4.6.2 Algorithm 4: Secondary Fog Node Data Recovery Algorithm

This algorithm is also similar to the main data recovery algorithm, Algorithm 3,

excluding two main di↵erences. The first is the input of Algorithm 4 will be three tables two

of them come from Algorithm 2 for the same fog node which they are the damage audit table

DA Table and the damage item table (DIT Fogx). And the third table input is the new valid

data items table (VIT Fogx) which comes from the data recovery algorithm of another fog

node. Secondly, this algorithm will check every record on the received damaged audit table.

When an a↵ected transaction is found, then every data item A in the invalid column will be

deleted after copying the (A, v) pair from the corresponding transaction on the VIT Fogx

table to the valid data column on DA Table. After all the damaged data items have been
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Algorithm 4.3 The Main Recovery Algorithm

1: for each record in the DA Table do
2: if invalid read column of Ti 6= ? then
3: for every data item A in invalid read column do
4: find the last updated (A, v) pair in data written column of DA Table from the

former records
5: add (A, v) to valid read column
6: delete A from invalid read column
7: end for
8: for every A in data written column do
9: recalculate the value of A using values in the valid read column
10: end for
11: if any fogx is existing in fog ID column then
12: if VIT Fogx does not exist then
13: Create a new VIT Fogx where x is the ID of aimed fog node that reads the

a↵ected transaction
14: end if
15: Add Ti and the (A, v) pair which is the correct value of A into VIT Fogx
16: end if
17: end if
18: end for
19: Send VIT Fogx to Fogx node
20: for every A in DI L do
21: check the new log that has just been created while the recovery process was in progress
22: if A is not modified in the log then
23: scan data written column of DA Table upward to find last updated value of A
24: substitute the value of A in the database with v
25: end if
26: end for

deleted on each record of the DA Table, the data written column will be checked to discern

if it is empty or not. If not, then the value v of each data item A in the data written column

needs to be recalculated by using the new values in the valid read column. However, the

same procedure used in Algorithm 3 will be employed if the record has a transaction with

some data items on the invalid read column. The process continues until all the a↵ected

data items in the entire system are recovered to a consistent state.
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Algorithm 4.4 Secondary Fog Node Recovery Algorithm

Once Fogx receives the VIT Fogx
1: for each record in the DA Table do
2: if Ti is a↵ected transaction then
3: for every data item A in invalid read column do
4: copy the (A, v) pair from corresponding transaction on the VIT Fogx to the valid

data column on DA Table
5: delete A from invalid read column
6: end for
7: if the data written column 6= ? then
8: for every A in data written column do
9: recalculate the value of A using values in the valid read column
10: end for
11: end if
12: else if Ti is updating transaction & invalid read column 6= ? then
13: for every A in invalid read column do
14: find the last updated (A, v) pair in data written column of DA Table from the

former records
15: add (A, v) to valid read column
16: delete A from invalid read column
17: end for
18: for every A in data written column do
19: recalculate the value of A using values in the valid read column
20: end for
21: if any fogy is existing in fog ID column then
22: if VIT Fogy does not exist then
23: Create a new VIT Fogy where y is the ID of aimed fog node that reads the

a↵ected transaction
24: end if
25: Add Ti and the (A, v) pair which is the correct value of A into VIT Fogy
26: end if
27:
28: Send VIT Fogy to Fogy node
29: for every A in DIT Fogx do
30: check the new log that has just been created while the recovery process was in

progress
31: if A is not modified in the log then
32: scan data written column of DA Table upward to find last updated value of A
33: substitute the value of A in the database with v
34: end if
35: end for
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4.7 An Example

To clarify the proposed scheme, let us consider the following example. Let us have in

our smart city three fog nodes. Fog1 and Fog2 are public fog nodes to collect consumer data

using smart meters. Fogx is a private fog node for the utility company to manage aggregated

data and calculate some important things, such as the bills and the amount of consumption.

Consider the following log schedules for each one of them:

SFog.1= r1(A, 5 ) r1(B, 4 ) w1(C, 11, 9 ) w1(G, 3, 9 ) r2(B, 4 )c1 r2(G, 9 ) w2(A, 5, 13 )

w2(D, 0, 13 )c2 fog2.r3(G, 9 )c3 w4(A, 13, 5 ) w4(G, 2, 3 )c4 r5(D, 13 ) r5(A, 5 ) r5(C, 9 ) w5(D,

2, 27 )c5 r6(B, 4 ) w6(B, 4, 4 ) r6(D, 16 ) w6(D, 16, 20 ) r6(A, 5 ) w6(A, 5, 25 )c6 fog2.r7(D,

20 )c7 r8(C, 9)c8 w9 (C, 9, 11)c9 r10(A, 25 ) r10(C, 11 ) w10(E, 10, 36 )c10 fog2.r11(E, 36 )c11

SFog.2 = r9(K, 3) r9(fog1.T3.G, 9 ) w9(K, 3, 12 ) c9 r10(M, 10 ) r10(K, 12 ) w10(M, 10,

22 )c10 fogx.r11(M, 22 ) c11 . . . r14(fog1.T7.D, 20 ) r14(L, 4 ) w14(N, 17, 24 ) c14 r16(fog1.T11.E,

36 ) w16(P, 4 , 36 )c16 fogx.r17 (P, 36 ) c17

SFog.x = r8(O, 6 ) w8(F, 6, 7 )c8 r9(fog2.T11.M, 22 ) r9(H, 10) w9(I, 14, 32 )c9 w10(J,

0, 18 ) c10 r11(fog2.T17.P, 36 ) r11(J, 18 ) w11(Q, 60, 54 ) c11 r12(Q, 54 ) r12(U, 12) w12(R, 57,

66 )c12

Now, suppose the IDS detects the first transaction T1 on the Fog1 schedule as an

attacking transaction and data items (C) and (G) as being maliciously updated. Therefore,

the IDS will send the detected transaction T1 as the list (MT L) to Fog1. Once Fog1 receives

the list, it will launch Algorithm 1 since it is the main victim fog node in the system. Then,

it will create a new damage audit table (DA Table) and a new damage items list (DI L).

Consequently, the log file of Fog1 will be scanned, starting from the first attacking transaction
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on the MT L, which is T1. Whenever an attacking transaction is found, such as T1 in our

example, it will be added to the DA Table as a new record. All the write operations of T1

will also be checked, so whenever a data item is found, it will be added along with its old

“before image” value as a pair to the data written column, and the data items will be added

to the damaged items list if they are not already there. In our example, the pairs (C, 11),

(G, 3) are added to the data written column (see Table 4.2) while the data items (C) and

(G) will be added to DI L, and this will be the case for all attacking transactions that belong

to (MT L).

The algorithm will take the next transaction in the log file, which is T2. Since T2 is

an updating transaction, it will be added into the DA Table. Consequently, every reading

operation in T2 will be examined to ascertain if it reads any damaged data item from the

DI L; if so, the data item will be added to the invalid read column, as apparent with (G).

Otherwise, it will be added as a pair with its value to the valid read column as (B, 4) in

our example. The next transaction is T3, as we notice that Fog2 has read the data item

(G), which is a damaged data item. Steps 9-16 will examine that and mark it in the fog

ID column. Also, it will create a new damage item table for Fog2 (DIT Fog2) and add it to

the table with the transaction ID and the timestamp of the transaction when it has been

committed (see Table 4.3). Steps (28-30) of the algorithm will find that the damaged data

items (A) and (G) have been refreshed in T4 because they updated without reading any

other damaged data items. Therefore, they will be added along with their new values in the

data that were written and removed from the DI L. The process continues until the end of

the log. Then, the DIT Fog2 will be sent to Fog2 to be used as input for Algorithm 2, while

the DA Table and DI L will be sent to Algorithm 3, which is the main recovery algorithm.
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Once Fog2 receives the DIT Fog2, it will launch Algorithm 2 and use DIT Fog2 as

input to do further assessment and detection. Note that this table will add any damaged

data items that are detected in Fog2, as shown in Table 4.6. Thus, a new damage audit table

DA Table will be created and initialized to null. It will scan the local log of Fog2, starting

from the first a↵ected transaction on the DIT Fog2, which is T9 in our example. Therefore,

T9 will be added to the new DA Table and for every read operation, the data item will be

examined to find out if it belongs to the DA Table; if so, it will be added to the invalid

read column. Otherwise, it will be added to the valid read column along with its value.

Therefore, the data item (fog1.T3.G) will be added to the invalid read, while the pair (K, 3)

will be added to the valid read column (see Table 4.4). However, it will do the same thing

for the write operations as in Algorithm 1, so the updated data item (K) along with its value

(K, 12) will be added to the data written column. Meanwhile, the data item (K) will be

added with its timestamp into the DIT Fog2, as can be seen in Table 4.6, since it becomes

a↵ected by reading the damaged data item (Fog1.T3.G). For T10, the updating occurs after

reading the damaged data item (K), and the access time of T10 for that data item (K) comes

after the timestamp of the damage data item in the DIT Fog2, so the scenario (the same

as shown in T2 in Fog1) will be repeated, as shown in Table 4.4. Note that examining the

timestamp of reading the damage data item is important in Algorithm 2 since Fog2 may

read the same data item twice from Fog1, once before it became damaged and once after

that, so any item accessed before the damage must be valid. Also, the damaged data item

may be refreshed after it has been read by Fog2. Therefore, the only way to determine the

status is to compare the committed times. Consequently, the process continues until the

end of the log. By the end, there will be two tables, the DA Table for fog2, which will be
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sent to Algorithm 4 to conduct the data recovery, and the new damage item table for Fogx

(DIT Fogx) (Table 4.5), which will be sent to Fogx to be used as an input for Algorithm 2

to do further detection. Once Fogx receives the DIT Fogx, the same process as we discussed

previously will be continued until the end of the log of Fogx (see Tables 4.7 and 4.8).

As soon as Fog1 has done the damage assessment algorithm (Algorithm 1) and sent

the DA Table and DI L to Algorithm 3 to do the data recovery, which will be launched

immediately, and taken the DA Table and DI L as inputs, it will scan the DA Table from

the start and search for any transactions that read invalid data items. For example, T2 reads

invalid data item (G), and then the algorithm will look for the last valid update value of

(G), which must be the closest transaction before the T2. Therefore, T1 has to have the

latest updated correct value of (G), which is (3). Therefore, the pair (G, 3) will be copied to

the valid read column, and (G) will be removed from the invalid read column. After that,

T2 will be recalculated using the new values, as apparent in Table 4.9. Note that in this

example, only the addition operation will be used for simplicity; therefore, we consider that

for any transaction where a write operation is found after read operations, all the values of

the read operations will be added together. After that, the T3 will be taken, so it will do

the same process. Additionally, it will find that Fog2 has read the damage data item (G).

Hence, a new valid data item table for Fog2 (VIT Fog2) will be created and added to the

transaction ID, which is T3 and the correct value of (G), which is (G, 3) (see Table 4.10),

and so on until the end of the DA Table. After that, VIT Fog2 will be sent to Fog2 to be

used as an input in the Algorithm 4 to recover the data.

Once Fog2 receives the VIT Fog2, it will launch Algorithm 4 and use VIT Fog2 along

with it is own DA Table to do data recovery. Then, every record in the DA Table will be
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checked. Since the first record (T9 in our example) must be an a↵ected transaction from

Fog1, then VIT Fog2 should have the correct and valid value of the damaged data item.

Therefore, the new value of data item (G) will be copied from VIT Fog2 to the valid read

column of the DA Table and remove it from invalid read. After that, T9 will be recalculated

using the new values (as shown in Table 4.11). The rest of the algorithm will be the same

as Algorithm 3, and the same thing will be done in Fogx after it receives the VIT Fogx from

Fog2 (see Tables 4.12 and 4.13).

Table 4.2: The Damage Audit Table for Fog1

T Id Data written Valid read Invalid Fog ID
T1 (C, 11), (G, 3)
T2 (A, 13), (D, 13) (B, 4) G
T3 G Fog2
T4 (A, 5), (G, 3)
T5 (D, 27) (A, 5) C, D
T6 (D, 20), (A, 25) (B, 4), (A, 5) D
T7 D Fog2
T9 (C, 11)
T10 (E, 36) (C, 11) A
T11 E Fog2

Table 4.3: Fog2 Damage Item Table Created by Fog1

Transaction Id Damaged Data Items Timestamp
fog1.T3 G 9:00:00 AM
fog1.T7 D 9:00:30 AM
fog1.T11 E 9:01:00 AM
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Table 4.4: The Damage Audit Table for fog2

T Id Data written Valid read Invalid Fog ID
T9 (K, 12) (K, 3) fog1.T3.G
T10 (M, 22) (M, 10) K
T11 M Fogx
T14 (N, 24) (L, 4) fog1.T7.D
T16 (P, 36) fog1.T11.E
T17 P Fogx

Table 4.5: Fogx Damage Item Table Created by Fog2

Transaction Id Damaged Data Items Timestamp
fog2.T11 M 9:00:20 AM
fog2.T17 P 9:01:05 AM

Table 4.6: DIT Fog2 with all damaged data items that are found on Fog2

Transaction Id Damaged Data Items Timestamp
fog1.T3 G 9:00:00 AM
fog1.T7 D 9:00:30 AM
fog1.T11 E 9:01:00 AM

T9 K 9:00:00 AM
T10 M 9:00:17 AM
T14 N 9:00:30 AM
T16 P 9:01:00 AM

Table 4.7: The Damage Audit Table for fogx

T Id Data Written Valid Read Invalid fogID

T9 (I,32) (H,10) fog2.T11.M
T11 (Q,54) (J,18) fog2.T17.P
T12 (R,66) (U,12) Q

Table 4.8: DIT Fogx with all damaged data items that are found on Fogx

Transaction Id Damaged Data Items Timestamp
fog2.T11 M 9:00:20 AM
fog2.T17 P 9:01:05 AM

T9 I 9:00:20 AM
T11 Q 9:01:08 AM
T12 R 9:01:10 AM
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Table 4.9: DA Table for fog1 after damaged data have been recovered

T Id Data written Valid read Invalid Fog ID
T1 (C, 11), (G, 3)
T2 (A, 7), (D, 7) (B, 4), (G, 3)
T3 (G, 3) Fog2
T4 (A, 5), (G, 3)
T5 (D, 23) (A,5), (C, 11), (D, 7)
T6 (D, 27), (A, 32) (B, 4), (A, 5), (D, 23)
T7 (D, 27) Fog2
T9 (C, 11)
T10 (E, 43) (C, 11), (A, 32)
T11 (E, 43) Fog2

Table 4.10: VIT Fogx sent from fog1

Transaction Id Valid Data Items
fog1.T3 (G,3)
fog1.T7 (D,27)
fog1.T11 (E,43)

Table 4.11: DA Table for fog2 after damaged data have been recovered

T Id Data Written Valid Read Invalid fogID

T9 (K, 6) (K,3), (fog1.T3.G, 3)
T10 (M, 16) (M, 10), (K, 6)
T11 (M, 16) Fogx
T14 (N, 31) (L, 4), (fog1.T7.D, 27)
T16 (P, 43) (fog1.T11.E, 43)
T17 (P, 43) Fogx

Table 4.12: VIT Fogx sent from fog2

Transaction Id Valid Data Items
fog2.T11 (M,16)
fog1.T17 (P,43)
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Table 4.13: DA Table for fogx after damaged data have been recovered

T Id Data Written Valid Read Invalid fogID

T9 (I, 26) (H, 3), (fog2.T11.M, 16)
T11 (Q, 61) (J, 18), (fog2.T17.P, 43)
T12 (R, 73) (U, 12), (Q, 61)

4.8 Experiments and Evaluation

In section 3.6 in chapter 3, we explained the experimental setup, the simulation

environment, and datasets that have been used in detail.

4.8.1 Evaluation of the Second Model: Ensuring Integrity in Smart City Model

This model proposes the use of fog computing in smart cities to manage utility service

companies and consumer data. We also propose a novel technique to assess damage to data

caused by a malicious attack. The original data can then be recovered, and the database

returned to a consistent state as though no attack has occurred. This experiment aimed to

analyze the behavior of the proposed damage assessment algorithm as it detected a↵ected

data items with varying factors designed for the experiment. As declared in the simulation

section, di↵erent sets of log files were produced. Each set represented the number of fog nodes

in the system with a di↵erent number of transactions in the log files. In this experiment we

started with a fixed number of fog nodes each time and a di↵erent number of transactions

in each log file. Each time a malicious transaction was arbitrarily injected, the results were

categorized into di↵erent sets of a↵ected transactions: a set of 20 to 25 a↵ected transactions,

a second set of 10 to 15 identified, a↵ected transactions, and a third set of less than five

identified, a↵ected transactions. The clustering of the a↵ected transactions was necessary
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in evaluating the proposed algorithms as they are impacted by other factors, such as the

number of fog nodes and the number of transactions in each log file.

Each transaction in each set was repeated approximately twenty times. Then the total

time, from insertion of the malicious transaction until all damage audit tables for all a↵ected

transactions were built, was computed. Then the average for each set to identify the damaged

data items was calculated. Also, the total time from receipt of the damage audit table for

the proposed data recovery algorithms to recover all a↵ected data items was computed.

Then the time required for each set for the recovery process was averaged. This average was

calculated for use in investigating and evaluating our approach. We compared the results,

determining the factor or factors having a greater or lesser impact to the algorithms.

4.8.1.1 First Experiment: The impact of log file size on di↵erent number of fog

nodes

The relationship between the number of transactions in each log file, the number of

a↵ected transactions, and the average time required by our system to build all damage audit

tables for all a↵ected data items in the whole system were plotted on Figs. 4.2, 4.3, 4.4, and

4.5. The average time was calculated by averaging the detection time each set required to

complete the tasks. The results show that a log file of 100 transactions will take the system

approximately 60 to 120 ms to detect all a↵ected data items in the whole system no matter

the number of a↵ected transactions. Also, the figures demonstrate that the delay time for

the log files of 100 transactions increased by 15 to 20 ms from the set of less than five a↵ected

transactions to the set of 10 to 15 a↵ected transactions. And the delay time the log files of

100 transactions increased by 20 to 40 ms from the set of 10 to 15 a↵ected transactions to
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the set of 20 to 25 a↵ected transactions.

The time required to detect all a↵ected data items and create the audit tables for

all a↵ected transactions in the whole system with log files of 500 and 1000 transactions was

increased from the log files of 100 transactions for all di↵erent sets. Therefore, the time

needed for the system to identify all a↵ected data items in log files of 500 transactions was

about 165 to 185 ms for the set of less than five a↵ected transactions. The time required for

the same processes increased by an average of 26 ms for the set of 10-15 a↵ected transactions

and by an average of 76 ms from the set of 10 -15 a↵ected transactions to the set of 20 to 25

a↵ected transactions. Additionally, the delay time for the system to complete the damage

assessment algorithms in log files of 1000 transactions was roughly 190 ms for the set of less

than five a↵ected transactions. Then it increased by an average of 130 ms for the set of 10-15

a↵ected transactions which was the greatest shifting in all results. Nonetheless, it increased

a bit, by an average of 26 ms, from the set of 10 -15 a↵ected transactions to the set of 20 to

25 a↵ected transactions. This increase in delay time is related to the number of transactions

in the log file, the position of the malicious transaction in the log file, and the number of fog

nodes infected. For instance, Fig. 4.5 notes that the average delay time for the set of 10-15

a↵ected transactions on 20 fog nodes with 500 log file transactions is considerably greater

than its counterpart in the other groups of fog nodes. Analysis of the results found that

the malicious transactions were randomly inserted in this particular set to the beginning

of the log files, leading to many more a↵ected fog nodes which, in turn, led to this delay.

Therefore, it follows that the main reasons for the delay results in the other experiments are

determined by the variables introduced: the number of a↵ected fog nodes, or the location

of the malicious transactions in the log file(s), or the number of a↵ected transactions. The
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latter of which will impact system availability.
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Figure 4.2: The impact of log file size on five fog nodes in the smart city model.
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Figure 4.3: The impact of log file size on ten fog nodes in the smart city model.
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Figure 4.4: The impact of log file size on fifteen fog nodes in the smart city model.
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Figure 4.5: The impact of log file size on twenty fog nodes in the smart city model.
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4.8.1.2 Second Experiment: The impact of a variable number of fog nodes and

sets of a↵ected transactions on log files with di↵erent log files size

This experiment was designed to study the impact of a variable number of fog nodes

on our damage assessment algorithm. Hence, the relationship between the number of fog

nodes and the sets of a↵ected transactions have been illuminated in this experiment. The

experiment was conducted each time with log file sizes fixed to sets of 100 transactions,

then to 500 transactions, then to 1000 transactions. Figs. 4.6, 4.7, and 4.8 illustrate steady

performance by the proposed damage assessment algorithms with the set of less than five

a↵ected transactions regardless of log file size.

However, the time the damage assessment algorithm needed to complete its tasks in-

creased when the number of fog nodes increased with the sets of 10 to 15 a↵ected transactions

and 20 to 25 a↵ected transactions. This held true regardless of log file size. The increase

in latency occurred here as the rising number of fog nodes on the system gave way to the

chance of a greater number of infected fog nodes, especially with many a↵ected transactions.
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on log files of 500 T in the smart city model.
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Figure 4.8: The impact of a variable number of fog nodes and sets of a↵ected transactions
on log files of 1000 T in the smart city model.

4.8.1.3 Third Experiment “The Evaluation of the Proposed Data Recovery Al-

gorithms”

This experiment measures the performance of our proposed data recovery algorithms

in regaining all damaged data items and restoring their correct values as if no attack occurred.

For each a↵ected fog node, we calculated the time required, once the damage audit table and

damage item list has been received, for our proposed data recovery algorithms to recover

and render all the a↵ected data items to a consistent state. Then the average time for each

set of a↵ected transactions that we mentioned in Experiments 4.8.1 was computed. The

following Figs. 4.9, 4.10, 4.11, and 4.12. show the relationship between di↵erent numbers

of transactions on each log file and variable sets of a↵ected transactions with a fixed number

of fog nodes.

Overall, we notice that the essential time to recover all damaged data items in the
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whole system necessitates no more than 2.8 ms in all cases with all di↵erent numbers of fog

nodes, sets of a↵ected transactions, and sizes of log files. The set of less than five a↵ected

transactions needs approximately 1.1 to 1.5 ms to recover all data items regardless of the

number of fog nodes and the log file size; the other two sets took 0.09 to 0.96 ms more time.

Hence, during this time the a↵ected data items will be unavailable for use. It is impacted by

the number of a↵ected transactions in the system and holds true regardless of the number

of fog nodes or the number of transactions in each log file.
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Figure 4.9: The impact of log file size on five fog nodes in the smart city model.
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Figure 4.10: The impact of log file size on ten fog nodes in the smart city model.
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Figure 4.11: The impact of log file size on fifteen fog nodes in the smart city model.
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Figure 4.12: The impact of log file size on twenty fog nodes in the smart city model.
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5  Ensuring  Data  Integrity  in  Fog  Nodes  Distribution  in  Intelligent

Government  Model

Some  of  the  following  paragraphs,  figures,  and  algorithms  that  will  be  introduced  in

this  chapter  have  been  already  published  in  our  work  [64,  81]  as  shown  in  the  publications

and  reprint  permissions  chapter  7.

5.1  Introduction

In  this  era  of  technological  evolution,  many  technologies,  including  the  Internet  of

Things  (IoT),  wearable  devices,  smart  buildings,  video  gaming  and  streaming,  and  smart-

phones,  are  an  integral  part  of  daily  human  life.  Building  stable  and  reliable  infrastructure

for  IoT  systems  necessitates  consideration  of  rapid  growth  in  the  number  of  connected  IoT

devices.  It  is  estimated  that  these  devices  will  number  approximately  75  billion  by  2025

[1]  and  generate  more  than  79  zettabytes  of  data  daily  [2].  The  present  cloud  and  internet

architecture  face  significant  challenges  in  handling  and  managing  this  massive  amount  of

data  [5].

Another  challenge  present  cloud  and  internet  architecture  faces  is  the  provision  of

adequate  security  and  privacy  measures  for  end  users’  sensitive  data.  Government  data  is

of  particular  concern  as  attack  on  data  within  a  government  system  may  place  a  nation  at

risk  [25].  Sensitive  applications  such  as  tra�c  control  systems,  Real-Time  Surveillance  Cam-

era  Monitoring,  and  Video-conference  applications  require  real-time  processing  and  location

awareness.



To overcome the limitations of cloud computing, fog computing, as a new platform,

was introduced by Cisco Systems in January, 2014. Fog computing is a virtualization ar-

chitecture in which vital computing resources are re-located close to the data source and

the end-user. Fog computing is able to process massive amounts of data, extend cloud stor-

age, and o↵ers rapid local responses [7]. Fog computing services make it a very satisfactory

and practical design solution for many sensitive applications that require real-time, location

awareness, including those systems on every level of government. Fog computing strengthens

privacy and security of data as data is stored and computed close to end-users at the edge

of the network [6, 9].

Governments around the world are creating intelligent environment systems that will

improve the quality of services they provide and the living conditions of their citizens. By

utilizing fog computing technology, they will be able to capture and utilize maximum benefit

of their systems and provide a safe environment with high-quality services. However, these

technologies do not come without risks. One of the most crucial issues in fog computing

is preserving the security and privacy of consumer data. While several researchers have

attempted to address security issues in intelligent government systems [82], there remain

some issues in need of more attention, including that of assessing damage to data that su↵er

malicious attacks.

Data damage assessment and recovery are fundamental to creating secure and reliable

databases. This is particularly true for a government data environment where the transmis-

sion of time-critical sensitive data is commonplace. If one considers, for example, tra�c con-

trol systems, Real-Time Surveillance Camera Monitoring applications, as mentioned earlier,

any attack on these systems will paralyze their vital functions such as real-time processing
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and location awareness features. When an attack on these critical databases violate integrity

of stored data the incident will result in serious consequences including damage to property

and even loss of life. Therefore, in addition to development of appropriate mechanisms for

adaptation of fog computing in intelligent systems, meeting security requirements to respond

to attacks by providing fast and accurate damage assessment and recovery techniques are

absolutely necessary.

Thus the primary objectives of this section are twofold: propose a novel model design

for an intelligent government system using fog computing technology to control and manage

the data across the entire system and propose a unique scheme to detect and assess data

a↵ected by malicious attacks in the model system.

5.2 Model

This section proposes using a unique distributed fog computing architecture to de-

velop an intelligent county government system for managing important data. It also presents

a cooperative technique for identifying and assessing damaged and a↵ected data following

an attack. In the proposed model, the Intrusion Detection System (IDS) is responsible for

detecting malicious transactions in the system and providing a copy of those transactions to

the damage-assessment algorithms. Each fog node in the proposed architecture must have

its own log file and is required to use a strict serializable history. The log files must be

secured such that they cannot be modified by unauthorized individuals.

5.3 Model Notation

A description of the notations to be used in our model can be found in Table 5.1.
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Table 5.1: Notation used in our model

Notation Description
sub-system Distributed fog nodes sub-system representing each author-

ity/government agency.
pr fog Primary fog data service node on the sub-system.
tsnt fog Transient fog nodes responsible for collecting data by using

smart devices from end users across the county.
S{pr fogID.TM} The set of detected malicious transactions in the system

detected by IDS.
G(Tn, E) Graph Representation where Tn denotes the maximum

number of transactions in the node and E denotes the num-
ber of edges

A↵-Lfogn A↵ected-transactions list containing all a↵ected transac-
tions identified by proposed damage assessment algorithms.

wi(A, v1, v2) The write operation of the transaction Ti; v1 is the before
image, which represents the value of the data item A before
updating. And v2 is the after image, which is the value of
data item A after it is updated.

ri(A, v) The read operation of transaction Ti where A is the data
item and v is the current value of A.

ci The transaction Ti has been committed, which means it is
successfully completed and will be recorded to the database.

5.4 The Proposed Architecture

Generally, there are two main types of fog computing technology, public fog comput-

ing, and private fog computing. Any distributed fog computing network to which access

is limited and restricted for use only by specific parties shall be a private fog computing

network. A great example of a private fog computing network is the campus fog computing

distribution such as school or college, and government fog computing distribution as what

we will have here in this chapter as an example [83].

In this proposed model, each government agency operates its own fog nodes sub-

system. Each sub-system has at least one primary fog-data-service node (pr fog) and mul-

tiple transient-fog nodes (tsnt fog), which are well distributed to ensure quality of service
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throughout the county. Some sub-systems may have restricted access to other sub-systems.

The tsnt fog are responsible for collecting data using IoT and smart devices, security

surveillance cameras, and kiosk stations from end-users across the county. Then the data is

transferred to the pr fog based on several factors, including location and selective data access

restrictions. Each pr fog in the system is able to perform some imperative operations such

as calculation and aggregation of required data. These operations are necessary to optimize

the bandwidth of networks since the data sent through it are aggregated by force. The

aggregation of essential data increases privacy and security because most of the data is now

processed locally at the edge of the network; local processing minimizes the transmission of

sensitive data over the network.

For example, the police department has one pr fog and several tsnt fogs that are

responsible for controlling and managing tra�c lights, while other tsnt fogs are responsible

for collecting data from security cameras and so on. All data collected by tra�c-light sensors

and surveillance cameras are transferred through tsnt fogs to the police-department pr fog.

Likewise, certain other pr fogs in the system, such as the fire department’s pr fog, have

restricted access to the data collected by tra�c-lights sensors; the fire department’s access

allows emergency vehicles to change tra�c lights and admission to the least congested routes.

As we stated early this model is a private distributed fog computing network so, It is

assumed that the whole system can be trusted because it is operated and surveilled by the

government. However, there is one trusted fog node in the system managing security matters

such as key management and distribution. It is located at the center of the system, ensuring

a reliable connection to all subsystems and providing a secondary pathway in the event a

pr fog is disconnected. The trusted fog node plays a leading role in damage assessment and
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data recovery process (Fig. 5.5).

Figure 5.1: The Proposed Architecture.

5.5 The Proposed Damage Assessment Algorithms

This model implements a transaction-dependency graph to observe and monitor all

transactions in the entire system. Transaction-dependency graphs allow quick detection of

all transactions a↵ected by a malicious transaction. Transaction dependency is used instead

of a complicated data dependency where transaction updates are di�cult to track and graphs

are sparser and more isolated. A transaction-dependency graph is easier to build and capable

of detecting and blocking malicious transactions significantly faster, thus preventing further

damage to data in the system. Una↵ected data items are available for immediate use. The
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following subsections explain in detail each step of the proposed model.

5.5.1 Algorithm 5.1: Building Local Graphs

Each primary fog-data-service node pr fog builds a directed graph based on transaction-

dependency relationships between transactions that have been successfully committed to its

database. The graph is produced and stored in a separate, unmodifiable file with the original

transactions in the same directory of the log file.

Each pr fog generates a graph by building a two-row matrix. The first row contains

associated data items and the second row contains the last transaction that updated each

of those data items (Tables 5.2 and 5.3). When a new transaction Ti is committed to the

database, the matrix is scanned to determine Ti’s precursors (parents). The new transaction

is added as a new vertex to the graph and the edges between Ti and its parents are inserted

based on those dependencies. Coincidentally, the matrix is updated with the newly commit-

ted transaction. So, for each write operation for data item X in Ti, the algorithm will scan

the matrix and update the last transaction for data item X to Ti. However, if data item X

does not exist in the matrix, it will insert that data item and the transaction identification

Ti as a new record.

For example, consider the following log records for pr fogx and pr fogy:

pr fogx: r1(A, 45 ) r1(B, 34 ) w1(C, 29, 80 ) w1(G, 23, 18 ) r2(B, 34 ) c1 w2(A, 45, 48 ) w2(D,

12, 35 ) c2 r3(G, 18 ) c3 w4(A, 48, 69 ) w4(G, 18, 24 ) c4 r5(D, 35 ) r5(A, 69 ) w5(D, 35, 98 )

c5 r6(B, 34 ) w6(B, 34, 63 ) r6(D, 98 ) w6(D, 98, 24 ) r6(A, 69 ) w6(A, 69, 78 ) c6 r7(D, 24 )

c7 r8(C, 80)c8 r9(fogy.T6.V, 56) w9 (C, 80, 93) c9 r10(A, 78 ) r10(C, 93 ) w10(E, 39, 66 )c10

r11(E, 66 ) c11.
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Figure 5.2: Described Local Dependency Graphs for pr fogx.

T1

T4

T2 T5

T6

Figure 5.3: Described Local Dependency Graphs for pr fogy.

pr fogy: r1(K, 58) r1(fogx.T4.G, 24 )w1(K, 58, 98 )c1 r2(M, 39 ) r2(K, 98 )w2(M, 39, 59 )c2

r3 (R, 43 )c3 r4(fogx.T5.D, 35 ) r4(M, 59 ) w4(N, 36, 84 ) c4 r5(K, 98 ) w5(P, 43, 78 )c5 w6(V,

56) c6

The log records for pr fogx indicate that T6 read data items B, D, and A. After T6
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Algorithm 5.1 Building Local Graphs

1: Create a new Hash-table H and Initialize to null
2: Create a new Graph Representation G = (Tn, E) and Initialize to null
3: When Ti is committed in the local DB then
4: for each operation O 2 Ti do
5: if O is wi (A, v1, v2) then
6: add a pair (A, Ti ID) to H
7: add Ti as a new vertex to G if it does not exist
8: else if O is ri (A, v) then
9: if A 2 H then
10: add Ti as a new vertex to G if it does not exist
11: acquire the parents Tj ID from H
12: add edge from Tj to Ti

13: else if A 2 foreign fog node then
14: call global graph algorithm (Algorithm 5.2)
15: end if
16: else if O is ci then
17: end if
18: end for=0

is committed, it is added as a new vertex to the local graph of pr fogx, and the directed-

dependency edge (the link) between T6 and other transactions on the graph is drawn based

on T6’s dependency relationships.

The algorithm locates the last updated transactions in the matrix for data items B,

D, and A (Table 5.2). The algorithm finds that T4 is the last transaction that updated

data item A and T5 last updated data item D. B does not exist in the matrix and so it

has not been modified. A directed edge is now drawn from T4 to T6 and from T5 to T6

(Figure 5.3). The matrix is simultaneously updated. A new record for data item B is

inserted and associated with T6 as the last transaction to update B. In addition, the last

updating transactions associated with data items A and D are updated to T6 as shown on

table 5.3.
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Table 5.2: Matrix Tracking the Last Updated Transactions After T5 is committed

Data Items C G A D
Last updated T T1 T4 T4 T5

Table 5.3: Matrix Tracking the Last Updated Transactions After T10 is committed

Data Items C G A D B E
Last updated T T9 T4 T6 T6 T6 T10

5.5.2 Algorithm 5.2: Building Global Graphs on the Trust Fog Node

As the trusted fog node plays an essential role in managing security and protection

considerations, including damage assessment and data recovery, the node obtains global

graphs for any transaction that accessed a data item in a pr fog node in the system.

Here is an example:

• Ti belonging to pr fogy accesses data item A. The last transaction updating data item

A was Tj on pr fogx.

• A copy of that last transaction’s graph updating data item A is sent to the global

graph on the trusted fog node and includes all preceding vertices that could a↵ect Tj

directly or indirectly.

• Transaction Ti is added to the global graph as a new child of Tj and an edge is drawn

from transaction x.Tj to y.Ti.

• Transaction Ti from pr fogy continues updating the global graph on the trusted fog

node by sending a copy of every subsequent transaction committed locally at pr fogy

(successor of Ti). This copy will be updated and sent frequently.
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Figure 5.4: The Global Graph on The Trusted Node.

Figure 5.4, shows an example of the global graph generated using transaction activities

at the trusted fog node from pr fogx and pr fogy. As seen in the log records of pr fogy T1

read data item G, which was updated by T4 in the log records of pr fogx. Then T4, pr fogx

graph and all its preceding elements are sent to the trusted fog node. This means any vertex

that is a precursor of T4 are now stored in the trusted fog node. In this case, T4 is the only

Algorithm 5.2 Building Global Graphs on the Trusted Fog Node

1: Create a new Global Graph Representation Gg = (Tn, E) on trusted fog node and
Initialize to null

2: (When Ti 2 fogx reads data item A 2 fogy) then
3: for each ri (A, v) 2 Ti do
4: acquire all predecessors of Tj from Gy

5: add Ti as a new vertex to Gg if it does not exist
6: add edge from fogy.Tj to fogx.Ti

7: end for
8: (When a new transaction Tz 2 pr fogx is committed where Tz is successor of Ti) then
9: add Tz as a new vertex to Gg if it does not exist
10: add edge from Ti to Tz
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vertex since it does not have parents. In addition, once T1 from pr fogy is committed, it is

added to both the global graph on the trusted fog node and the local pr fogy graph.

All new transactions added to the local graph of pr fogy and the successor of T1 are

added to the global graph. Thus:

• In the log records of pr fogy, T2 reads data item K from T1. T2 is added as a new

vertex in the local pr fogy graph.

• An edge is drawn from T1 to T2. The global graph is subsequently updated by adding

T2.

• And so, it continues: T4 reads item M from T2 and T5 reads item K from T1. Hence,

T4 and T5 are added as new vertices to the local pr fogy graph. Edges are drawn from

T2 to T4 and from T1 to T5. Then T4 and T5 are added to the global graph. The

pr fogy will continue sending updated copies of T1’s successor to the global graph upon

commit operating at its local database. This copy, as indicated, is updated and sent

frequently.

To prevent the global graph from becoming excessively large, a threshold is set based

on the system’s hardware capabilities. When the number of transactions in each fog node

reaches that threshold, the global graph is removed to the cloud for permanent storage.

5.5.3 Algorithm 5.3: Damage Assessment Algorithms

Once the IDS detects a malicious transaction in the system, it sends it to the trusted

fog node for identifying all transactions dependent on, and therefore a↵ected by, the malicious
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transaction. Simultaneously, each victimized primary fog pr fog data service node in the

system receives the malicious transaction(s) detected on its database.

The pr fog can scan its own graphs and detect a↵ected transactions. This feature is

necessary as some local graphs containing transactions, malicious or not, have never been

accessed or read by another fog node. Those transactions have not been forwarded to the

trusted fog node. The pr fog scans only the graphs that it possesses using a modified Depth

First Search (MDFS) algorithm, beginning with the malicious transaction received from the

IDS.

Immediately following this part of the damage-assessment process, each subsystem

receives a list of all a↵ected transactions detected on its local database. All data items

updated by those transactions, hence considered damaged, are blocked from being accessed

until recovered. The rest of the data items are made available to users.
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Algorithm 5.3 Damage Assessment Algorithm

1: Once S{pr fogID.TM} is received from IDS
2: Classify S{pr fogID.TM} to multi-set {S1{pr fog1.TM}..Sn{pr fogn.TM}}
3: Send each subset Sn{pr fogn.TM} to the (pr fogn)
4: Send S{pr fogID.TM} to the trust fog node.
5: For the trust fog node and each other pr fogn that receive S or Sn.
6: MDFS (Gn , TM1 )
7: Create a new a↵ected-transactions list A↵-Lfogn and Initialize to null
8: Create a new Stack tranS and Initialize to null
9: add TM1 to tranS
10: mark TM1 as visited
11: while tranS is not empty do
12: TM1 = tranS.pop
13: add TM1 to A↵-Lfogn
14: for each child Ti of TM1 in Gn do
15: if Ti is not in then A↵-Lfogn
16: add Ti to tranS
17: mark Ti as visited and add it to A↵-Lfogn
18: end if
19: end for
20: end while

5.6 Applying the Transaction-Dependency Graph Scheme to public distributed

fog computing network

The implementation of the transaction-dependency graph scheme can also be applied

to the previous model architecture; the architecture for the use of a distributed fog node

system in smart cities to manage the consumer data of utility services. As we observed, this

model lacks the availability of a trusted fog node to build global graphs and handle security

matters such as damage assessment and data recovery. This model has only public fog nodes

distribution and belongs to more than one owner. No trusted fog node can exist in this kind

of distribution.

However, we can still modify our transaction-dependency graph scheme to enable

observation and monitoring of all transactions in the entire system of a model lacking a
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trusted fog node. As we mentioned in section 4.2, Ensuring Integrity in Smart City Mod-

els, each fog node in the proposed architecture must have its own log file and use a strict

serializable history and the graphs produced must be stored in a separate, unmodifiable file

with the original transactions in the same log file directory. These three assumptions remain

compulsory for building local graphs for each fog node.

5.6.1 Algorithm 5.4: Building Local Graphs for public distributed fog nodes

Each public fog node (pub fog) or private fog node for a utility service company

(usc fog) builds a directed graph based on transaction dependency relationships between

transactions that have been successfully committed to its database. However, When a new

transaction (Tx) is committed to the database, the algorithm will determine Tx’s dependency

(parents). Tx will then be inserted as a new vertex to the local graph, and the links between

Tx and its parents will be added on the basis of the dependencies. The fog node will update

the tracking mechanism in accordance with the recently committed transaction.

To illustrate the algorithm, we use the following example for the records of log for

pr fog1 and pub fog2 fog nodes:

pr fog1: r1(X, 32 ) w1(Z, 29, 80 ) w1(W, 89, 81 ) c1 r2(Z, 80 ) w2(X, 32, 22 ) w2(D,

12, 35 ) c2 r3(W, 81 ) r3(pub fog2.T2.F, 66) w3(W, 81, 91 ) c3 w4(X, 22, 77 ) c4r5(D, 35 ) r5(

X, 77 ) w5(D, 35, 98 ) c5r6(D, 98 ) w6(D, 98, 24 ) r6(X, 77 ) w6(X, 77, 78 ) c6

pub fog2: r1(E, 13) r1(pr fog1.T1.W, 81 ) w1( E, 13, 39 ) c1 r2(F, 53 ) r2(E, 39 ) w2(

F, 53, 66 ) c2 r3(R, 43 ) c3 r4(pr fog1.T5.D, 98 ) r4(F, 66 ) w4(J, 79, 30 ) c4 r5(E, 39 ) w5(I,

43, 78 ) c5

The log record for pr fog1 indicates that T5 reads data items (D) and (X). Conse-
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Figure 5.5: The Proposed Architecture.

quently, after T5 is committed, it will be added as a new vertex to the local graph of pr fog1,

and the directed dependency edge between T5 and other transactions on the graph will be

added on the basis of T5 dependency relationships. The algorithm will determine that the

last updated transaction for data item (X) is T4 and the last transaction that updates data

item (D) is T2. Hence, a directed edge will be drawn from T4 to T5 and from T2 to T5

(Figure 5.6 ).

However, when any transaction Ti reads a data item in one pub fog / pr fog node that

has been updated by Tj in another pub fog / pr fog node, then the transaction identification

(ID) of Ti will be added as a child of Tj on the local graph of the pub fog / pr fog node, in

which the item is initially updated. For example, in the log records of pub fog2, T1 reads
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Algorithm 5.4 Building Local Graphs for Public Distributed Fog Computing

1: Create a new Hash-table H and Initialize to null
2: Create a new Graph Representation G = (Tn, E) and Initialize to null
3: When Ti is committed in the local DB then
4: for each operation O 2 Ti do
5: if O is wi (A, v1, v2) then
6: add a pair (A, Ti ID) to H
7: add Ti as a new vertex to G if it does not exist
8: else if O is ri (A, v) && A 2 H then
9: add Ti as a new vertex to G if it does not exist
10: acquire the parents Tj ID from H
11: add edge from Tj to Ti

12: else if Tk 2 foreign fog node fogy reads data item A that updated by Ti then
13: add fogy.Tk as a new vertex to G if it does not exist
14: add edge from Ti to fogy.Tk

15: end if
16: end for

data item W that is updated by T1 in the log records of pr fog1. The transaction ID of T1

from pub fog2 will then be added as a foreign child of T1 on the local graph of pr fog1. T4

from the log of pub fog2 reads item D that is written by T5 on pr fog1, and the transaction

ID of T4 from pub fog2 will be added as a foreign child of T5 on the local graph of pr fog1.

Data item F is updated by T2 on pub fog2 and accessed by T3 from pr fog1. Accord-

ingly, T3 will be added as a foreign child of T2 on the local graph of pub fog2. The process

continues updating local graphs, given that transactions are successfully committed to the

local database. Figure 5.6 shows examples of the local graphs generated using transaction

activities at pr fog1 and pub fog2.
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Figure 5.6: Described Local Dependency Graphs for pr fog1 and pub fog2.

5.6.2 Algorithm 5.5: Damage Assessment Algorithms for Public Distributed

Fog Computing

Once the IDS detects a malicious transaction in the system, each fog node, pr fog

or pub fog is informed of the malicious transaction(s) detected on its database. The pr fog

or pub fog scrutinizes its own graphs and identifies a↵ected transactions. The compromised

fog nodes examine only the graphs that they possess using a modified Depth First Search

algorithm (MDFS), beginning with the first malicious transaction received from the IDS. All

successors of the malicious transaction will be considered a↵ected transactions and added

to the a↵ected list. However, if the transaction Ti from pub fog2 is found to be a successor

of the initial malicious transaction Tj on the pr fog1, then a sub-list of a↵ected transaction

will be sent to pub fog2 and used as input to the damage assessment algorithm. The process

will continue until all a↵ected transactions in the system have been identified.

Soon after this phase of the damage assessment mechanism is accomplished each fog
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Algorithm 5.5 Damage Assessment Algorithm for Public Distributed Fog Computing

1: Once S{fogID.TM} is received from IDS
2: Assort S{fogID.TM} to multi-set S1 ... Sn

3: Send Sx{fogx.TM} to the (fogx)
4: For each fogx that receive Sx

5: MDFS (Gn , TM1 )
6: Establish a new list for a↵ected transactions (A↵-Lfogx)
7: Establish a new Stack ST

8: add TM1 to ST

9: mark TM1 as visited
10: while ST is not empty do
11: TM1 = ST .pop
12: add TM1 to A↵-Lfogx
13: for each child Ti of TM1 in Gn do
14: if Ti /2 A↵-Lfogx then
15: add Ti to ST

16: mark Ti as visited
17: add Ti to A↵-Lfogx
18: if Ti is foreign transaction 2 fogy then
19: add Ti to sub-list A↵-Lfogx,y
20: end if
21: end if
22: end for
23: end while
24: Send A↵-Lfogx,y to fogy to do further detection

node will have the final list of all a↵ected transactions detected on its local database. Any

data items updated by any of those a↵ected transactions will be blocked from access until

recovered as they are considered damaged data items. Una↵ected data items will remain

available to users.
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5.7 Experiments and Evaluation

In section 3.6 in chapter 3, we explained the experimental setup, the simulation

environment, and datasets that have been used in detail.

5.7.1 Evaluation of the Third Model: Private Fog Nodes Distribution in Intel-

ligent Government County Model

In this experiment, we aimed to determine if the trusted fog node in the system which

is proposed to manage security matters such as key management and distribution, could play

a leading role in damage assessment. In this model we studied the behavior of the damage

assessment algorithm as it detected a↵ected transactions with di↵ering factors.

We started with a fixed number of fog nodes each time and a di↵erent number of

transactions in each log file. Each time we randomly inserted a malicious transaction and

then classified the results into three di↵erent clusters, or sets, of a↵ected transactions. The

first set comprises less than five identified, a↵ected transactions. The second set contains

ten to fifteen identified, a↵ected transactions, and the third set includes thirty to thirty-five

identified, a↵ected transactions. This clustering is important for making a fair and reasonable

comparison of the proposed algorithms as they are impacted by other factors such as the

number of fog nodes and the number of transactions in each log files. Each transaction

in each set was repeated approximately twenty times, and the total time from inserting

the malicious transaction until all a↵ected transactions were identified in the system was

computed. Then the average for each set was calculated for investigation and evaluation of

our approach. Then we compared the results to determine which factor(s) created a greater
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or lesser impact to the algorithms.

5.7.1.1 First Experiment: The impact of the di↵erent sets of a↵ected transac-

tions on various fog nodes number

Figures 5.7, 5.8, 5.9, and 5.10 show the relationship between the number of a↵ected

transactions, the number of transactions on each log file, and the average time required by

our system to detect all a↵ected transactions in the whole system. The average time was

calculated by averaging the detection time each set of malicious transactions required. The

result shows that the number of a↵ected transactions that are detected has great e↵ect on

the total time the system remains unavailable. And this applies in all cases, regardless of

the number of fog nodes or the number of transactions on each log file.
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Figure 5.7: The impact of the di↵erent sets of a↵ected transactions on five fog nodes
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Figure 5.8: The impact of the di↵erent sets of a↵ected transactions on ten fog nodes
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Figure 5.9: The impact of the di↵erent sets of a↵ected transactions on fifteen fog nodes
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Figure 5.10: The impact of the di↵erent set of a↵ected transactions on twenty fog nodes

5.7.1.2 Second Experiment: The impact of di↵erent number of transactions on

various number of fog nodes

Figures 5.11, 5.12, 5.13, and 5.14 show the relationship between the number of trans-

actions on each log file, and the average time required for our system to detect all a↵ected

transactions in the whole system. The result shows that the number of transactions does not

have a big impact on the total time the system will be unavailable. And this is the case with

all other scenarios, either with a di↵erent number of fog nodes in the system or a di↵erent

set of a↵ected transactions.
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Figure 5.11: The impact of di↵erent number of transactions on five fog nodes

Figure 5.12: The impact of di↵erent number of transactions on ten fog nodes
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Figure 5.13: The impact of di↵erent number of transactions on fifteen fog nodes
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Figure 5.14: The impact of di↵erent number of transactions on twenty fog nodes
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5.7.1.3 Third Experiment: The impact of a di↵erent number of transactions

and fog nodes on di↵erent sets of a↵ected transactions

This experiment represents the performance of our detection algorithm in identifying

all a↵ected transactions. The following Figures. 5.15, 5.16 and 5.17 show the relationship

between the number of transactions on each log file and the number of fog nodes. The sets

of a↵ected transactions that were used in this experiment were fixed at less than five, then

ten to fifteen, and finally to the set of thirty to thirty five.

Figure 5.15 indicates the set of a↵ected transactions was fixed at less than five and

the time needed for our damage assessment algorithm to detect all a↵ected transactions

was slightly increased when the number of fog nodes was increased. This scenario held true

regardless of log file size. The delay that occurred here was due to increasing size in the

global graph. The global graph size usually expands with a rise in transaction dependency,

We observed the global graph increasing in size with both the number of transactions on

each log file and the number of fog nodes. We also observed that the number of transactions

in each log file had little impact on the results. Hence, the log files containing 1000 and 500

transactions took only slightly more time than those containing 100 transactions when we

used the set of less than five a↵ected transactions.

But when the set of a↵ected transactions was fixed at 10 to 15, the results di↵ered,

as seen in Fig. 5.16. Here we see that an increase in the number of fog nodes decreased the

delay time. With the larger set of a↵ected transactions, the global and local graph levels

with small log file size and fewer fog nodes show greater delay than the graphs with large

log files and more fog nodes.
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The set of 30 to 35 a↵ected transactions produced di↵erent findings as shown on

figure 5.17. A small log file of 100 transactions exhibited the same behavior as the previous

set of 10 to 15 a↵ected transactions where the smaller number of fog nodes showed more

time delay. The delay decreased when the number of fog nodes increased. The log files

containing 500 transactions were fairly stable for a bit before showing a decrease in delay

with the increase in fog nodes to 20, minimizing the number of transaction (node) levels on

the graphs. Although, for the 1000 transaction log file the time needed to detect all a↵ected

transactions increased slightly due to global and local graph growth.

To conclude, these experiments prove that the sooner IDS identifies the malicious

transactions the more e�cient and faster damage assessment of the a↵ected transactions

can be made. The large spread of a↵ected transactions is the primary cause of delay in our

algorithms. This is due to the rise in the height and depth of the a↵ected sub-tree.
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Figure 5.15: The impact of a di↵erent number of transactions and fog nodes on a set of
less than five a↵ected transactions
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Figure 5.17: The impact of a di↵erent number of transactions and fog nodes on a set of 30
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5.7.1.4 Fourth Experiment: Resource Requirement Cost

Table 5.4 shows the space required to store the global graph file on the trusted fog

node and the local graph files on each pr fog. When the number of fog nodes in the system

or the number of transactions on each fog node increases, the size of the global graph file

will increase. At some point it will exceed the total size of all local graph files combined.

Nonetheless, the largest graph file size our experiment produced was approximately 390 Kilo-

bytes, which is still very small, and will not cause any issue in terms of space requirements,

neither in the trusted fog node nor on pr fog nodes. Therefore this solution is not expensive

in terms of storage requirements since hardware storage today is massive, and all graphs in

our models, which represent real life situations, are sparse and will occupy an insignificant

portion of storage space. Even though, those graphs exceed the worst case space requirement

scenario for the adjacency list which is E = ⇥(V 2), when the graph is dense and there exists

an edge between all vertices v of the graph to all other vertices v, it will be the same space

complexity as the adjacency matrix. Keep in mind, this scenario is impossible and in conflict

with our submission regarding the log files since we assume the log must be serializable.

Table 5.4: Storage requirement in Bytes for graph files with existing of trusted fog node

Number
Of
Fog
Nodes

Storage Requirement In Bytes
100 Transactions 500 Transactions 1000 Transactions
Global
Graph

Total Local
Log Files

Global
Graph

Total Local
Log Files

Global
Graph

Total Local
Log Files

5 3,857 29,535 38,423 177,345 90,978 370,110
10 7,351 65,200 79,425 400,750 182,027 842,220
15 12,403 96,600 121,354 603,750 283,796 1302,885
20 16,725 125,800 166,822 806,580 386,372 1,738,640
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5.7.2 Evaluation of the Third Model: Intelligent Government County System

That Use Public Fog Nodes Distribution Model

5.7.2.1 Fifth Experiment: The impact of the di↵erent sets of a↵ected transac-

tions on various fog nodes number

The experiment was undertaken on the second model whereby the system has no

trusted fog node. This was attained through the employment of the transaction-dependency

graph system on both prototypes. The experiment’s main purpose was to assess the per-

formance of the damage assessment algorithm during the process of detecting the a↵ected

transactions in the absence of trusted fog node. As earlier described in section 3.6.3.1,

the log files created were based on transaction-dependency relationships that existed within

transactions and were additionally built at the same time as the local and global directed

graphs. For every existing log file, two variable graphs would be produced. One represents

the second model that does not have a trusted fog node (and absence of a global graph) in

the system utilized in the investigations present in section 5.6.

In order to enhance validity of the investigation, repetitive tests were conducted to

ensure fair comparisons of the outcomes from the two models, as depicted in investigations

in section 5.7.1 concerning trusted fog nodes. This was achieved by using a static number

of fog nodes accompanied by a dissimilar number of transactions in every log file. Then we

insert the same malicious transaction that was randomly entered for the first model, whereby

the a↵ected transactions also were grouped in three di↵erent sets or groups. The first group,

fewer than five a↵ected transactions were contained. The second group comprised of about

ten to fifteen transactions that were a↵ected, while the third grouping contained about thirty
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to thirty-five transactions that were a↵ected and had been recognized. The average for each

group was determined in order to examine and appraise our approach. In order to define the

factor(s) impact (great or less) on the algorithms, a comparison of the results was conducted.

Figs.5.18, 5.19, 5.20, and 5.21 illustrate the correlation between the number of a↵ected

transactions, the number of transactions in each log file, and the average time required by

our system to detect all maliciously compromised transactions in the whole system. The

average time was calculated by averaging the detection time each fixed set of undamaged

transactions required.

The result shows that the smaller set of less than five a↵ected transactions took an

average of 0.076 milliseconds to 0.079 ms for discovery between the variables in log files and

fog nodes. That time almost doubled for the set containing 10 to 15 a↵ected transactions:

averaging 0.14 ms to 0.15 ms. The final set of 30 to 35 a↵ected transactions, claimed an

average of 0.31 ms to 0.39 ms. Therefore, the number of detected, compromised transactions

has great e↵ect on the total time the system remains unavailable. This applies in all cases,

regardless of the number of fog nodes or the number of transactions held by the log file.

5.7.2.2 Sixth Experiment: The impact of di↵erent number of transactions on

various number of fog nodes

Figures 5.22, 5.23, 5.24, and 5.25 demonstrate the relationship between the number

of transactions on each log file and the time requirement, averaged, for discovery of all

a↵ected transactions in the whole system. Overall, the results indicate that the number of

transactions does not have a significant impact on the total delay time which a↵ects system

availability. But, still, there is some small impact.
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Figure 5.18: The impact of the di↵erent sets of a↵ected transactions on five fog nodes
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Figure 5.19: The impact of the di↵erent sets of a↵ected transactions on ten fog nodes
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Figure 5.20: The impact of the di↵erent sets of a↵ected transactions on fifteen fog nodes
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Figure 5.21: The impact of the di↵erent set of a↵ected transactions on twenty fog nodes
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For example, in the experiment utilizing the set of less than five a↵ected transactions,

the log file of 100 transactions claimed less delay time than the larger log files by almost

0.001 ms to 0.002 ms.

On the other hand, the set of 10 to 15 a↵ected transactions in the log file of 100

transactions demanded more time than the larger log files by 0.01 ms. All other scenarios,

either with a di↵erent number of fog nodes in the system or a di↵erent set of a↵ected

transactions, o↵ered similar results.
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Figure 5.22: The impact of di↵erent number of transactions on five fog nodes

5.7.2.3 Seventh Experiment: The impact of a di↵erent number of transactions

and fog nodes on di↵erent sets of a↵ected transactions

Figs. 5.26, 5.27 and 5.28 illustrate the impact of a variable number of transactions

on log file and a variable number of fog nodes. The sets of a↵ected transactions used in this
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Figure 5.23: The impact of di↵erent number of transactions on ten fog nodes
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Figure 5.24: The impact of di↵erent number of transactions on fifteen fog nodes
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Figure 5.25: The impact of di↵erent number of transactions on twenty fog nodes

experiment were fixed as previously established.

Fig. 5.26 indicates the set of a↵ected transactions as less than five. The time needed

for our damage assessment algorithm to detect all a↵ected transactions increased when the

number of fog nodes increased. This scenario held true regardless of log file size.

The delay that occurred here can be attributed to two primary determinants. First,

a small log file will impact fewer fog nodes than a large log file. Secondly, the local graphs

expand with a rise in transaction dependency. We observed the local graphs in this model

increasing in size with both the number of transactions on each log file and the number of

fog nodes. We also observed that the number of transactions in each log file had little impact

on the results. Hence, the larger log files of 1000 and 500 transactions took only slightly

more time than those of 100 transactions when we used the set of less than five a↵ected

transactions.
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However, the results di↵ered, as seen in Fig. 5.27, when the a↵ected transactions set

was fixed at 10 to 15. Here we see in log files of 100 and 1000 transactions that an increase

in the number of fog nodes decreases the delay time. Also, the log file of 100 transactions

involves more time than the larger log files of 1000 and 500 transactions. But the time is

slightly decreased when the number of fog nodes increases. Generally, what we found is that

the larger set of a↵ected transactions extends on the local graph levels with a small log file

and fewer fog nodes. This explains the greater delay found in this configuration than in that

of the graphs with large log files and more fog nodes.

Thus, the log files of 1000 and 500 transactions perform better than the log file of 100

transactions for two reasons. First, because all a↵ected transactions in the system with the

largest of the log files could be found in perhaps one or two levels of the a↵ected graph, but

with the smaller log file the damage could be found in more than two levels of the a↵ected

graphs. Second, with the smaller log file the damage will a↵ect more fog nodes and that

means more graphs are scanned.

Additionally, in this set of a↵ected transactions, the log file of 500 transactions per-

forms much better than the log file of 1000 transactions because the graph size of 1000

transactions is much larger than the graph size of 500 transactions and necessitates more

time to locate a malicious transaction on the graph.

The set of 30 to 35 a↵ected transactions produced di↵erent findings as seen in Fig.

5.28. The log file of 500 transactions exhibited the same behavior in processing this set as it

did in the previous set of 10 to 15 a↵ected transactions. Where the number of fog nodes is

five, this log file showed better performance compared to the other two log files. Then, the

delay time decreased a bit for the log files of 100 and 1000 transactions when the number of
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fog nodes increased to 10. All the log files at 15 fog nodes closed the gap, and then remained

constant and close at 20 fog nodes. As explained previously, the growth on the graph size,

the increase in the level of a↵ected transactions on the graphs, and the number of fog nodes

that have been a↵ected, have almost the same impact on the delay time.
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Figure 5.26: The impact of a di↵erent number of transactions and fog nodes on a set of
less than five a↵ected transactions

5.7.2.4 Eighth Experiment: Cost of Resource Requirements

The space needed for the storage of local graph files on every fog node is shown

in Table 5.5. A growth in the size of the local graph files is a result of an increase in

the number of transactions in the fog nodes or rather an augmentation of the number of

fog nodes. However, our experiment’s largest graph file was about 15847 kilobytes, which

would be considered as a small size and would, therefore not result in any problems related

to space. This makes the solution derived from the investigation inexpensive because of
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Figure 5.27: The impact of di↵erent number of transactions and fog nodes on set of ten to
fifteen a↵ected Transactions
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Figure 5.28: The impact of a di↵erent number of transactions and fog nodes on a set of 30
-35 a↵ected Transactions
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its space, because it would not require massive storage needs, making it appropriate for

application.

Table 5.5: Storage requirement in Bytes for local graph files with absence of trusted fog
node

Number Of Fog Nodes
Storage Requirement In Bytes
100 Transactions 500 Transactions 1000 Transactions

5 677 6,594 15,254
10 683 6,822 15,392
15 681 6,852 15,491
20 695 7104 15,847

5.7.3 Ninth Experiment: Comparison between having trusted fog node and

not:

We performed this experiment to show the di↵erence between two models: the model

with a trusted fog node (global graph) present in the system and another where there is no

trusted fog node in the system (no global graph) Which is the better performing of the two,

and under which factors? Figs. 5.29, 5.30, and 5.31 show the overall comparison between

these models on the average runtime. The result, illustrated by Fig. 5.29, indicates that

the second model, where there is no trusted fog node, performs better, in terms of execution

time, with the set of less than five a↵ected transactions in almost all cases by 0.001 - 0.002

ms. The explanation for that lies in the use of the global graphs. The first model uses the

global graphs as input for the algorithm and those graphs are larger than the local graphs

that are used as input for the second model. Also the damage caused by the small set of less

than five a↵ected transactions will usually not a↵ect many fog nodes. On average only one

to two fog nodes will be a↵ected. The second model stands out a bit from the first model in

this case.
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However, as seen in Figs. 5.30, and 5.31, the results di↵ered for the two larger sets

of a↵ected transactions. We observed that the model with a trusted fog node required less

time than the model without a trusted fog node by an average of 0.018 ms on the set of 10

to 15 a↵ected transactions. And it is faster than the model that has no trusted fog node by

an average of 0.07 ms on the set of 30 to 35 a↵ected transactions. This is the result of the

damage sustained with the larger set which could a↵ect a greater number of fog nodes. The

second model is required to scan the graph of each a↵ected fog node where the first model

needs to only scan the global graph.

In conclusion, the system benefits from having a trusted fog node when an attack

compromises the database and damage spreads to more than five transactions. Further, the

presence of the global graphs in the system stabilizes the results and speeds the detection

process, minimizing the system’s unavailability.
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Figure 5.29: Comparison between having global graph on trusted fog node and not on a
set of less than five a↵ected transactions
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Figure 5.30: Comparison between having global graph on trusted fog node and not on set
of ten to fifteen a↵ected Transactions
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Figure 5.31: Comparison between having global graph on trusted fog node and not on a
set of 30 -35 a↵ected Transactions
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Conclusion6

Fog  computing  provides  benefits  to  computing  performance  that  traditional  cloud

systems  do  not.  Data  management  in  modern  smart  systems  is  well-positioned  to  signifi-

cantly  benefit  from  the  utilization  of  fog  computing.  However,  as  any  other  data-sharing

system,  fog  computing  is  vulnerable  to  attack  and  the  injection  of  malicious  transactions

into  the  database.  Intrusion  detection  is  one  of  the  main  phases  that  must  be  included  to

ensure  the  security  and  reliability  of  any  computing  system.  This  phase  uses  software  or

device  to  observe  the  system  for  any  malicious  activity  or  policy  violation.  However,  detec-

tion  systems  sometimes  fail  to  detect  several  malicious  transactions  on  time,  leading  to  data

damage.  Therefore,  intrusion  detection  must  be  complemented  by  another  phase,  namely,

damage  assessment  and  data  recovery,  which  ensures  the  integrity  and  availability  of  system

data.  This  phase  identifies  any  further  a↵ected  transactions  and  ensures  that  the  database

returns  to  a  consistent  state.  Once  the  intrusion  detection  detects  the  malicious  activities,  an

appropriate  mechanism  to  assess  and  recover  the  damaged  data  from  that  attack  is  required

and  should  be  applied  at  the  earliest  opportunity.

Data  damage  assessment  and  recovery  are  fundamental  to  creating  secure  and  reli-

able  databases.  This  is  particularly  true  for  critical  and  sensitive  data  environments  such

as  healthcare  systems,  critical  infrastructure  systems,  and  intelligent  government  systems.

When  an  attack  on  these  vital  databases  violates  the  integrity  of  stored  data,  the  incident

will  result  in  serious  consequences,  including  damage  to  property  and  even  loss  of  life.  There-

fore,  in  addition  to  developing  appropriate  mechanisms  for  adaptation  of  fog  computing  in



intelligent systems, meeting security requirements to respond to attacks by providing fast

and accurate damage assessment and recovery techniques is definitely necessary. The focus

of this research has been the design of novel models for applying fog technology to mod-

ern smart systems. Working with the nature and characteristics of each model, we propose

a unique approach sustaining the integrity of system data in the event of a cyberattack.

Those approaches are designed to maintain the security of systems attacked by malicious

transactions or subjected to fog node data modifications.

For the healthcare systems model, two di↵erent sub-models for applying fog technol-

ogy to healthcare systems were introduced: fog modules with heterogeneous data, and fog

modules with homogeneous data Working with the nature and characteristics of each model,

we propose unique approach of assessing damaged data. Then we simulated and evaluated

these two sub-models to demonstrate the di↵erence between them and to discover, in consid-

eration of all variables, which of the two is the better performer. We conclude that the model

with homogeneous data stabilizes the results and speeds the detection process, minimizing

the system’s unavailability. Although, the model with heterogeneous data is needed as well

because it is more appropriately applicable to most situations.

For critical infrastructure smart systems model, mainly emphasized the design of a

unique technique for a smart system that uses fog computing technology to control and

manage data. It also proposed a approach that use data dependency to gain the required

information about the damaged part of the a↵ected fog nodes database in order to assess

damage to data caused by an attack. Thus, original data can be recovered, and a database

can be returned to its consistent state as no attacking has occurred to ensure the integrity of

consumer data in a fog computing environment in critical infrastructure systems. The model
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and the proposed approach were designed and implemented to prove its applicability and to

fulfill our goals by running several experiments. First part of experiments aimed to analyze

the behavior of the proposed damage assessment algorithm as it detected a↵ected data items

with varying factors designed for the experiment. And the second half of the experiments

is to measures the performance of our proposed data recovery algorithms in regaining all

damaged data items and restoring their correct values as if no attack occurred.

For the last model we focus on designing novel model for an intelligent government

system that uses fog computing technology to control and manage data. Unique algorithms

that use transaction-dependency graph is implemented in this model to observe and monitor

the activities of every transaction. Once an intrusion detection system detects malicious

activities, the system will promptly detect all a↵ected transactions. Two sub-models were

introduced one requires trusted fog node and the other not. The one with trusted fog node

can be applicable only on the private trusted fog node distribution where the second one is

appropriate for the public or mixed fog nodes distribution. When a malicious transaction is

found, the system is able to identify all a↵ected transactions quickly. Several experiments

were also performed to show the di↵erence between those two mechanisms: one with a

trusted fog node (global graph) present in the system and the other one which no trusted

fog node is required in the system. Finally, we have shown the overall comparison between

them on the average runtime, and which one of them is the better performing, and under

which factors.
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[24] F. Y. Okay and S. Özdemir, “A fog computing based smart grid model,” 2016 Inter-
national Symposium on Networks, Computers and Communications (ISNCC), pp. 1–6,
2016.

[25] M. Frustaci, P. Pace, G. Aloi, and G. Fortino, “Evaluating critical security issues of
the iot world: Present and future challenges,” IEEE Internet of Things Journal, vol. 5,
no. 4, pp. 2483–2495, Aug 2018.

[26] J. LaPiedra, “The information security process prevention,” Detection and Response,
Global Information Assurance Certification Paper, GIAC directory of certified profes-
sionals, 2011.

146



[27] R. Elmasri and S. Navathe, Fundamentals of database systems. Pearson, 2017.

[28] F. Bonomi, “Connected vehicles, the internet of things, and fog computing,” in The
eighth ACM international workshop on vehicular inter-networking (VANET), Las Vegas,
USA, 2011, pp. 13–15.

[29] H. Madsen, B. Burtschy, G. Albeanu, and F. Popentiu-Vladicescu, “Reliability in the
utility computing era: Towards reliable fog computing,” in 2013 20th International
Conference on Systems, Signals and Image Processing. IEEE, 2013, pp. 43–46.

[30] F. A. Kraemer, A. E. Braten, N. Tamkittikhun, and D. Palma, “Fog computing in
healthcare–a review and discussion,” IEEE Access, vol. 5, pp. 9206–9222, 2017.

[31] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog computing: A taxonomy, survey and
future directions,” in Internet of everything. Springer, 2018, pp. 103–130.

[32] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A. Polakos,
“A comprehensive survey on fog computing: State-of-the-art and research challenges,”
IEEE Communications Surveys Tutorials, vol. 20, no. 1, pp. 416–464, Firstquarter 2018.

[33] T. Kudo, “Fog computing with distributed database,” in 2018 IEEE 32nd International
Conference on Advanced Information Networking and Applications (AINA). IEEE,
2018, pp. 623–630.

[34] Y. Kim, D. Kim, J. Son, W. Wang, and Y. Noh, “A new fog-cloud storage frame-
work with transparency and auditability,” in 2018 IEEE International Conference on
Communications (ICC). IEEE, 2018, pp. 1–7.

[35] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the fog: Towards a com-
prehensive definition of fog computing,” ACM SIGCOMM Computer Communication
Review, vol. 44, no. 5, pp. 27–32, 2014.

[36] I. Stojmenovic and S. Wen, “The fog computing paradigm: Scenarios and security
issues,” in 2014 Federated Conference on Computer Science and Information Systems.
IEEE, 2014, pp. 1–8.

[37] M. Mukherjee, R. Matam, L. Shu, L. Maglaras, M. A. Ferrag, N. Choudhury, and
V. Kumar, “Security and privacy in fog computing: Challenges,” IEEE Access, vol. 5,
pp. 19 293–19 304, 2017.

[38] F. Y. Okay and S. Ozdemir, “A secure data aggregation protocol for fog computing based
smart grids,” in 2018 IEEE 12th International Conference on Compatibility, Power
Electronics and Power Engineering (CPE-POWERENG 2018). IEEE, 2018, pp. 1–6.

[39] S. Khan, S. Parkinson, and Y. Qin, “Fog computing security: a review of current
applications and security solutions,” Journal of Cloud Computing, vol. 6, no. 1, p. 19,
2017.

147



[40] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey on internet
of things: Architecture, enabling technologies, security and privacy, and applications,”
IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1125–1142, 2017.

[41] D. Wu and N. Ansari, “A cooperative computing strategy for blockchain-secured fog
computing,” IEEE Internet of Things Journal, 2020.

[42] D. Wu and N. Ansari, “A cooperative computing strategy for blockchain-secured fog
computing,” IEEE Internet of Things Journal, pp. 1–1, 2020.

[43] A. Alazeb and B. Panda, “Maintaining data integrity in fog computing based critical
infrastructure systems,” in Proceedings of the 2019 International Conference on Com-
putational Science and Computational Intelligence, ser. CSCI’19. Las Vegas, Nevada,
USA: IEEE Computer Society, 2019, p. 40–47.

[44] L. Zhu, M. Li, Z. Zhang, C. Xu, R. Zhang, X. Du, and N. Guizani, “Privacy-preserving
authentication and data aggregation for fog-based smart grid,” IEEE Communications
Magazine, vol. 57, no. 6, pp. 80–85, 2019.

[45] L. Lyu, K. Nandakumar, B. Rubinstein, J. Jin, J. Bedo, and M. Palaniswami, “Ppfa:
privacy preserving fog-enabled aggregation in smart grid,” IEEE Transactions on In-
dustrial Informatics, vol. 14, no. 8, pp. 3733–3744, 2018.

[46] M. Aazam, S. Zeadally, and K. A. Harras, “Deploying fog computing in industrial inter-
net of things and industry 4.0,” IEEE Transactions on Industrial Informatics, vol. 14,
no. 10, pp. 4674–4682, 2018.

[47] R. Lu, K. Heung, A. H. Lashkari, and A. A. Ghorbani, “A lightweight privacy-preserving
data aggregation scheme for fog computing-enhanced iot,” IEEE Access, vol. 5, pp.
3302–3312, 2017.

[48] A. Alazeb and B. Panda, “Ensuring data integrity in fog computing based health-care
systems,” in International Conference on Security, Privacy and Anonymity in Compu-
tation, Communication and Storage. Springer, 2019, pp. 63–77.

[49] O. Consortium et al., “Openfog reference architecture for fog computing,” Architecture
Working Group, pp. 1–162, 2017.

[50] M. Alshehri and B. Panda, “An encryption-based approach to protect fog federations
from rogue nodes,” in International Conference on Security, Privacy and Anonymity in
Computation, Communication and Storage. Springer, 2019, pp. 225–243.

[51] ——, “A blockchain-encryption-based approach to protect fog federations from rogue
nodes,” in 2019 3rd Cyber Security in Networking Conference (CSNet). IEEE, 2019,
pp. 6–13.

[52] J. Vora, S. Tanwar, S. Tyagi, N. Kumar, and J. J. P. C. Rodrigues, “Faal: Fog
computing-based patient monitoring system for ambient assisted living,” in 2017
IEEE 19th International Conference on e-Health Networking, Applications and Services
(Healthcom), 2017, pp. 1–6.

148



[53] V. Vijayakumar, D. Malathi, V. Subramaniyaswamy, P. Saravanan, and R. Logesh,
“Fog computing-based intelligent healthcare system for the detection and prevention of
mosquito-borne diseases,” Computers in Human Behavior, vol. 100, pp. 275–285, 2019.

[54] P. G. V. Naranjo, Z. Pooranian, M. Shojafar, M. Conti, and R. Buyya, “Focan: A
fog-supported smart city network architecture for management of applications in the
internet of everything environments,” Journal of Parallel and Distributed Computing,
vol. 132, pp. 274–283, 2019.

[55] B. Tang, Z. Chen, G. He↵erman, T. Wei, H. He, and Q. Yang, “A hierarchical distributed
fog computing architecture for big data analysis in smart cities,” in Proceedings of the
ASE BigData & SocialInformatics 2015, 2015, pp. 1–6.

[56] D. Amaxilatis, I. Chatzigiannakis, C. Tselios, N. Tsironis, N. Niakas, and S. Papado-
georgos, “A smart water metering deployment based on the fog computing paradigm,”
Applied Sciences, vol. 10, no. 6, p. 1965, 2020.

[57] I. Froiz-Mı́guez, T. M. Fernández-Caramés, P. Fraga-Lamas, and L. Castedo, “Design,
implementation and practical evaluation of an iot home automation system for fog
computing applications based on mqtt and zigbee-wifi sensor nodes,” Sensors, vol. 18,
no. 8, p. 2660, 2018.

[58] P. Wang, S. Liu, F. Ye, and X. Chen, “A fog-based architecture and programming model
for iot applications in the smart grid,” arXiv preprint arXiv:1804.01239, 2018.

[59] G. Pernul, “Database security,” in Advances in Computers. Elsevier, 1994, vol. 38, pp.
1–72.

[60] B. Panda and K. A. Haque, “Extended data dependency approach: a robust way of
rebuilding database,” in Proceedings of the 2002 ACM symposium on Applied computing.
ACM, 2002, pp. 446–452.

[61] G. Fu, H. Zhu, and Y. Li, “A robust damage assessment model for corrupted database
systems,” in International Conference on Information Systems Security. Springer,
2009, pp. 237–251.

[62] U. P. Rao and D. R. Patel, “Incorporation of application specific information for recov-
ery in database from malicious transactions,” Information Security Journal: A Global
Perspective, vol. 22, no. 1, pp. 35–45, 2013.

[63] M. Xie, H. Zhu, Y. Feng, and G. Hu, “Tracking and repairing damaged databases using
before image table,” in 2008 Japan-China Joint Workshop on Frontier of Computer
Science and Technology. IEEE, 2008, pp. 36–41.

[64] B. Panda and A. Alazeb, “Securing database integrity in intelligent government systems
that employ fog computing technology,” in 2020 International Conference on Computing
and Data Science (CDS). IEEE, 2020, pp. 202–207.

149



[65] S. Kaddoura, R. A. Haraty, A. Zekri, and M. Masud, “Tracking and repairing damaged
healthcare databases using the matrix,” Int. J. Distrib. Sen. Netw., vol. 2015, Jan.
2016. [Online]. Available: https://doi.org/10.1155/2015/914305

[66] P. Ammann, S. Jajodia, and P. Liu, “Recovery from malicious transactions,” IEEE
Transactions on Knowledge and Data Engineering, vol. 14, no. 5, pp. 1167–1185, 2002.

[67] P. Liu and M. Yu, “Damage assessment and repair in attack resilient distributed
database systems,” Computer Standards & Interfaces, vol. 33, no. 1, pp. 96–107, 2011.

[68] A. Chakraborty, A. K. Majumdar, and S. Sural, “A column dependency-based approach
for static and dynamic recovery of databases from malicious transactions,” International
Journal of Information Security, vol. 9, no. 1, pp. 51–67, 2010.

[69] B. Panda and J. Giordano, “Reconstructing the database after electronic attacks,” in
Database Security XII. Springer, 1999, pp. 143–156.

[70] Y. Zuo and B. Panda, “Distributed database damage assessment paradigm,” Informa-
tion management & computer security, vol. 14, no. 2, pp. 116–139, 2006.

[71] R. Sobhan and B. Panda, “Reorganization of the database log for information warfare
data recovery,” in Database and Application Security XV. Springer, 2002, pp. 121–134.

[72] C. Lala and B. Panda, “Evaluating damage from cyber attacks: a model and analysis,”
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans,
vol. 31, no. 4, pp. 300–310, 2001.

[73] B. Panda and Jing Zhou, “Database damage assessment using a matrix based approach:
an intrusion response system,” in Seventh International Database Engineering and Ap-
plications Symposium, 2003. Proceedings., 2003, pp. 336–341.

[74] K. Kurra, B. Panda, W.-N. Li, and Y. Hu, “An agent based approach to perform damage
assessment and recovery e�ciently after a cyber attack to ensure e-government database
security,” in 2015 48th Hawaii International Conference on System Sciences. IEEE,
2015, pp. 2272–2279.

[75] B. Panda and R. Yalamanchili, “Transaction fusion in the wake of information warfare,”
in Proceedings of the 2001 ACM symposium on Applied computing, 2001, pp. 242–247.

[76] X. Xia, Q. Ji, and J. Le, “Research on transaction dependency mechanism of self-
healing database system,” in 2012 International Conference on Systems and Informatics
(ICSAI2012). IEEE, 2012, pp. 2357–2360.

[77] J. Zheng, X. Qin, and J. Sun, “Data dependency based recovery approaches in survival
database systems,” in International Conference on Computational Science. Springer,
2007, pp. 1131–1138.

[78] Y. Son, H. Kang, H. Han, and H. Y. Yeom, “Improving performance of cloud key-value
storage using flushing optimization,” in 2016 IEEE 1st International Workshops on
Foundations and Applications of Self* Systems (FAS* W). IEEE, 2016, pp. 42–47.

150



[79] S. Kontopoulos and G. Drakopoulos, “A space e�cient scheme for persistent graph
representation,” in 2014 IEEE 26th International Conference on Tools with Artificial
Intelligence. IEEE, 2014, pp. 299–303.

[80] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms.
MIT press, 2009.

[81] A. Alazeb, B. Panda, S. Almakdi, and M. Alshehri, “Data integrity preservation schemes
in smart healthcare systems that use fog computing distribution,” Electronics, vol. 10,
no. 11, p. 1314, 2021.

[82] Z. Khan, Z. Pervez, and A. Ghafoor, “Towards cloud based smart cities data security
and privacy management,” in 2014 IEEE/ACM 7th International Conference on Utility
and Cloud Computing. IEEE, 2014, pp. 806–811.

[83] C. Chang, S. Narayana Srirama, and R. Buyya, “Indie fog: An e�cient fog-computing
infrastructure for the internet of things,” Computer, vol. 50, no. 9, pp. 92–98, 2017.

151



7 Publications

1) ”Ensuring data integrity in fog computing based health-care systems.” Alazeb,

Abdulwahab, and Brajendra Panda. International Conference on Security, Privacy and

Anonymity in Computation, Communication and Storage. https://doi.org/10.1007/978-3-

030-24907-6 6. Springer, 2019, Atlanta, USA. Published.

2) ”Maintaining data integrity in fog computing based critical infrastructure systems.”

Alazeb, Abdulwahab, and Brajendra Panda. 2019 International Conference on Computa-

tional Science and Computational Intelligence (CSCI), doi: 10.1109/CSCI49370.2019.00014.

IEEE, 2019, Las Vegas, USA. Published.

3) ”Securing Database Integrity in Intelligent Government Systems that Employ Fog

Computing Technology.” Panda, Brajendra, and Abdulwahab Alazeb. 2020 International

Conference on Computing and Data Science (CDS), doi: 10.1109/CDS49703.2020.00048.

IEEE, 2020, Stanford, CA, USA. Published.

4) ”Data Integrity Preservation Schemes in Smart Healthcare Systems That Use Fog

Computing Distribution.” Alazeb, A.; Panda, B.; Almakdi, S.; Alshehri, M. Electronics 2021,

10, 1314. https://doi.org/10.3390/electronics10111314. Published

152


	Design and Development of Techniques to Ensure Integrity in Fog Computing Based Databases
	Citation

	Abdulwahab Dissertation.pdf

