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Abstract 

 This thesis presents computational models of terahertz (THz) photoconductive antenna (PCA) 

emitter using COMSOL Multiphysics commercial package. A comparison of the computer simulated 

radiated THz signal against that of an experimentally measured signal of commercial reference LT-

GaAs emitter is presented. The two-dimensional model (2D) aimed at calculating the 

photoconductivity of a black phosphorus (BP) PCA at two laser wavelengths of 780 nm and 1560 nm. 

The 2D model was applied to the BP PCA emitter and the LT-GaAs devices to compare their simulated 

performance in terms of the photocurrent and radiated THz signal pulse. The results showed better 

performance of the BP PCA compared with that of LT-GaAs emitter. The three-dimensional model 

(3D) improved the accuracy of the solution by eliminating some assumptions included in the 2D model 

of the BP PCA such as the application of the actual bowtie geometry of the electrodes and the inclusion 

of the distribution of the laser footprint in x- and y- directions. Furthermore, the 3D model investigated 

the temperature variation in the BP PCA emitter due to the Joule heating from the conduction of the 

current induced by the bias voltage and the laser heating produced by the electromagnetic power 

dissipation of the laser. However, the 3D model introduced computational challenges (i.e., solution 

time, CPU, and memory, RAM) because of the multi-scale nature of the BP configuration from 

nanoscale to microscale. The parallel version of the COMSOL package was executed on the 

supercomputer of XSEDE at Pittsburg and the AHPCC at the University of Arkansas to successfully 

overcome these challenges. This helped to simulate a large case of total number of unknown of 313, 

252,784.00 that required 3,202.98 GB RAM and 25 h CPU time on XSEDE Bridges. In addition, the 

TeraAlign THz experimental system, purchased from TeraView, Cambridge, UK, was used to measure 

the THz signal radiation of the commercial LT-GaAs emitters, demonstrating good agreement in terms 

of the pulse width and shape. 
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CHAPTER 1: Introduction 

1.1 Motivation 

Terahertz (THz) frequencies correspond to the frequency band in the electromagnetic 

spectrum that lays between the microwave frequencies (<100GHz) and the far infrared frequencies 

(>10THz) [1]. Both the microwave and infrared frequencies have been enormously used for 

numerous applications such as telecommunication and imaging techniques, respectively. Terahertz 

frequencies provides advantages such as the non-ionizing nature of THz radiation [2], which 

makes this technology safe for human interaction. Furthermore, they present a considerable 

transmission through dry materials such as clothes, cardboard, and plastic, which allows security 

imaging with higher resolution compared to microwave frequencies [3]. THz technology has been 

also applied to the detection of narcotics and explosives [4]. These types of scanning systems are 

significantly important at security checkpoints of places such as airports, public events in stadiums, 

and critical industrial applications where weapons are not allowed. Moreover, the electronic 

devices industry also implement these frequencies for its device-fault detection in their circuits. 

They provide high-resolution imaging of the interconnection traces of these devices, which helps 

the detection of discontinuities that may lead to disconnections in electronic circuits [5]. Material 

characterization is another application of these frequencies. Through THz spectroscopy, the 

electrical properties of multiple materials can be obtained contributing to the implementation of 

these materials in other applications [6]. In the same way, THz spectroscopy has been applied to 

cancer tumors and human tissue to get its electrical properties, and based on the transmission and 

reflection of electromagnetic signal at these frequencies, researchers are able to develop images of 

tumors [7] [8] [9]. These images contribute to the margin assessment of tumors improving the 

chance of success during their excision process. In addition, THz frequencies has become a 
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trending topic in the research community due to its possible implementation for 6G technology. 

Since the third generation of mobile telephone systems, increasing the communication bandwidth 

and data rate have been some of the key parameters for improvement in communication [10]. 

Considering these parameters, researchers propose THz technology as a potential candidate for the 

next generation of mobile communication.  This possible shift of some applications from mm-

waves communication to THz frequencies will impact not only the THz communication field, but 

also the integrated circuit design, antenna design, and material development and characterization 

fields at THz frequencies. 

1.2 Background Information on Photoconductive Antennas 

There are some ways of producing electromagnetic signals at terahertz frequencies. These 

signals can be continuous-frequency waves produced by photomixer devices, or narrow time-

domain electromagnetic pulses generated by photoconductive antennas (PCA). These narrow 

time-domain pulses are transformed to signals with spectrum at multiple THz frequencies. 

Terahertz PCAs have been in the literature for almost a decade [1] [11]. As shown in Fig.1.1, the 

structure of conventional PCAs consist of a semiconductor photoconductive substrate with 

electrodes deposited on top of it. These electrodes are separated by a gap, and they are used to 

apply a bias voltage to the semiconductor and produce an electric field between them. This electric 

field highlighted by the arrows in the semiconductor layer in Fig. 1.1. These antennas produce the 

narrow time-domain pulses when excited by a femtosecond laser pump at the gap between the 

electrodes. The laser source represents the excitation of the antenna and generates carriers in the 

semiconductor layer. These carriers are driven to the electrodes by the application of a bias electric 

field. This movement of carriers in the semiconductor substrate represents the antenna source 
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current, which drives the THz pulse [1]. This terahertz signal is finally focused with the help of a 

hyper-hemispherical silicon lens.  

Researchers have modified the conventional structure of PCAs with the goal of bringing 

improvements to their performance in therms of bandwidth, signal level, and optical-to-terahertz 

conversion efficiency. The geometry of the electrodes is one of the determining factors of the 

antenna bandwidth. The initial electrode geometry explored in PCAs was a simple diplole as 

shown in Fig. 1.2(a), which consisted of two rectanngular metal strips facing at the gap of the 

antenna [12]. Then, reserarchers applied other broadband planar antenna geometries such as 

bowtie, spiral and log-perpiodic as shown in Fig. 1.2(b), (c), and (d), respectively. These electrode 

geometries are the most commonly used currently in literature for photoconductive antennas [1] 

[11]. The bowtie shape shown in Fig. 1.2(b) has been reported to provide superior radiation 

efficiency compared to dipole antennas [11]. It also offers a simpler design and fabrication 

compared to the spiral in Fig. 1.2(c) and log-periodic in Fig. 1.2(d). However, the spiral electrode 

 

 

Fig. 1.1. Cross-section of the geometry configuration of a conventional PCA. 
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geometry has provided around four times the terahertz radiated power compared to the bowtie 

electrode shape when deposited on LT-GaAs photoconductive substrate [13]. This comparrison 

demonstrates the importance of the electrode geometry as some of them contribute directly to the 

signal generation. The spiral antennas can be log-spiral such as the shape used in [13], Achimedean 

spiral as shown in Fig. 1.2 (c) [14], and they can also be squared spiral as reported in [15]. There 

are multiple factors to consider during the selection of the electrode geometry such as radiation 

efficiecy, terahertz signal amplitude, simplicity of the design and fabrication technique, and 

bandwidth. In fact, log-periodic antennas are known to supersede the bandwidth provided by 

bowtie antennas due to the circular teeth shown in Fig. 1.2(d), which contribute to the dissipation 

of the currents more rapidly from the gap of the antenna [14].  These log-pericondic geometry of 

PCA has been mostly used as detectors [16]. 

 

 

Fig. 1.2. Electrode geometries most commonly used in literature. (a) Dipole antenna [12], (b) 

Bowtie antenna [11], (c) Spiral antenna [14], and (d) Log-periodic antenna [14]. 
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One of the challenges of conventional PCAs is the efficiency of transforming the optical 

femtsecond laser pulse into a THz pulse. For this purpose, PCA devices must present a high optical 

absortption, which translates to higher generation of carriers. In the same way, PCAs should use 

materials with high mobility and saturation velocity to drive the carriers to the electrodes before 

its recombination. Researchers have porposed the engineering of the active area of conventional 

PCAs to enhance its quatum efficiency and supported bias electric field. As shown in Fig. 1.3(a), 

the active area of an antenna consits of the region in the PCA structure that is close to the gap 

where the optical absortion and photocarrier generation occurs. Previous works have reported the 

application of plasmonic electrodes as shown in Fig. 1.3(b), which improved the optical conversion 

to THz fequencies in emitters [17] as well ase the sensitivity to THz frequencies in detectors [18]. 

The implementtion of plasmonic electrodes reported an enhancement of more than 33 times the 

signal emitted with a conventional PCA. Furthermore, the implementation of interdigitated 

electrodes as demonstrated in Fig. 1.3(c) has allowed the application of lower bias voltage while 

achieving high bias electric fields, which increases the THz field generation [19]. Furthermore, the 

optical absroption of conventional PCAs has also been improved by the addition of plasmonic 

structures in the gap of the device where the laser is focused [20] [21] [22]. The addition of 

plasmonic nanodisks on top of the semiconductor layer as shown in Fig. 1.3(d) has reported an 

 

 

Fig. 1.3. Active area of the PCA. (a) Top view of the PCA where the dotted square represents 

the active area for (b) Plasmonic electrodes [17], (c) Interdigitated electrodes [19], (d) Normal 

electrodes with plasmonic enhancement [22]. 
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improve in the terahertz signal by a factor of 4.8 compared to a modified conventional antenna 

configuration [22]. Overall, there are several techniques that researchers apply to PCAs to improve 

their performance. In fact, the development of new semiconductor materials also stands out as 

alternatives to overcome the functioning of terahertz antennas by providing superior optoelectronic 

properties impacting the optical absorption of the laser and the carrier dynamics.   

1.3 Black Phosphorus Photoconductive Antenna Emitter 

The use of two-dimensional (2D) materials as the semiconductor substrate for the PCA has 

received substantial attention in recent years [23] [24]. These new materials have exhibited tunable 

optoelectronic properties and therefore they stand out as potential candidates to exceed the 

performance of conventional PCAs. 2D materials have reported high optical absorption and 

responsivity, sub-picosecond carrier lifetime, and high carrier mobility, which supersede those of 

conventional THz PCAs [23] [24].  

Black phosphorus (BP) is one of those 2D materials that has gained considerable research 

interest for terahertz devices [25] [16] [26]. BP comes in 2D layers or in bulk configuration as thin 

 

Fig. 1.4. Black phosphorus crystal structure and its application at the gap of a PCA emitter. The 

BP layer is encapsulated by a layer of hexagonal boron nitride (hBN) for protection from 

oxidation.   
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flakes of nanoscale thickness. It has an anisotropic crystal structure that consists of two axes with 

armchair and zigzag atom configuration as shown in Fig. 1.4 [27]. This anisotropic arrangement 

provides light polarization-dependent optical properties [28], which produces a higher absorption 

of light in the armchair direction compared to the zigzag direction. In fact, the light absorption in 

the armchair direction was reported to be 20% higher than in the zigzag direction for the 780 nm 

laser excitation [26]. As shown in Fig. 1.4, to maximize the PCA photoresponse, BP is positioned 

at the gap of antenna in both detectors [16] and emitters [26] [29], where the femtosecond laser 

excitation must be aligned with the armchair direction. Besides BP’s high optical absorption, it 

provides variable electrical properties such as a thickness-dependent direct bandgap ranging from 

0.3eV for its bulk configuration up to 2 eV for a single layer [30]. This property allows its 

application for optoelectronic devices in the near infrared range.  

These high mobility values, sub picosecond carrier lifetime, and large saturation velocity 

propose BP as a potential material for the development of devices at the THz frequency band. In 

the same way that black phosphorus provides thickness-dependent optoelectronic properties, its 

properties present a high level of discrepancy in literature. This is mostly attributed to the 

measurement sample preparation, measurement technique, and parameter extraction. For instance, 

the carrier mobility of this material has shown a significant variation in the reported values in 

literature. BP has reported carrier motilities as high as 1,500 cm2/V. s for electrons when doped 

with aluminum adatoms [31], and 5,000 cm2/V. s for holes [32]. However, researchers have also 

found mobility values at lower limits around 100 cm2/V. s for electrons and 850 cm2/V. s for holes 

[33]. Both of these mobility measurements agreed on the tendency to have a higher hole mobility, 

but their reported values differ by almost one order of magnitude.  
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The carrier lifetime is another property that proposes BP for terahertz applications. BP’s carrier 

lifetime has been reported to be 0.36 ps for laser excitation around 780 nm and 0.928 ps with a 

laser source around 1560 nm [34]. Nevertheless, we observed discrepancy in the literature values 

reported for the BP carrier lifetime. In fact, these values range from 0.36ps [34] to 1800 ps [35], 

depending on the sample preparation, measurement technique, wavelength of the laser pump, and 

more importantly the curve fitting parameter extraction from the measurements. Some researchers 

used a single-exponential curve fitting that can deliver large carrier lifetime [35] [36]. Other 

researchers have used a bi-exponential curve fitting that provided smaller carrier lifetime values 

[34] [37] [38]. The discrepancy in literature about BP carrier lifetime has been previously reported 

in variations between monolayer black phosphorus compared to its bulk configuration [37]. 

Furthermore, another source of discrepancy lays on the fact that some researchers consider the 

second time constant as the carrier lifetime of 83 ps [37], while other authors consider the first 

time constant as the direct recombination lifetime of ~ 15ps [38]. Therefore, it is very important 

to consider these variations while modeling devices with black phosphorus because the device may 

perform differently from its true performance.   

Black phosphorus has been widely used in PCAs as detector of THz signals [25] [16], where 

its short carrier lifetime and high mobility have been crucial for THz detection. However, to the 

best of our knowledge, the first fabricated BP-based PCA emitter was reported in [26], which 

presented the photoresponse characterization of the device and its modeling as a 2D geometry. The 

model reported in [26] was also used to compare the computational signal generation of a LT-

GaAs emitter with a BP emitter at two laser wavelengths (780 nm and 1560 nm). Furthermore, a 

3D model of a BP emitter was published in [29], which presents a closer resemblance to the 

fabricated antenna where the dimensions of the antenna electrodes were considered. In that work, 
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the trend to an increase in bandwidth was reported by the computational results, and the simulated 

generated THz pulse was compared against THz measurements of a reference LT-GaAs emitter.  

 One of the defining factors of the performance of a PCA emitter lies in its capacity of 

transforming the optical pump (femtosecond laser) into a terahertz signal. Increasing the pump 

power of the laser and increasing the bias voltage of the device could increase the generated THz 

signal, but it could also produce detrimental effects on the emitter. It could generate of ohmic 

losses in the BP layer as well as the conduction of higher DC currents in the gap of the device 

translated to Joule heating [39]. These factors contribute to the temperature increase of the device, 

which could affect the performance of the emitter with an additional thermal current to the existing 

drift-diffusion components. Moreover, the increase of the laser power and the bias voltage of the 

emitter could result in thermal runaway of the device with a nonlinear increase of the current 

leading to produce a break down [40]. The capacity of the device to handle these conditions highly 

depends on the heat transfer properties of the materials as well as the geometry of the device. For 

instance, the breakdown voltage for black phosphorus was documented to be 4 V for a 50 nm layer 

in a 1.5 μm-gap device configuration under a continuous wave laser [41]. This factor presents the 

significance of modeling the temperature variation of the device under the working conditions as 

shown in this work.  

1.4 Introduction to COMSOL Multiphysics  

COMSOL Multiphysics is a computational package based on the Finite Element Method that 

allows the simulation of different physics phenomena as well as the interaction between them. It 

is widely used in the engineering field due to its capacity to couple multiple physics, which 

provides models that are more realistic. For example, with COMSOL Multiphysics, an electrical 
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engineer can analyze the operating temperature of a power transistor handling high currents while 

connected in a PCB as shown in Fig. 1.5 [42].  

The modeling environment can be divided into geometry design, model definitions, applied 

physics and material selection, mesh creation, study settings, and results.  The geometry of the 

modeling domain in COMSOL can be described as 0D components representing points, 1D 

geometries for lines, 2D geometries for planes and cross-sectional areas, and 3D geometries, which 

adapts more closely to real-world conditions as shown in Fig. 1.5. Even though 3D models are a 

more realistic approach, the type of geometry component is selected based on different reasons. 

Sometimes, solving a 3D geometry results computationally expensive, and a 2D cross-section of 

the geometry provides results that are sufficiently accurate. In other cases, there are some objects 

with large length-to-width proportions, so modeling such objects as lines in 1D geometry 

represents a better approach. Based on these geometry components, COMSOL offers a computer-

aided design (CAD) facility to draw the model structure from primitives geometries such as lines, 

polygons, blocks, spheres, cylinders, etc. With these geometries, the user can perform Boolean 

operations such as additions, substations, and intersection to build more complex geometries and 

 

 

Fig. 1.5. Multiphysics modeling example of a power transistor, which involves two physic 

modules: Electric Currents and Heat Transfer in Solids. 
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develop the desired model geometry as shown in Fig. 1.6. In the same way, other CAD software 

can be used to create the geometry model, which can be imported to the COMSOL environment.    

Another important section in the COMSOL software user interface is the “Definition” section, 

which allows the user to create parameters, variables, functions, and probes that can be accessed 

within the model settings. Users are recommended to define their geometry in terms of global 

parameters so that any variation in the geometry can be applied easily. Variables are introduced to 

change the settings within the physics as well as the study section. Moreover, COMSOL allows 

the implementation of function of several types such as analytic functions to introduce any type of 

equations to the model, interpolation functions, which give the user the opportunity of 

incorporating external data to the model, and it offers other type of known functions such as 

Gaussian, step, ramp, and rectangle functions. All these functions can be used to modify settings 

within the model environment such as material properties or physics settings. Probes, in 

COMSOL, are used as sensors that allows the monitoring of any result variable within the model. 

These probes can be applied to a particular domain, surface, line, or point in the model geometry. 

In this way, the user can extract results from any location in the model geometry.  

To model all physics, COMSOL is divided into modules, and each module is responsible for 

solving the equations corresponding to each physics. In the model example shown in Fig. 1.5, two 

 

 

Fig. 1.6. Example of geometry operations that are used to create structures that are more 

complex. This figure shows the addition and subtraction Boolean operation.   
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physics are involved, so two modules were used: the physics module for the electric current 

conduction on the device, and the heat transfer in solid physics interface, which simulate the 

temperature distribution by taking the conduction of currents as heat source. Each module can be 

solved separately, or they can be coupled as the model example in Fig. 1.5. In order to obtain a 

solution from the physics module, COMSOL requires a spatial discretization in a form of a mesh, 

which divides the model geometry into numerous mesh elements as shown in Fig. 1.7. Then, 

COMSOL uses this discretization to apply the Finite Element Method and solve the equations for 

the physics that is being applied to the model. The mesh shown in Fig.1.7 was created with the 

free tetrahedral operation in the whole computational domain, but there are other mesh operations 

that can be applied to edges, faces, and domains from the model user interface. It is important to 

mention that the mesh for the model solution highly depends on the type of physics used in the 

model. Sometimes, some equations required a significantly fine discretization  to be solved. In 

fact, this spatial discretization usually depends on some of the physical conditions of the model. 

For instance, later in this work, it will be mentioned that the required mesh discretization to solve 

Maxwell’s equation is dependent on the wavelength of the electromagnetic wave involved in the 

simulation. In the same way, there are other physics that require certain level of discretization to 

 

Fig. 1.7. Spatial discretization (mesh) example to solve models in COMSOL Multiphysics. 
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converge to a model solution. Therefore, it is extremely important to consider this when 

developing the mesh for the desired model solution.  

The study section of the COMSOL software environment correspond to the selection of the 

type of analysis that is desired for the model. For instance, COMSOL offers stationary studies and 

time-dependent studies that allows, the simulation of steady-state and transient simulations, 

respectively. This section also allows the user to choose the type of solver that is desired, which 

could be direct or iterative. Direct solvers are usually applied to small models, as these solvers 

required a larger amount of memory compared to iterative solvers. COMSOL offers a variety of 

algorithms such as MUMPS, PARADISO, and SPOOLES as some of the direct solvers, and 

GMRES, BiCGStab, and conjugate gradients as some of the iterative solvers. It is important to 

mention that the type of algorithm to be used in the module solution depends on the physics itself. 

For instance, later in this work for the 3D solution of Maxwell’s equations, a GMRES iterative 

algorithm was used with a multigrid preconditioner and a SOR vector pre- and post-smother 

because this solver configuration contributes to the solution convergence for electromagnetic 

problems [43]. In all cases, COMSOL offers a default solver configuration depending on the 

physics involved in the model, and this default configuration is usually the best starting point for 

the model solution. Based on this default configuration, the user can make modifications in order 

to improve the convergence or accuracy of the simulation.  

 For the work presented in this thesis, four COMSOL modules were used to model the 

performance of a photoconductive antenna. Figure 1.8 shows a flowchart of the four modules 

applied in this model and the interaction between them. The frequency-domain RF module is used 

to model the electromagnetic wave propagation of the femtosecond laser source, which serves as 

input to the semiconductor module. This one simulates the photo-generation and acceleration of 
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the carriers in the semiconductor substrate. The generation and propagation of the terahertz time-

domain signal is modeled with the transient RF module. In some cases, the heat transfer in the 

semiconductor substrate was also applied to the overall model through the heat transfer in solids 

module. This module receives the heat produced by Joule heating from the semiconductor module 

and the laser heating from the frequency-domain RF module to calculate the temperature variation 

in the semiconductor layer.  

1.4.1 Frequency-Domain and Transient RF Module 

This module solves the wave equation in frequency domain and provides the electric and 

magnetic field at each pixel in the modeling domain. COMSOL allows the implementation of 

properties to domain, boundaries and points within the domain. By default, COMSOL surrounds 

the modeling domain with perfect electric conductor boundary conditions, so it is important to take 

this into consideration before running a simulation. There are multiple ways of assigning sources 

with this software. In fact, plane waves are more related to the application required for this work, 

and this type of excitation can be applied in several ways. For instance, it can be applied with a 

scattering boundary condition by using an incident electric field, and it can be applied as an 

impedance boundary condition by specifying a source electric field. These approaches are 

compared in details in Appendix A. Scattering boundary conditions are used as both excitations 

 

 

Fig. 1.8. COMSOL Multiphysic modules applied in this work.  
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and absorbing boundary conditions even though COMSOL also provides the option of using PML 

layers as absorbers. Figure 1.9 shows a 2D example where the scattering boundary condition is 

used as excitation in the left boundary and absorber in the top, bottom and right boundaries. This 

example simulates the performance of a free space system [44], by applying a Gaussian modulated 

plane wave against a material sample for its characterization. Another method of implementing 

plane waves in COMSOL is the application of the scattered field formulation. This scattered field 

formulation allows the introduction of a background electric field that can be applied as modulated 

plane waves. This formulation allows the calculation of the scattered and incident field separately. 

Researchers use the scattered field formulation to apply signals on scatters such as nanoparticles 

or buried objects, instead of the full field formulation used in all models in this work.  

The transient RF module provides a solution of Maxwell’s equations in time-domain. Its 

settings are similar to the frequency-domain RF module in the sense that it allows the application 

of domain material properties as well as boundary conditions. The difference resides on the option 

to apply time-domain current signals as excitation to the model such as current pulses and time-

dependent functions.  

 

 

 

 

Fig. 1.9. COMSOL Frequency-Domain RF module example: Modeling of a Free Space System 

for material characterization. Model at 26.5-GHz source with dimensions in cm. 
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1.4.2 Semiconductor Module 

The semiconductor module solves the coupled Poisson’s and drift-diffusion to model the 

carrier dynamics in a semiconductor material. With this module, researchers can account for 

several semiconductor physic processes. This module is able to apply the Fermi-Dirac and 

Maxwell-Boltzman statistics for the carrier concentrations. It also allows users to develop doping 

profiles based on their needs as well as multiple recombination processes such as direct 

recombination, Auger recombination, Shockley-Read-Hall recombination, and others. The user 

can also choose from a variety of mobility models that permits the modeling of the carrier mobility 

as dependent on temperature, electric field, carrier scattering and impurity scattering,  

Furthermore, it provides the options to define ohmic and Schottky metal contacts, which are 

significantly common on semiconductor devices. For example, Fig. 1.10 shows the steady-state 

bias electric field solution of a conventional LT-GaAs PCA, where the contacts were modeled as 

ohmic metal contacts under a bias voltage of 30 V.  

1.4.3 Heat Transfer in Solids Module 

COMSOL Multiphysics can be used to model the heat transfer in different type of materials 

including solids and fluids. For instance, the heat transfer in solids module was used to generate 

 

 

Fig. 1.10. COMSOL Semiconductor module example: Modeling the steady-state solution of 

the bias electric field in a conventional PCA. Dimensions in µm. 
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Fig. 1.5. This module allows the application of heat sources and heat sinks as both 3D domains 

and 2D surfaces. In the same way, the boundaries of the modeling object can be assigned to specific 

temperatures such as room temperature, or they can also be modeled as thermal insulation 

boundaries. With the heat transfer in solids module, the user also was the option of modeling heat 

fluxes as constant heat flux and convective heat flux. This last one is important for devices exposed 

to environmental conditions as it allows to model the air-to-device interaction, which was 

considered in the model example in Fig. 1.5.   

1.5 Overview of Thesis Chapters  

 This thesis is divided into five chapters. This chapter provided the motivation of this work, 

background information about the PCA technology for the THz generation, an introduction about 

the modeled BP PCA, and some information about the COMSOL Multiphysics environment and 

applications. Chapter 2 presents the two-dimensional model development and computations and 

results of the BP PCA compared against the performance of a modeled LT-GaAs emitter.  Chapter 

3 presents the results obtained with a tri-dimensional model that includes the optical response, 

electrical response, THz generation, and temperature calculations of the device. Chapter 4 provides 

an overview of the TeraAlign system, its alignment process, and some measurements results. 

Finally, Chapter 5 presents the main findings of this work along with the future perspective of this 

research.  
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CHAPTER 2: Two-Dimensional Model Development with COMSOL Multiphysics 

As discussed previously, COMSOL Multiphysics allows the modeling of points (0D), lines (1D), 

surfaces (2D), and objects (3D). Depending on the level of discretization required for the solution 

convergence, performing simulations in a 3D configuration may be computational expensive, and its 

solution may take a relatively long time. When developing a computational model in any physics, multiple 

questions arises. First, the user needs to understand the physics to be applied and its discretization 

requirement. Based on these two parameters as well as the size and type geometry elements, one can start 

arranging the settings in the COMSOL environment. The goal of providing a two-dimensional model is to 

determine the required software settings for the model solution including the creation of the desired 

geometry, assignment of the model materials, definition the required physics settings, mesh construction, 

and formation of the study settings. The development of a model with all these sections may required 

several computations, comparison, and analysis until the user is satisfied with the outcome. Therefore, it is 

recommended to create a 2D model, which can be expanded to a 3D configuration once it is properly 

prepared.  

The model used in this work is divided into three responses: the optical response models the laser 

excitation, the electrical response models the generation and acceleration carriers, and the terahertz response 

models the terahertz signal generation [21] [22]. In this way, three modules were used for the modeling of 

a PCA, which are the frequency-domain RF module, the semiconductor module, and the transient RF 

module. The first step in this modeling process was the adaptation of the optical response of the model 

presented in [21] for LT-GaAs to the PCA emitter configuration involving black phosphorus. In contrast 

to the configuration presented in [21], the black phosphorus photoconductive material is positioned 

covering the gap of the PCA as shown in Fig. 1.4 and Fig. 2.1. The BP PCA configuration consist of the 

BP material placed on top of the gap of the antennas and part of the electrodes, a layer of hexagonal boron 
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nitride (hBN) is laid on top of the BP to protect it from environmental conditions [26]. A zoomed-in version 

of the top view of the antenna geometry is presented in Fig. 2.1(a), which ilustrates the hBN/BP layers 

covering the gap of the antenna and part of the electrodes. The BP layer is positioned with the armchair axis 

in the x-direction to match the polarization of the incident laser excitation to maximize the optical power 

absorption. A cross-section of the geometry is presented in Fig. 2.1(a), which was obtained at the red dashed 

line drawn across the gap of the antenna in Fig. 2.1(a). The electrodes are composed of chromium/gold 

layers (Cr/Au), which are patterned on top of a layer of silicon dioxide (SiO2), which resides on top of a 

silicon (Si) substrate.  

2.1 Frequency-Domain RF Module  

2.1.1. Development of the optical response model settings  

The frequency-domain RF module is used to model the optical response of the PCA device, which 

represents the modeling of the incident laser excitation and its interaction with the PCA. The wave equation 

is solved in the frequency domain on COMSOL where the electric and magnetic fields phasors are 

calculated at each point in the computational domain. As mentioned previously, the model development 

process requires multiple computations to determine the correct geometry, physics and study settings. One 

alternative to verify the proper functioning of the model is the validation of its solution against published 

results in literature. This comparison can be performed against measurements, computational results with 

 
 

Fig. 2.1.  BP PCA emitter configuration. (a) Top view of the antenna geometry. The hBN/BP 

covers the gap and part of the electrodes. (b) Cross-section of the antenna taken along the red 

dashed line in (a).  
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a different method, and results from analytic approaches. In this case, before the optical response modeling 

of the two-dimensional geometry of the BP PCA shown in Fig.2.1, a simple model configuration of a LT-

GaAs conventional PCA was solved. The geometry configuration of this model is shown in Fig. 2.2(a), 

where the gap of the PCA was set to 5 µm. The purpose of this solution is to build a solid foundation for 

the optical response modeling of the BP PCA. For this study, the femtosecond laser excitation was modeled 

as a plane wave spatially modulated by a Gaussian profile, polarized in the x-direction (armchair) as [21]. 

E⃗⃗ inc = x̂√
Pave8ηo

fpDxDyDt
(−

ln(0.5)

π
)

3
4⁄

exp (4 ln(0.5)
(x − x0)

2

Dx
2 ) (1) 

where  ηo represents the free space impedance, Pave is the mathematical average power of a single laser 

pulse, x0 represents the center location of the laser pump, fp accounts for the repetition rate of the laser, Dt 

is the femtosecond pulse width, and  Dx defines the half power beam width in the x-direction. The 

expression of the amplitude of the incident electric field is derived from the mathematical average power 

of a single laser pulse. This expression accounts for the temporal laser pulse width as well as the repetition 

rate of the laser, and its derivation well detailed in Appendix B.1. The excitation was produced by an 

impedance boundary condition with the source field equal to Eq. 1 at the top. The rest of the outside 

boundaries were assigned to absorbing scattering boundary conditions.  The properties of the materials 

involved in this model were taken from [21] as well as the parameters of the incident laser pulse, which are 

shown in Table 1.  

Table 1. Parameters for the Femtosecond Laser Source (Optical Response Validation) 

Parameter Symbol Value 

Laser wavelength λ 780 nm 

Average power PAve 3.57 mW 

Repetition rate fp 80 MHz 

Pulse x-axis center location x0 0 µm 

HPBW – x direction Dx 3 µm 

HPBW – y direction Dy 3 µm 

Pulse width – time Dt 133 fs 
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The validation of the optical response of the model consisted on replicating the results generated for 

Fig. 2(b) in [21]. This plot showed the average power flux density along the depth of the LT-GaAs layer. 

For this purpose, the electric and magnetic field components were used to calculated the average power 

flux density with Eq. (2), where Ps(x, y, z) is the total average power flux density at every point in the 

simulation domain.  

Po⃗⃗⃗⃗ (r ) =
1

2
Re (E⃗⃗ (r ) × H⃗⃗ ∗(r )) 

Ps(r ) = √(|Pox|2 + |Poy|2 + |Poz|2) 

(2) 

The plot of this parameter is shown in Fig. 2.2(b), where it shows the laser excitation focused at the 

center of the gap of the antenna. The dashed line at the center of the gap in the semiconductor layer 

represents the points at which the power flux density was taken to produce the plot in Fig. 2.2(c), which 

displays the power flux density along the depth of the semiconductor layer. The black curve with “x” 

markers represents the digitized data from Fig. 2(b) in [21], and the blue curve shows the results obtained 

from the model file developed in this work. As shown, the results obtained from this model file are in 

agreement with the results obtained in [21]. This plot validates the correct setting of the model file for the 

 
 

Fig. 2.2. Validation of the optical response solution. (a) Conventional PCA configuration with 

LT-GaAs, (b) Power flux density results obtained from the configuration in (a), (c) Model 

validation results of the power flux density along the depth of the semiconductor. All 

dimensions are given in μm. 
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optical response calculation of a PCA, and this model file can be adjusted to a more complex case such as 

the BP PCA device model.  

As part of the model development, the creation of the desired geometry represents the first step in the 

modeling process. The size of the gap of the PCA was one of the geometry parameters that was studied. 

We investigated the power flux density distribution in the BP layer at different gap sizes. The size of the 

gap was varied from 2µm until 8µm, and the 2D model solution of the optical response was solved to 

identify the optimum gap size for the antenna geometry. The model geometry configuration for this study 

consisted in the 2D cross-section of the PCA shown in Fig. 2.1(b) with a BP thickness of 85 nm, the hBN 

thickness is 200 nm, the SiO2 layer is 300 nm thick, and the Si layer is modeled as half-space as well as the 

air space. The boundary conditions were applied as absorbing scattering boundary conditions at all 

boundaries as well as top boundary which applied the incident electric field with an scattering boundary 

condition. The incident electric field was applied as Eq. 1, and the parameters of the laser were the same 

used for the previous model validation (See Table 1). The anisotropic optical properties of BP were 

considered in this model solution with the properties provided in Table 2 for both the conductivity and the 

complex relative permittivity at 780 nm.  

The purpose of this study was to identify the size for the antenna gap for an optimum performance, 

and the parameter used for this comparison was the power flux density calculated based on Eq. 2. Figure 

2.3(a) shows the power flux density in the complete computational domain for the model configuration 

shown in Fig. 2.1(b). This plot shows the laser excitation focused at the center of the gap. As mentioned, 

Table 2. Material Properties for Optical Response (Gap Size Study) 

Symbol 𝝈 �̂� (780 nm) 

Description Conductivity Relative Permittivity 

Units S/m 1 

hBN 0  2.56 [45] 

BP 

x 250 [46] 7.9927-2.7007i [47] 

y 92.6 [46] 8.8199-0.5718i [47] 

z 43.5 [46] 8.3 [48] 
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this study varied the size of the gap, and Fig. 2.3(a) shows the results obtained for a gap size of 4 µm. The 

inset in Fig. 2.3(a) shows a zoomed-in version of the black dotted square at the gap of the antenna. This 

inset shows the power density decreasing as it propagates in the multi-layer BP PCA device. This inset also 

shows the BP as the layer where the power flux density decreases the most. The vertical solid line in the 

BP layer shown in the inset represents the points at which the power flux density data is gathered to plot 

the curves in Fig. 2.3(b). This figure shows the power flux density along the depth of the semiconductor 

material. This plot resembles the curve obtained for LT-GaAs in Fig. 2.2(c). In fact, the case for LT-GaAs 

with a gap size of 5 µm is also included in the plot in Fig. 2.3(b) along with all cases of BP PCA devices at 

several gap sizes. From this plot, it is clear that the lowest power flux density values were observed for the 

case involving a gap size of 2 µm. This observation was attributed to the fact that the laser half power beam 

width is 3 µm, which is much larger than the gap of the size preventing the density of the power to enter 

the BP layer. The same situation was experienced with a gap size of 3 µm, where the power flux density 

was also lower than the other cases. Starting from the case of a gap size of 4 µm, the power density in the 

BP layer was constant between the geometries, where the plots for the gap sizes of 4 µm to 8 µm are on top 

 
 

Fig. 2.3. Optimum gap size study with the optical response for the BP PCA. (a) Power flux 

density results obtained from the configuration in Fig. 2.1(a) for a gap size of 4µm. The inset 

in (a) is a zoomed-in version of the dotted square in the center of the gap. (b) Power flux density 

along the depth of the semiconductor for multiple gap sizes. All dimensions are given in μm. 
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of each other. The case obtained from the LT-GaAs model contributed to compare the power density 

distribution to BP. From this comparison, it can be observed that the slope of all the plots for BP in Fig. 

2.3(b) is much larger compared to the LT-GaAs case, which is flatter. This indicates that the power density 

decreased more in the BP layer, which can be related to a larger absorbed power. Considering that 

producing large BP layers of nanometer thicknesses results difficult, the case obtained with a gap size of 4 

µm showed good performance, and it is used for the following simulations.   

2.1.2. Optical response simulation at two laser frequencies (780 nm and 1560 nm) 

 The expression of the incident electric field used in the previous section was based on the 

mathematical calculation of the average power of a single pulse. However, that average power is 

not the power that is provided in datasheets for the femtosecond lasers, neither the average laser 

power that is measured with conventional power meters [49]. The response time of power meters 

is much longer than the femtosecond pulse width. This means that instead of measuring the average 

power of a laser pulse, these power sensors measure the average power of a train of laser pulses. 

In this way, it is necessary to develop an expression to model the incident electric field based on 

the average power of the laser that can be related to experimental measurements. Equation 3 

defines this expression, and its detailed derivation is provided in Appendix B.2. 

E⃗⃗ inc = x̂√
4ηoPave

πDx
2

exp (4 ln(0.5)
(x − x0)

2

Dx
2 ) (3) 

 In Eq. 3,  ηo represents the free space impedance, Pave is the average power of a train of laser 

pulses, x0 is the center location of the laser pump, and  Dx represents the half power beam width 

in the x-direction. The parameters of the laser source used in this work are given in the Table 3 

with their description. This study involved the optical response solution of the BP PCA at two 

laser frequencies (780 nm and 1560 nm). The femtosecond laser source at 780 nm has been widely 
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used for the terahertz generation, and the 1560-nm excitation propose other advantages such as 

lower cost for optical components and more-efficient optical transitions in the generation-

recombination process. The EM solution of this model also considered the anisotropic properties 

of the electrical conductivity and the complex relative permittivity of BP, which are provided in 

Table 4 as well as the optical properties of the rest of materials involved in the model at two laser 

wavelengths (780 nm and 1560 nm). This model was also used for comparison purpose against the 

conventional LT-GaAs showed in Fig. 2.2, so the properties of this material are also shown in 

Table 4 at 780 nm.  

In contrast to the model applied in the previous section, the optical response results obtained 

from this study represents the maximum power density at each point in the modeling domain. This 

maximum power density is calculated from the electric and magnetic field components of the laser 

Table 3. Parameters for the Femtosecond Laser Source (2D Optical Response) 

Parameter Symbol Value 

Laser wavelength λ 780 nm/1560 nm 

Average power PAve 0-1 mW 

Pulse x-axis center location x0 0 µm 

HPBW – x direction Dx 2 µm 

Pulse center location in time t0 0.6 ps 

Pulse width – time Dt 100 fs 

 

 

 

Table 4. Material Properties for 2D Optical Response Solution 

Symbol 𝝈 �̂� (780 nm) �̂� (1560nm) 

Description Conductivity Relative Permittivity Relative Permittivity 

Units S/m 1 1 

Au 2.892 ∗ 107 [50] -25.06-1.60i [50] -122.4-10.69i [50] 

Cr 7.752 ∗ 106 [51] -2.21-21.07i [52] -1.13-28.34i [52] 

SiO2 5 ∗ 10−14 [53] 2.38 [54] 2.36 [54] 

Si 4.348 ∗ 10−4 [55] 13.623-0.044i [56] 11.91-0.13i [56] 

LT-GaAs 1.1 ∗ 103 [22] 13.68-0.67i [57]   

hBN 1 ∗ 10−6 [58] 4.84 [59] 4.84 [59] 

BP 

x 250 [46] 16.0565-1.7283i [28] 14.4748-2.2272i [28] 

y 92.6 [46] 14.763-0.096i [28] 13.406-0.0388i [28] 

z 43.5 [46] 8.3 [48] 8.3 [48] 
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excitation. The frequency domain solution of the wave equation provides the phasor components 

of the electric E⃗⃗ (r ) and magnetic H⃗⃗ (r ) fields at each point (r ) in the computational domain. Their 

time-domain representations are calculated for the electric E⃗⃗ (r , t) and the magnetic H⃗⃗ (r , t) fields 

at each point. With these field components, we apply the Poynting theorem to obtain the time-

dependent power density P⃗⃗ (r , t) [60] and selected the maximum values over time Pmax(r ), which 

is the driving factor of the carrier generation rate G(r , t) in (2) and the source to the electric 

response of the device.  

P⃗⃗ (r , t) = E⃗⃗ (r , t) × H⃗⃗ (r , t) 

Pmax(r ) = max[P⃗⃗ (r , t)] 

(4) 

 The geometry for the solution of Maxwell’s Equations for this two-dimensional model is 

shown in Fig. 2.1(b), and it represents the cross-section of the 3D antenna geometry taken at the 

middle of the antenna gap. The thickness of the hBN layer for this model changed to 150 nm, the 

black phosphorus layer was modeled with a thickness of 40 nm according to the calculations 

presented in [26]. The SiO2 layer has a thickness of 300 nm shown in light green, and the silicon 

substrate is simulated as half space by positioning the absorbing scattering boundary conditions 

right below a 0.5 μm thickness of the silicon. The height of the air space shown in Fig. 2.1(b) is of 

1.5 μm. The size of the antenna gap is 4 μm as obtained from the previous section. This model 

study also covered the optical response of a LT-GaAs PCAs in a conventional configuration as 

shown in Fig. 2.1(a) with a 1.5µm half-space of air and 0.5 µm half-space of LT-GaAs. The spatial 

discretization is wavelength-dependent with a factor of one tenth of the wavelength in the material 

for each layer in the device. Although two wavelengths were applied in the solution of this two-

dimensional model, the discretization was produced at 780 nm for both cases to guarantee a 
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sufficient resolution in the nano-layers. The boundary conditions applied in this part of the model 

were absorbing scattering boundary conditions with the source applied in the top boundary.  

 The purpose of this model is to compute the optical response of the devices at two laser 

wavelengths and multiple average laser power for the photoresponsivity modeling of the BP PCA 

emitter. The results of this part of model are shown in Fig. 2.4, where the maximum power density 

is calculated from the electric and magnetic field components for the BP PCA device at two laser 

wavelengths (780 nm and 1560 nm) and the LT-GaAs device at 780 nm. The laser propagation 

pattern in these plots demonstrate the difference in wavelength that was used as a light source, 

where Fig. 2.4 (a) and (c) shows a shorter wavelength in the propagation compared to the 

propagating wave in Fig. 2.4(b) for 1560 nm. These plots shows the profile of the power flux 

 

Fig. 2.4.  2D Solution of Maxwell’s Equations for the BP PCA at two laser wavelengths and 

the LT-GaAs PCA at 780 nm. (a) BP PCA optical response at 𝜆 = 780 nm, (b) BP PCA optical 

response at 𝜆 = 1560 nm, (c) LT-GaAs optical response at 𝜆 = 780 nm. All dimensions are given 

in μm.  



28 
 

density data that is applied to the electrical response of the model. Upon comparing these three 

plots at the center position at 10 nm below the surface of the semiconductor material, the 1560 nm 

case shows a higher power flux density of 2.182 × 108 W/m2. Then, the results obtained with a 

780 nm source for BP and LT-GaAs showed a comparable power flux density with 

2.012 × 108 W/m2 and 2.016 × 108 W/m2, respectively. This comparison is important to analyze 

the electrical response solution between devices considering that any slight change in the power flux 

density results in a larger variation in the generation of carriers and so the photocurrent density.  

2.2 Semiconductor Module   

The electrical response of the PCA emitter consist of the generation of the carriers due to the 

femtosecond laser excitation and their acceleration from the application of a bias voltage at their 

electrodes. The semiconductor module solves the coupled Poisson’s and drift-diffusion equations 

to solve for the time- and spatial dependent electric potential and the carrier concentration [61]. 

From the solution of these unknowns, we can obtain a time-dependent photocurrent current 

density, where the carrier generation expression accounts for the femtosecond laser Gaussian 

envelope as [21]: 

G(r , t) =
4π κ Pmax(r )

hc
exp(4ln(0.5)

(t − t0)
2

Dt
2 ) (5) 

 In this equation, Pmax(r ) is the maximum power density obtained from the Maxwell’s 

equations solution in the optical response, and κ is the extinction coefficient of the semiconductor 

material. In the case of the BP PCA solution, we assume that the BP material is isotropic by using 

the extinction coefficient of BP in the x-direction where the laser excitation was considered in the 

armchair direction (x-direction), which was larger than the extinction coefficient in the zig-zag 

direction by a factor of 17.2 [28]. This extinction coefficient can be calculated from the complex 
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relative permittivity of the semiconductor material provided in Table 4. Moreover, h represents the 

Plank’s constant, and c stands for the speed of light in free space. The femtosecond pulse width Dt 

was applied based on the laser parameters defined on Table 3 as well as the center location in time 

of the laser pulse t0. The recombination of the carriers was based on the Shockley-Read-Hall mode 

[62], which accounts for the photocarrier lifetime.  

Since the simulations performed with this 2D model are generated at a constant room 

temperature (T=300 K), the current density provided by the semiconductor module is defined only 

by the addition of the drift and diffusion components of the current as [61]: 

J n,p(r , t) = J n.p
Drift(r , t) + J n.p

Diffusion(r , t) (6) 

where Eq. 7 shows the calculations of the three current density components in the same order listed 

in Eq. 6 given as:  

J n,p(r , t) = (μn,p∇Ec,v)m(r , t) ± μn,pkB𝑇F(
m(r , t)

Nc,v
)∇m(r , t) (7) 

where  m(r , t) stands for the carrier concentration of electrons n(r , t) and holes p(r , t) for the 

calculation of J n(r , t) and J p(r , t) respectively. Ec,v represents the conduction and valance band, 

kB is the Boltzmann constant, T represents the lattice temperature of the semiconductor, and  F is 

the Fermi function dependent on the carrier concentration and the density of states for the 

conduction and valance band Nc,v. The parameter Dth(n,p) represents the thermal diffusion 

coefficient, and μn,p represents the mobility for the electrons and holes [61]. 

For this solution, we only considered the semiconductor layer, and Table 5 provides the 

semiconductor properties for all the parameters defined in the equations for the electrical response 

for both BP and LT-GaAs. The model geometry configuration for the electrical response of the 

model is the same as the optical response for BP and LT-GaAs shown in Fig. 2.1(b) and Fig. 2.2(a), 
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respectively. The doping concentration profile was modeled as acceptors for BP and donors for 

LT-GaAs. The BP carrier lifetime has been reported as an optical excitation wavelength dependent 

property [34], so the values of the carrier lifetime are provided in Table 5 for both 780 nm and 

1560 nm excitation. The boundary conditions were set as ohmic contacts for the electrode-to-

semiconductor interface, and the rest of the boundaries were considered as insulating boundary 

conditions. The spatial discretization was set with the same size as of the solution of Maxwell’s 

equations for BP to guarantee the sufficient resolution in the nano-layer.  

2.2.1 Effect of the bias electric field dependence of the carrier mobility 

 In the solution of the semiconductor response of the model, the mobility was considered 

dependent on the bias electric field by the application of the Caughey-Thomas mobility model as 

shown in Eq. 8 [67]. Where μin is the input carrier mobility at low electric fields, E is the electric 

field between the electrodes, αn,p is a fitting parameter, and vsat,n,p accounts for the carrier 

saturation velocity. The saturation velocity of the electrons and holes for the application of this 

Table 5. Material Properties for 2D Semiconductor Response Solution 

Parameter Symbol Units Black Phosphorus LT-GaAs 

Doping Profile 𝑁𝐴|𝐷 1/cm3 2 ∗ 1015 [46] 1 ∗ 1015 [21] 

Electron Mobility 𝜇𝑛 cm2/V. s 1500 [31] 8000 [21] 

Hole Mobility 𝜇𝑝 cm2/V. s 5000 [32] 470 [21] 

Bandgap 𝐸𝑔 V 0.3 [30] 1.424 [21] 

Electron Affinity 𝜒 V 4.4 [30] 4.07 [21] 

Electron Lifetime 𝜏𝑛 ps 
0.360ps – 780nm 

0.928ps – 1560nm 
[34] 0.3 [63] 

Hole Lifetime 𝜏𝑝 ps 
0.360ps – 780nm 

0.928ps – 1560nm 
[34] 0.4 [63] 

Electron Saturation Velocity 𝑣𝑛,𝑠𝑎𝑡  cm/s 1.0 ∗ 107 [64] 0.72 ∗ 107 [65] 

Hole Saturation Velocity 𝑣𝑝,𝑠𝑎𝑡 cm/s 1.2 ∗ 107 [64] 0.90 ∗ 107 [65] 

Effective Density of States, 

Conduction Band 
𝑁𝐶  1/m3 5.933 ∗ 1025 [66] 2.18 ∗ 1023 [21] 

Effective Density of States, 

Valence Band 
𝑁𝑉 1/m3 1.052 ∗ 1023 [66] 5.43 ∗ 1024 [21] 
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model is specified in Table 5, and the model fitting parameter value of αn,p = 2 was assigned to 

black phosphorus [64] as well as to LT-GaAs to develop a proper comparison. 

μn,p =
μinput

(1 + (
μinputE

vsat,n,p
⁄ )

𝛂𝐧,𝐩

)
1 𝛂𝐧,𝐩⁄

 
(8) 

 The electric field dependence of the carrier mobility represents a significant phenomenon that 

influences the performance of photoconductive antennas. Therefore, it is important to investigate 

its effect on the photocurrent density. For this purpose, we performed a bias voltage sweep of the 

BP PCA by changing the bias voltage at a constant mobility without applying the electric field 

dependence. The photocurrent density was collected at the middle of the gap while the voltage was 

varied from 25mV to 30V even though the BP material cannot handle such high voltages. Figure 

2.5(a) shows the photocurrent density results for each bias voltage. From these results, the peaks 

of the photocurrent density plots were obtained to measure the response of the device to the 

variation of the bias voltage shown in Fig. 2.5(b). This study displayed a constant increase in the 

peaks of the photocurrent density as the bias voltage increased.  

 The same bias voltage sweep was also applied to the model at variable mobility throughout 

the semiconductor. In this case, the carrier mobility was modeled as electric field dependent by the 

application of the Caughey-Thomas mobility model. The plot in Fig. 2.5(c) demonstrate the 

photocurrent density plots at each bias voltage from 25mW to 30V, and Fig. 2.5(d) shows the peak 

of the photocurrent density from the plots in Fig. 2.5(b). We can see that the peaks of the 

photocurrent density presents a saturation behavior with the increase in the bias voltage and the 

application of a field dependent mobility. We can compare this behavior of the peak of the 

photocurrent density for both the constant and the variable mobility. It is clear that the application 

of a field dependent mobility with the Caughey-Thomas model provided a saturation behavior over 
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bias voltage while this effect was not experienced with the constant mobility case. This explains 

the importance of modeling the bias electric field dependence of the mobility not to overestimate 

the performance of PCAs. 

2.2.2 Modeling the average power dependent photoconductivity of the black 

phosphorus photoconductive antenna 

 It is important to analyze the conductivity of the semiconductor material because this property 

may affect the optical absorption of the laser excitation as well as the propagation of the generated 

terahertz signal. The photoconductivity of the BP PCA represents the conductivity of the 

semiconductor material when exited by the laser source. It was calculated from the I-V relationship 

 

Fig. 2.5.  Bias voltage sweep study of the effect of the electric field dependence mobility on the 

photocurrent density. (a) Photocurrent density at several bias voltages and (b) Peak of the 

photocurrent densities over bias voltage at constant mobility, (c) Photocurrent density at several 

bias voltages and (d) Peak of the photocurrent densities over bias voltage at variable mobility. 
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between the photocurrent densities produced at several bias voltages. The electrical response of 

the model was solved at bias voltages of -1 V, -0.5 V, 0.5 V, and 1 V at two wavelengths (780 nm 

and 1560 nm) obtaining curves resembling the photocurrent density profiles shown in Fig. 2.6 for 

each bias voltage. For instance, the curves shown in Fig. 2.6 were produced at a bias voltage of 1 

V and an average laser power of 1000 μW. The result of this part of the model correspond to the 

photocurrent density generated in the BP PCA due to the application of the femtosecond laser 

source. This photocurrent density result was obtained at 10 nm below the surface of the BP layer 

for two laser wavelengths (780nm and 1560 nm) at 1000 µW average laser power and 1 V bias 

voltage. From this picture, it can be noticed that the photocurrent density obtained at 1560 nm is 

larger than the photocurrent density at 780 nm. This is produced by the maximum power flux 

density difference between the two wavelengths excitation with a larger value for the 1560-nm 

case.  

 From this plot in Fig. 2.6, the maximum photocurrent density with respect to time was 

recorded as the photocurrent density experienced at 1V. These maximum values for 780 nm and 

1560 nm represent the last two data points at 1 V in the plot shown in Fig. 3.3(d). This process 

 

Fig. 2.6.  2D Solution of photocurrent density from the electrical response for the BP PCA at 

two laser wavelengths.  



34 
 

was repeated for 0.5 V, -0.5 V, and -1 V to complete the 8 data points demonstrated in Fig. 3.3(d), 

which describes the I-V characteristic of the device at 1000 μW of average laser power. The plots 

in Fig. 2.7(a), (b), and (c) show the same I-V characteristic for 200 μW, 430 μW, and 800 μW, 

respectively.  

 

Fig. 2.7. Photocurrent density simulations to generate photoconductivity results at several 

average laser power at 780 nm and 1560 nm wavelengths. Maximum photocurrent density at 

several bias voltages for (a) 200 μW, (b) 430 μW, (c) 800 μW, and (d)1000 μW. (e) Average 

laser power dependence of the photoconductivity.  
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These curves developed at several average laser power allowed the calculation of the 

photoconductivity of the BP PCA. From each of these plots, the slope of the lines between ±0.5 V 

was computed to deliver a quantity related to the photoconductivity of the device in units of S/m2. 

This slope was multiplied by the cross-sectional area of the BP material at the gap of the antenna 

(40nm × 5 μm), obtaining the total conductance of the transmission line (BP layer). Then, this 

conductance was divided by the length of gap of the antenna (4µm) to get the photoconductivity 

at the gap of the BP PCA emitter. This calculation was repeated for several average laser power 

excitation to provide the average laser power dependence of the photoconductivity. This 

dependence is shown in Fig. 2.7(e), where we demonstrated an increasing trend of the 

photoconductivity of the device as the average power of the laser source increases for both 

wavelengths. This increasing trend can also be observed by comparing the plots shown in Fig. 

2.7(a), (b), (c), and (d), where it is noticeable that the slope of the photocurrent density within the 

±0.5 V range increases as the power increases. Furthermore, the 1560 nm wavelength provided a 

larger photoconductivity compared to the values obtained at 780 nm, but the increasing trend was 

common for both wavelengths. The results presented in this section are in agreement with the 

measurements obtained with a fabricated BP PCA device presented in [26], in which an increasing 

trend of the photoconductivity of the device with respect to the average laser power excitation was 

experienced at both wavelengths.  

2.2.3 Modeling the time-dependent photoconductivity of the black phosphorus 

photoconductive antenna 

 As demonstrated in the previous section, the photoconductivity of the semiconductor in a PCA 

emitter changes depending on the power level of the laser source. However, the type of the laser 

used for the terahertz generation is a femtosecond pulsed laser, in which the laser power is 
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distributed in a pulse over time. In this way, it is necessary to investigate the variation of the 

photoconductivity over time as well.  From literature review, two approaches were found to model 

the time-dependent conductivity of the semiconductor material. Both approaches depend on the 

carrier concentration and mobility in the semiconductor material. Approach 1 is based on spatial 

and temporal solution of the mobility and carrier concentration obtained from the electrical 

response solution of the PCA device, and Approach 2 provides an analytic calculation of the 

temporal carrier concentration of the PCA device.  

2.2.3.1 Approach 1: Electrical Response Solution 

 The conductivity of a semiconductor material is defined by the carrier mobility and carrier 

concentration, which can be influenced by the doping concentration of the semiconductor [62]. 

This dependence is shown in Eq. 9, which accounts for both electrons and holes. In this equation, 

q represents the elementary charge, n and p are the carrier concentrations of electrons and holes, 

respectively. μn and μp are the mobility of electrons and hole, respectively.  

σ = q(nμn + pμp) (9) 

σ(t) = q (n(t)μn(t) + p(t)μp(t)) (10) 

 When a laser source is applied to the semiconductor material, some carriers are generated, 

which increases the carrier concentration of the material. This increase in the carrier concentration 

due to the photocarriers is referred to as photoconductivity, which represents the change in the 

conductivity when a laser source is applied [62]. The increase in the carrier concentration depends 

on the carrier generation rate, which involves the time profile of the laser pulse. In this way, the 

carrier concentration is time-dependent under the excitation of a laser pulse. This time-dependent 

carrier concentration induces a time-dependency on the photoconductivity of the material as shown 
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in Eq. 10, where n(t) and p(t) represent the change in the carrier concentration due to the 

application of the femtosecond laser source. As explained earlier, the mobility is dependent on the 

bias electric field, which is calculated based on the electric potential. The electric potential also 

depends on the carrier concentration by the definition of Poisson’s equation, which makes the bias 

electric field time-dependent, and so the mobility. In this way, Eq. 10 describes a time-dependent 

photoconductivity based on the variation of the carrier concentration and carrier mobility with 

respect to time. 

 Approach 1 takes the time-dependent carrier concentration and mobility for both electrons 

and holes from the semiconductor solution of the model to calculate the photoconductivity of the 

material. The time dependency of these parameters is shown in Fig. 2.8(a) and (b). It is important 

to mention that the semiconductor solution provides both the spatial and temporal carrier 

concentration and mobility; however, this study is focused on the temporal variation of the 

photoconductivity. Therefore, the parameters used in this part of the work represents the carrier 

concentration and mobility at a single point in the semiconductor substrate, which is located at 10 

nm below the surface of the semiconductor material at the center of the gap. This study was applied 

to the BP PCA with the model configuration geometry shown in Fig. 2.1(b) with the dimensions 

described in the previous section 2.2.2 for the calculation of the photoconductivity over average 

laser power. An average laser power of 1 mW at 780 nm and a bias voltage of 1 V were applied 

for the calculation presented in this study. The results of this approach 1 to model the 

photoconductivity of the BP material in a PCA configuration is shown in Fig. 2.8(c), where the 

shape of the photocarriers shown in Fig. 2.8(a) determines the shape of the time profile of the 

photoconductivity. This plot in Fig. 2.8(c) represents an increase in the conductivity of the material 
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by ~18.5 S/m at the maximum peak of the generation of carriers under the illumination of a 

femtosecond laser source.  

2.2.3.2 Approach 2: Analytic Calculation 

 Approach 2 of the modeling of the photoconductivity is based on the calculation of the surface 

conductivity at the gap of the PCA emitter [68]. This approach also depends on the carrier 

concentration, but it applies an analytic calculation of the photocarriers based on Eq. 11, where q 

is the elementary charge, R is the reflectivity of the BP material. h is represents Planks constant, 

and v represents the frequency of the light source. μ(t) and I(t) are the carrier mobility and 

 

Fig. 2.8.  (a) Time-dependent carrier concentration for holes and electrons. (b) Carrier mobility 

for holes an electrons. These parameters are obtained from the model used in section 2.2.2 at a 

laser power of 1 mW and bias voltage of 1 V at 780 nm. (c) Time-dependent photoconductivity 

calculated from Approach 1. 
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intensity of the laser pulse with respect to time, and τc accounts for the carrier lifetime [68]. The 

time profile of the intensity of the laser is also provided with I0 being the maximum intensity of 

the laser, t0 is the temporal center location, and Dt is the femtosecond laser pulse width.  

σs(t) =
q(1 − R)

hv
∫ μ(t − t′)I(t′) exp (

−(t − t′)

τc
)dt′

t

−∞

 (11) 

I(t′) = I0 exp (4 ln(0.5) (
t′ − t0

Dt
)

2

)  

 For the implementation of this approach, the mobility was assumed to be constant with respect 

to time as [69]. This simplifies Eq. 11, and it gives the expression below to be integrated over time: 

σs(t) =
qμ(1 − R)I0

hv
∫ exp(4 ln(0.5) (

t′ − t0
Dt

)

2

)exp (
−(t − t′)

τc
)dt′

t

−∞

  

 By applying integration tables [70] and verifying the process with the symbolic integration in 

MATLAB, the expression above was integrated to provide an equation for the calculation of the 

surface conductivity as Eq. 12 below. The values of the parameters involved in this expression are 

provided in Table 6 for a case based on black phosphorus.   

 

σs(t) =
I0qμ(1 − R)
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The balance of the units of Eq. 12 showed that the resulting unit of this equation is Siemens 

(S), which agrees with the concept of surface conductivity provided by Eq. 11. However, it is 

desired to express the photoconductivity as a volume conductivity in terms of Siemens per meter 

(S/m). For this purpose, the surface conductivity is transformed to volume conductivity by dividing 

its value by the thickness of the BP layer (d) as Eq. 13 to obtain units of S/m [71].  

σ(t) = σs(t)/d (13) 

 The result of this approach is shown in Fig. 2.9(a), which represents the calculation of the 

photoconductivity of a semiconductor material under the application of a femtosecond laser 

excitation based on Eq. 12 for a time duration of 5 ps. This result showed a photoconductivity 

increase of ~ 10 S/m with the excitation of the femtosecond laser source due to the generation of 

photocarriers. If we compare these results with the results obtained from the approach 1 as shown 

in Fig. 2.9(b), it is noticeable that Approach 1 reported values twice higher than the 

photoconductivity obtained from Approach 2. This could be caused by the fact that the 

photoconductivity reported by Approach 1 in Eq. 10 accounted for both the electrons and holes 

while the expression obtained for Approach 2 from Eq. 11 only applied the properties of the 

electrons in the material. In addition, Approach 1 applied the mobility obtained from the Caughey-

Table 6. Parameters for the Calculation of the Surface Conductivity – Approach 2.  

Parameter Symbol Value 

Electron mobility μ 1500 cm2/V. s [31] 

Average power PAve 1 mW  

Maximum laser intensity I0 7.958 × 107 W/m2  

Reflectivity of the material at 780 nm R 0.3624 [28] 

Laser frequency at 780 nm v 3.846 ∗ 1014 Hz  

HPBW – x direction Dx 2 µm  

Pulse width – time Dt 100 fs  

Pulse center location in time t0 0.6 ps  

Carrier lifetime at 780 nm τc 0.36 ps [34] 
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Thomas mobility model while Approach 2 used a constant mobility value. Furthermore, another 

difference between these approaches is the spatial distribution of this photoconductivity 

conductivity. In Approach 1, the photoconductivity was based on the carrier concentration, which 

depends on the carrier generation rate. This means that the spatial distribution will not be constant 

over the semiconductor layer with its maximum value focused at the gap of the PCA where the 

laser is focused. However, Approach 2 provided only a temporal variation of the 

photoconductivity, which means that its value is constant over the semiconductor layer. Both 

Approach 1 and Approach 2 provided time-dependent photoconductivity calculations that can 

contribute by including its effect in the model.  

 The initial idea of the photoconductivity increasing with application of the femtosecond laser 

pulse was related to the impact that it may cause in the interaction of the laser excitation with the 

semiconductor substrate. However, with the results obtained with both approaches, it is necessary 

to analyze which phenomenon may be impacted by this photoconductivity increase. As shown in 

Fig. 2.8(c) and Fig. 2.9(a), the photoconductivity increase occurs in the same picosecond time 

scale compared to the femtosecond laser envelope. If we obtain the frequency-domain behavior of 

the photoconductivity results shown in Fig. 2.8(c) for Approach 1, one obtain the plot 

 

Fig. 2.9. (a) Approach 2: Time-dependent photoconductivity calculated from an analytic 

calculation of the photocarriers. (b) Photoconductivity comparrison between Approach 1 and 

Approach 2.  
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demonstrated in Fig. 2.10, where the normalize photoconductivity lays on the terahertz frequency 

band. This means that the photoconductivity increase should influence the propagation of the 

generated signal out of the device instead of the propagation of the incident laser source into the 

semiconductor material. However, the wavelength at terahertz frequencies is much larger than the 

thickness of BP material. Therefore, these layers may not interact with the propagation of the 

generated terahertz signal, so these layers are not considered in the model for the terahertz signal 

generation as explained in the next section.  

2.3 Transient RF Module  

This part of the model consist of using the photocurrent density profile obtained from the 

semiconductor module as input to the transient RF module. This study was used to compare the 

THz signal generation of the BP PCA emitter at both 780 nm and 1560 nm wavelengths with the 

modeled LT-GaAs emitter. In order to achieve a direct comparison between devices, the 

photocurrent density of the three models were obtained at the same 1V bias voltage. However, it 

is known that the LT-GaAs devices work at a much higher bias voltage, so another case was 

developed for the LT-GaAs emitter at 30V bias voltage. The transient RF COMSOL module was 

 

Fig. 2.10. Frequency-domain photoconductivity of the BP material obtained from Approach 1 

in Fig. 2.8(c)  
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used to obtain a transient solution of Maxwell’s equation to calculate the THz generation signal as 

Eq. 14 [72].  

ETHz(r , t) = −
μ0

4π

∂

∂t
∫

J s(r ,   t − (|r − r ′|/c))

|r − r ′|
ds` (14) 

where  μ0 is the magnetic permeability of free space,  |r − r ′| is the distance between the source 

and the field points, and ds` is the increment of the surface area at a displacement r ′ from the 

source. Since the antenna geometry defines the generation of the Terahertz pulse, the complete 

size of the device was modeled for the generation of the THz signal [73]. The modeling domain is 

shown in Fig. 2.11 (a), where only one quarter of the antenna geometry is modeled. It consists of 

half space of air on the top layer (gray) with half space of silicon in the bottom layer (green) with 

a size of 500 μm x 500 μm size in the x and y directions. The inset in Fig. 2.11(a) shows one 

quarter of the electrode geometry applied to this model, which is a bowtie geometry. The 

dimensions are of the antenna are shown in the inset table of Fig. 2.11(a) This is possible due to 

the application of the perfect electric (PEC) and perfect magnetic (PMC) boundary conditions, 

which contribute to exploit the symmetry of the model [22]. The hBN, BP, and SiO2 layers were 

 

 
 

Fig. 2.11. (a) Modeling geometry configuration for the THz signal generation, (b) Surface 

current density as excitation at the gap of the antenna with BP PCA emitter with bias voltage 

of 1 V at both 780 nm and 1560 nm wavelengths and a LT-GaAs PCA emitter with bias voltage 

of 1 V and 30 V at 780 nm 



44 
 

not considered in this model because their thickness in nanometers is negligible to the wavelength 

at THz frequencies. Furthermore, the complex relative permittivity considered in this part of the 

model was 11.53-0.0047i for the silicon substrate, which was measured at the University of 

Arkansas Terahertz Lab with the TPS Spectra3000 system at a frequency range of 0.1-3.5 THz. 

Mrs. Nagma Vohra (Ph.D. Candidate) performed these measurements, and they are in agreement 

with [74]. The excitation to the transient RF module consisted of a surface current density at the 

gap of the antenna. The volume current density J n,p(r , t) A/m2 in (7) was multiplied by the cross-

sectional area of the BP layer (40nm × 5µm) and then divided by the width of the electrodes (5µm)  

to obtain surface current density J s(r , t) A/m in the gap, which is shown in Fig. 2.11(b). Figure 

2.11(b) shows the surface current density profiles for the BP PCA at both 780 nm and 1560 nm as 

well as the LT-GaAs PCA at a bias voltage of 1 V and 30 V [26].  

The modeled THz signal generation of the proposed BP PCA at both 780 nm and 1560 nm 

laser source was compared against the modeled performance of a LT-GaAs PCA device. For this 

purpose, the surface photocurrent density profiles are provided in Fig. 2.11(b) for both the 780 nm 

and 1560 nm excitation, which serve as sources to the transient RF module for the radiated electric 

field calculation. The electrical response of a LT-GaAs was also solved at two bias voltages of 1 

V to have a comparable basis with the BP cases and 30 V due to the normal bias voltages conditions 

of LT-GaAs devices. The results shown in Fig. 2.11(b) demonstrate a lower photocurrent density 

obtained with the LT-GaAs at both bias voltages device compared to the modeled BP PCA at both 

laser wavelengths. The maximum power density is lower in the semiconductor layer for LT-GaAs 

compared to the BP cases, which contributes to these lower current densities besides the lower 

hole mobility experienced by the LT-GaAs material. This comparison was also developed for the 

time-domain generated THz pulse and its frequency domain spectra shown in Fig. 2.12(a) and (b), 
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respectively. The direction of the surface current density flow is shown in the inset in Fig. 2.12(a). 

By considering the results in Fig.2.12(a), the THz signal emitted by the BP device was ~ 78.8 % 

higher than that of the conventional LT-GaAs PCA at a bias voltage of 1 V and ~ 55.6 % when the 

LT-GaAs device bias voltage was increased to 30 V at 780 nm. In addition, the signal increase 

was ~ 86.5 % at a bias voltage of 1 V and ~ 71.7 % when the LT-GaAs device bias voltage was 

increased to 30 V at 1560 nm. In terms of the frequency-domain spectra in Fig. 2.12(b), the plots 

showed a similar performance. The spectra of the THz signals at lower frequencies around 0.1 

THz was different showing a flatter behavior for the BP at 1560 nm case compared to the BP at 

780 nm and the LT-GaAs cases. This is produced by the tail of the photocurrent density used as 

excitation, which influence the behavior of the signal at lower frequencies. If the photocurrent 

profile presents a longer tail caused by a longer carrier lifetime, the spectra of the generated signal 

is higher at lower frequencies. This behavior is studied in details in the following chapter.  

 

 

 

 
 

Fig. 2.12. Computational results of the THz signal generation with BP PCA emitter with bias 

voltage of 1 V at both 780 nm and 1560 nm wavelengths and a LT-GaAs PCA emitter with bias 

voltage of 1 V and 30 V at 780 nm (a) time-domain and (b) frequency-domain representation 

of the generated THz electric field. 
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CHAPTER 3: Three-Dimensional Model of the THz Black Phosphorus Photoconductive 

Antenna using COMSOL Multiphysics 

It is important to understand that the implementation of a 3D model of a PCA provides several 

advantages compared to a model in two dimensions. It allows the modeling the actual geometry 

of the electrodes as well as the application and analysis of the Gaussian distribution of the incident 

laser beam and the generation of carriers. This section presents the 3D modeling of black 

phosphorus in a PCA considering its anisotropic optical response to the laser excitation, the effect 

of its high mobility and short carrier lifetime in the semiconductor solution, the impact of the 

temperature variation on the device performance, and the comparison of the modeled THz pulse 

generation against a reference commercial LT-GaAs emitter. A variety of platforms was used to 

solve the 3D version of the model due to its intensive computational requirements. The most 

computationally expensive case was necessary for the frequency-domain RF module solution, and 

it was executed on XSEDE supercomputer, where more than 313 million unknowns were solved 

for requiring ~ 3.3 TB RAM and ~ 25 hours CPU time. The solutions of the semiconductor module, 

the THz signal generation, and the temperature variation in the device were executed on COMSOL 

modules on local platforms as summarized in Table 11.  In addition, the carrier-phonon-interaction 

was also studied using a separate model reported in [75] [76], which calculated the temperature of 

the electrons and phonon groups due to the application of a femtosecond laser excitation.  

Several computational domain sizes and geometry configurations were simulated using 

different modules of COMSOL as discussed earlier, and different platforms were used in the 

simulations. All these cases are summarized in Table 11. Each response of the model requires 

different meshing accuracy in space and time, with the solution of Maxwell’s equations represent 

the highest requirement in space meshing as observed in Table 11. For the electrical response, one 
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must be careful about the time domain discretization to capture all information in the carrier 

generation pulse; otherwise, convergence problems arise. For this purpose, a non-uniform time 

discretization was used with a higher resolution around the peak of the of the femtosecond laser 

pulse to account for the ultrafast response. It is important to clarify that the results produced with 

the 3D model in this section were obtained for a single laser frequency of 780 nm for the BP PCA 

device.  

3.1 Frequency-Domain RF Module 

 In the same way as the 2D model, the 3D version of the frequency domain RF module was 

used to model the incident laser excitation, and its interaction with the multilayer BP PCA. The 

purpose of solving a 3D geometry model of the optical response of the device correspond to 

eliminating some of the assumptions made for the 2D model. For instance, for the model in two 

 
 

Fig. 3.1. Three-dimensional model configuration for the solution of the frequency-domain RF 

module. (a) Complete geometry of the antenna close to the gap showing the BP/hBN layer and 

part of the electrodes. (b) Actual model geometry used for the solution of the RF module. The 

shaded area in gray represents the active area of the device, and the dashed red square represents 

one quarter of the active area for the RF module solution.  
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dimensions, the laser distribution in the y-direction was considered as infinite, while this 3D model 

considers the Gaussian distribution of the laser in the y-direction. Furthermore, a 3D model allows 

the inclusion of the bowtie geometry of the electrodes in the modeling of the interaction of the 

laser excitation with the BP PCA, while this shape could not be included in the previous 2D 

version. The geometry configuration of the BP PCA is shown in Fig. 3.1(a). The hBN layer for 

this model was set to a thickness of 150 nm, and the black phosphorus layer was modeled with a 

thickness of 40 nm. The thickness of the black phosphorus and hBN layer were selected to 

maximize the optical power  absorption within the BP layer based on the work reported in [26]. 

The SiO2 layer has a thickness of 300 nm shown in light green, and the Silicon substrate is 

simulated as half space by positioning the absorbing scattering boundary conditions right below a 

0.5 μm thickness of the Silicon. The height of the air space shown in Fig. 3.1(b) is of 1.5 μm with 

the source at the top boundary, and all other boundaries are set to absorbing scattering boundary 

conditions. The length of the antenna gap is 4 μm in the x-direction by a width of 5 μm in the y-

direction, and part of the antenna electrodes were also considered in this model as a 5/60 nm layer 

of Cr/Au. Since the optical wavelength involved in the laser excitation compared to the size of the 

antenna represents a multi-scale problem, the 3D simulation of the complete geometry of a 

photoconductive antenna becomes computationally intensive. In fact, the discretization of this part 

of the model was considered as wavelength dependent with a ratio of 
𝜆

10
 with the wavelength 

calculated based on the properties of each material. In order to minimize the computational cost of 

solving the optical response of the complete antenna geometry, only the active area of the 

photoconductive antenna was modeled as shown by the shaded square in Fig. 3.1(a). This model 

reduction technique was reported in [73] for a photomixer. Moreover, with the x-polarized laser 

excitation focused on the center of the antenna gap, the symmetry of the computational problem 
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was exploited by applying a perfect electric (PEC) boundary condition parallel to the y-axis and a 

perfect magnetic (PMC) boundary condition along the x-axis. This technique reduces the modeling 

domain of the optical response of the BP PCA to one quarter of the complete geometry as shown 

in Fig. 3.1(b).  

 The excitation of the frequency-domain solution of the RF model was modeled as a plane 

wave modulated by a Gaussian envelope in both x- and y-directions as shown in Eq. 15 [29]. The 

amplitude of the incident electric field is derived from the average power of a train of laser pulses. 

(See Appendix B). The description of the parameters of this equation resemble the ones applied in 

the 2D model in Eq. 3, where Pave represents the average power of the laser, ηo is the free space 

impedance, Dx and Dy represents the half power beam width of the laser excitation in both x- and 

y-direction, respectively. x0 and y0 are the center locations of the laser pulse in x- and y-direction, 

respectively. The parameters of the femtosecond laser excitation modeled in the 3D version of the 

BP PCA model are provided in Table 7, and the properties of the materials involved in the solution 

of the frequency-domain RF module are shown in Table 8 at 780 nm, which includes the 

anisotropic behavior of black phosphorus for its conductivity and complex relative permittivity. 

E⃗⃗ inc = x̂√
4ηoPave

πDx
2

exp (4 ln(0.5)
(x − x0)

2

Dx
2 )exp (4 ln(0.5)

(y − 𝑦0)
2

D𝑦
2 ) (15) 

Table 7. Parameters of the Modeled Femtosecond Laser Source 

Parameter Symbol Value 

Laser wavelength λ 780 nm 

Average power PAve 0-1 mW 

Pulse x-axis center location x0 0 µm 

Pulse y-axis center location y0 0 µm 

Pulse center location in time t0 0.6 ps 

HPBW – x direction Dx 2 µm 

HPBW – y direction Dy 2 µm 

Pulse width – time Dt 100 fs 

 

 

 



50 
 

 3.1.1. Required Memory Estimation for the Optical Response 

As mentioned, the three-dimensional solution of Maxwell’s equation represents an extensive 

problem due to the multi-scale nature of the BP PCA device as well as the required wavelength 

dependency of the discretization. Therefore, it is necessary to identify how much memory and 

solution time is required to solve a particular simulation. To estimate the required RAM and CPU 

time, we developed a regression analysis model based on the optical response solution of four 

cases of different computational domains size. This estimation was based on a regression model 

given in Eq. 16 [77]. The modeling domain configuration resemble the one shown in Fig. 3.1(b) 

with the PEC and PMC boundary conditions  applied to exploit the symmetry of the problem. As 

mentioned, the application of these boundary conditions divides the antenna active area into four 

quadrants and allows the simulation of only one quarter of the actual geometry. This study 

consisted on increasing gradually the size of the computational domain for the frequency-domain 

solution of the optical response while monitoring the memory requirement and solution time as 

function of the number of unknowns or degrees of freedom (DOF). The size of the geometry 

configuration for the four cases used in this regression model are illustrated in Fig. 3.2. The 

 

Fig. 3.3. Optical response RAM memory and CPU time estimation. (a) Memory requirement 

and CPU time for the four cases considered in this study, (c) Convergence plot for the four 

cases shown in (a). These are Case 1, 2, 3, and 4 in Table 11.  

Table 8. Material Properties for 3D Optical Response Solution 

Symbol 𝝈 �̂� (780 nm) 

Description Conductivity Relative Permittivity 

Units S/m 1 

Au 2.892 ∗ 107 [50] -25.06-1.60i [50] 

Cr 7.752 ∗ 106 [51] -2.21-21.07i [52] 

SiO2 5 ∗ 10−14 [53] 2.38 [54] 

Si 4.348 ∗ 10−4 [55] 13.623-0.044i [56] 

LT-GaAs 1.1 ∗ 103 [57] 13.68-0.67i [57] 

hBN 1 ∗ 10−6 [58] 4.84 [59] 

BP 

x 250 [46] 16.0565-1.7283i [28] 

y 92.6 [46] 14.763-0.096i [28] 

z 43.5 [46] 8.3 [48] 
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smallest case ① has a quadrant active area with the antenna gap size of 2.0μm × 2.0μm and one-

half electrode of size 0.5μm × 2.0μm as shown in Fig. 3.2(a). For case ② in Fig. 3.2(b), it was 

considered a quadrant active area with the antenna gap size of 2.0μm × 2.5μm and one-half 

electrode of size 0.5μm × 2.5μm. Figure 3.2(c) shows Case ③, which applied a model size with 

a gap of 2.0μm × 2.5μm and half of the electrode with a size of 1.0μm × 2.5μm. Case ④ with 

a quadrant active area of 2.0μm × 2.5μm for the gap size and a trapezoidal electrode with a width 

of 1.0μm and heitghts of 2.5μm and 3.17μm. This case ④ is displayed in Fig. 3.2 (d), and it 

represents the largest case in this study, which represents the modeling domain shown in Fig. 

3.1(b). The results of Fig. 3.3(a) demonstrate the required memory and the CPU solution time next 

to each data point, which is also summarized in Table 11. The case ① with around 39.2 million 

DOF required more than 288 Gigabytes of memory compared to case ④ with 75.1 million of DOF 

that required around 617 Gigabytes of memory. The dashed line in Fig. 3.3(a) represents the 

regression polynomial based model with three coefficients as [77]:  

f(x) = 0.02739x2 + 5.999x + 11.62 (16) 

where x is the number of DOF of the case expressed in millions. This polynomial was used to 

estimate the required memory to solve models with dimensions larger and smaller than the 

presented in this study. 

 

Fig. 3.2. Optical response model cases to estimate RAM memory and CPU time. (a) Case ①, 

(b) Case ②, (c) Case ③, (d) Case ④  
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Furthermore, based on our experience in this work, it is recommended to use iterative solvers, 

which has known to require less memory than the direct solvers. Here, we used the GMRES 

iterative solver in COMSOL with a multigrid preconditioner and a threshold error of 1 × 10−5. 

The convergence plot of this study is shown in Fig. 3.3(b). All cases converged after 11 iterations 

with different solution CPU times. The same discretization size was used in all four cases presented 

in Fig. 3.2. The computations of all these cases in this study were performed using 24 cores at the 

High Memory Nodes (768 GB) in the Pinnacle cluster at the Arkansas High Performance 

Computer Center (AHPCC), and further details are provided in Table 11.  

3.1.2. Three-Dimensional Results of the Optical Response 

Once there is an estimation of the memory and solution time requirements, the user can 

proceed with the solution of models of larger or smaller geometries depending on the needs. For 

instance, the results provided in Fig. 3.4 represents the solution of case ④ from the previous study. 

To obtain a better understanding of the computational cost of the solution of the frequency-domain 

RF module in three dimensions, Fig. 3.4(a) shows the discretization required for the solution of 

the optical response of the BP PCA emitter. As known, the computational solution of Maxwell’s 

 

Fig. 3.3. Optical response RAM memory and CPU time estimation. (a) Memory requirement 

and CPU time for the four cases considered in this study, (c) Convergence plot for the four 

cases shown in (a). These are Case 1, 2, 3, and 4 in Table 11. Adapted with permission from 

[29] © The Optical Society. 
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equations problem requires a high wavelength-dependent resolution for the discretization. In fact, 

the mesh size for this part of the model was defined as a free tetrahedral with one tenth of the 

wavelength in the material of each layer representing more than 11.8 million mesh elements for 

the case shown in Fig. 3.4(b) (see Table 11).  

The plot in Fig. 3.4(b) represents the electric field solution of the frequency-domain RF 

module for the mesh provided in Fig. 3.4(a), where its solution value is in agreement with the 

amplitude of the incident electric field calculated from Eq. 14. This electric field model solution 

represents one quarter of the complete geometry as shown by the dashed red square in Fig.3.4(c). 

This solution represents the frequency-domain phasor of the electric field component, which is 

 

Fig. 3.4.  (a) Meshing discretization for the solution of the frequency-domain RF module at 

𝜆/10 in the material. (b) Electric field solution for the computational domain discretization in 

(a) Maximum power density  Pmax(r ) at each point in the layered active area. All dimensions 

are given in μm. This is case 4 in Table 11. Adapted with permission from [29] © The Optical 

Society. 
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used along with the frequency-domain magnetic field component to calculate their time domain 

representation. These time-domain electric and magnetic field components contribute to the 

calculation of the maximum power density at each position r  in the modeling domain as described 

by Eq. 4 for the two-dimensional case.  

Pmax(r ) = max[E⃗⃗ (r , t) × H⃗⃗ (r , t)] (4) 

 This calculation is performed in only one quadrant as shown by the red dashed lines in Fig. 

3.4(c), which is extended to the other quadrants of the complete geometry by using the appropriate 

symmetry based on the boundary conditions PEC and PMC discussed earlier. A custom-made 

MATLAB code was developed for the calculation and filling of maximum power data in all 

quadrants, and this code is provided in Appendix D for completeness. The results of Fig. 3.4(c) 

show that a maximum power density of around 3 × 108 W/m2 in the air space, which is similar 

to the power density levels obtained with the 2D model in the previous chapter. This value agrees 

with the incident average laser power that was implemented in the excitation following the 

definition of the average peak power of a train of laser pulses. This solution is significantly 

important as it serves as the driving excitation for the photocurrent generation in the electrical 

response of the device.  

3.2 Semiconductor Module 

This part of the model solves the coupled Poisson and drift-diffusion equations to provide the 

photocurrent density produced by the device due to the excitation of a femtosecond laser pulse in 

a three-dimensional configuration model. The importance of this part of the model resides on 

including the shape of the electrodes in the photocurrent generation to investigate its effect 

compared to a 2D configuration as well as visualizing the spatial distribution of the photocarriers 

and photocurrent in the semiconductor layer. With this distribution, one can identify the locations 
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of higher currents in the semiconductor layer, which represents a valuable information for analysis 

of the performance of the device. The solution of the semiconductor module provides the spatial 

and temporal variation of the carrier concentration and the electric potential in the semiconductor 

layer. Based on these unknowns, the software calculates the drift and diffusion components as 

shown in Eq. 17, which represents the photocurrent when a laser source is used to excite the 

semiconductor [61].  

J n,p(r , t) = J n.p
Drift(r , t) + J n.p

Diffusion(r , t) + J n.p
Thermal(r , t) (17) 

 This 3D model was used to account for the temperature variation in the semiconductor layer 

due to phenomena involved in the BP PCA under working conditions, which will be explained 

further in this chapter [29]. This means that the temperature in the semiconductor layer may be 

different from room temperature, which implies a third term in the current density experienced by 

the device. This third thermal component generated by the temperature variation of the 

semiconductor layer is shown in Eq. 17, and its calculation is described in Eq. 18 along with the 

edescription of the drift and diffusion components as provided for the 2D model.   

J n,p(r , t) = (μn,p∇Ec,v)m(r , t) ± μn,pkB𝑇F(
m(r , t)

Nc,v
)∇m(r , t) ± (

qDth(n,p)

𝑇
∇𝑇)m(r , t) (18) 

where m(r , t) stands for the carrier concentration of electrons n(r , t) and holes p(r , t) for the 

calculation of J n(r , t) and J p(r , t) respectively. Ec,v represents the conduction and valance band, 

kB is the Boltzmann constant, T represents the lattice temperature of the semiconductor, and  F is 

the Fermi function dependent on the carrier concentration and the density of states for the 

conduction and valance band Nc,v. The parameter Dth(n,p) represents the thermal diffusion 

coefficient, and μn,p represents the mobility for the electrons and holes [61].  

 In the 3D solution of the semiconductor response of the model, the mobility was considered 
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dependent on the bias electric field by the application of the Caughey-Thomas mobility model as 

covered in the previous chapter [67]. The saturation velocity of the electrons and holes for the 

application of this model is specified in Table 9, and the model fitting parameter value was 2 for 

the black phosphorus [64]. When the temperature variation is considered in the model, the power 

law mobility model (μn,p
T = μin(T/Tref)

−βn,p) is added as input to the Caughey-Thomas mobility 

model to account for the temperature dependence of the mobility. The fitting parameter βn,p was 

used as 0.45 for electrons [31] and 2 for holes [32] for BP.  

For this solution, we only considered the semiconductor layer as shown by the dark gray in 

Fig.3.5, and Table 9 provides its semiconductor properties for all the parameters defined in the 

equations for the electrical response for both BP. The boundary conditions applied in 3D version 

of the model corresponds to ohmic contacts for the electrode-to-BP interface and insulating 

boundary conditions for all other boundaries. The initial conditions of this part of the model are 

critical for the convergence of the solution. For this purpose, the electrical response consisted in 

two studies. The first study was simulated to achieve good initial conditions for the actual time-

Table 9. Material Properties for 3D Semiconductor Response Solution 

Parameter Symbol Units Black Phosphorus 

Doping Profile 𝑁𝐴 1/cm3 2 ∗ 1015 [46] 

Electron Mobility 𝜇𝑛 cm2/V. s 1500 [31] 

Hole Mobility 𝜇𝑝 cm2/V. s 5000 [32] 

Bandgap 𝐸𝑔 V 0.3 [30] 

Electron Affinity 𝜒 V 4.4 [30] 

Electron Lifetime 𝜏𝑛 ps 0.360ps – 780nm [34] 

Hole Lifetime 𝜏𝑝 ps 0.360ps – 780nm [34] 

Electron Saturation Velocity 𝑣𝑛,𝑠𝑎𝑡  cm/s 1.0 ∗ 107 [64] 

Hole Saturation Velocity 𝑣𝑝,𝑠𝑎𝑡 cm/s 1.2 ∗ 107 [64] 

Effective Density of States, 

Conduction Band 
𝑁𝐶  1/m3 5.933 ∗ 1025 [66] 

Effective Density of States, 

Valence Band 
𝑁𝑉 1/m3 1.052 ∗ 1023 [66] 
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dependent solution of the BP PCA emitter, which represents the electrical response of the device. 

In the first study, the voltage was gradually increased from 0 V with an step voltage of 0.1 V until 

1 V, which is the desired working conditions. Then, the solution of this stationary study was used 

at 1V as initial conditions to the time-dependent solution. The spatial discretization was important 

in the convergence of the electrical response of the model. We applied a maximum spatial 

discretization of 0.1μm in the x- and y-directions while maintaining the same maximum 

discretization that was used in the optical response for the z-direction (𝜆/10).  Furthermore, as 

stated before, the time-discretization is crucial for the convergence of the solution because of the 

femtosecond pulse that represents an ultrafast switch on the generation of carriers. To overcome 

this convergence issue, we applied a non-uniform time discretization with a higher time-resolution 

around the peak of pulse. The time steps were applied as 0.05ps for the time range of 0ps to 0.5ps, 

0.01ps for the time range of 0.51ps to 1.0ps, and 0.05ps for the time range of 1.05ps to 5.0ps, 

which covers the time duration of all the photocurrent density results presented in this work.  

The maximum power density Pmax(r ) obtained from the optical response solution is the 

driving factor of the carrier generation rate in the semiconductor as defined in Eq. 5 for the 2D 

version of the model, which also applies for this 3D solution. The description of the parameters 

 

Fig. 3.5.  (a) 3D modeling domain for the semiconductor solution. Dimensions in µm. 
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involved in this equation is provided in the previous chapter, and it accounts for the femtosecond 

laser pulse.  

G(r , t) =
4π κ Pmax(r )

hc
exp(4ln(0.5)

(t − t0)
2

Dt
2 ) (5) 

3.2.1 Comparison of the Maxwell’s Equations Solution and the Analytic Approximation 

of the Carrier Generation Rate 

 Obtaining a solution for the laser beam interacting with the device represents an extensive 

problem as discussed in the previous section with the solution of the frequency-domain RF module. 

Researchers avoid this issue by using an analytic calculation that approximates the carriers 

generated in the semiconductor. This calculation is based on the incident intensity of the laser and 

the properties of the material including the quantum efficiency, calculated from the absorption 

capacity of the material [62]. This approach was applied in [63], where a photoconductive antenna 

was modeled for LT-GaAs with the drift-diffusion equations. They defined their carrier generation 

rate as follows:  

G𝑎𝑝𝑟(r , t) = W0ηQE(z)h(x, y)f(z, t) (19) 

where W0 = I0λα/hc represents the maximum carrier generation rate, which depends on the 

intensity of the incident laser beam (I0), the laser wavelength (λ), and the absorption coefficient of 

the material (α). In this equation (7), ηQE represents the quantum efficiency along the thickness of 

the semiconductor, and h(x, y) and f(z, t) defines a Gaussian profile distribution in both space and 

time.   

We present a comparison between using the carrier generation rate driven by the maximum 

power density obtained from the solution of Maxwell’s equations G(r , t) compared to the 

approximation of the generated carriers based on the intensity of the incident laser G𝑎𝑝𝑟(r , t).  For 
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the Maxwell’s equations solution approach, the incident laser pump was modeled by applying an 

incident electric field with a spatial Gaussian distribution as excitation to the model. Then, a 

temporal Gaussian profile was applied to the carrier generation term to account for the 

femtosecond laser pulse width as Eq. 5 [21]. On the contrary, for the approximation approach 

defined by Eq. 19, there is not a solution of  Maxwell’s equations involved, and the spatial and 

temporal Gaussian profiles are directly applied to the carrier generation rate term [63] [78]. It is 

important to note that for G(r , t), the distribution of the laser along the propagation direction is 

obtained from the interaction of the incident electric field with the BP substrate. However, for 

G𝑎𝑝𝑟(r , t), the distribution of the incident laser pump along the propagation direction is defined by 

the profile f(z, t), which is based on the attenuation from the absorption coefficient as defined in 

[63]. For this solution, the quantum efficiency was assumed to be one, and the spatial distribution 

h(x,y) in x- and y- was defined in the same way as of the incident electric field applied in the 

optical response of the model.  

The carrier generation rate profiles obtained from these two approaches are shown in Fig. 

3.6(a) and Fig. 3.6(b) at their maximum values. These plots present the characteristic circular 

distribution in the x- and y-directions from the Gaussian profiles. However, by comparing the two 

figures, the spatial distribution size of G𝑎𝑝𝑟(r , t) in Fig. 3.6(b) is larger than that of G(r , t) in Fig. 

3.6(a). This difference arises from the fact that the G(r , t) approach carries the Gaussian spatial 

distribution from the maximum power density after its calculation from the incident electric field 

while the G𝑎𝑝𝑟(r , t) approach applied the Gaussian distribution directly to the carrier generation 

rate. This discrepancy creates a spatial overestimation of the carrier generation rate, where more 

carriers are generated over a larger space in the BP layer. Besides this spatial exaggeration, the 

maximum carrier generation rate for G𝑎𝑝𝑟(r , t) is also larger than G(r , t). The carrier generation 
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rate is the driving term of the drift-diffusion model, so this spatial and amplitude overestimation 

is transferred to the photocurrent density calculation. In fact, the photocurrent density results from 

this study are shown in Fig. 3.6 (c) and Fig. 3.6 (d) for both the G(r , t) and G𝑎𝑝𝑟(r , t), respectively. 

It is noticeable the over calculation in space and amplitude of the photocurrent density produced 

by the application of the overestimated value from G𝑎𝑝𝑟(r , t). These plots show large photocurrent 

densities at the corners of the bowtie electrodes due to edge effect associated with the solution of 

the bias electric field at those points. Most of photocurrent density is concentrated at the center of 

the gap where the laser  beam is focused and where the carriers are generated. Fig. 3.6 (e) show 

 

 

Fig. 3.6. Semiconductor response results. (a) Carrier generation rate from the Maxwell’s 

equations solution approach 𝐺(r , t), (b) Carrier generation rate from the approximation 

approach 𝐺𝑎𝑝𝑟(r , t) [63][78], (c) Photocurrent density from 𝐺(r , t), (d) Photocurrent density 

from 𝐺𝑎𝑝𝑟(r , t) [63][78], (e) Photocurrent density comparison between the Maxwell’s equations 

solution and approximation approach [63][78].  This is Case 4 in Table 11. Dimensions in μm. 

Adapted with permission from [29] © The Optical Society. 
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the photocurrent density over time at a single point in the center of the gap at 10 nm below the 

surface of the BP layer. This plot allows the comparison between the two approaches, and it 

highlights the difference between the photocurrent produced with G(r , t) compared to the 

photocurrent obtained from G𝑎𝑝𝑟(r , t). We can report an over calculation of the photocurrent of 

1.75 times by using the approximation over the Maxwell’s equation solution of the laser beam on 

the BP layer. This explains the necessity of solving the optical response of the model presented in 

this work to obtain results that are more accurate.  

3.3 Transient RF Module 

With a 3D semiconductor solution of the BP PCA, it is important to investigate the terahertz 

signal generation produced by the obtained photocurrent. Since the antenna geometry defines the 

generation of the Terahertz pulse, the complete size of the device was modeled for the generation 

of the THz signal [73]. This part applied the same model used in Chapter 2 for the terahertz signal 

generation, which is illustrated in Fig. 2.11(a). It consists of half space of air on the top layer (gray) 

with half space of silicon in the bottom layer (green) with a size of 500 μm x 500 μm size in the 

x- and y-directions. This model resembles the one developed in [22] where perfect electric and 

perfect magnetic conductor boundary conditions were used to take advantage of the symmetry of 

the problem. The excitation of the model is defined as a surface current density flowing along the 

gap of the antenna as described in [29]. In this case, the profile for this excitation current is obtained 

from the photocurrent density in Fig. 3.6(e) for the Maxwell’s equation solution approach. This 

photocurrent density with units in A/m2 is multiplied by the cross-sectional area of the black 

phosphorus layer (5μm × 0.04μm), and divided by the width of the antenna electrode (5μm) to get 

the surface current density in units of A/m flowing in the gap. A top view of the overall antenna 

geometry is presented in Fig. 2.11(a), where the dimensions of the antenna are presented in a table 
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on the top view in Fig. 2.11(a). It is important to mention that the hBN, BP, and SiO2 layers were 

not considered in this model because their thickness in nanometers is negligible to the wavelength 

at THz frequencies, and the same complex relative permittivity of Si was used in this part of the 

model as 11.53-0.0047i.  

3.3.1 THz Pulse Comparison between Black Phosphorus and LT-GaAs Photoconductive 

Antenna 

The computational results of this model were compared to the measurements of a THz pulse 

produced by a commercial photoconductive emitter based on LT-GaAs. These measurements were 

performed with the TeraAlign bench top time-domain system developed by TeraView Ltd, 

Cambridge, UK, which is shown in Fig.3.7 and described in the following chapter. This system 

uses a femtosecond laser with a 780/1560 nm wavelength, 100 fs pulsewidth, 100 MHz repetition 

rate, and ~80 mW output power. In Fig. 3.7, GVD stands for group velocity compensator, and it 

accounts for the dispersion of the laser pulse along all the optical components of the system. This 

system applies a beam splitter to divide the laser excitation to the photoconductive antenna emitter 

 

Fig. 3.7. TeraAlign bench top time-domain THz system. The dashed red line represents the 

laser after the fast delay line, and FP stands for fiber port. Adapted with permission from [29] 

© The Optical Society. 
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and detector. It presents one delay line in the emitter side and two delay lines in the detector side. 

It also uses fiber optic cables, which makes the system more versatile. A detailed description of 

the system and its performance is covered in the following chapter.  

The measurement obtained from the TeraAlign system is provided in Fig. 3.8(a) together with 

the results of the computational model for different discretization sizes. For the simulations, the 

electric field component was monitored at a fixed point located 250 μm below the gap of the 

antenna for three different discretization sizes. The goal of solving the same model with different 

discretization is to achieve mesh convergence and guarantee an optimum accuracy for the 

computation. The case computed at a discretization of 15 μm provided the best computational 

performance in terms of the solution time and required memory (See Table 11).  

The computational results obtained from the model presents a significant similarity to the THz 

measurements from the TeraAlign system in terms of the pulse width and behavior. With this 

comparison, we validate the potential of the presented BP photoconductive antenna as emitter of 

Terahertz frequencies. In fact, Fig. 3.7(b) shows the spectrum of the pulses presented in Fig. 3.7(a), 

where we show the working frequencies of both the modeled BP photoconductive emitter and the 

measured signal from the commercial LT-GaAs device. With these results, we report a device 

bandwidth of around 7 THz if the noise floor is considered at 10−4 from its normalized maximum 

value. It is important to mention that the measurements performed with the commercial device 

were developed with an averaging factor of 1800 measurements in an unpurged environment. This 

explains its frequency domain spectrum behavior as purging is known to improve Terahertz 

measurements by reducing the humidity of the air. Figure 3.7 validates the model solution of the 

BP PCA compared to real measurements of a Terahertz signal from a reference LT-GaAs 

commercial emitter. Here, to demonstrate that the proposed BP PCA has a potential of THz 
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emission, we compared the simulated BP PCA results with measurements of a reference 

commercial LT-GaAs. It is not possible to simulate the reference device due to the IP protection 

by the manufacturer (TeraView, Cambridge, UK). The BP-based device described in this model is 

under development and measurement on the TeraAlign system, and part of the initial experimental 

results of the BP terahertz signal is presented in Chapter 5.  

3.3.2 Effect of the BP Photocarrier Lifetime Discrepancy on the Terahertz Signal Generation 

As mentioned, there is a high level of uncertainty in literature about some of the properties of 

black phosphorus. For instance, one of those properties such as mobility may affect the amplitude 

of the photocurrent density. Other property variation such as carrier lifetime may affect the shape 

of the photocurrent density and so the terahertz signal generation. Therefore, it is very important 

to investigate the effect of the variations in the photocarrier lifetime for the generated terahertz 

signal to get a complete insight of the performance of the BP PCA. To study the effect of the 

variation of the BP carrier lifetime found in literature, we selected the value reported as 83 ps [37] 

and performed a simulation to provide a higher limit for the values found in literature. This new 

 

Fig. 3.8. Simulated THz pulse of the BP PCA emitter and measurements of the reference LT-

GaAs. (a) Normalized time-domain signal, (b) Normalized frequency-domain spectrum. The 

Δ_max represents the maximum discretization size in COMSOL. The computational details of 

this plots are provided in Table 11 as Case Δmax = 35 μm, 20 μm, and 15 μm. Adapted with 

permission from [29] © The Optical Society. 
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case is presented in Fig. 3.9 for the photocurrent, radiated THz electric field pulse in time- and 

frequency- domain together with the results presented in the previous chapters for the BP carrier 

lifetime of 0.36 ps. The photocurrent density obtained with the 83 ps carrier lifetime presented a 

slower decay compared to the 0.36 ps case as demonstrated in Fig. 3.9(a). In the same way, it was 

observed that the longer carrier lifetime provided a higher amplitude, which is in agreement with 

the computational results presented in [79] for a similar experiment on a LT-GaAs device. The 

results demonstrate that the difference in the carrier lifetime between 0.36 ps and 83 ps manifests 

itself as a longer tail in the photocurrent in Fig. 3.9(a). This reflects on the signal generation 

spectrum at low frequencies in Fig. 3.9(c). Therefore, the reported enhancement of the bandwidth 

using 83 ps still holds at THz frequencies above 0.2 THz as shown in Fig. 3.9(c).  

 

 

 

 

Fig. 3.9.  Simulation of BP device at carrier lifetime of 83 ps. (a) Photocurrent density, (b) 

Time-domain generated THz signal, (c) THz signal generation spectrum. Adapted with 

permission from [29] © The Optical Society. 
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3.4 Heat Transfer in Solids Module 

The performance of a photoconductive antenna includes two phenomena that could results in 

the increment of the temperature of the device. These phenomena represent the Joule heating 

produced by the conduction of current induced by the bias voltage and the laser heating produced 

by the electromagnetic power dissipated by the semiconductor layer. It is important to model this 

behavior as PCAs could experience temperature rises that could lead to the thermal runaway of the 

devices and produce its break down [40]. The purpose of this part of the study is to model the 

temperature variation of the BP antenna emitter under our target working conditions, which are a 

maximum bias voltage of 1 V and an average laser power of 1 mW. For this solution, the heat 

transfer in solids module of COMSOL solves the heat equation (20) and provides the temperature 

over the modeling domain due to the conduction of current [80].  

ρCp

∂T

∂t
+ ρCpu⃗ ∙ ∇T + ∇. q⃗ = Q + Qted (20) 

In this equation, Cp is the heat capacity of the material at constant pressure, ρ is the density of 

the material, and u⃗  is velocity vector related to moving objects in the domain. q⃗  is equal to −κ∇T, 

where κ is the thermal conductivity of the material [80]. Qted represents the thermoelastic damping 

term and Q defines a heat source or heat sink, which in this case represents the source of heat 

produced by the conduction of current from the semiconductor interface. This part of the model 

accounted for two sources of heat to calculate the temperature distribution; the steady-state Joule 

heating and the time-averaged electromagnetic power dissipation. Therefore, the temperature T in 

Eq. 20 is function of space and not function of instantaneous time. 

The geometry of the first case modeled in this study is the same used for the calculation of the 

optical response in Fig. 3.1(b) without the application of the air layer. Instead of considering the 

air layer, we applied a convective heat flux (q0 = h ∙ (Text − T)) at the boundary of the air-to-hBN 
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interface with an external temperature of 300 K and a convective heat transfer coefficient (h) of 

3475 W/m2K for hBN [81]. The remaining boundaries were considered as insulating boundaries. 

The properties of the materials used in these calculations are defined in Table 10, where the 

anisotropic thermal conductivity of black phosphorus and isotropic thermal conductivity of hBN 

were applied. The spatial discretization for this part of the model was considered equal to the 

electrical response in the BP layer, and a maximum mesh size of 0.64 μm was assigned to the other 

layers, where the current flow heat source is not applied. 

As shown in Fig. 3.10, the first heating source is the Joule heating due to the conduction of 

the current induced by the DC bias voltage in the BP antenna emitter [19]. The second source in 

Fig.3.10 is the average electromagnetic power dissipation of the femtosecond laser in the BP 

material [60]. Here we simulated the temperature rise due to the heat produced in the BP layer 

only, where the power absorption was considerably higher than that in the hBN, SiO2, and Si [7].  

The geometry of Fig. 3.10(a) and (c) represents the computation of the active area of the 

smaller case of Fig. 3.10 (case 4 in Table 11), while the geometry of Fig. 3.10 (b) and (d) represents 

the computation of a larger area. The size the hBN/BP in Fig. 3.10(b) and (d) is 10μm × 10μm, 

compared with 6μm × 6.34μm in Fig. 3.10(a) and (c). These layers are positioned on top of the 

Table 10. Heat Transfer Properties of Materials 

Symbol 𝜿 𝝆 𝑪𝒑 

Description 
Thermal 

Conductivity 
Density 

Heat Capacity 

Constant Pressure 

Units W/mK kg/m3 J/kgK 

Au 318 [82] 19300 [82] 129 [82] 

Cr 93.7 [82] 7150 [82] 450 [82] 

SiO2 1.4 [83] 2200 [84] 703 [85] 

Si 150 [83] 2329 [85] 700 [85] 

hBN 390 [86] 2279 [86] 818.18 [87] 

BP 

x 25.29 [88] 

2420 [89] 695.5 [90] y 48.79 [88] 

z 4.00 [91] 
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gap of the emitter leading to larger modeling domain to consider the air-to-electrodes interface. 

Surprisingly, the results of Fig. 3.10(a) and (c) show high temperature level of more than 519 K 

and 695 K, respectively. This observation can be attributed to the fact that modeling a smaller 

active area where the hBN and BP layers totally cover the electrodes could be inaccurate. To better 

understand the reason, we increased the size of the computational domain in Fig. 3.10(b) and (d) 

to partially expose the electrodes to the air interface. The results interestingly demonstrate drop in 

temperature variation around 300 K. This metal-to-air interface was also modeled as a convective 

heat flux with the convective heat transfer of 125 × 106 W/m2K, calculated from the thermal 

resistance of the electrodes [92]. As such, we believe that the electrodes provide heat sink to the 

 

Fig. 3.10. Temperature calculation in the device due the Joule heating and the electromagnetic 

power dissipation (laser heating). (a) Simulation of the active area with the hBN and BP layer 

covering the electrodes for the Joule heating. (b) Simulation of a larger active area with 

inclusion of the air-to-electrode interface for the Joule heating. (c) Simulation of the active area 

as (a) for the laser heating.  (d) Simulation of a larger active area as (b) for the laser heating. 

Au/Cr represents the exposed electrodes. The dashed black square represents the simulation 

size of (a) and (c). All dimensions are in μm. Adapted with permission from [29] © The Optical 

Society. 
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system bringing the temperature down to the level close to room temperature due to the low 

thermal resistance of Cr/Au films on dioxide-on-silicon layers (Rth = 0.8 × 10−8 m2K/W) [92].  

 To calculate the temperature variation in Fig. 3.10(d), we first obtained the average 

electromagnetic power dissipation (
1

2
Re[J . E⃗⃗ ∗]) from the optical response and used it as the input 

to the heat transfer in solids module. For this large case, the model size increased to more than 

313.2 million unknowns with the same discretization and domain assumptions described above. 

To solve this model, we used the 12 TB extra-large memory nodes at the XSEDES Bridges cluster 

in the Pittsburgh Supercomputing Center (PSC). As summarized by Table 11, the optical response 

solution of this case (Case 5) required more than 3.2 TB of RAM memory with a solution time of 

~ 25 hours that represented more than 80 service unit hours at XSEDES. The Maxwell’s equation 

solution of this case was compared against the optical response results in Fig. 3.4(c). We selected 

a point 10 nm below the surface of the BP layer at the center on the gap, and the difference in 

maximum power flux density was reported as only 0.0161% between both cases. This fact supports 

the idea of simulating only the active area of the antenna gap for the laser interaction with the 

photoconductor to minimize the size of the modeling domain while maintaining a considerable 

accuracy for the results. On the other hand, the temperature results of Fig.  3.10(b) and (d) became 

more accurate upon modeling a larger size of the electrodes. Specifically, the results demonstrate 

that modeling only the active area for the optical response and the electrical response of this device 

is sufficiently accurate but modeling the same active area size for the temperature variation was 

not sufficient and could provide false rise in the device temperature.  

The photocurrents due to no thermal and thermal effect of the above two heat sources are 

shown in Fig. 3.11. The photocurrent due to a constant room temperature of 300 K is shown by 

the blue curve, which it is labeled as No-Thermal Effect. This result represents the time-dependent 
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photocurrent density acquired from the drift and diffusion components without any thermal 

variation. This plot was also measured at a single point 10 nm below the surface of the BP layer at 

the center of the gap of the device. To calculate the thermal effect on the photocurrent, a time-

dependent solution of the semiconductor module was solved at a spatially variable temperature. In 

this case, the temperature distribution displayed in Fig. 3.10(b) and (d) were used as input to the 

semiconductor module, which delivered a photocurrent density composed of the drift, diffusion, 

and thermal components. The red dashed plot represents the thermal effect due to Joule heating, 

which agrees with the results reported in [43]. The green plot in Fig. 5 represents the thermal effect 

due to the laser heating demonstrating a larger increase in the photocurrent compared to the 

photocurrent rise due to the Joule heating. Upon comparing the three plots in Fig. 3.11, the Joule 

heating and the laser heating seem to cause an increase in the photocurrent by ~ 3.38% and ~ 

9.98%, respectively.   

3.5 Phonon Contribution to the Temperature Rise in the Black Phosphorus Layer 

Another important factor that contributes to the variation in temperature due to te application 

of a laser source is the interaction of photocarriers with phonons in the semiconductor layer. When 

 

Fig. 3.11. Photocurrent density without thermal effect, and with the effect of Joule heating from 

Fig. 4(b) and the laser heating from Fig. 4(d). This is case 5 in Table 11. Adapted with 

permission from [29] © The Optical Society. 
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the laser pump is applied against the photoconductor, part of the carriers that are generated relax 

to its equilibrium state by interaction with phonons creating more heat [93]. In this part, the non-

equilibrium lattice model was applied to account for the phonon population and its interaction with 

the photocarriers in the black phosphorus layer [75] [76]. This model is defined by the system of 

coupled differential equations (21) (22),  

∂Tel 

∂t
= α

I(t)

cel
− ∑

gν

cel

(Tel − Tν)

X,Y,Z

ν

 (21) 

∂Tν 

∂t
=

gν

cν

(Tel − Tν) −
(Tν − T)

τν
 (22) 

where I(t) represents the intensity of the laser profile. We used the same laser profile as of [75] 

with an incident laser intensity of 3.18 × 108W/m2 and the same 100-fs laser pulse width used in 

the electrical response. The parameter α was taken as the absorption coefficient of black 

phosphorus calculated at 780 nm wavelength in the x-direction from the properties defined in 

Table 8 [94]. τν represents the phonon decay time for each phonon group (ν = x, y, z), and T was 

calculated as the average temperature of the phonon groups at each time step. cel and cν correspond 

to the electronic and phononic heat capacity respectively, and gν represents the electron-to-phonon 

coupling coefficient for each phonon group. The values of all these terms were obtained from the 

calculations performed in [76] as function of temperature for black phosphorus.   

The solution of the unknowns involved in these equations is shown in Fig. 3.12. These plots 

represent the electron temperature in black, the temperature of the phonon group in the x-direction 

in blue, y-direction in purple, and z-direction in red. There was not a significant variation in 

temperature due to the phonon interaction with the application of this laser source. We attribute 

this to the fact that the optical fluence of the laser used in this work was much smaller than of [75] 

and [76], who reported larger temperature variations for black phosphorus and graphene 
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respectively. Overall, the target of this study was to observe the phonon contribution to the 

temperature variations of the device under the working conditions even though these last results 

were not applied to the photocurrent calculations. In this way, the heat effect of this BP Terahertz 

emitter was simulated accounting for two separate phenomena, which are the application of the 

bias voltage and the application of the laser pump.   

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.12. Electron and phonon temperature calculation due to the application of a femtosecond 

laser pulse. Phonon temperature is calculated for each phonon group x, y, z representing the 

anisotropic behavior of BP 
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CHAPTER 4: Experimental Setup of the TeraAlign Time-Domain Open Bench System 

4.1 Safety Considerations 

Several optical and electrical considerations are required for the proper functioning of the 

system and the safety of the user. 

• The TeraAlign system is an open bench system where a femtosecond laser is 

exposed, so it is imperative to wear proper the proper eye protection (OD 4+) while 

the laser is turned on.  

• It is recommended to wear gloves while working on the system for protection of 

the optical and THz mirrors.  

• The THz PCA devices are very sensitive to electric discharges, so it is important to 

wear ESD protection while manipulating these devices. For this purpose, antistatic 

mats surround the system, and the user must wear an antistatic wristband while 

working with the devices.    

• Before replacing the emitter or detector, it is important to ensure that no 

measurement is running on the software. This will guarantee that no voltage is 

applied to the device, and the risk of damage is minimized.  

4.2 TeraAlign System Description 

The TeraAlign system is an open bench Time-Domain Spectroscopy measurement 

arrangement that allows the characterization of photoconductive antenna emitters due to its open-

access feature. As displayed in Fig. 4.1, the system is composed of two stages: the optical 

components that handles the femtosecond laser pulse and the THz system that allows the 

measurement of the emitted THz signals. Figure 4.1 shows all the components involved in the 

system with a numeric label, which is used for its description below: 
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1. Femtosecond laser source: The model of the laser source used in this system is ELMO 780 

fabricated by MenloSystems. The specifications of the laser are 780 nm and 1560 nm for 

the available wavelengths, 100 fs for the pulsed width, 100 MHz for the repetition rate, and 

80 mW for the maximum average power.  

2. Half-wave plate: This device is used to correct the polarization of the laser from vertical to 

horizontal. This is extremely important  to match the polarization of  the grating in the 

Group Velocity Compensator (GVD).  

3. Group Velocity Compensator (GVD): The femtosecond pulse width and the spatial 

footprint of the laser beam may be affected by the multiple optical components that are 

involved in the system. Hence, the GVD is used to account for the dispersion of the 

temporal pulse width and the spatial width of the laser beam.  

4. Beam Splitter: This optical component divides the laser beam into ~ 40% of the laser beam 

directed to the emitter side and ~ 60% of the laser directed to the receiver side.  

 

Fig. 4.1. TeraAlign bench top time-domain THz system. The numbers are used to describe each 

component on the system.  
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5. Half-wave plate: This device is used to adjust the polarization of the laser beam before 

entering the emitter fiber port. Sometimes, there is cross-polarization into the fiber ports, 

so this half-wave plate compensate for this effect.     

6. Manual Delay Line: This device introduces a delay in to the system. 

7. Fiber Port: Input to the fiber cable (emitter side).  

8. Fast Delay Line: This device introduces a delay in to the system. 

9. Slow Delay Line: This device introduces a delay in to the system.  

10. Fiber Port: Input to the fiber cable (receiver side).  

11. Fiber Port: Output from the fiber cable (receiver side).  

12. Fiber Port: Output from the fiber cable (emitter side).  

13. Emitter stage 

14. Receiver Stage 

15. Controlling computer: This computer has the test panel and TeraPulse4000 software used 

for setting up the devices’ parameters and taking spectroscopy measurements, respectively.  

4.3 Optical Alignment  

This section is focused on the alignment of the femtosecond laser beam along the optical 

components of the system. It is recommended to use an Infrared (IR) viewer and a detector card 

for the alignment of the optical components. A closer view of the optical components of the system 

is shown Fig. 4.2, where the laser path is demonstrated along all the mirrors. The laser path shown 

in red represents the laser path starting from the laser source, going to the GVD until it reaches the 

beam splitter. After the beam splitter, the laser is divided into 40/60 % with the green path 

representing the emitter side, and the blue path representing the receiver side. There are three  

major components in the path of the beam after the beam splitter, which are labeled by the numbers 
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6 , 8 , and 9  and represent the delay lines of the system. These components are responsible for 

the scanning of the laser pulse in time. As shown in Fig. 4.2, it is extremely important that the 

beams entering and exiting these delay lines are parallel to each other. This guarantees that the 

coupling to the fiber ports is maintained while the femtosecond laser pulse is scanned at any 

position of these delay lines.  

4.3.1 Optical Mirror Alignment 

Optical mirrors are used to redirect the laser beam along the optical components of the system. 

An example of the trajectory of the laser along these mirrors is displayed in Fig. 4.3. The alignment 

process of the laser beam through mirrors starts by the positioning of the mirrors at approximately 

45° with reference to the expected path of the laser beam as shown in green in Fig. 5.4(a). In the 

same way, these mirrors should be placed with the expected laser path creating angles of 90° at 

each mirror where it changes its trajectory. To steer a laser beam, each mirror holder provides three 

screws that allows the mirror to move in -x, -y, and -xy directions as shown in Fig. 5.4(b). The 

 

Fig. 4.2. TeraAlign bench top time-domain THz system. Laser path along the optical 

components of the THz system. The numeric label follows the same sequence as Fig. 4.1 
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movement of the mirror in these directions allows the steering of the laser beam accordingly. When 

aligning the beam to a specific point in -x and -y, it is important to use at least two mirrors, which 

provide more degrees of freedom and allows an easier alignment process. For instance, the 

alignment process starts by positioning the mirror labeled as 1 , which needs to be placed on the 

trajectory of the laser with the laser beam focused at the center of this mirror. The next mirror to 

be positioned is labeled as 2 . Once this mirror is placed at 45-degree as mentioned, the x and y 

screws from mirror 1 are used to move the beam to the center of mirror 2 . Then, this process is 

repeated for mirror 3 , which is positioned following the 45-degree guidance,  and the x and y 

screws of mirror 2  are used to move the beam to the center of mirror 3 . This process allows the 

user to steer the laser beam and align it to the major optical components of the system.  

4.3.2 Delay Line Alignment   

The delay lines are three of the major optical components involved in the system, so it is 

important to align them properly because the performance of the whole system depends on them. 

The most important detail in the correct performance of these lines is the parallel trajectory of the 

 

Fig. 4.3. Optical mirror alignment. (a) Alignment process for handling a laser beam with optical 

mirrors, (b) Alignment screws used for steering the laser beam.  
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input and output beam as well as leveled relationship with respect to the surface of the optical 

table. The alignment of the manual delay line starts by moving the delay line stage to the  front as 

labeled in Fig. 4.4(a). The incoming laser beam is focused on the center of the mirrors  1  by using 

the tuning screws of the beam splitter. Then, the delay line stage is moved to the back position, 

and the tuning screws of the input mirror to the delay (Not displayed in Fig. 4.4) line is used to 

focus the beam to the center of mirrors  1 . Once this is completed, the tuning screws of mirror 1  

are used to focus the beam on mirror 2 . Then, the output laser beam should be focused at the 

center of the mirror labeled as 3 . This is achieved by moving the delay line stage to the front 

position and using the mirror  1  to focus the beam at the center of mirror  3 . Then, the delay line 

stage is moved to the back, and mirror  2  is used to center the beam at mirror  3 . This process of 

moving the delay line to the front and back position and aligning the beam to the center of the 

mirror 3  should be repeated until the location of the beam at mirror 3  remain constant regardless 

of the position of the delay line stage.  

 

Fig. 4.4. Delay lines alignment. (a) Alignment process for manual delay line, (b) Alignment 

process for fast and slow delay line.  
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As mentioned before, it is very important that the input and output beams are parallel between 

them. The alignment to the fast delay line (RSDL) starts from the input mirror labeled as 4 , which 

is shown in Fig.4.4(b). This mirror is used to center the beam in the mirror labeled as 5 , which is 

used to get the beam inside the fast delay line. This mirror is adjusted until an output beam is 

obtained from the fast delay line. Once there is an output beam coming from the fast delay line, 

mirror 6  is placed at that position. The alignment of the fast delay line is verified by maximizing 

the output power with the mirrors 4  and 5 . The output beam of the fast delay line serves as input 

to the slow delay line. Mirror 7  is used to get the input beam to the right inlet of the slow delay 

line, and its output is received by mirror 8 . The alignment process starts by moving the delay line 

stage to the front position, and mirror 6  and 7  are tuned to get the output beam at the center of 

the mirror 8 . Then, the delay line stage is moved to the back position, and mirrors 6  and 7  are 

adjusted once more to get the beam at the center of 8 . This alignment process of moving the delay 

line stage to the back and front position is repeated until the location of the beam at the output 

mirror 8  remain constant regardless of the position of the delay line stage.  

4.3.3 Fiber Port Alignment  

The alignment of the laser beam into the fiber ports represent a very important step in the 

optical alignment because a poor coupling of the laser beam may affect the temporal laser pulse 

width and bring detrimental effects on the performance of PCAs. The alignment of the fiber ports 

starts with the two mirrors before each fiber port. This arrangement is shown in Fig. 4.5(a), where 

the incoming laser beam is demonstrated. The first step is focusing the beam at the lens of the fiber 

port, which is shown the front view of the fiber port in Fig. 4.5(b). Once the beam is roughly at the 

center of the lens, a power meter is placed right after the threads of the fiber cable connection 
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before connecting the fiber cable. The goal of this step is to maximize the power coupling through 

the fiber port by using the tuning screws of two anteceding mirrors. Once the power is maximized 

after the fiber port, the funnel of the optical fiber cable is connected to the fiber port without 

screwing the cable. It is imperative that the front of the funnel of the fiber cable is never touched 

in this process because any contact with the front face of the funnel will damage the cable 

connector. Once the funnel is placed inside the fiber port connector, the power meter should be 

placed at the output end of the optical fiber cable. Then, the alignment process will be based on 

maximizing the output power at the output end by tuning the screws of the two mirrors before the 

fiber port. One hint for this process is to start with the funnel of the fiber cable barely inside the 

fiber port connector as well as turning off the lights in the room. This eases the initial coupling to 

the fiber port. It is important to know that at the beginning of the coupling process, the power at 

the output of the fiber port may be significantly low, which makes it difficult to measure with the 

 

Fig. 4.5. Alignment of a fiber port. (a) Two mirrors to align the beam to the collimator lens of 

the fiber port (receiver side), (b) Front view of the fiber port, (c) Top view of the fiber port.    
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power meter. Hence, it may be necessary to adjust the measurement range of the meter as well as 

the type of sensor to get more sensitivity. With the meter at the output end of the fiber cable, the 

next step is slightly steer the beam with the alignment screws of the mirrors before the fiber port. 

The goal of this step is to maximize the power at the output end of the fiber cable. As stated before, 

the initial position of the funnel of the optical fiber cable is barely inside the fiber port connector, 

once the power starts to increase in the power meter reading, the funnel of the optical fiber cable 

should be slightly pushed inside the connector of the fiber port. With this step, the power reading 

may decrease and the alignment screws of the mirrors should be used to maximize the power 

reading once more. This process of inserting the optical fiber cable into the fiber port connector 

and maximizing the power measurement should be repeated until the fiber cable is completely 

connected and screwed to the fiber port. Once the cable is fully connected to the port, the final step 

is to use the x and y screws of the two mirrors before the optical fiber port until the power coupling 

at the fiber port is at least 65%. This means that 65% of the laser power at the input of the fiber 

port must be measured at the output of the fiber cable. This power coupling should be obtained 

regardless of the power level required for the functioning of the PCA because the optimum average 

laser power for the device can be obtained by using a Neutral Density (ND) filter at the input of 

the fiber port (see Fig. 4.5(a)). This will guarantee that the coupling of the laser beam to the fiber 

port does not introduce any dispersion to the temporal pulse width of the femtosecond laser pulse. 

It is a good practice to verify the femtosecond pulse width with an autocorrelator at the output of 

the optical fiber cable before the devices, and this topic is covered in details later in this chapter.  

4.4 Terahertz Alignment  

This section describes the procedure for the generation of THz signals on the TeraAlign 

System. This process is comprised of the alignment of the laser beam to the gap of the 
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photoconductive antennas (emitter and receiver), the software settings required for the scanning 

of the signal, and the alignment of the devices with respect to each other to optimize the signal. 

All the components involved in this part of the systems are shown in Fig. 4.6(a). It consist of a 

measurement table that holds two movable stages, one for the emitter and another one for the 

detector. The THz signal produced by the emitter is focused at detector by two gold-coated 

ellipsoidal mirrors. At the focal point of these lenses, there is a holder that is used to support 

pinholes of different diameters, which are used for the alignment of the THz signal. Each device 

arrangement is composed of the chip carrier that holds the emitter or detector device, an NIR lens 

that focus the laser beam to the gap of the device, and a silicon lens that focus the generated THz 

signal to the ellipsoidal mirrors. Furthermore, as shown in Fig. 4.6(b), each movable stage is 

composed of two XYZ Elliot flexture stages, which allows the displacement of the devices in the 

x, y, and z directions. To control this displacement, each stage has three knobs, which are properly 

labeled in Fig. 4.6(b). The top stage is used for optical alignment to move the NIR lens to focus 

the laser beam in the gap of the devices. The bottom stage is used for the alignment of the THz 

 

Fig. 4.6. Terahertz System. (a) Complete set of elements for the generation and handling of 

THz frequencies, (b) Movable stages to align the devices.    
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signal by moving the complete arrangement (NIR lens and device) with respect to the silicon lens, 

which always remains static. In fact, the first step to obtain a signal in the system is to ensure that 

the silicon lens is firm towards the holding flexture. This can be verified by slightly touching the 

lens, and feeling its movement. If the lens is not firm, this can be adjusted by using the z knob 

from the bottom stage to move the NIR lens and the device holder towards the Si lens. This 

movement exerts some pressure on the silicon lens towards the flexture and holds it in place. Once 

the silicon lens is firm, the user can proceed to the optical alignment of the devices.  

To understand the alignment of the devices, it is important to have a clear idea of the 

experimental setup of the device, the chip carrier, and the device mount experimental arrangement. 

As shown in Fig. 4.7, the devices are attached and wire bonded to chip carriers. These chip carrierts 

are soldered to a printed circuit board (PCB), which includes some protection circuitry and other 

electrical components important for the biasing of the devices and the acquisition of the 

measurement in the detector case. Fig. 4.7(a) and (b) shows the front view and back view of the 

 

Fig. 4.7. Experimental setup of the PCA emitter and detectors. (a) Front view and (b) Back 

view of the device, chip carrier, and device mount arrangement. The actual devices were 

covered with a black geometry for IP protection (TeraView, Cambridge, UK).  
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experimental setup of the devices, respectively. These illustrations show the device pasted to the 

chip carrier, which is soldered to the PCB, and screwed to the device mount.  

4.4.1 Optical Alignment of the THz Emitter and Detector 

 The purpose of the optical alignment of the emitter and detector is to use the NIR lens to focus 

the laser beam at the gap of the device. This process is illustrated in Fig. 4.8(a), where the knobs 

of the top stage are used as to move the laser beam to the center of the gap as shown in Fig. 4.8(b) 

with the help of a beam splitter and a white screen. The beam splitter takes the reflected beam from 

the NIR lens and produce a reflection image of the device in the white screen the screen as shown 

by the red dotted line in Fig. 4.8(a). This reflection image can be observed with the infrared viewer. 

An example of the reflection image of a THz device is demonstrated in Fig. 4.8(c), where a bowtie 

shape is observed. Once this image is visible, the z knob of the top stage can be used to focus and 

defocus the laser beam, and the x and y knobs can be used to move the laser beam horizontally 

and vertically, respectively.   

 

Fig. 4.8. Optical Alignment of the THz Devices. (a) Arrangement and required components for 

the optical alignment (BS stands for Beam Splitter), (b) Optical beam at the gap of the 

emitter/detector, (c) Reflection image of the emitter/detector observed with an NIR viewer.    
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4.4.2 Terahertz Alignment of the THz Emitter and Detector 

Once the beam is roughly centered at the gap of both the emitter and the detector, the user can 

proceed to locate the THz pulse in time with the multiple delay lines and in space with the knobs 

of the movable stages. From the working principle of a TDS system based on photoconductive 

antennas, the THz pulse must reach the detector at the same time as the femtosecond laser pulse 

excites the detector. In this way, the delay lines available in the system are used to adjust the delay 

of the femtosecond laser in both the emitter and detector path so that the generated THz signal of 

the emitter reaches the detector at the same time as the femtosecond laser pulse. The delay 

introduced at the emitter side is produced by the delay line labeled as 6  in Fig. 4.1. The position 

of this delay line usually remains constant unless the delay at the detector side is not sufficient. 

For the purpose of finding the initial THz pulse, it is required to roughly measure the distances 

along both the emitter and detector paths through all the optical components including the distance 

between the devices. The reference for this measurement is the position of the detector, and the 

manual delay line at the emitter side is positioned so that these distances are approximately the 

same. The more precise and accurate tuning is performed with the delay lines at the detector side.  

The delay at the detector side is provided by the delay lines labeled as 8  and 9  in Fig. 4.1, 

which are represents the fast and optical delay lines, respectively. The fast delay line provides a 

measurement range of 45 ps at the maximum, and the slow delay line provides a maximum 

measurement range of ~ 800 ps, which corresponds to the displacement of the slow delay line 

stage. The goal of this temporal alignment is to use the fast or the slow delay line to find the THz 

pulse in time.  

Firstly, the slow delay line is used to perform a “SlowScan” measurement, which 

automatically moves the delay line stage along the complete displacement range while measuring 
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the THz signal received at the detector. This measurement helps to locate the position of the delay 

line that compensate the detector side to the emitter side so that a THz pulse is received. The 

TeraAlign system is controlled by two software: TeraPulse, which is used for the TDS 

measurements, and TestPanel, which controls all the electrical components in the system as well 

as the settings for the devices including the bias voltage of the emitter. The first step is to initialize 

all the electrical components in the system from the TeraPulse software. To open this program, the 

user always needs to log in with the security password. Then, from the “Instrument” tap, the system 

will be initialized by clicking and opening the “Acquisition Setup”. After the initialization, the 

software should be closed as the SlowScan measurement is set up through the TestPanel software. 

Once the TestPanel software is opened, it is required for the user to log in with the security 

credentials and claim the instrument at the “General” tap. This step helps the TestPanel software 

to gain the control of the system from the TeraPulse software. The SlowScan measurement is set 

up from the “Measurement Config” tap that allows the configuration of all types of measurements 

that can be done in the system. From this tap, the measurement delay start and end of the delay 

line can be specified as well as the number of points desired for this measurement. It is 

recommended for this initial measurement to set the range to the maximum (-339 ps to 461 ps) to 

cover the complete displacement and have more range to see the THz pulse. Once the settings are 

completed, the user can click “write” to send the settings to the components of the system and 

“start” to initiate the measurement.  

In the SlowScan, the optical delay line stage will move from the front to the back position as 

displayed Fig. 4.4(b) depending on the delay start and end specified in the measurement 

configurations. As the optical delay line stage moves, the software shows the signal received by 

the detector for each position of the delay line. At the end of this measurement, the software shows 
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the received signal as function of optical delay as demonstrated in Fig. 4.9(a), and one can identify 

the THz pulse, which should be the first pulse after the system noise. With the THz pulse roughly 

identified, a closer range of the SlowScan can be choose so that a more accurate location of the 

pulse can be identified as demonstrated in Fig. 4.9(b). From this figure, the user can establish a 

better range to perform a SpectraSeries scan from the “Measurement Config” tap by using the 

prepulse extent and the optical delay extent. These parameters provide the 45 ps range for the 

SpectraSeries scan that was mentioned previously.  

The SpectraSeries scan provides the measurements of the signal in real time, which allows an 

easier alignment of the THz signal as the knobs for the THz stage can be tuned while inspecting 

the change in the signal. A common initial signal for the THz alignment is demonstrated in Fig. 

4.10(a), which is a zoomed-in version of the pulse shown in Fig. 4.9 and an example of a THz 

signal that is not aligned between the devices. At this point in the alignment process, the user 

should tune the x and y knobs in the bottom movable stage. The z stage must not be adjusted 

because this may disengage the silicon lens from the flexture. As seen in Fig. 4.10(a), there seem 

to be two separated THz pulses. The goal is to bring them together with the alignment knobs. They 

 

Fig. 4.9. SlowScan Measurements. (a) SlowScan measurement with the complete range 

provided by the optical delay line, (b) SlowScan measurement with a closer range focused 

around the first THz pulse. Dotted black square in (a) represents the range of (b). 
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should merge and become in the main THz pulse that is being transmitted in the system, which is 

shown in Fig. 4.10(b). The amplitude target of the system is a THz pulse with an amplitude of ~ 

30, and the amplitude of the pulse shown in Fig. is only ~ 18. The alignment of the TeraAlign 

system requires several iterations between the optical alignment of the device (top movable stages) 

and THz alignment (bottom movable stages). In this way, once a signal pulse is obtained with the 

correct shape and a reasonable magnitude as displayed in Fig. 4.10(b), it is necessary to tune the 

optical alignment of the laser beam to the gap with the top movable stage. The purpose of the first 

optical alignment is to locate roughly the laser beam spot in the gap of the PCA. In this second 

round of optical alignment, it is necessary to optimize the position of the laser at the gap of the 

antenna so that the power density at the gap of the antenna is maximize. For this step, the x, y, and 

z knobs of the top movable stage are tuned while monitoring the signal increase or decrease on the 

software screen. The goal is to maximize the amplitude of the signal. Once this is achieved with 

one PCA, the top stage of the other device should be adjusted as well. The final product of this 

process is shown in Fig. 4.10(c), where a THz pulse was achieved with an amplitude of ~ 30.   

4.5 Terahertz Measurement Results 

The proper functioning of the system is based on having a Terahertz signal of a reasonably 

high amplitude (~ 30), the signal should be focused at the center of the system between the emitter 

 

Fig. 4.10. SpectraSeries Measurements. (a) Misaligned signal between the devices with respect 

to the THz stages, (b) Aligned signal between the devices before optical and THz alignment 

optimization, (c) Aligned signal after intensive optical and THz alignment of the devices.     
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and detector devices, and the temporal width of the pulse should be sufficiently narrow to produce 

a spectrum at THz frequencies. The amplitude of the signal can be affected by an increase or 

decrease in the optical power as well as an improper alignment of the devices. In this way, the 

tolerances of the screws in the device mounts as well as the position of the device with respect to 

the chip carrier may affect the THz alignment and prevent the achievement of a large THz pulse. 

In this way, unmounting and mounting the devices to the movable stages performing several trials 

of alignment is a good practice to achieve the best possible outcome for the THz pulse. Moreover, 

it has been experienced that some emitters present better performance depending on the detector 

even when nothing on the detector design changes. However, the position of the detector with 

respect to the chip carrier is a random process at micrometer scale. This suggest the idea of 

measuring the emitter antenna under test with different detectors to discover its true potential. 

There are three reference commercial emitters and two reference commercial detectors, which 

were provided with the system by TeraView Ltd. In this way, it is important to study this device-

to-device variation to develop an efficient measurement strategy for the devices under 

development. For this purpose, Fig. 4.11 shows the generated THz signal of the three emitters 

received by the two available detectors. The black curves represents the signal received by detector 

1, and the blue curve are THz pulses received by detector 2. From Fig. 4.11 (a), it is clear that the 

performance of emitter 1 is better when used with detector 2 as a receiver. In the same way, we 

investigated the performance of emitter 2, which provided a higher THz pulse with detector 2. 

Emitter 3 was the device with the highest THz pulse amplitude reaching values close to ~40 in the 

configuration with detector 2. From all these measurements, one can conclude that the performance 

of detector 2 was superior to that of detector 1. However, another factor besides the pure 

performance of the detector that may have impacted these measurements is the position of the 
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detector with respect to the chip carrier. This is a variable that can be modified to improve the 

alignment between devices and enhanced the measured THz signal. In this work, this alternative 

was not pursued as the goal of this experiment was to prove the functioning of the system with 

multiple devices and master the alignment process. However, it is an important factor to take into 

consideration during the assembly of the antennas under test before they are wire bonded.   

 

Fig. 4.11. Device-to-device variation in performance. (a) Measurement of the THz pulse with 

emitter 1 with both detector 1 and 2, (b) Measurement of the THz pulse with emitter 2 with 

both detector 1 and 2, (c) Measurement of the THz pulse with emitter 3 with both detector 1 

and 2.    
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The THz signal must be aligned with the optical path of the laser. Therefore, after the 

achievement of a good amplitude for the THz pulse, it is important to focus it at the center of the 

sample holder in the middle between the emitter and the detector devices. Pinholes of different 

diameters are useful for this step in the setup process. The TeraAlign system currently provides 

two pinholes with 0.5mm and 1.0mm diameters. The goal of this step is to achieve ~ 50% reduction 

of the original signal with the 1.0mm pinhole holder and ~ 75% reduction of the original signal 

with the 0.5mm pinhole. In other words, with a suitable amplitude for the signal of ~ 30, the target 

for a 1.0mm pinhole would be a signal of amplitude ~ 15 and ~ 7.5 for the 0.5mm pinhole.  

Firstly, start the alignment of the signal to the center of the system with the largest pinhole 

diameter that is available. When the pinhole is placed in the pinhole holder, the signal may be 

decreased to zero amplitude as it may be misaligned and blocked by the metal part of the pinhole. 

It is difficult to start the THz alignment to the center of the system with a low amplitude pulse, so 

it is recommended to use an iris that allows the variable diameter of the hole. In this way, the 

alignment process can be started with a larger diameter that allows the passing of more signal to 

get a larger pulse. Once the iris is positioned, the process consist of reducing the diameter of the 

iris and using the tuning knobs of the lower stage to maximize the THz pulse. This procedure 

should be repeated until the iris is sufficiently closed, and it becomes similar to the diameter of the 

pinhole. At this point, the 1.0mm pinhole can be positioned in the pinhole holder, and the alignment 

process continues by maximizing the THz signal with the tuning knobs of the bottom stage. After 

the maximum signal is achieved with the 1.0mm pinhole, this can be switched with the 0.5mm 

pinhole, and the same process is repeated. Once the signal is maximized with both pinholes within 

the range already mentioned (No-Pinhole: ~ 30, 1.0mm-Pinhole: ~ 15, 0.5mm-Pinhole: ~7.5), the 

alignment is complete.  
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One example of the THz signal during this alignment process is provided in Fig. 4.12, which 

shows the time-domain and spectra of the THz pulse transmitted in air with no pinhole, with a 

pinhole of 1.0 mm diameter and 0.5 mm diameter. There are several observations that can be 

obtained from the experimental data provided in Fig. 4.12. First, by comparing the amplitude of 

the THz time-domain pulses between Fig. 4.12(a), (b), and (c) for no pinhole, 1.0mm and 0.5mm 

pinhole, one can calculate the 50% and 75% reduction caused by the 1.0mm and 0.5mm pinhole, 

respectively. Even though the time-domain THz signal through air is not close to the desired 

amplitude (~ 30) as shown in Fig. 4.12(a), the time-domain pulses for the 1.0mm and 0.5mm 

measurements demonstrate an adequate alignment of the THz signal to the center of the system. 

However, the THz signal through air is not close to the desired amplitude, so it is recommended 

to demount and mount one of the devices to repeat the alignment.  

Another important finding from this experiment is provided by the spectra of each of the 

temporal THz pulses provided in Fig. 4.12. It is known that pinholes act as frequency filters of 

light by letting certain wavelengths pass through them while filtering others depending on the 

diameter of the pinhole. In this case, the pinholes used in the TeraAlign system should filter the 

low frequencies passing the higher frequency components of the signal. This phenomenon was 

observed in the spectrum of the THz pulses shown in Fig. 4.12. The first spectrum represents the 

signal through air with no pinhole, which contains all frequency components obtained from the 

time-domain THz pulse. However, if we focus on the spectra of the time-domain pulse in Fig. 

4.12(b) for 1.0mm pinhole, it we can observe a reduction of the spectra amplitude at frequencies 

around 0.1 THz. This effect is even more clear in the spectra for 0.5mm pinhole Fig. 5.12(c), where 

the frequency-domain representation shows a complete frequency band filtered at lower 

frequencies at around 0.1 THz. This observation is in agreement with the fact that pinholes with 
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smaller diameter filters waves with larger wavelengths or smaller frequencies as it is the case 

observed here. Therefore, this is another experimental method of verifying that a PCA emitter 

produces signals at THz frequencies.   

The performance of the system was validated against the commercial system TPS 

Spectra3000, which has been widely used to deliver imaging and spectroscopy results of tissues 

found around cancer tumors (e.g. [95], [96], [9]). For this experiment, we compared three 

 

Fig. 4.12. THz signal variation depending on pinhole. (a) THz signal transmitted without 

pinhole, (b) THz signal transmitted with a 1.0mm pinhole, (c) THz signal transmitted with a 

0.5mm pinhole. Measurements performed with Emitter 1 – Detector 1 with no averaging.   
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scenarios: the normalized THz signal transmitted through air, polystyrene and glass. The results 

of this experiment are shown in Fig. 4.13, where the time- and frequency- domain signals are 

compared between the systems for the three cases mentioned above. In these plots, the blue line 

representing the TeraAlign system measurements, and the red line shows the measurements 

obtained from the TPS Spectra3000 system. As demonstrated in Fig. 4.13(a), the both the THz 

pulse and spectrum presents roughly similar performance. It is necessary to mention that this 

comparison is made between two independent THz signals that are generated and received by 

photoconductive antennas, but there are multiple components that differ between the systems and 

influence their performance such as PCA design, laser power, system configuration, and more 

importantly sampling in time. However, comparing their performance validates all the alignment 

processes involved in the TeraAlign system. In Fig. 4.13(b), we present the same comparison 

between the systems for a THz signal transmitted through polystyrene. The results obtained from 

both systems are very similar to the results presented in Fig. 4.13(b) for the signal transmission 

through air. This finding is in agreement with the polystyrene material having a significantly low 

absorption coefficient, which make this material almost transparent at THz frequencies [95] [97]. 

However, if we analyze the THz signal transmitted through the glass sample in Fig. 4.13(c), we 

can see a considerably absorption in the spectrum of the signal with a characteristic bell-shape at 

~ 1 THz [7], which is common between both systems. These results also contributes to the 

validation of the performance of the TeraAlign system after all the alignment processes, which 

includes the optical alignment of all optical components, the optical alignment of the laser beam 

to the gap of the antennas, and the alignment of the THz signal between the emitter and detector 

devices.   
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4.6 Temporal Laser Pulse Measurements  

The functioning of a photoconductive antenna is based on its excitation with a femtosecond 

laser source. Therefore, it is important to verify the temporal laser pulse exciting the antennas at 

both the detector and emitter. For this purpose, we used a mini TPA autocorrelator manufactured 

by APE. This autocorrelator offers the measurement range from laser pulses from 50 fs to 3.5 ps. 

 

Fig. 4.13. TeraAlign system validation against the system TPS Spectra3000. Normalized 

measurement of the time-domain and frequency-domain THz signal transmitted through (a) air, 

(b) polystyrene, and (c) glass. Measurements performed in the TeraAlign system with Emitter 

3 – Detector 2. Mrs. Nagma Vohra (Ph.D. Candidate) performed the measurements on the TPS 

Spectra 3000.  



97 
 

The multiple optical components that are used in the system as well as the laser coupling to the 

fiber port may affect the pulse width of the femtosecond laser source by introducing dispersion, 

which affects the performance of the PCA emitter and detector devices. The goal of this part, is to 

measure the femtosecond laser pulse at the laser output and compare it with the femtosecond laser 

pulse before the devices.  

It is necessary to align the laser beam to the autocorrelator input before performing a 

measurement. This is achieved with two mirrors as shown in Fig. 4.14(a), where these mirrors are 

labeled as 1  and 2 , the autocorrelator is labeled as “Mini TPA Autocorrelator”, and FP represents 

the output fiber port of the optical fiber cable. There are several critical aspects related to the 

alignment of the autocorrelator. The laser beam must be perpendicular to the input of the 

autocorrelator and parallel to the optical table. For this purpose, the autocorrelator is mounted on 

a stage that allows the adjustment of the height of the autocorrelator input to the height of the laser 

beam. It is also important that the mirrors before the autocorrelator are placed at 45° with respect 

 

Fig. 4.14. Autocorrelator measurement setup. (a) Two-mirrors setup for the alignment of the 

autocorrelator, (b) Alignment position autocorrelator aperture with zoomed-in inset of the 

alignment cross, (c) Measurement position of the autocorrelator aperture.  
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to the path of the beam. For this alignment, the position of the input of the atucorrelator should be 

set as Fig. 4.14(b) with the alignment aperture oriented horizontally showing a white screen with 

a cross. When the autocorrelator is properly aligned, a reflection of the incident laser beam is 

reflected and centered at the cross in the screen. The goal of the alignment is to used the tuning 

knobs of the mirrors before the autocorrelator to set the reflected beam at the cross of the 

autocorrelator. One hint for this process is to use one mirror to move the reflected beam towards 

the cross, which can make the incident laser beam to hit the edge of the input of the autocorrelator. 

Then, the user can tune the other mirror to get the incident laser beam back in the input of the 

autocorrelator. This process can be applied for both the x- and y-directions and repeated multiple 

times until the reflected beam is centered at the cross. Once the reflected beam is at the cross, the 

position of the alignment aperture of the autocorrelator should be placed vertically as shown in 

Fig. 4.14(c), and the measurement of the temporal femtosecond laser pulse width can be recorded.  

There are some important facts about the autocorrelator measurements that should be taken 

into consideration. The measurement range can be modified for broader or narrow pulses, so it 

should be adjusted for optimum measurements. Also, this autocorrelator provides two intensity 

values (1 and 10) for their measurements, and the higher intensity allows the measurement of laser 

pumps with low average power. In the same way, even though the autocorrelator can handle a 

maximum power of 300 mW, it overloads with the output power of the laser, which is ~ 80mW. 

When that state “overload” is shown in the screen, the power of the incident beam should be 

reduced with a ND filter or the reflection of a glass plate. An incident laser power of less than 

20mW provides a good measurement of the temporal laser pulse.   

The autocorrelator measurements were obtained at three positions in the system: at the output 

of the laser, before the emitter device and before the detector device. These measurements allows 
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the comparison of the femtosecond laser pulse width directly from the laser output with the laser 

pulse width at the PCA devices. With this comparison, one can determine if the optical components 

of the system or the coupling of the laser beam to the fiber ports produced any distortion to the 

femtosecond pulse. These measurements are displayed in Fig. 4.15(a) for the autocorrelator pulse 

width measurement of the output of the laser, Fig. 4.15(b) for the measurement at the emitter, and 

Fig. 4.15(c) for the measurement at the detector. These measurements are plotted in blue together 

with a red dotted line representing a Gaussian fit provided by the autocorrelator. It is important to 

mention that the measurement for the output of the laser was produced at 20mW, the measurement 

at the emitter was obtained at 8.5mW, and the detector power was measured as 9.2mW. As 

demonstrated in these plots, femtosecond pulse widths of 94 fs, 95 fs, and 96 fs were measured for 

the laser output, emitter and detector positions, respectively. These measurements verify the proper 

functioning of the optical alignment of the system as the integrity of the laser pulse width is not 

 

Fig. 4.15. Autocorrelator measurements at (a) the laser output, (b) before the emitter device, 

and (c) before the detector device.    
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affected. The coupling to the fiber port was found to produce a significant effect on the laser pulse 

width after the optical fiber cable. This was experimentally tested by varying the angle of incidence 

to the fiber port input while measuring the pulse width at the output of the optical fiber cable. At 

different angles, the pulse width varied between 95 fs and 109 fs, demonstrating a variation of ~ 

15%. Therefore, this last experiment provided an insight to the importance of verifying the 

femtosecond pulse width at the input of the emitter and detector devices because any change in the 

angle of incidence to the fiber port may produce a broader pulse and affect the performance of the 

PCA devices.   

4.7 Bias Voltage Measurements  

The TestPanel software provides the facility to control the bias voltage of the emitter. 

However, there is a peripheral box with some circuitry between the software and the device as 

shown in Fig. 4.16(a). This box contains a transformer that takes a low voltage input (0 – 2 V) and 

increase it to the voltage levels required for the performance of the LT-GaAs emitters (~ 75 V). 

This transformation ratio depends on the load that is connected to it, which represents the PCA 

emitter under test. Therefore, it is very important to identify the transformer ratio to provide the 

desired bias voltage for the PCA emitter. In this way, some measurements were performed with 

an oscilloscope (Keysight InfiniiVision MSO-X 2024A) at the test points outside the peripheral 

box (See Fig. 4.16(a)) while varying the bias voltage setting from the TestPanel software. This 

bias voltage setting can be changed from the configuration file located at the right of the software 

screen by modifying the following line of code: "emitter_bias": 1.5. After changing the value of 

the emitter bias, it is necessary to click “write” and then “commit”. This will store the new 

configuration in the settings of the device. By clicking “commit”, the software reinitializes the 
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system, which takes approximately 2 minutes. Once the system is ready, one can click “start”, and 

then the PCA emitter would be biased to the new bias voltage setting.  

The voltage setting was varied from 0.1 V to 1.5 V, which was the value used for all THz 

measurements presented in this work. The results of these measurements are shown in Fig. 4.16(b), 

where a ~ 33kH squared wave was measured with the oscilloscope, and its maximum voltage was 

plotted with respect to the voltage setting in the software. It is clear the expected increasing 

behavior of the measured bias voltage as the voltage setting of the software was increased. The 

measured bias voltage at the voltage setting for our measurements (1.5 V) was 62.3 V, representing 

the bias voltage experienced by the PCA emitter. The transformer ratio was calculated to be  

around ~ 42 within the software voltage setting range of 0.1 V to 1.5 V. This ratio is plotted in the 

right axis of the plot in Fig. 4.16(b).  

4.8 RSDL Calibration 

 As described previously, the RSDL is one of the delay lines that contributes with the 

functioning of the TeraAlign System. It provides the delay that is used for the SpectraSeries 

measurements, which delivers the terahertz pulse measurements that have been shown in this work. 

 

Fig. 4.16. Bias voltage measurements. (a) Measurement setup (b) Measurement results for the 

measured bias voltage and the transformer ratio.    



102 
 

As shown in Fig. 4.17(a), the RSDL consists of a rhomboid that rotate inside a chamber. This 

rotation is responsible for providing the optical delay necessary for the SpectraSeries 

measurements. The center or zero position of the rhomboid (See dashed lines in Fig. 4.17(a)) 

relative to the input laser beam to RSDL is very important for the proper functioning of the device.  

5.8.1 RSDL Calibration Indicators 

The following scenarios demonstrate that the RSDL rhomboid is not properly aligned, and it 

requires calibration: 

• A misalignment of the zero position of the rhomboid to the input laser beam produces a 

large laser power drop after the interaction of the laser beam with this delay line. The usual 

power level of the input beam to the RSDL is ~ 36 mW, and the normal power reading of 

the output beam of the RSDL should be ~ 30 mW. Hence, one should expect a power drop 

of around 6 mW due to the interaction of the laser beam with the RSDL in normal 

conditions. A larger power drop than 6 mW could indicate that either the input beam to the 

 

Fig. 4.17. RSDL Calibration. (a) Side view of the RSDL without the cover. It shows the 

rhomboid inside the RSDL. (b) Top view of the RSDL showing the barrel and the clamping 

screw.    



103 
 

RSDL is misaligned, or it could represent that the RSDL requires calibration. In this case, 

the first option should be investigated first.  

• When the electrical part of the TeraAlign system is turned on, the RSDL makes a noise 

when it goes to its home or zero position. However, if a similar noise is experienced during 

SpectraSeries measurement, it could indicate that the rhomboid is not properly positioned, 

and it needs calibration.  

• The zero position of the rhomboid of the RSDL should remain the same regardless if the 

electrical part of the system is ON or OFF. Therefore, the best test to assess the need for 

RSDL calibration is to measure the power of the output beam of the RSDL when the 

electrical part of the system is ON and when the electrical part of the system is OFF. These 

two power readings should be the same or similar. For instance, if the expected power after 

the RSDL is ~30 mW, the power measurements with the system ON and OFF should be ~ 

30 mW ± ~ 1 mW.  

• Another indicator of a need for RSDL calibration is random power measurements of the 

output laser beam when the system is ON or OFF. For instance, Table 12 shows an 

experiment in which the electrical part of the system was turned ON and OFF, and the 

power reading was recorded. As shown in this table, the power measurements greatly vary 

with the status of the system being ON and OFF in a random way. This indicates that the 

zero position of the rhomboid is not correct, and it needs to be aligned.   

Table 12. RSDL Calibration Assessment 

Power Measurements 

Electrical System ON Electrical System OFF 

14 mW 20 mW 

10 mW 0 mW 

10 mW 29.4 mW 

11.6 mW 10.6 mW 
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5.8.2 RSDL Calibration Process 

 The process for the RSDL calibration consist of adjusting the zero position of the rhomboid of the 

RSDL, so that the RSDL measurements range is greater than 40ps. For this purpose, the barrel that 

contains the motor that rotates the rhomboid should be manually rotated to look for the correct zero 

position. This barrel labeled in Fig. 4.17(b) where the top view of the RSDL is shown. With this 

rotation, there is a measurement setting in the TestPanel software that is called “RSDL Calibration”, 

which will define the measurement range of the RSDL based on the new position of the rhomboid. The 

steps for the RSDL calibration and rhomboid alignment are as follows: 

1. Analyze the performance of the TeraAlign system based on the scenarios that were described 

in the previous section. This will verify the proper functioning of the RSDL.  

2. Use the clamping screw shown in Fig. 4.17(b) to release the clamp that holds the barrel in 

place. This screw is very tight, so some force may be needed. It is very important to note that 

you must not release the clamp completely. You should slightly release the clamp until the 

barrel can be moved manually.  

3. Rotate the barrel manually to a new position, and tight the clamping screw at the new position 

of the barrel.  

4. From the TestPanel software, look for the “RSDL Calibration” measurement. This 

measurement can be found in the same way as the SpectraSeries measurement as explained 

previously. The settings for the RSDL calibration are shown in Fig. 4.18(b). Before performing 

the RSDL calibration, it is important to have an aligned system that shows a terahertz pulse 

even if it is not a large pulse. Also, it is important to center the terahertz pulse by using the 

optical delay offset as shown in Fig. 4.17(a), which shows an offset of -9.000 ps. This value is 

not fixed, and it should be adjusted depending of the current measurement arrangement.    

5. After clicking “Run”, the RSDL calibration measurement will start, and the software screen 

should show a terahertz pulse moving from the left of the screen to the right. After the RSDL 
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calibration, the TestPanel software gets a new maximum measurement range of the RSDL. 

This can be seen by trying an SpectraSeries measurement with a RSDL amplitude value of ~ 

50 ps. The software should it as a value larger than the maximum RSDL amplitude, and it will 

flag an error. This error is shown in Fig. 4.17(b), and it gives the maximum amplitude of the 

RSDL as shown by the red square in Fig. 4.17(b). 

6. Once the maximum amplitude of the RSDL is greater than 40 ps, the calibration and alignment 

procedure is correct, and the user can proceed with further measurements. If the value of the 

maximum RSDL amplitude is less than 40 ps, the user should go back to step 2 and repeat this 

process until the RSDL amplitude is greater than 40 ps.   

 

 

Fig. 4.18. RSDL Calibration. (a) Settings from the TestPanel software. (b) Error message 

showing the maximum measurement range of the RSDL after calibration.  
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CHAPTER 5: Conclusion and Future Work 

This work presented the two- and three-dimensional implementation of a comprehensive 

model of a photoconductive antenna. It covers the solution of Maxwell’s equations for the 

application of a femtosecond laser source against the semiconductor substrate, the photocurrent 

generation, and the emission of a THz pulse based on the photocurrent profile, and the temperature 

calculation of the device under working conditions. The two-dimensional implementation modeled 

a BP PCA at two laser wavelengths (780 nm and 1560 nm) along with a LT-GaAs PCA at 780 nm 

to compare the photocurrent variation with respect to the bias voltage, average laser power-

dependence of the photoconductivity, and the THz signal generation from the three devices. The 

results of the 2D model showed that the BP PCA at 1560 nm and biased at 1 V presented a 

photocurrent enhancement of ~ 35% compared to the BP device at 780 nm while the BP device at 

780 nm generated more than twice photocurrent compared to that of the LT-GaAs at 30 V bias. In 

terms of the generated THz pulse, the performance of the BP device at two laser wavelengths was 

~ 78.8 % higher than that of the conventional LT-GaAs PCA at a bias voltage of 1 V and ~ 55.6 

% when the LT-GaAs device bias voltage was increased to 30 V at 780 nm. In addition, the signal 

increase was ~ 86.5 % at a bias voltage of 1 V and ~ 71.7 % when the LT-GaAs device bias voltage 

was increased to 30 V at 1560 nm. Consequently, the performance of the BP PCA was 

computationally compared to that of the LT-GaAs device, and it was found that the signal 

generation was higher as a result of a higher photocurrent generation. It is important to mention 

that these results were based on model parameters found in literature, and it has been found that 

BP presents a high level of discrepancy on some of its optoelectronic properties. 

The model in two dimensions also contributed to the development of the required settings for 

the proper functioning of the model. In fact, some important studies were developed based on this 



107 
 

models such as the saturation behavior of the photocurrent as product of the application of the 

Caughey-Thomas mobility model. In fact, if the electric field dependence of the mobility is not 

considered in the model, the photocurrent density would increase constantly without saturation. 

Another important study was the time-dependent conductivity calculations that provided the 

photonductivity variation due to the application of a femtosecond laser source. These calculations 

were based on two approaches, and both approaches demonstrated agreement in terms of the shape 

of its time variation as well as their reported values were within the same order of magnitude.  

In terms of the 3D implementation of the model, the required wavelength-dependent 

discretization and the multiscale nature of the BP layer compared to the size of the antenna 

structure represented a computationally intensive problem. We reduced the computational cost of 

the model through the simulation of only the active area of the antenna gap and implementing PEC 

and PMC boundary conditions as symmetry lines leading to simulating one quadrant of the 

domain. We reported a difference of 0.0161% upon comparing a medium size domain in the 

Maxwell’s equation solution part (Case 4 in Table 11) with the largest domain modeled in this 

work for the optical response (Case 5 in Table 5). This slight difference in the optical response 

solution proves the high accuracy obtained from modeling only the active area of the device, which 

represents a huge reduction in the computational cost of the problem by a factor of 4 considering 

the number of unknowns.  

For the semiconductor response solution the results from the 3D model demonstrated 

overestimation of carrier generation rate between the approximation described in [63] [78] 

compared to the application of the 3D Maxwell’s equation solution presented in this work. This 

overestimation in the generated carriers influenced the photocurrent density calculation affecting 

its accuracy and providing a larger photocurrent by a factor of ~1.75. This highlights the 
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significance of solving the 3D optical response of the device to improve the accuracy of the results. 

These results were also compared to a larger case (Case 5 in Table 5), in which the electrical 

response solution exhibited a significant similarity to the medium case that considered only the 

active area of the antenna closer to the gap. In fact, these solutions were compared at their 

maximum photocurrent densities reporting a difference 0.651% between them. With this 

difference, we also proved that the results provided by a model size close to the gap of the antenna 

produces results with sufficient accuracy compared to the larger domains. 

Finally, the conduction of current at the gap of the antenna generates a temperature increase 

in the device. To model this thermal effect, the air-to-electrode interfaces must be considered in 

the computational domain. The electrodes of the antenna represent a thermal sink to the device 

due to the low thermal resistance of the Cr/Au metal structures. Hence, if the interaction of these 

elements with air is not considered in the simulation domain, the results demonstrated false large 

temperature levels that lead to inaccurate modeling of the temperature effect on the device 

performance. Once we increased the size of the active area to account for the thermal sink, the 

results showed insignificant temperature variation around room temperature of 300K between the 

hottest part of the device at the antenna gap and the electrodes where most of the heat is exchanged 

with the environment. This temperature variation produced a difference in the photocurrent density 

of ~ 0.0136 kA/cm2 compared to the photocurrent density profile obtained at room temperature 

by neglecting the temperature variation in the semiconductor.  

The normalized simulated THz pulse generated from the proposed BP PCA agrees with the 

measurements performed using a reference commercial LT-GaAs PCA emitter in terms of the 

pulse shape, however, the BP PCA demonstrated a trend of a larger bandwidth. These results 

demonstrated the potential of the proposed BP PCA for THz emission. The fabrication of the BP 
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PCA devices is ongoing, and the future work of this project is based on the measurements of the 

BP PCA performance on the TeraAlign system bench-top time-domain system. These 

measurements will allow the comparison against the model, and verify the enhancement of this 

BP PCA over other conventional antennas. Also, the TeraAlign system requires some work on the 

pinhole alignment process  

5.1 Challenges with the Pinhole Terahertz Alignment  

 As explained in Chapter 4, the pinholes contribute to filter the lower frequency components 

of the terahertz signal leaving the higher frequencies. The results provided in Fig. 4.12 shows 

signal amplitudes with a pinhole ~50% drop ratio close to the correct one as it shows a signal of ~ 

15 without pinhole, ~8 with the 1.0mm pinhole, and ~2 with the 0.5mm pinhole. This signal 

showed the correct functioning of the pinhole as shown in Fig. 5.1(a). However, a signal amplitude 

of 15 is low for the proper performance of the LT-GaAs devices, which are able to produce signals 

around ~30. In this experiment, even though the signal is going through the pinholes, it is not 

ideally aligned between devices. This was proved by the achievement of higher signal amplitudes 

when the terahertz alignment process was focused on getting a larger amplitude instead of passing 

 

Fig. 5.1. (a) Correct performance of the terahertz signal beam passing through the pinhole. (b) 

Using an iris to find the actual location of the terahertz beam. (c) True location of the terahertz 

beam compared to the center of the pinhole.  



110 
 

the signal through the pinholes. Fig. 4.11 demonstrates terahertz signals with larger amplitude 

although those signals were not passing through the pinhole. In other words, the signal dropped to 

zero when the pinhole was used with any of the signals in Fig. 4.11. It is important to note that 

having a larger signal represents a better alignment between devices, and so better performance of 

the system. The challenge is that at the optimum alignment position between the devices, the signal 

does not go through the pinhole, which prevent the filtering of the lower frequency components of 

the terahertz signal. Also, if the terahertz alignment knobs are used to drive the terahertz beam 

location to the center, the alignment is lost, the signal drops, and the shape of the pulse is affected. 

To find the location of the terahertz beam at the optimum alignment, an iris was used to provide a 

larger aperture as shown in Fig. 5.1(b). With this method, we were able to locate the position of 

the terahertz beam as shown in blue in Fig. 5.1(c), where the beam is slightly aside from the center 

position, and it is above the center by approximately 5 mm.  

 With this observation, several approaches were applied to solve this issue including using 

spacers below the pinhole holder to increase its height to the optimum location of the terahertz 

beam. This approach did not provided satisfactory results as the height of the spaces was too high 

or too low for solving the problem. In addition, some spacers were placed between the device 

mount and the holding arm to lower the devices. This approach was worse and should not be used 

as the position of the holding flexure of the Si lens is fixed, so lowering the devices brings them 

out of the Si lens. These two approaches indicated that a finer tuning of the position of the pinhole 

was needed.  

 Dr. Hugh Churchill provide the movable stage that is shown in Fig. 5.2(a), and the red pinhole 

holder was 3D printed by Mr. Mahmudul Doha. This movable pinhole holder allowed the fine 

movement of the pinhole in the horizontal and vertical direction so that the user could track the 
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location of the terahertz beam in a more accurate manner. This new pinhole holder was placed in 

replace of the old one as shown in Fig. 5.2(b) between the two ellipsoidal mirrors. The process 

applied with this approach consisted on obtaining a signal with an amplitude of ~ 30, and using 

the movable pinhole holder to track the location of the beam. This approach gives more freedom 

in the sense that the alignment of the terahertz signal is performed with both the terahertz alignment 

knobs of the bottom stage and the knobs that move the pinhole as shown in Fig. 5.2(a). The results 

of this approach are provided in Fig. 5.3, where it shows the signal without pinhole, with 1.0mm 

pinhole and 0.5mm pinhole. These measurements were taken after adjusting the position of the 

pinhole with the movable pinhole holder and after performing terahertz alignment with the knobs 

of the bottom stage. This plot showed an improvement in the sense that the signal without any 

pinhole has an amplitude of more than, and placing the pinhole provided a signal passing through. 

Without this approach, no signal was achieved through the pinhole while keeping an amplitude of 

the original signal of more than 30. Also, Fig. 5.3(b) and (c) shows the filtering of the lower 

frequency components at frequencies around 1THz, which represents the correct effect of the 

pinholes. However, the percentage drop of the application of the pinhole is not correct. Therefore, 

 

Fig. 5.2. (a) Movalble pinhole holder. (b) Position of the movable pinhole holder with respect 

to the terahertz arrangement.   
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this remains as an ongoing improvement that the system needs, and it should be address as part of 

the future work of this project.  

5.2 Experimental Measurement on Black Phosphorus Photoconductive Antennas 

 The experimental measurements performed in this work were obtained from reference 

photoconductive antennas provided by TeraView, Cambridge, UK. The fabrication of black 

phosphorus photoconductive antenna emitters is an ongoing research project, and the first 

 

Fig. 5.3 THz signal through pinholes with the new movable pinhole. (a) THz signal transmitted 

without pinhole, (b) THz signal transmitted with a 1.0mm pinhole, (c) THz signal transmitted 

with a 0.5mm pinhole. Measurements performed with Emitter 3 – Detector 2 with 1800 

averaging.   



113 
 

measurements of these devices were performed at the TeraAlign system recently. These antennas 

were fabricated by Mr. Mahmudul Doha under the supervision of Dr. Hugh Churchill at the 

Institute for Nanoscience and Engineering at the University of Arkansas. The set of antennas 

measured at the TeraAlign system consisted on four antenna emitters based on black phosphorus, 

which were called as BP Emitter #12, BP Emitter #13, BP Emitter #14, and BP Emitter #15 by 

following the fabrication numbering. The conditions for the measurements of these BP PCAs were 

a bias voltage of ~ 840 mV and a laser power of 1.0mW. These measurements are shown in Fig. 

5.4, where the received signal for a single measurement is compared to the average of 1800 

measurements. The are a few important comments that can be provided about the initial 

measurements on the BP PCA deices. The signal produced by all four devices is low in amplitude 

 

Fig. 5.4. Terahertz measurement of BP PCA emitters. Measured signal for (a) BP Emitter #12, 

(b) BP Emitter #13, (c) BP Emitter #14, and (d) BP Emitter #15.  
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at the conditions of ~ 840 mV bias voltage and a laser power of 1.0mW. This aspect makes it 

difficult to perform both the optical and terahertz alignment of the devices because the signal 

amplitude is comparable to the noise level of the system as shown in Fig. 5.4. Furthermore, the 

shape of the received signal from the BP devices is different from the terahertz signal received 

from the reference emitters. This difference is clear in Fig. 5.5(a), where the measured averaged 

signal obtained from the four BP emitters is compared to the terahertz signal produced by a 

reference LT-GaAs at the same measurement conditions of ~ 840 mV bias voltage and a laser 

power of 1.0mW. It is known that LT-GaAs works at higher bias voltages and larger average power 

levels, but in this study, they were measured at the same conditions as BP to develop a better  

 

Fig. 5.5. Terahertz measurement of BP PCA emitters. Measured signal for (a) Frequency-

domain signal of the BP emitters with a reference LT-GaAs. (b) Time-domain signal of the BP 

emitters. (c) Frequency-domain signal of the BP emitters with a reference LT-GaAs. 
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comparison. Since the signal produced by the reference LT-GaAs device is larger, Fig. 5.5(b) 

shows the comparison of the measured signal from the four BP emitters, where another observation 

can be made. The shape of the measured signal from the BP devices is constant between the four 

measurements. For completeness, the spectra of the four BP emitter signals along with the signal 

produced by the LT-GaAs is shown in Fig. 5.5(c), where the spectrum of the BP measurements is 

terminated at frequencies around 1 THz compared to the LT-GaAs that shows a better 

performance.  

Based on these two observations about the low signal level, the shape different from the 

terahertz pulse shape provided by the reference devices, and the constant shape between the BP 

measurements, we can propose three ideas that should be explored as future work in this project.  

1. Since the shape of the BP signals is constant between them, our first thought involved the 

geometry of the BP devices. Specifically, we observed that the transmission line of the 

fabricated BP was significantly large compared to the electrode size, which may influence 

the terahertz signal generation.  

2. The difference in technology between an emitter based on BP and a detector based on LT-

GaAs may influence the received signal. The BP emitters possesses different properties 

compared to LT-GaAs emitters, which may impact the received signal at the detector side.  

3. Since the signal is low, fabrication techniques could be apply to the BP devices to improve 

its performance. These fabrication techniques should be aimed to increase the photocurrent 

density in the device so that the generated signal amplitude increases as well.  

In our efforts to gain a better understanding about our first idea, some computational cases 

were developed to study the effect of a larger transmission line to the generated terahertz signal. 

For this purpose, two cases were compared based on the transient solution of the RF module 
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with the model configuration used for the signal generation in Chapter 2 and Chapter 3 with 

the dimensions shown in Fig. 2.11(a). The first case represented the exact dimensions of the 

antenna geometry shown in Fig. 2.11(a), where the transmission line was modeled with a  5.0 

µm thickness as used in [22]. For the second case, the thickness of the transmission line was 

increased to 26 µm, which resembles the thickness used for the fabricated BP emitters. The 

results of this experiment are shown in Fig. 5.5, where one can observe that the shape of the 

pulse changed with the application of a thicker transmission line. However, the change in the 

shape of the pulse is not the difference in shape observed in the measured signals from the BP 

emitter. Preliminary results for future directions are posted in Appendix G. 

 

 

 

 

 

 

 

 

Fig. 5.6 BP simulation of the terahertz signal generation of an antenna with two different 

feedline sizes. (a) Time-domain signal. (b) Frequency-domain spectrum 
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APPENDIX A: COMSOL Settings 

A.1 Impedance and Scattering Boundary Condition as Excitation 

There are multiple ways of creating an excitation in COMSOL. The scattering and impedance 

boundary conditions present a significant resemblance when used as excitation. In fact, both of 

them were tested to produce the required spatial Gaussian modulated plane wave excitation  as 

shown in Fig. A.1. For this test, a computational domain of air was used as propagation medium 

with the source in the top boundary of the box. A x-polarized electric field with amplitude of 1 

 

Fig. A.1. Plane wave excitation settings in COMSOL. (a) Impedance and (b) scattering 

boundary conditions settings. Electric field results with the (c) impedance and (d) scattering 

boundary conditions as sources. All dimensions in µm. 
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was applied as source and incident electric field for the impedance (See Fig. A.1(a) ) and scattering 

(See Fig. A.1(a) ) boundary condition, respectively. The impedance boundary condition is used to 

simulate continuation of the domain after the boundary based on the boundary properties required 

in its settings [98]. For this test, they were assigned to the properties of air. In the case of the 

scattering boundary condition, the type of wave selected was plane wave of the second order which 

provides a higher absorption of the scattered wave compared to the first order [99]. The results of 

this test is shown in Fig. A.1(c) and (d), where there is a difference of twice the magnitude of the 

electric field between the impedance and scattering boundary condition. The results produced by 

the scattering boundary condition as excitation provided the expected magnitude of the electric 

field of 1 based on the incident electric field amplitude and the wave transmission in air. This 

demonstrate the correct performance of the scattering boundary condition as a source over the 

impedance boundary condition. The implementation of the impedance boundary condition as a 

source represents an equal wave emitted upwards and downwards, which explains the values 

obtained as half of the correct amplitude of the electric field.   

A.2 Parameter Extraction and Maximum Power Density Implementation 

As described in Chapter 2, the maximum power density is calculated from the electric and 

magnetic field components, and it is used as input to the semiconductor module for the electrical 

response calculation. The COMSOL settings for the extraction of the field components are shown 

in Fig. A.2(a) demonstrating an example for exporting the electric field component. The magnetic 

field component can be extracted by changing the expression from “emw.Ex” to “emw.Hy”. It is 

very important to follow these settings because the MATLAB code used for the computation of 

the maximum power density and its expansion from one quadrant to the complete domain is written 
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based on the data ordering provided with these settings. In the “Filename” section, it is necessary 

to select the path of the file to be saved and the name of the file. This can be selected by clicking 

the “Browse” option and navigating to the desired folder. The data format is also important, and it 

must be set to “Spreadsheet”. Then the size of the grid can be selected based on the geometry of 

the model and the desired space for the maximum power density calculation.  

Once both the electric and magnetic field components are extracted, the code provided in 

Appendix B can be used to calculate the maximum power density. The settings shown in Fig. 

A.2(b) are used to input the maximum power density data back to COMSOL. This input is applied 

as an interpolation function that can be called as PS(x,y,z) from anywhere in the model file. It is 

important to specify the number of arguments of the function, which in this case represents the 

 

Fig. A.2. Settings in COMSOL for (a) exporting the electric and magnetic field components 

required for the MATLAB code and (b) importing the maximum power density data back to 

the model.  
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coordinates x, y, z. Hence, the number of arguments shown in Fig. A.2(b) is 3 due to the three 

coordinates. If the model is 2D, the number of arguments must be changed to 2. Since this 

interpolation function is used based on the spatial coordinates of the model, the option “Use spatial 

coordinates as arguments” must be checked. It significantly important to provide the correct units 

for the function and its arguments. For this example, the unit of the arguments is “µm” because of 

the spatial coordinates, and the unit of the function is “W/m2”, which results from the maximum 

power density calculation.  

In this model, this function is called from the carrier generation rate profile, which is applied 

in the software as a “User-Defined Generation”. The setting for the carrier generation rate are 

shown in Fig. A.3, where the interpolation function call is highlighted in yellow. The equation 

provided in this illustration correspond to Eq. (2) described in Chapter 2 along with all its 

components.  

 

Fig. A.3. Settings in COMSOL for the carrier generation rate. 
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A.3 Time-Dependent Study Settings 

As explained in the previous chapters, the time discretization is very important for the 

convergence of the model due to the ultrafast switching time of the femtosecond laser pulse. The 

settings to apply the non-uniform discretization is shown in Fig. A.4, where the simulation times 

are set to the expression presented as: “range(0[ps],0.05[ps],0.5[ps]), 

range(0.51[ps],0.01[ps],1.0[ps]), range(1.05[ps],0.05[ps],5[ps])”. This expression describes the 

higher resolution around the peak of the laser pulse at 0.6 ps. It is important to follow the syntax 

provided in the expression; otherwise, the software flags an error. Figure A.4 also shows the 

location where the relative tolerance is set, which is specified as “1E-5” as mentioned before.  

 

 

 

 

 

 

Fig. A.4. Settings in COMSOL non-uniform time discretization. 
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APPENDIX B: Mathematical average power of a single laser pulse Vs average power of a 

train of laser pulses 

This appendix provides a comparison between the derivation of the amplitude of the 

incident electric field when considering the mathematical average power of a single laser pulse 

compared to the average power of a train of laser pulses.  

B.1. Mathematical average power of a single laser pulse 

The derivation of the incident electric field starts from the fact that a femtosecond laser pulse 

is a plane wave modulated in time by a Gaussian envelope with the pulse width in the order of 

femtoseconds. This concept of femtosecond laser pulse as shown in Fig. B.1, where the laser pulse 

traveling at the optical frequency is shown in blue curve (frequency not up to scale), and the red 

plot shows the femtosecond envelope. This laser pulse is defined by the equation B.1, where the 

femtosecond pulse width is defined as Dt and the variable t0 represents the location of the pulse in 

time. Emax represents the amplitude of the incident electric field, and the cosine term defines a 

plane wave as function of time (t) and space (z) [60].   

E⃗⃗ inc(r, t) = âeEmax cos(ωt + βz) exp(4 ln(0.5) (
t − t0
Dt

)
2

)            [V/m] (B.1) 

 

Fig. B.1. Femtosecond laser pulse 
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Due to the high optical frequency of the laser compared to the temporal envelop, we can 

calculate the time-average power density of the laser in units of W/m2 based only on its envelope 

as B.2. In the expressions below, fp stands for the repetition rate of the laser, and η0 represents the 

impedance of free space.  

P ave=
1

T
∫

|Emax|
2

η0
exp(8 ln(0.5) (

t − t0
Dt

)
2

)dt
T

0

                [W/m2] (B.2) 

P ave = fp
|Emax|

2

η0
∫ exp (8 ln(0.5) (

t − t0
Dt

)
2

)dt

1
fp

0

  

P ave=
|Emax|

2fpDt

2η0
√

−π

ln(0.5)
                                [W/m2]  

Then, with the expression of the time-average power density, the total time-average power 

can be calculated in units of W as B.3. This expression considers the spatial Gaussian distribution 

of the laser in both x- and y-directions.  

Pave = −∫ P ave.ds
s

                                                [W] (B.3) 

Pave = ∬ Pave exp (4 ln(0.5) (
x − x0

Dx
)

2

) exp(4 ln(0.5) (
y − y0

Dy
)

2

)dxdy

∞

−∞

  

Pave = P ave

DxDy

4
(

−π

ln(0.5)
)  

Pave =
|Emax|

2fpDtDxDy

8η0
(

−π

ln(0.5)
)

3
2

                                     [W] (B.4) 

Once we have an expression for the total time-average power of the laser as B.4, we can 

solve for the amplitude of the incident electric field as B.5: 

Emax = √
Pave8η0

fpDtDxDy
(

 ln(0.5)

−π
)

3
4

                               [V/m] (B.5) 
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B.2. Average power of a train of laser pulses 

The response time of conventional commercial power sensors is much larger than the 

femtosecond pulse width of the laser pulse [49]. This means that the measurement provided in 

datasheets for the average power of femtosecond pulses is actually the average power of a train of 

laser pulses as shown in Fig. B.2. In this way, it results necessary to obtain an expression that 

allows the modeling of an incident electric field amplitude in terms of the actual measured power. 

This derivation starts from the calculation of the power density of the laser source as B.6. in units 

of W/m2.   

P⃗ = E⃗⃗ × H⃗⃗ =
E⃗⃗ max

2

η0
                                         [W/m2] (B.6) 

Then, we compare the expression in B.6 with the calculation of the laser intensity of a laser 

source based on the area of the laser footprint as B.7, which in this case was considered as the half 

power beam width of the laser in one direction (Dx).  

P⃗ =
Pave

πD𝑥
2

                                         [W/m2] (B.7) 

E⃗⃗ max
2

η0
=

Pave

πD𝑥
2

                                                           

From the expression above, we can solve for the amplitude of the incident electric field as: 

Emax = √
η0Pave 

πD𝑥
2

                                         [V/m] (B.8) 

 

Fig. B.2. Average power of a train of laser pulses. The red cure represents the laser pulses.  
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APPENDIX C: Photoconductive Antenna Model Summary 

The square elements of the flowchart describe the most important computational steps in the 

model, and each arrow presents the result of the previous process as well as the input to the next 

one. This flowchart applies for both the 2D and 3D version of the model. However, since the 3D 

optical response only simulates one quarter of the geometry, after the calculation of the maximum 

power density, this data is expanded to the other three quarters of the geometry. The MATLAB 

code for this data expansion is provided in Appendix C. 

 

Fig. C.1.  Flowchart that summarizes the computational model for the optical, electrical, and 

Terahertz response of the PCA. 
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APPENDIX D: MATLAB Code for the 3D maximum power density calculation and 

expansion from one quarter to the complete geometry 

  The following MATLAB code takes two data files corresponding to the electric and magnetic 

field components to calculate the maximum power density in one quadrant, and it expands it to the 

complete geometry. The settings required to extract the data for the field components from 

COMSOL are shown in Appendix A.2. 

MATLAB Code 

%**************************************************************************** 

%.........................................................University of Arkansas.......................................................... 

%............................................Department of Electrical Engineering................................................ 

%........................................3D MAXIMUM POWER CALCULATION......................................... 

%.......................................................Prepared by: Jose Santos......................................................... 

%**************************************************************************** 

  

%% 3D Maximum Power Density Calculation Code 

clear all; 

clc 

% From Comsol 

M1 = dlmread('Ex – Electric Field Component.csv'); 

M2 = dlmread('Hy – Magnetic Field Component.csv'); 

xx = M1(:,1); 

yy = M1(:,2); 

zz = M1(:,3); 

Ex = M1(:,4); 

Hy = M2(:,4); 

 

% From Phasor to Time-Domain 

c = 3e8; 

lambda0 = 780e-9; 

f0 = c/lambda0; 

omega = 2*pi*f0; 

t = [0:(1/(50*f0)):6/f0]; 

for n = 1:length(Ex) 

    Ext = real(Ex(n)*exp(j*omega*t)); 

    Hyt = real(Hy(n)*exp(j*omega*t)); 

    Pt = -Ext.*Hyt; 

    Pmax(n,1) = max(abs(Pt));  

end 
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 % Transformation from Quarter domain to Full domain 

a = 1; 

for ii=1:length(zz) 

    if zz(ii)<zz(ii+1) 

        a = a + 1; 

    else  

        break; 

    end 

end 

b = 1; 

for ii=1:length(yy) 

    if yy(ii)<=yy(ii+1) 

        b = b + 1; 

    else  

        break; 

    end 

end 

  

xnew = xx; 

ynew = yy; 

znew = zz; 

Pnew = Pmax; 

p = 1; 

  

% Mirroring according to the Y-Axis 

c = 0; 

jj = 1; 

bool = false; 

for ii=0:a:length(zz) 

    if ii<length(zz) && yy(ii+1)~=0  

        xnew = [xnew(1:c); xx(ii+1:(p*a)); xnew(c+1:end)]; 

        ynew = [ynew(1:c); -yy(ii+1:(p*a)); ynew(c+1:end)]; 

        znew = [znew(1:c); zz(ii+1:(p*a)); znew(c+1:end)]; 

        Pnew = [Pnew(1:c); Pmax(ii+1:(p*a)); Pnew(c+1:end)]; 

        bool = true; 

    elseif ii<length(zz) && yy(ii+1)==0 && bool == true; 

        c = c + 2*b -a; 

        bool = false;  

    end 

    p = 1 + p; 

end 

  

% Mirroing according to the X-Axis 

c = 2*b-a; 

xt = xnew; 

yt = ynew; 
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zt = znew; 

Pt = Pnew; 

for ii=length(xt):-c:1 

    if xnew(ii)~=0 

        xnew = [xnew; -xt(ii-c+1:ii)]; 

        ynew = [ynew; yt(ii-c+1:ii)]; 

        znew = [znew; zt(ii-c+1:ii)]; 

        Pnew = [Pnew; Pt(ii-c+1:ii)]; 

    end 

end 

  

PmaxG = [xnew ynew znew Pnew]; 

  

% Saving Files 

csvwrite('Maximum Power Density.csv',PmaxG) 
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APPENDIX E: Video Tutorials about the Functioning of the TeraAlign System 

A series of video tutorials about the functioning of the TeraAlign system was developed by 

the Author of this thesis under the supervision of Dr. Magda El-Shenawee at the Terahertz 

Research Group at the University of Arkansas. The purpose of these videos is the self-training of 

operators of the TeraAlign system for future measurements. The writing below represents a 

README file that accompany the video tutorials, and it gives the correct order for watching the 

videos. These videos are available up to request to Dr. Magda El-Shenawee.  

****************************************************************************** 

.........................................................University of Arkansas............................................................. 

……………….……………...........TERAALIGN SYSTEM............................................................ 

........................................Jose Santos Batista and Dr. Magda El-Shenawee...................................... 

...............................................................Video Tutorials................................................................... 

******************************************************************************  

This is a video training for the TeraAlign System at the University of Arkansas. Please, follow 

the safety considerations below:  

• ALWAYS wear eye protection (OD>4 at 780nm) when the laser is ON  

• ALWAYS wear gloves when handling optical components  

• ALWAYS wear an ESD protection wrist band when disconnecting and connecting the 

PCAs  

 

The sequence of the videos for the training is shown below:  

1. Overview - Final  

2. Optical Part in Details - Final  

3. Manual Delay Line Alignment - Final  

4. Power Levels - Complete - Final  

5. Terahertz Part - Section 1 - Final  

6. Terahertz Part - Section 2 - Final  

7. Pinhole Alignment - Final  

8. Fiber Port Coupling - Final  

9. Autocorrelator – Final  

 

These videos were developed in Dr. El-Shenawee’s Terahertz Research Group at the University 

of Arkansas in March 2021 by Jose Santos Batista. 

 

The following figures show the initial screen of each of the videos in this tutorial as well as 

the duration of each video.  
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Fig. E.1. Title: Overview. Duration: 04:53 

 

Fig. E.2. Title: Optical Part in Details. Duration: 11:50 

 

Fig. E.3. Title: Manual Delay Line Alignment. Duration: 05:04 
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Fig. E.4. Title: Power Levels – Complete. Duration: 25:53 

 

Fig. E.5. Title: Terahertz Part - Section 1. Duration: 18:50 

 

Fig. E.6. Title: Terahertz Part - Section 2. Duration: 41:43 
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Fig. E.7. Title: Pinhole Alignment. Duration: 04:20 

 

Fig. E.8. Title: Fiber Port Coupling. Duration: 44:33 

 

Fig. E.9. Title: Autocorrelator Measurements. Duration: 12:30 
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APPENDIX F: Validation of the Fourier Transform MATLAB code used in this work.  

  The analytic expression for the first order Debye dispersion model was used to validate the 

correct implementation of the fast Fourier Transform in MATLAB [100]. The model was applied 

to water, and the required parameters are provided in [100]. For this test, the time- and frequency-

domain expressions of the susceptibility given by E.1 were used. These functions are plotted in 

Fig. C.1 for water. Then, the time-domain data was transformed using the FFT function in 

MATLAB to the frequency-domain and compared against the plot obtained from the analytic 

expression of the frequency domain of the susceptibility. This comparison is presented in Fig. 

C.1(b), where both plots are on top of each other. This results guarantee the correct implementation 

of the FFT function, which is very important for this work.   

χ(t) =
 ϵs − ϵ∞

t0
exp (−

t

t0
) ↔ χ(ω) =

 ϵs − ϵ∞

1 + jωt0
 (F.1) 

 

 

. 

 

Fig. C.1. Validation of the implementation of the FFT Function (a) Time-domain susceptibility 

of water. (b) Frequency-domain susceptibility of water obtained with the alaytical expression 

in (11) and the MATLAB function FFT. 
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APPENDIX G: Preliminary Results for Future Directions.  

G.1. Modeled Device Dimensions Vs Fabricated Device Dimensions    

As mentioned in the Future Work section of this thesis, there are two issues involved in the 

terahertz measurements obtained from the BP PCA: the signal amplitude is low, and the shape of 

the THz pulse is different from the commercial LT-GaAs emitter. One observation was that the 

dimensions of the electrodes of the fabricated device were different from the modeled device 

presented in Chapter 2 and 3. Therefore, we modeled the THz signal generated from a PCA with 

the electrode dimensions used in the fabricated device. The dimensions of the modeled device are 

provided in Fig. G.1(a) compared to the dimensions of the fabricated device shown in Fig. G.1(b). 

The THz pulse was computationally obtained from both dimensions. The results of this experiment 

 

 

Fig. G.1. Modeled Vs Fabricated Dimensions. (a) Dimensions of the BP PCA devices modeled 

in this work. (b) Dimensions of the fabricated BP PCA devices. (c) Model results for the 

dimensions provided in (a) and (b) as well as the results obtained from Chapter 2 for LT-GaAs.   
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are shown in Fig. G.1(c) and (d) for both the time-domain THz pulse and its frequency spectrum, 

respectively. The case labeled as Modeled BP represents the results provided previously in Fig. 

3.8. This results are compared to the case labeled as Modeled Fabricated BP, which is the result 

of the THz response calculation of the model with the dimensions of the fabricated device. Then, 

both results are compared against the modeled LT-GaAs device that was presented in Fig. 2.12. 

Both the blue and black color curve were generated using the same electrode dimensions while the 

plot in red color was obtained from a larger bowtie electrode geometry with a larger transmission 

line width. As shown in Fig. G.1(c) and (d), the red curve provided a broader time-domain THz 

pulse, which translated to a different frequency-domain spectrum. These results showed that the 

larger dimensions in both the antenna electrode and the transmission lined affected the pulse. 

However, its effect was not comparable to the difference in the measurements obtained from the 

BP PCA devices presented in Chapter 5. Considering this observation, a new BP PCA (BP Emitter 

#17) was fabricated with the exact dimensions from the modeled device shown in Fig. G.1(a), and 

it was measured in the TeraAlign System. These measurements are shown in Fig. G.2, where Fig. 

G.2(a) provides the comparison of the signal level against the noise of the system. In this plot, the 

blue line represents the average of 1800 measurements. This measurement obtained from the 

second fabrication batch was compared against the batch 1 in Fig. G.2(b), where the change in the 

electrode geometry dimensions provided a narrower pulse for BP Emitter #17. This signal was 

also compared with the reference LT-GaAs in both time- and frequency-domain. The spectrum 

shows an enhancement of the new electrode dimensions compared to batch 1, which is explained 

by the time-domain THz pulse being narrower. However, the measurements of batch 2 still do not 

show the peak of the THz pulse that is provided by the reference LT-GaAs, which is responsible 

for the higher THz frequencies.  
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With the purpose of discovering the reason of missing the peak of the THz pulse, some 

electrical response simulations were performed at different values of saturation velocity and 

mobility. These simulations were developed with the idea that these parameters may impact the 

rising edge of the photocurrent density profile, which could affect the THz pulse and truncate the 

peak of the THz pulse. These results are shown in Fig. G.3, where the saturation velocity of BP 

was reduced by a factor of 0.5, 0.01, 0.0001 and increased by a factor of 10. These results were 

produced by using the model configuration described in section 3.2.1. This variation in the 

saturation velocity changed the amplitude of the photocurrent density as shown in Fig. G.3(a). 

However, the rising edge of the photocurrent density remain constant as shown in Fig. G.3(b), 

where all the photocurrent densities shown in Fig. G.3(a) are normalized.  

 

 

Fig. G.2. BP PCA Measurements Batch 2. (a) Signal level compared to the system noise. (b) 

THz signal comparison between the BP Emitter #12 from batch 1 and BP emitter 17 from batch 

2. Comparison of BP Emitter #12 and #17 against a commercial LT-GaAs Emitter in (c) Time-

domain, and (d) frequency-domain spectrum.  
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The carrier mobility was another parameter that was investigated with the goal of explaining the 

shape of the measured THz pulse. The mobility of the BP material can vary depending on the 

quality of the BP material as well as the fabrication process. In this way, it is important to 

investigate the effect of having a BP material with lower mobility in the fabricated device. These 

 

Fig. G.3. (a) Photocurrent density variation depending on the saturation velocity of the material. 

(b) Normalized photocurrent density variation.    

 

 

Fig. G.4. (a) Photocurrent density at different mobility values. Maximum photocurrent density 

for the cases shown in (a) with respect to the (b) electron mobility and (c) hole mobility. 
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simulation results are shown in Fig. G.4(a), where the photocurrent density profile is provided for 

different mobility values. The highest mobility showed the highest amplitude for the photocurrent 

density. These mobility values were used for the model solutions in the computational part of this 

work as 1500 cm2/Vs for electrons  [31] and 5000 cm2/Vs for holes [32]. A lower photocurrent 

density profile was obtained from lower values of the mobility as 100 cm2/V. s for electrons and 

850 cm2/V. s for holes [33]. Then, the lowest photocurrent density amplitude was obtained with a 

random low value of the mobility, which was chosen to be 250 cm2/V. s for both electrons and 

holes. The maximum value of these photocurrent density was plotted as function of the carrier 

mobility, and the resulting plots are shown in Fig. G.4(b) for the electron mobility and Fig. G.4(c) 

for the hole mobility. As shown, the photocurrent density is dominated by the hole mobility as BP 

presents a higher hole mobility compared to the electron mobility. In fact, by looking at Fig. G.4(c), 

the maximum photocurrent density shows a linear behavior with respect to the hole mobility. 

However, this parameter did not provided an explanation for the difference of the THz pulse shape 

compared to the LT-GaAs case. There have been some discussion about having a low dark 

resistance in the fabricated device, which may prevent the device from gathering sufficient charge 

before the laser pulse. In fact, the discharge of the device as the laser pulse generates carriers in 

the semiconductor decreasing the resistance at the gap of the devices is one of the explanations for 

the THz pulse generation [1]. Therefore, it is investigate this parameter experimentally as future 

work for the BP material in this application.  

G.2. Effect of the Electrode Geometry on the Shape of the Generated Terahertz Pulse  

The shape of the THz pulse is dependent on the temporal profile of the photocurrent as well 

as the geometry of the PCA electrodes. Therefore, it is very important to study its effect on the 

THz pulse and its spectrum. Four cases are shown in Fig. G.5, where the case ① shows a bowtie 
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H-dipole antenna, which presents the dimensions of all modeled THz signal generation in this 

work, and its dimensions are shown in Fig. G.1(a). It serves as reference design for this section. 

The photocurrent profile for the excitation of the model was obtained from a 2D electrical response 

 

Fig. G.5. Different electrode geometries and its effect on the THz signal. (a) Bowtie H-dipole 

antenna, (b) Fractal bowtie H-dipole antenna, (c) Slotted bowtie H-dipole antenna, (d) Circular 

H-dipole antenna. All dimensions are in µm. 
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solution for LT-GaAs at an average laser power 1 mW and bias voltage of 30 V presented in 

Chapter 2, and the same excitation was used for all geometry cases presented in Fig. G.5.Three 

modifications were applied to the reference geometry. The first modification is labeled as case ②, 

and it consists of the addition of fractals to the geometry presented in case ①. In case ③, slots 

were added to the geometry presented for case ①, and case ④ changed the bowtie shape to a 

circular dipole while keeping the H-dipole structure. 

The introduction of fractals to the reference provided a narrower bandwidth compared to the 

reference bowtie H-dipole antenna. The application of slots to the reference design affected the 

peak of the THz pulse, which could be affected by surface current reflections from the slot in the 

antenna, and it produced a resonance at lower frequencies. The circular H-dipole produce a similar 

pulse compared to the reference design, but as the pulse decreases from its peak, the pulse broaden 

producing a larger pulse width. In this way, the spectrum of the circular H-dipole resembled the 

spectrum of the reference bowtie H-dipole at frequencies higher than 3 THz. Overall, all 

modifications presented in this work did not provide a significant advantage over the bandwidth 

of the geometry from the previous simulations presented in this work.  
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