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ABSTRACT 

Compositional data refer to the data that lie on a simplex, which are common in many scientific 

domains such as genomics, geology, and economics. As the components in a composition must 

sum to one, traditional tests based on unconstrained data become inappropriate, and new statistical 

methods are needed to analyze this special type of data. This dissertation is motivated by some 

statistical problems arising in the analysis of compositional data. In particular, we focus on the 

high-dimensional and over-dispersed setting, where the dimensionality of compositions is greater 

than the sample size and the dispersion parameter is moderate or large. In this dissertation, we 

consider a general problem of testing for the compositional difference between K populations. We 

propose a new Bayesian hypothesis, together with a nonparametric and distance-based testing 

method. Furthermore, we utilize multiple variable-selecting models, including LASSO, elastic net, 

ridge regression and cumulative logit model, to identify the most important subset of variables. 

This dissertation is structured as follows: 

Chapter 1 introduces the compositional microbiome data, and then briefly review different 

statistical tests and model to be used in our framework, including distance correlation, LASSO, 

Ridge regression, elastic net, cumulative logit and adjacent-category logit model. 

Chapter 2 then presents our new statistical test together with two real world applications form 

human microbiome study. We first formulate a hypothesis from the Bayesian point of view and 

suggest a nonparametric test based on inter-point distance to evaluate statistical significance. 

Unlike most existing tests for compositional data, the distance-based method is more sensitive to 

the compositional difference than the mean-based method, especially when the data are over-

dispersed or zero-inflated. It does not rely on any data transformation, sparsity assumption or 



regularity conditions on the covariance matrix, but directly analyzes the compositions. The 

performance of this method is evaluated using simulation studies. We apply this new procedure to 

two human microbiome datasets including a throat microbiome dataset and an intestinal 

microbiome data. 

In addition to the overall testing, we also want to identify a small subset of variables that 

distinguish different populations. Chapter 3 introduces the procedure to select most significant 

variables (bacteria or genus) using LASSO, ridge regression, elastic net, cumulative logit model 

and adjacent-category logit models. Chapter 4 validates our findings from Chapter 3 and presents 

visualizations using multi-dimensional scaling (MDS).  

Chapter 5 discusses and concludes the dissertation with some future perspectives.  
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Chapter 1  

INTRODUCTION 

1.1 Compositional Microbiome Data 

Microbiome is defined as a community of microorganisms such as bacteria, fungi, and viruses that 

inhabit a particular environment and especially the collection of microorganisms living in or on the 

human body. The human body is home to about 100 trillion bacteria and other microbes, 

collectively known as microbiome. It has been widely accepted that human gut microbiome plays 

important role in human health, and it can be considered as a newly identified organ that interacts 

with other organs and influences the development of various diseases including cancers. In 

microbiome and metagenomic research, the data are often compositional and high-dimensional, 

which poses great challenge to the statistical test and modeling.  

Compositional data refer to data that lie on the simplex, which can be expressed as follows: 

 

𝑆𝑑−1 = { 𝑥1, 𝑥2, … , 𝑥𝑑}, 𝑠. 𝑡 . , min
𝑗

𝑥𝑗 ≥ 0 and ∑ 𝑥𝑗 = 1

𝑑

𝑗=1

 , 

where 𝑑 is the number of compositions and dimension is 𝑑 − 1 due to the unit constraint [2-5].  

The microbiome data are generally compositional. Due to varying amounts of DNA generating 

material across different samples, sequencing read counts are often normalized to relative 

abundances, making the observed data compositional. The compositional data can be viewed as a 

type of partially missing data, where only the proportions or compositions are known but the true 

abundances are unknown. 

One fundamental problem in microbiome data analysis is to test whether two populations have the 

same microbiome composition, which can be viewed as a two-sample testing. Since the components 
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of a composition must sum to one, some traditional tests intended for unconstrained data such as 

two-sample t-test and Hoteling’s t-test may result in inappropriate or misleading inferences.  

As pointed out in [6], dataset derived from microbiome has its compositional nature that should not 

be ignored throughout the analysis. Microbiome data are usually collected by high-throughput 

sequencing (HTS) technique, and one major limitation is that the sequencing instruments usually 

fail to quantify read counts that exceed the capacity, making the observed compositional data 

biased. In addition, the difference between absolute abundance and relative abundance after 

sequencing is unpredictable. This analogy, thus, extents to any fixed capacity instrument where the 

size of total read count observed in an HTS is constant, the total count is random sample of the 

relative abundance of the molecules, which has no relation to the absolute number of the input 

sample. 

Aitchison (1986) and Gregory (2017) pointed out several problems of the traditional methods 

which overlook the unit sum constraint. First, the collection of samples having exactly same size 

was inadequate. To solve such a problem, one can subsample the read counts for each sample, 

but this method may lead to loss of information. Many normalization methods have been used 

including the trimmed mean of M values (TMM) [11] and the median-matching method [12]. 

These two methods of transformation, however, are not compatible for highly sparse data, thus 

inappropriate when the number of molecules in the environment is unknown or poorly estimated. 

One important transformation for compositional data is the log-ratio transformation. Ratio 

transformations fully describe the relationships between the features in the dataset and the 

logarithm creates a symmetric and linear space. The resulting log-ratio abundances may well 

represent the abundance of each variable relative to other features in the dataset, while greatly 

reducing the negative dependence. The most widely used log-ratio transformation is the centered 
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log-ratio (clr) transformation introduced by Aitchison (1986) [6], which will be discussed with 

details in Chapter 3. Another popular method for analyzing compositional data is the UniFrac 

distance based on Bray-Curtis and Jensen-Shannon divergences, developed by Lozupone et al. 

(2011). The weighted version of UniFrac approach has been discussed by Silverman et al. (2017) 

[15].  

Next, I will briefly review the notion of distance correlation, which will be the basis of our 

analysis. 

 

1.2 Distance Correlation 

Pearson correlation coefficient is the most widely used measure of dependence between two random 

variables. However, the major limitation of Pearson’s correlation is that it only targets linear 

dependence, therefore may overlook important nonlinear dependence. Spearman’s correlation may 

work for some nonlinear cases, but it assumes monotonic relation. For such disadvantages, Székely 

et al. (2005) introduced the distance correlation for measuring dependence between two random 

vectors of arbitrary type and arbitrary dimension. Unlike the Pearson’s correlation coefficient, the 

distance correlation equals zero if and only if two random vectors are statistically independent, 

indicating that distance correlation measures both linear and nonlinear association between two 

variables or random vectors. 

Another advantage of distance correlation is that it is fully nonparametric and model-free. Most 

traditional tests such as z-test and t-test assume that data follow univariate or low-dimensional 

normal distributions, and only target the mean difference, hence inappropriate for high-dimensional 

and compositional data. These considerations lead us to use distance correlation method for 

analyzing high dimensional compositional dataset. 
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Distance correlation is similar to Pearson’s correlation in spirit, which is derived from the distance 

variance and distance covariance. In [17], Szekely et al. proposed the concept of distance correlation 

in the continuous setting, which is later translated into categorical setting by Zhang [18].  

We begin with some basic notions of distance correlation to be used in the subsequent chapters.  

Notations 

Let 𝑋 ∈ ℝ𝑝 and 𝑌 ∈ ℝ𝑞  be two random vectors, where 𝑝 and 𝑞 are positive integers, 𝑓𝑋 , 𝑓𝑌  𝑎𝑛𝑑 𝑓𝑋,𝑌 

are the marginal characteristic functions and joint characteristic function of X and Y, respectively. 

The inner product of vectors 𝑡 and 𝑠 is denoted by < 𝑡, 𝑠 >.  

Let |𝑋|𝑝 be Euclidean norm of 𝑋 in ℝ𝑝. The data matrix is denoted by 𝑋𝑛∗𝑝  with dimension 𝑛 ∗  𝑝 

and the sample vectors (rows) are labeled 𝑋1, … , 𝑋𝑛. If 𝑋1 is an independent copy of X; they are 

independent and identically distributed (i.i.d.) 

Now, we consider the problem of testing the joint independence of random vectors. For all 

distributions with finite first moments, we are seeking a dependence measure 𝑅(𝑋, 𝑌) such that:  

i. 𝑅(𝑋, 𝑌) is defined for 𝑋 and 𝑌 in arbitrary dimension.  

ii. 𝑅(𝑋, 𝑌) =  0 characterizes independence of 𝑋 and 𝑌.  

The two conditions mentioned above are well met by the distance correlation (𝑅). In fact, for two 

random vectors of any type and any dimension, we have: 

i. 0 ≤ 𝑅 ≤ 1  

ii. 𝑅 = 0 if and only if X and Y are statistically independent. 

It is noteworthy that in the bivariate normal case, 𝑅 is a function of product-moment correlation ρ, 

and 𝑅(𝑋, 𝑌 )  ≤  |𝜌(𝑋, 𝑌 )| with equality when ρ = ±1.  

Now we setup the null and alternative hypotheses for independence test as below: 

𝐻0 ∶  𝑓𝑋,𝑌  =  𝑓𝑋𝑓𝑌   𝑣𝑠. 𝐻1 ∶  𝑓𝑋,𝑌  ≠  𝑓𝑋𝑓𝑌  



 

5 

It can be seen that the distance correlation 𝑅 well reflect the distance ||𝑓𝑋,𝑌 (𝑡, 𝑠)  −  𝑓𝑋(𝑡)𝑓𝑌(𝑠)|| 

between the joint characteristic function and the product of the marginal characteristic functions.  

Following the discussion in Szekely et al. (2007), the distance correlation hold the premise to be 

applied as a very general dependence measure without assuming normality for valid inferences. To 

begin with, we state some preparatory definitions to derive the distance correlation measure: 

Definition 1.1.  

For complex functions γ defined on ℝ𝑝 × ℝ𝑞  the || · ||w-norm in the weighted L2 space of functions 

on ℝ𝑞+𝑞  is defined by  

‖𝛾(𝑡, 𝑠)‖𝑤
2 =  ∫ |𝛾(𝑡, 𝑠)|2𝑤(𝑡, 𝑠) 𝑑𝑡 𝑑𝑠,

ℝ𝑝+𝑞  

where w(t,s) is an arbitrary positive weight function for which the integral above exists.  

We may use the ||  · ||𝑤 -norm to define a measure of dependence with any acceptable choice of 

weight 𝑤(𝑡, 𝑠). 

Definition 1.2.  

Given characteristic functions 𝑓𝑋 , 𝑓𝑌 𝑎𝑛𝑑 𝑓𝑋,𝑌 with weight w(t, s) we define the measure V2(X, Y ;w) 

by  

𝑉2 (𝑋, 𝑌;  𝑤) = ‖𝑓𝑋,𝑌(𝑡, 𝑠) − 𝑓𝑋(𝑡)𝑓𝑌(𝑠)‖
𝑤

2
= ∫ |𝑓𝑋,𝑌(𝑡, 𝑠) − 𝑓𝑋(𝑡)𝑓𝑌(𝑠)|2𝑤(𝑡, 𝑠)𝑑𝑡 𝑑𝑠,

𝑅𝑝+𝑞
 

where it can be seen that V 2 (X, Y; w) vanishes if and only if X and Y are independent.  

As 𝑉 is seen as the absolute value of the classical product-moment covariance, we can thus unsigned 

correlation 𝑅𝑤 =
𝑉(𝑋,𝑌 ;𝑤)

√𝑉(𝑋;𝑤)𝑉(𝑌;𝑤)
  , where 

 

𝑉2 (𝑋; 𝑤) =   ∫ |𝑓𝑋,𝑋(𝑡, 𝑠) − 𝑓𝑋(𝑡)𝑓𝑋(𝑠)|
2
𝑤(𝑡, 𝑠)𝑑𝑡 𝑑𝑠,

𝑅2𝑝
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𝑅𝑤 is required to be positive for dependent variables and scale variant. For 𝜖 > 0, if the weight 

function 𝑤(𝑡, 𝑠) is integrable and both 𝑋 and 𝑌 have finite variance, then by Taylor expansions of 

the underlying characteristic functions, we have 

lim
𝜖→0 

𝑉2(𝜖𝑋,   𝜖𝑌 ; 𝑤)

 √𝑉(𝜖𝑋; 𝑤)𝑉(𝜖𝑌; 𝑤)
=  𝜌2(𝑋, 𝑌) 

thus if 𝜌 =  0, 𝑅𝑤  approaches to zero even if 𝑋 and 𝑌 are dependent for integrable 𝑤. Furthermore, 

by Szekely et al. (2007),  𝑅𝑤 is scale invariant and cannot be zero for dependent 𝑋 and 𝑌 by applying 

a nonintegrable weight function, and it leads to the following lemma. 

Lemma 1.3.  

If 0 < α < 2, then for all x in ℝ𝑑  

∫  
1 − cos (𝑡, 𝑠)

|𝑡|𝑑
𝑑+𝛼 𝑑𝑡 𝑑𝑠 = 𝐶(𝑑, 𝛼)|𝑥|𝛼,

𝑅𝑑
 

where 𝐶(𝑑, 𝛼) =
2𝜋

𝑑
2  𝛤(1 − 𝛼/2)

𝛼2𝛼𝛤(
𝑑 + 𝛼

2
) 

 𝑎𝑛𝑑 𝛤(·) 𝑖𝑠 𝑡ℎ𝑒 complete gamma function. 

 The integrals at 0 and ∞ are meant in the principal value sense. 

For 𝛼 =  1, the constant 𝐶𝑑 =  𝐶(𝑑, 1)  =  
𝜋

(
1+𝑑

2
)
 

𝛤(
𝑑 + 1

2
) 

 , then by lemma 1.3, it is natural to choose the 

weight function 𝑤(𝑡, 𝑠) = (𝑐𝑝𝑐𝑞|𝑡|𝑝
𝑝+1|𝑠|𝑞

𝑞+1)
−1

, thus 𝑑𝑤 = (𝑐𝑝𝑐𝑞|𝑡|𝑝
𝑝+1|𝑠|𝑞

𝑞+1)
−1

𝑑𝑡𝑑𝑠.  

Given the weight function and the corresponding weighted 𝐿2 −  𝑛𝑜𝑟𝑚 ||. ||, the dependence 

measure is written as 𝑉2 (𝑋, 𝑌): 

𝑉2 (𝑋, 𝑌) = ∫ |𝑓𝑋,𝑌(𝑡, 𝑠) − 𝑓𝑋(𝑡)𝑓𝑌(𝑠)|
2
𝑑𝑤,

𝑅𝑝+𝑞
 

It is sufficient that 𝐸|𝑋|𝑝  <  ∞ 𝑎𝑛𝑑 𝐸|𝑌 |𝑞  <  ∞, then by the Cauchy-Bunyakovsky inequality 

|𝑓𝑋,𝑌 (𝑡, 𝑠) −  𝑓𝑋(𝑡)𝑓𝑌(𝑠)|
2

 = [𝐸 (𝑒  𝑖(𝑡,𝑋) – 𝑓𝑋(𝑡)) (𝑒  𝑖(𝑡,𝑌) – 𝑓𝑌(𝑡))]
2
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 ≤  𝐸[ 𝑒  𝑖(𝑡,𝑋) – 𝑓𝑋(𝑡)]
2
 𝐸[𝑒  𝑖(𝑡,𝑌) – 𝑓𝑌(𝑡)]

2
 

= ( 1 −  |𝑓𝑋(𝑡)|2) (1 −  |𝑓𝑌(𝑠)|2). 

If 𝐸 (|𝑋|𝑝  + |𝑌 |𝑞)  <  ∞, then by an application of Fubini’s theorem,  

∫  |𝑓𝑋,𝑌(𝑡, 𝑠) − 𝑓𝑋(𝑡)𝑓𝑌(𝑠)|
2
𝑑𝑤

ℝ𝑝
≤   ∫  

1 − |fX(𝑡)|2

𝑐𝑝|𝑡|𝑝
𝑝+1 𝑑𝑡 ∫  

1 − |fY(𝑠)|2

𝑐𝑞|𝑡|𝑞
𝑞+1 𝑑𝑠 

ℝ𝑞ℝ𝑝
 

 =  𝐸 [∫  
1−cos (𝑡,𝑋−𝑋′)

𝑐𝑝|𝑡|𝑝
𝑝+1 𝑑𝑡 

ℝ𝑝 ] 𝐸 [∫  
1−cos (𝑠,𝑋−𝑋′)

𝑐𝑞|𝑡|𝑞
𝑞+1 𝑑𝑠 

ℝ𝑞 ] 

 = 𝐸|𝑋 − 𝑋′|𝑝 𝐸|𝑋 − 𝑋′|𝑞 <  ∞ 

This leads us to the next definition. 

 

Definition 1.4.  

The distance covariance (dCov) between random vectors X and Y with finite first moments is the 

nonnegative number V(X, Y ) defined by  

𝑉2(𝑋, 𝑌) = ‖𝑓𝑋,𝑌 (𝑡, 𝑠) −  𝑓𝑋(𝑡)𝑓𝑌(𝑠)‖
2

=
1

𝐶𝑝𝐶𝑞
 ∫  

|𝑓𝑋,𝑌 (𝑡, 𝑠) −  𝑓𝑋(𝑡)𝑓𝑌(𝑠)|
2
 

|𝑡|𝑝
1+𝑝|𝑠|𝑞

1+𝑞 𝑑𝑡 𝑑𝑠,
𝑅𝑝+𝑞

 

Similarly, distance variance (dVar) is defined as the square root of  

𝑉2(𝑋) = 𝑉2(𝑋, 𝑋) = ‖𝑓𝑋,𝑌 (𝑡, 𝑠) −  𝑓𝑋(𝑡)𝑓𝑌(𝑠)‖
2
 

 

Definition 1.5.  

The distance correlation (dCor) between random vectors X and Y with finite first moments is the 

nonnegative number R(X, Y ) defined by 

𝑅2(𝑋, 𝑌) = {

𝑉2(𝑋, 𝑌)

√(𝑉2(𝑋)𝑉2(𝑌)
, 𝑉2(𝑋)𝑉2(𝑌) > 0

0,      𝑉2(𝑋)𝑉2(𝑌) = 0
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The explicit relation between 𝑉, 𝑅, 𝑎𝑛𝑑 𝜌 in the bivariate normal case can be derived though this 

definition of 𝑅. The next definition is the empirical estimate of pre-defined distance correlation 

measure. 

 

Definition 1.6.  

For an observed random sample (𝑋, 𝑌)  =  {(𝑋𝑘, 𝑌𝑘) ∶  𝑘 =  1, . . . , 𝑛} from the joint distribution of 

random vectors 𝑋 𝑖𝑛 ℝ𝑝 𝑎𝑛𝑑 𝑌 𝑖𝑛 ℝ𝑞  , define  

𝑎𝑘𝑙  =  |𝑋𝑘  − 𝑋𝑙  |𝑝, 𝑎𝑛𝑑  𝑏𝑘𝑙  =  |𝑌𝑘  −  𝑌𝑙|𝑞   𝑤ℎ𝑒𝑟𝑒 𝑘, 𝑙 =  1, . . . , 𝑛. 

𝐴𝑘𝑙  =  𝑎𝑘𝑙  −  �̅�𝑘.  −  �̅�.𝑙  +  �̅�.. , 𝑎𝑛𝑑 𝐵𝑘𝑙  =  𝑏𝑘𝑙  −  �̅�𝑘.  −  �̅�.𝑙  +  �̅�.. 

In addition, �̅�𝑘. is the k-th row mean,  �̅�.𝑙  is the l-th column mean, and �̅�.. is the grand mean of the 

distance matrix of the X sample.  

The empirical distance covariance Vn(X, Y ) is the nonnegative number defined by 

𝑉𝑛
2(𝑋, 𝑌) =

1

𝑛2
 ∑ 𝐴𝑘,𝑙𝐵𝑘,𝑙

n

k,l=1

 

Similarly, Vn(X) is the nonnegative number defined by  

𝑉𝑛
2(𝑋) = 𝑉𝑛

2(𝑋, 𝑋) =
1

𝑛2
 ∑ 𝐴𝑘,𝑙

2

n

k,l=1

 

With above setup, one can prove that 𝑉𝑛
2(𝑋, 𝑌 )  ≥  0. 

 

Definition 1.7.  

The empirical distance correlation Rn(X, Y ) is defined by  

𝑅𝑛
2(𝑋, 𝑌) = {

𝑉𝑛
2(𝑋, 𝑌)

√(𝑉𝑛
2(𝑋)𝑉𝑛

2(𝑌)
, 𝑖𝑓 𝑉𝑛

2(𝑋)𝑉𝑛
2(𝑌) > 0

0, 𝑖𝑓 𝑉𝑛
2(𝑋)𝑉𝑛

2(𝑌) = 0
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𝑉𝑛(𝑋)  =  0 if and only if all the observed samples are identical, leads to 𝐴𝑘𝑙 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘, 𝑙 =

1, … , 𝑛. Particularly, 𝐴𝑘𝑘  =  �̅�𝑘.  − �̅�.𝑘  +  �̅�.. approaches zero, implying that  �̅�𝑘. =  �̅�.𝑘 =  �̅�../2; 

and 𝐴𝑘𝑙  =  𝑎𝑘𝑙  −  �̅�𝑘.  −  �̅�.𝑙  +  �̅�.. = 𝑎𝑘𝑙 = |𝑋𝑘 − 𝑋𝑙|𝑝 𝑠𝑜 𝑋1 = 𝑋𝑛. We then try to show that 𝑅𝑛 

is also a good empirical measure of dependence. 

Now, from the above definitions, we could define 𝑉𝑛(𝑋, 𝑌 ) 𝑎𝑠 ||𝑓𝑋,𝑌
𝑛  (𝑡, 𝑠) − 𝑓𝑋(𝑡)

𝑛 𝑓𝑌
𝑛(𝑠)||, where  

𝑓𝑋,𝑌
𝑛 (𝑡, 𝑠) =

1

𝑛
 ∑ exp{𝑖 < 𝑡, 𝑋𝑘 >  +𝑖 < 𝑠, 𝑌𝑘 > }𝑛

𝑘=1  , 

𝑓𝑋
𝑛 (𝑡) =

1

𝑛
 ∑ exp{𝑖 < 𝑡, 𝑋𝑘 > }

𝑛

𝑘=1

 𝑎𝑛𝑑  𝑓𝑌
𝑛  (𝑡) =

1

𝑛
 ∑ exp{𝑖 < 𝑡, 𝑌𝑘 > }

𝑛

𝑘=1

 

are the empirical characteristic functions and the marginal empirical characteristic functions from 

the sample data {(𝑋1, 𝑌1), . . . , (𝑋𝑛 , 𝑌𝑛)} respectively.  

 

Theorem 1.8.  

If (X, Y) is a sample from the joint distribution of (X,Y), then  

𝑉𝑛
2(𝑋, 𝑌) = ‖𝑓𝑋,𝑌

𝑛  (𝑡, 𝑠) −  𝑓𝑋
𝑛(𝑡)𝑓𝑌

𝑛(𝑠)‖
2
 

The equivalence of two definitions can be proved under Theorem 1.8 in continuous settings. The 

following properties of distance covariance and correlations can be also established (see [17] for 

proofs). 

 

Theorem 1.9 (Properties of distance covariance) 

(i) If 𝐸(|𝑋|𝑝  + |𝑌|𝑞)  <  ∞, 𝑡ℎ𝑒𝑛 0 ≤  𝑅 ≤  1, and 𝑅(𝑋, 𝑌 )  =  0 𝑖𝑓𝑓 𝑋 and 𝑌 are independent.  

(ii) If 𝐸(|𝑋|𝑝
2 + |𝑌|𝑞

2)  <  ∞, then given three independent samples we have 

𝑉2(𝑋, 𝑌) = 𝐸(|𝑋1 − 𝑋2|𝑝 |𝑌1 − 𝑌2|𝑞) + 𝐸(|𝑋1 − 𝑋2|𝑝)𝐸(|𝑌1 − 𝑌2|𝑞) − 2𝐸 (|𝑋1 − 𝑋2|𝑝|𝑌1 −

𝑌3|𝑞)  
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Because of the aforementioned nice properties of distance correlation, we will use distance 

correlation test to the microbiome composition testing problem, that will be discussed in Chapter 2.  

 

1.3 Penalized Regressions 

As mentioned earlier, compositional data are often high-dimensional. For example, it is not 

uncommon that there are hundreds to thousands of bacteria, but only tens of samples. For the sake 

the result interpretability, it is crucial to identify a reduced set of variables that could distinguish 

different populations. In this dissertation, we choose to use a consensus set of variables identified by 

multiple regression models, to obtain a robust variable selection. We here review some widely used 

regression models and penalized regression models, which are to be used in chapter 3 for identifying 

short list of important taxa. 

The first type of models we consider is penalized regression model, which roots in LASSO 

regularization. The main idea is to shrink the coefficients of the less contributive variables toward 

zero to imposes a penalty to the logistic model for having too many variables. The three most 

commonly used penalized regression include ridge regression, LASSO regression and elastic net 

Regression. 

1.3.0 Regularization: 

To illustrate how these penalized regression models work, we use the common scenario where we 

have an output variable (or response) 𝑌 and many input variables (predictors) 𝑋1, 𝑋2, … , 𝑋𝑝. 

Fitting a regression model with a continuous response 𝑌 using all available inputs: 

 

𝑌 = 𝛽0 +  ∑ 𝛽𝑝𝑋𝑝 + 𝜖

p

i=1
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There are several reasons (by the principle of parsimony) that we should not consider all 

possible inputs 𝑋𝑖 

• Model interpretability 

• Losing degrees of freedom for error (particularly when the sample size n is small) 

• Multicollinearity (the covariates are highly correlated with each other). 

In Gaussian linear regression case, we estimate the parameter vector β using the matrix equation 

(derived from least square estimate or maximum likelihood estimate) 

𝒃 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌   

 

When the design matrix 𝑋 is nearly singular, this can lead to inaccurate estimates of the 

parameters and their standard errors. The predicted model has the form 

𝐸(𝑌) = 𝑓(𝑥) = 𝑋𝑇𝒃, 

where we minimize the sum of squared errors, i.e., loss function 

𝐿 = ∑(𝑌𝑖 − 𝜇)2 =

𝑛

𝑖=1

∑(𝑌𝑖 − 𝐸(𝑌))
2

= ∑(𝑌𝑖 − 𝑓(𝑥𝑖))
2

𝑛

𝑖=1

𝑛

𝑖=1

 

Shrinkage is then applied to minimize the following objective function with constraint:  

∑(𝑌𝑖 − 𝜇)2, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝜇2 < 𝐶 

n

i=1

 

Using Lagrange multiplier, the above task is equivalent to minimizing 

∑(𝑌𝑖 − 𝜇)2 + 𝜆𝑐𝜇2

n

i=1

 

By differentiation, we then get 

−2 ∑(𝑌𝑖 − 𝐸(𝜇𝑐))2 + 2𝜆𝑐𝐸(𝜇𝑐)

n

i=1

= 0 
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Finally,  𝐸(𝜇𝑐) =   𝜇�̂� =
∑ 𝑌𝑖

𝑛
𝑖=1

𝑛+𝜆𝑐
= 𝐾𝑐�̅� , 𝑓𝑜𝑟 𝐾𝑐 < 1. Thus,  

𝜆𝐶  𝑖𝑠 𝑢𝑛𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 𝑎𝑠 𝐶 → 0 𝑡ℎ𝑒𝑛 𝜇�̂� → �̅� 𝑎𝑛𝑑 𝑤ℎ𝑒𝑛 𝐶 →  ∞ 𝑡ℎ𝑒𝑛 𝜇�̂� → 0 

In summary, regularization is to minimize objective function with the following form 

∑(𝑌𝑖 − 𝑓(𝑥𝑖))2 + 𝜆𝑅(𝑓)

n

i=1

 

where the first part is sum of square errors, representing modeling fitting, and 𝑅(𝑓) in the 

second part is a penalty that regularizes model complexity. The constant λ is set as a tuning 

parameter. In ordinary linear regression, λ=0 and thus the regularizer 𝑅(𝑓) is irrelevant.  

We are going to consider three variations of penalized regressions that use different 

regularization functions 𝑅(𝑓). We will use Ridge regression as an example to illustrate who to 

automatically selecting an optimal model containing the most contributive variables. 

1.3.1. Ridge Regression: 

Ridge regression is one of the oldest least square regression, originated in the early 1960s (Arthur 

Hoerl, 1962), where variables with minor contribution have their coefficients close to zero. 

However, all the variables are incorporated in the model. 

The regularization function R(f) used in ridge regression is the l2 norm as follows 

𝑅(𝑓) = ∑ 𝛽𝑖
2 = ‖𝛽‖2

p

i=1

 

The problem becomes minimizing  

𝑆𝑆𝐸𝜆(𝛽) =  ∑(𝑌𝑖 − ∑ 𝑋𝑖𝑗𝛽𝑗)2 + 𝜆 ∑ 𝛽𝑖
2

p

i=1

p−1

j=1

n

i=1

 

Solving through Lagrange multiplier to a quadratic constraint on β’s, we get:  
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𝜕

𝜕𝛽𝑙
𝑆𝑆𝐸𝜆(𝛽) = −2 < 𝑌 − 𝑋𝛽, 𝑋𝑙 >  +2 𝜆𝛽𝑙 

By setting the derivation to zero, we have 

−2 < 𝑌 − 𝑋𝛽𝜆, 𝑋𝑙 >  +2 𝜆𝛽𝑙,𝜆 = 0;   1 ≤ 𝑙 ≤ 𝑝 − 1 

which is equivalent to 

−𝑌𝑇𝑋 + 𝛽𝜆
𝑇(𝑋𝑇𝑋 + 𝜆𝐼) =  0  

The ridge regression estimator is 

𝛽𝜆
∗̂ = (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑌, 

which is identical to the previous �̂�𝑐 in the matrix form. 

In short, the ridge regression estimator 𝛽𝜆
∗̂ is a shrunken estimator of β. The L2- norm regularizer 

balances two aspects (1) minimizing the sum of squared residuals (2) minimizing the sum of 

squared coefficients, and it can be expected that many of the 𝛽∗̂ will get smaller, or approach 

to zero. 

1.3.2. LASSO Regression: 

Least Absolute Shrinkage and Selection Operator (LASSO), proposed by Robert Tibshirani, 

1996, is a another widely used penalized regression. Similar to Ridge regression, it shrinks the 

beta coefficients using a penalty term. However, unlike Ridge regression, LASSO utilizes the l1-

norm rather than squares: 

𝑅(𝑓) = ∑ 𝛽𝑖 = ‖𝛽‖1

p

i=1

 

ith the objective function as above: 

𝑆𝑆𝐸𝜆(𝛽) =  ∑(𝑌𝑖 − ∑ 𝑋𝑖𝑗𝛽𝑗)2 + 𝜆 ∑ |𝛽𝑖|

p

i=1

p−1

j=1

n

i=1
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It is noteworthy that the estimation of LASSO coefficients 𝛽∗̂ will be largely shrunken to 𝛽𝑗
∗̂ =

0. With that being said, the coefficients of many less contributive variables are forced to be zero 

and the final model will contain only the most significant variables.  

1.3.3. Elastic Net Regression: 

The elastic net combines both the 𝑙1 and 𝑙2 regularization of Ridge and the LASSO regression 

into a hybrid one. It shrinks some coefficients toward zero (like ridge regression) and set some 

coefficients to exactly zero (like LASSO regression), depending on the contribution of each 

predictor. 

The estimate for an elastic net regression can be obtain as follows 

𝛽∗̂ =  argmin (‖𝑌 − 𝑋𝛽‖2 + 𝜆1‖𝛽‖1 + 𝜆2 ‖𝛽‖2) 

More precisely, the form of 𝛽∗̂ has three parts including sum of squared residuals, the 𝑙1-norm 

and the 𝑙2-norm. Ridge regression is a special case when there is only 𝑙2 regularization (𝜆1 =

0); while the LASSO is another special case with only 𝑙1 regularization (𝜆2 = 0). The ordinary 

least squares is the special case when there is no regularization, where both 𝜆1 = 𝜆2 = 0.  

1.3.4. K-fold Cross-Validation: 

For the purpose of statistical validation, the original dataset can be divided into two parts, namely 

the training set and testing set. The training set is used to build a model or prediction rule, the test 

set will be for validating the model. A more general procedure is k-fold cross-validation (e.g., 5-

fold or 10-fold cross validation), where the data set is randomly divided into k groups of 

approximately equal size. 

Instead of refitting the model n (sample size) times, we only refit the model k times. First, we 

will fit the model with k-1 out of k groups, and then use the test fold to make predictions and 
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compute the MSE in that fold. Repeating the procedure for each fold, an overall estimate of 

the MSE is computed as  

 

𝐶𝑉(𝑘) =
1

𝑘
∑ 𝑀𝑆𝐸𝑖

k

i=1

 

In addition to its efficiency, k-folds Cross-Validation can well balance two aspects, namely, 

bias and variance. In general, k can be chosen from 2 to 10, and most popular choice are k=5 

or k=10. 

In the two real data applications in Chapter 2, we will use 10-fold cross validation to choose the 

best 𝜆 in LASSO model estimation. In chapter 3, in addition to the aforementioned models, we 

will also use multi-category logit models to select significant variables. 

 

1.4 Multi-category Logit Models 

Logistic regression models, also known as logit models, can be generally used to model the 

probability of a certain class or event. Logits models have attracted much attention in machine 

learning, social science and medical community. For example, the Trauma and Injury Severity Score 

(TRISS), originally developed by Boyd et al., used logistic regression to predict the death rate in 

injured patients. 

Logistic regression can be easily adjusted to deal with high dimensional data, by adding a penalty 

term like in LASSO. As the response variable must be categorical, logistic regression can be used as 

a simple classifier using different types of predictors including continuous variables, categorical 

variables and possibly some interaction terms. Moreover, logistic regression is widely used to predict 
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the risk of developing a given disease (e.g. cancer), based on observed characteristics of the patient 

such as age, sex, body mass index or smoking status. 

1.4.1 Binary Logistic Regression 

Binary logistic regression is the simplest Logit model where the dependent variable has two levels 

(coded 0/1), for example, Pass versus Fail, Smoker versus Non-smoker, Male versus Female. It 

estimates the probability that an event occurs given the values of explanatory variables, for instance 

to estimate probability of being smoker or non-smoker given age, gender and education level of a 

patient.  

Formulation: 

Let 𝑌 =  {0,1} be a binary response variable and 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑘) be a set of explanatory 

variables which can be discrete or continuous. Let 𝑥𝑖 be the observed value of the explanatory 

variables for observation i.  

Binary Logit model with a single predictor can be written as  

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = log (
𝜋𝑖

1 − 𝜋𝑖
) =   𝛽0 + 𝛽1𝑥𝑖 

or equivalently,  

𝜋𝑖 = Pr(𝑌𝑖 = 1 | 𝑋𝑖 = 𝑥𝑖) =
exp (𝛽0 + 𝛽1𝑥𝑖)

1 + exp (𝛽0 + 𝛽1𝑥𝑖)
 

Below are key assumptions for logistic model 

• {𝑌1, 𝑌2, . . . , 𝑌𝑛  } are independently distributed. 

• 𝑌𝑖  is Bernoulli, 𝑌𝑖~ 𝐵𝑒𝑟(𝜋𝑖). 

• Linear relationship between the logit of the response and the explanatory variables (NOT 

assume a linear relationship between the dependent variable and the independent variables). 

Parameters can be easily estimated using maximum likelihood estimation (MLE) for 𝛽 (𝛽0, 𝛽1).  
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One can maximizes the likelihood function 

𝐿(𝛽0, 𝛽1) = ∏ 𝜋𝑖
𝑦𝑖(1 − 𝜋𝑖)

𝑛𝑖𝑦𝑖

𝑁

𝑖=1

=  ∏
exp {𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖)}

1 + exp (𝛽0 + 𝛽1𝑥𝑖)

𝑁

𝑖=1

 

There are no closed-form solutions, the MLE are obtained by using iterative algorithms such 

as Newton-Raphson (NR), or Iteratively re-weighted least squares (IRWLS) [See [1] Agresti 

(2013), sections 5.5.4-5.5.5.] 

1.4.2 Multinomial Logistic Regression 

Logistic regression can be extended to multi-category response variable, that is, Y can take more than 

2 categories (r > 2).  

Multinomial logistic models explain how a multinomial response Y depends on a set of k explanatory 

variables 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑘) by assuming that 𝑌 ~ Multinomial (n, π) where π is a vector with 

probabilities of occurrence for each category, but unlike binary case, multinomial model may have 

different types of link functions for ordinal response (consisting of ordered categories) and nominal 

response (consisting of unordered categories). For ordinal responses, cumulative logits model, 

adjacent categories model and continuation-ratio model are recommended. 

1.4.3 Baseline Category Logit Model 

Baseline-category Logit model is an extension of binary logistic regression model, where we 

consider a simultaneous summary of the odds (r − 1 non-redundant logits) of being in one category 

relative to being in a designated category, called the baseline category, for all pairs of categories. 

Suppose that a response variable Y, each 𝑦𝑖 = (𝑦𝑖1, 𝑦𝑖2 , … , 𝑦𝑖𝑟)𝑇 ~ Multinomial (ni, πi) where  

 

𝑛𝑖 =  ∑ 𝑦𝑖𝑗

𝑟

𝑗=1

  ; and 𝜋𝑖 = (𝜋𝑖1, 𝜋𝑖2, … , 𝜋𝑖𝑟)𝑇 
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A set of explanatory variables 𝑋 =  (𝑋1, 𝑋2, … , 𝑋𝑘) can be mixture of discrete and continuous 

variables. The baseline category logit model is equivalent to loglinear model if the predictor 

variables are all categorical. 

Taking the last category as the baseline category, the model becomes  

log (
𝜋𝑖𝑗

𝜋𝑖𝑟
) = 𝑥𝑖

𝑇𝛽𝑗  , 𝑗 ≠ 𝑟 

where 𝑥𝑖  is the vector of 𝑋 predictors of length p, i.e., this model has (r − 1) × p free parameters. 

Therefore, we can use matrix form and the coefficients are 

𝛽𝑗 = [𝛽1𝑗 , 𝛽2𝑗 , … , 𝛽𝑝𝑗] 

Interpretation of Parameter Estimates 

The kth element of βj can be interpreted as the increase in log-odds of category j versus category r 

resulting from a one-unit increase in the kth predictor term, while keeping the other terms constant. 

The baseline-category (j=r) probability is 

𝜋𝑖𝑟 =
1

1 +  ∑ exp (𝑥𝑖
𝑇𝛽𝑘)

𝑘≠𝑟

 

and the non-baseline categories probability j ≠ r is 

𝜋𝑖𝑟 =
exp (𝑥𝑖

𝑇𝛽𝑗)

1 +  ∑ exp (𝑥𝑖
𝑇𝛽𝑘)

𝑘≠𝑟

 

 

1.4.4 Adjacent Category Logits 

Another popular multi-category logit model is Adjacent Category Logit model, which compares 

the probabilities of any two adjacent categories, e.g., category 1 vs category 2, category 2 vs 

category 3, etc, given the values of all predictors in the model.  
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In other words, Adjacent Category Logits is similar to Baseline-Category Logit Model, but the 

baseline changes from one category to the next. Assuming that the response categories 1, 2, …, r 

are ordered, this comparison of adjacent-categories give more straightforward interpretation, e.g., 

young group vs middle-aged group, middle-aged group vs old group. 

The adjacent-category logit models are defined as 

𝐿1 = log (
𝜋1

𝜋2
) = 𝛽10 +  𝛽11𝑋1 + ⋯ +  𝛽1𝑝𝑋𝑝 

𝐿2 = log (
𝜋2

𝜋3
) = 𝛽20 +  𝛽21𝑋1 + ⋯ +  𝛽2𝑝𝑋𝑝 

… 

𝐿𝑟−1 = log (
𝜋𝑟−1

𝜋𝑟
) = 𝛽𝑟−1,0 +  𝛽𝑟−1,1𝑋1 + ⋯ +  𝛽𝑟−1,𝑝𝑋𝑝 

Parameters in the models can be interpreted (e.g. the coefficient for 𝛽1) in a similar way to the 

baseline-category model, i.e., by changing the value of 𝑋1 by 1 unit while all the other variables 

𝑋's remain constants, the odds changes by a factor of exp(𝛽1). In another word, 𝛽1 is the change 

in the log-odds of category j + 1 versus category j when 𝑋1 increases by one unit, holding all the 

other 𝑋-variables constant. 

1.4.5 Proportional-Odds Cumulative Logit Model 

Proportional-odds cumulative logit model is a frequently used model for ordinal response. This 

model uses cumulative probabilities up to a given thresholding category, thereby making the whole 

range of ordinal categories binary at that category. 
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Let 𝑌 = 1, 2, … , 𝐽 be the response where the ordering is natural. The associated probabilities 

are {𝜋1, 𝜋2, … , 𝜋𝑗}, and a cumulative probability of a response less than equal to j is 

𝑃(𝑌 ≤ 𝑗) =  𝜋1 + ⋯ +  𝜋𝑗 

Cumulative logit is then defined as 

log (
𝑃(𝑌 ≤ 𝑗)

𝑃(𝑌 > 𝑗)
) = log (

𝑃(𝑌 ≤ 𝑗)

1 −  𝑃(𝑌 ≤ 𝑗)
) = log (

𝜋1 + ⋯ . + 𝜋𝑗

𝜋𝑗+1 + ⋯ +  𝜋𝐽
)  

and more precisely, 

𝐿1 = log (
𝜋1

𝜋2 + ⋯ + 𝜋𝑟
) = 𝛽10 +  𝛽11𝑋1 + ⋯ + 𝛽1𝑝𝑋𝑝 

𝐿2 = log (
𝜋1 + 𝜋2

𝜋3 + ⋯ + 𝜋𝑟
) = 𝛽20 +  𝛽21𝑋1 + ⋯ +  𝛽2𝑝𝑋𝑝 

… 

𝐿𝑟−1 = log (
𝜋1 + ⋯ +  𝜋𝑟−1

𝜋𝑟
) = 𝛽𝑟−1,0 +  𝛽𝑟−1,1𝑋1 + ⋯ +  𝛽𝑟−1,𝑝𝑋𝑝 

The cumulative logit model has (𝑟 −  1) intercepts plus (𝑟 − 1)𝑝 slopes, for a total of (𝑟 − 1)(𝑝 +

1) parameters to be estimated. In practice, we can assume the slopes are same for all equations, 

which gives us the proportional-odds cumulative logit models.  

For simplicity, let us consider only one predictor 

 

logit [𝑃(𝑌 ≤ 𝑗)] =  𝛼𝑗 + 𝛽𝑥 

then the cumulative probabilities are 

𝑃(𝑌 ≤ 𝑗) =
exp (𝛼𝑗 + 𝛽𝑥)

1 + exp (𝛼𝑗 + 𝛽𝑥)
 

The intercept αj is the log-odds of all categories 1 to j when 𝑋1 = 𝑋2 = ⋯ = 0, and 𝛽𝑘  is the 

increase in log-odds of falling into or below any category associated with a one-unit increase in 𝑋𝑘 , 
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while all the other X-variables remain unchanged. The odds-ratio is proportional to the difference 

between 𝑋1  and 𝑋2 where β is the constant of proportionality. 
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Chapter 2 

DISTANCE CORRELATION FOR COMPOSITIONAL DATA ANALYSIS 

2.1 Introduction 

Compositional data refer to data vectors that lie on the simplex 𝑆𝑑−1 = { 𝑥1, 𝑥2, … , 𝑥𝑑},

𝑠. 𝑡 . , min
𝑗

𝑥𝑗 ≥ 0. As the components in a composition must sum to one, many classical statistical 

tests including two sample t-test and Wilcoxon rank-sum test became inappropriate. Two sample t-

test target the mean difference, and relies on several assumptions including normal distribution, equal 

variance, unconstrained data and the independence of populations. Therefore, directly applying these 

standard methods to compositional data could result in misleading inference.  

To overcome this difficulty, Aitchison (1982) proposed to use log-ratio transformation to relax the 

unit-sum constraint. However, his test only be applied to low dimensional settings where the 

dimensionality is less than sample size. Various methods have been developed since the work of 

Aitchison. In 2017, Cao et al. developed a powerful two-sample test for high-dimensional means 

using centered log-ratio transformation with statistical satisfactory under some regularity conditions 

and sparsity assumption. However, Cao et al.’s test has several shortcomings. For instances, it can 

only deal with two sample comparison, and its validity depends on a list of regularity conditions on 

the underlying covariance matrices, and its performance relies on the sparsity assumption, i.e., only 

a small proportion of components in the composition are different across groups.  

To handle high-dimensionality and over-dispersion that are commonly seen in recent microbiome 

data, we consider a general problem of testing for the compositional difference between multiple 

populations. We formulated a new hypothesis from a Bayesian point of view, suggesting a non-

parametric test based on inter-point distance to evaluate significance. Unlike most existing tests for 

compositional data, our method does not rely on any data transformation, sparsity assumption or 
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regularity conditions on the covariance matrix, but directly analyzes the compositions. The 

performance of the proposed method is tested by simulated high-dimensional, over-dispersed and 

zero-inflated. The proposed method is applied in two human microbiome data to test the association 

microbiome composition and the phenotype of interest. 

2.2 Problem formulation 

In this part, we will first briefly review the test by Cao et al. (2017).  

Let 𝑘 ∈ {1,2, . . . , 𝐾} be the group index and 𝑗 ∈ {1,2, . . . , 𝑝} be the index of components in the 

composition, then the observed 𝑛𝑘 ∗ 𝑝 data matrix for group k can be denoted as 

 𝑋(𝑘) = (𝑋1
(𝑘)

, . . . , 𝑋
𝑛𝑘
(𝑘)

)
𝑇

 , where 𝑋𝑖
(𝑘)

= (𝑋𝑖1
(𝑘)

, . . . , 𝑋𝑖𝑝
(𝑘)

)
𝑇

 represents the composition for 

subject i that lie on the (p−1)-dimensional simplex.  

We assume that the observed compositional data X(k) arise from a latent matrix 𝑊(𝑘) =

(𝑊1
(𝑘)

, . . . , 𝑊
𝑛𝑘
(𝑘)

)
𝑇

 by normalization 

𝑋𝑖𝑗
(𝑘)

=
𝑊𝑖𝑗

(𝑘)

∑ 𝑊
𝑖ℎ

(𝑘)𝑝
ℎ=1

 

where W(k) refers to the true abundance of bacterial taxa. Since the true abundances W(k) are 

unknown, Cao et al. (2017) formulated a new hypothesis for testing the difference between two 

groups: 

𝐻0: 𝐸 (log(𝑊1
(1)

)) = 𝐸 (log(𝑊1
(2)

)) + 𝑐1𝑝, for some 𝑐 ∈ ℝ, 

𝐻𝛼: 𝐸 (log(𝑊1
(1)

))  ≠ 𝐸 (log(𝑊1
(2)

)) + 𝑐1𝑝, for any 𝑐 ∈ ℝ, 

where 1p stands for the vector of p ones. The above is mean-based hypothesis and can be tested 

using the centered log-ratio transformation 
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𝑌𝑖𝑗
(𝑘)

= log
𝑋𝑖𝑗

(𝑘)

(∏ 𝑋𝑖ℎ
(𝑘)

)
1
𝑝 

𝑝
ℎ=1

, 𝑘 = 1,2; 𝑖 = 1, … , 𝑛𝑘. 

The centered log-ratio variables 𝑌𝑖𝑗
(𝑘)

′𝑠 can be shown to be only weakly dependent and satisfy 

certain desired statistical properties, resulting the following test statistics 

𝑀𝑛 =
𝑛1𝑛2

𝑛1 + 𝑛2
max
1≤𝑗≤𝑝

(�̅�𝑗
(1)

−  �̅�𝑗
(2)

)2 

𝛾𝑗𝑗
, 

𝑤ℎ𝑒𝑟𝑒 �̅�𝑗
(𝑘)

= ∑
𝑌𝑖𝑗

(𝑘)

𝑛𝑘

𝑛𝑘
𝑖=1 , 𝑎𝑛𝑑 𝛾𝑗𝑗 =  ∑ ∑

(𝑌𝑖𝑗
(𝑘)

− �̅�𝑗
(2)

)2

𝑛1+𝑛2

𝑛𝑘
𝑖=1 

2
𝑘=1  and the p-value then be obtained 

through Gumbel distribution (also known as the log-Weibull and the double exponential 

distribution) [5] 

𝑝_𝑣𝑎𝑙𝑢𝑒 = 1 − {exp [exp(−.5𝑀𝑛 − 2log𝑝 + loglog𝑝 + log𝜋)]}−1. 

It can be seen that Cao et al.’s test targets the mean difference in high-dimensional settings, and its 

validity relies on several assumptions on the underlying covariance matrices, which is hard to check 

in practice. Therefore in this work, we considered a different hypothesis on the distribution of 

composition instead of means. We assume 𝑊𝑖
(𝑘)

 follows the multinomial distribution, 

𝑊𝑖
(𝑘)

∼ Multinomial(𝑁𝑖
(𝑘)

, 𝜋𝑖
(𝑘)

), 

where 𝑁𝑖
(𝑘)

 represents the total abundance of bacterial taxa for sample i from group k, and 

𝜋𝑖
(𝑘)

 represents the true composition.  

In order to model over-dispersion, we assumed random parameters, 𝑁𝑖
(𝑘)

~ 𝑓𝑁(𝛼)𝑎𝑛𝑑 𝜋𝑖
(𝑘)

=

(𝜋𝑖1
(𝑘)

, … , 𝜋𝑖𝑝
(𝑘)

) ~ 𝑓𝜋(𝛩(𝑘)) where α and Θ(k) are hyper-parameters.  

We then define the compositional equivalence between two groups based on the distribution of 

parameter π: 

Definition 2.1 
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Two groups k and k′ are said to be compositionally equivalent if 

𝑓𝜋(𝛩(𝑘)) = 𝑓𝜋(𝛩(𝑘′)). 

By definition 2.1, we formulate the null and alternative hypotheses among K groups: 

𝐻0: 𝑓𝜋(𝛩(1)) = … =  𝑓𝜋(𝛩(𝑘)), 

𝐻𝛼: 𝑓𝜋(𝛩(𝑘)) ≠ 𝑓𝜋(𝛩(𝑘′)) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘 𝑎𝑛𝑑 𝑘′ 

In this framework, we assume that the total abundance 𝑁𝑖
(𝑘) is independent of 𝜋𝑖

(𝑘), 

and 𝑁𝑖
(𝑘)

~ 𝑓𝑁(𝛼) for 𝑖 ∈ {1, . . . , 𝑛𝑘} and 𝑘 ∈ {1,2, . . . , 𝐾}, therefore testing H0 is to test for 

distributional homogeneity of the compositions between K groups. Let  𝑋𝑖
(𝑘)

~ 𝑓𝑋
(𝑘)

(𝑥), then we 

have the following equivalent hypothesis 

𝐻0
∗: 𝑓𝑋

(1)(𝑥) = ⋯ = 𝑓𝑋
(𝑘)(𝑥) for all x, 

𝐻𝛼
∗ : 𝑓𝑋

(𝑘)(𝑥) = 𝑓𝑋

(𝑘′)
(𝑥)  for some x,  k and k′, 

Where it can be seen that 𝐻0
∗ is equivalent to testing the independence between the 

composition X and the grouping variable k ∈{1,2,..., K} (i.e., phenotype), i.e., testing the 

independence between a continuous random vector and a categorical variable. 

2.3 Distance Based Test 

This part presents the distance-based method [1] that we proposed to test the hypothesis 𝐻0
∗ . Using 

the notion of distance covariance between two random vectors X and Y (see definition 1.4 in 

Chapter 1) 

 𝑑𝐶𝑜𝑣2(𝑋, 𝑌) = ∫
∥𝜙𝑥,𝑦(𝑡,𝑠)−𝜙𝑥(𝑡)𝜙𝑦(𝑠)∥2

𝐶𝑑𝑥𝐶𝑑𝑦∥𝑡∥
𝑑𝑥

1+𝑑𝑥∥𝑠∥
𝑑𝑦

1+𝑑𝑦ℝ𝑑𝑥+𝑑𝑦 𝑑𝑡𝑑𝑠,  (1) 
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where 𝜙(·) is a characteristic function, 𝑑𝑥  𝑎𝑛𝑑 𝑑𝑦 are the dimensions of X and Y, 𝐶𝑑𝑥
=

𝜋
1+𝑑𝑥

2

𝛤{
1+𝑑𝑥

2
}

  𝑎𝑛𝑑 𝐶𝑑𝑦
=

𝜋
1+𝑑𝑦

2

𝛤{
1+𝑑𝑦

2
}
, ||𝑧||

𝑑𝑧
 denotes the Euclidean norm of 𝑧 ∈ ℝ𝑑𝑧 , and ∥ 𝜙 ∥2= 𝜙  �̅� for 

the complex-valued function 𝜙 and its conjugate �̅� . 

It is noteworthy to mention that 𝑑𝐶𝑜𝑣(𝑋, 𝑌) = 0 if and only if X and Y are statistically independent 

(property of distance correlation discussed in Chapter 1), so this feature will capture any form of 

association between a continuous random vector 𝑋 and a categorical variable 𝑌. Szekely et al. 

(2007) has provided an alternative and equivalent definition of distance covariance based on 

Euclidean distance (Theorem 1 in [17]) 

𝑑𝐶𝑜𝑣2(𝑋, 𝑌) = 𝐶𝑜𝑣(∥ 𝑋1 − 𝑋2 ∥, ∥ 𝑌1 − 𝑌2 ∥) − 2𝐶𝑜𝑣(∥ 𝑋1 − 𝑋2 ∥, ∥ 𝑌1 − 𝑌3 ∥),  

where (X1,Y1), (X2,Y2) and (X3,Y3) be three independent copies of (X,Y).  

This alternative definition is used to derive the explicit formula of distance covariance between 

composition X and phenotype Y. For 𝑌 ∈ {1,2, . . . , 𝐾} with probabilities {𝑝1, . . . , 𝑝𝐾} and 𝑋 =

{𝑋1, . . . , 𝑋𝑝, we assume Y is nominal (without ordering between categories) for illustration 

purpose, with (X1,Y1), (X2,Y2) and (X3,Y3) be three independent copies of (X,Y). We define  

∥ 𝑌1 − 𝑌2 ∥= 1, 𝑖𝑓 𝑌1 ≠ 𝑌2 𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

In addition, we define the expected inter-point distance as 

𝐷𝑖𝑗 = 𝐸(∥ 𝑋1 − 𝑋2  ∥𝑌1=𝑖,𝑌2=𝑗), 𝑖, 𝑗 = 1, . . . , 𝐾. 

Using the definitions above, the distance covariance between Y and X can then be derived as 

follows 

𝐸(∥ 𝑌1 − 𝑌2 ∥) = 1 − ∑ 𝑝𝑖
2

𝐾

𝑖=1

, 
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𝐸(∥ 𝑋1 − 𝑋2 ∥) = ∑ ∑ 𝑝𝑖𝑝𝑗𝐷𝑖𝑗

𝐾

𝑗=1

𝐾

𝑖=1

, 

𝐸(∥ 𝑋1 − 𝑋2 ∥∥ 𝑌1 − 𝑌2 ∥) = ∑ 𝑝𝑖𝑝𝑗𝐷𝑖𝑗

𝑖≠𝑗

=  ∑ ∑ 𝑝𝑖𝑝𝑗𝐷𝑖𝑗

𝐾

𝑗=1

𝐾

𝑖=1

− ∑ 𝑝𝑖
2

𝐾

𝑖=1

𝐷𝑖𝑖 

𝐸(∥ 𝑋1 − 𝑋2 ∥∥ 𝑌1 − 𝑌3 ∥) = ∑ ∑ 𝑝𝑖𝑝𝑗𝑝𝑙𝐷𝑖𝑗

𝐾

𝑖≠1

𝐾

𝑗=1

= ∑ ∑ 𝑝𝑖(1 − 𝑝𝑖)𝑝𝑗𝐷𝑖𝑗

𝐾

𝑗=1

𝐾

𝑖=1

 

Summarizing the above, we get 

𝑑 𝐶𝑜𝑣2(𝑋, 𝑌)̂ =  2 ∑ ∑ �̂�𝑖
2�̂�𝑗  �̂�𝑖𝑗

𝐾

𝑗=1

𝐾

𝑖=1

− ∑ �̂�𝑖
2

𝐾

𝑖=1

�̂�𝑖𝑖 − (∑ �̂�𝑖
2

𝐾

𝑖=1

)( ∑ ∑ �̂�𝑖�̂�𝑗�̂�𝑖𝑗

𝐾

𝑗=1

𝐾

𝑖=1

) 

By Cauchy-Schwarz inequality, it can be shown that 𝑑𝐶𝑜𝑣(𝑋, 𝑌) ≥ 0 and the equality holds if and 

only if 𝐷𝑖𝑖 = 𝐷𝑗𝑗 = 𝐷𝑖𝑗  𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑖, 𝑗)’𝑠.  

The maximum likelihood estimate (MLE) of pi is  �̂�𝑖 =
𝑛𝑖

𝑛
, where ni stands for the sample size of 

group i. The sample inter-point distance can be computed as follows  

 �̂�𝑖𝑗 =
1

𝑛𝑖𝑛𝑗
∑ ∑ ||𝑋𝑚

(𝑖)𝑛𝑗

𝑙=1
− 𝑋𝑙 

(𝑖)
|| 

𝑛𝑖
𝑚=1 , (2) 

 �̂�𝑖𝑖 =
2

𝑛𝑖(𝑛𝑖−1)
∑ ∑ ||𝑋𝑚

(𝑖)𝑛𝑗

𝑙=1
− 𝑋𝑙 

(𝑖)
|| 

𝑛𝑖
𝑚=1 ,  (3) 

where {𝑋1
(𝑖)

, … , 𝑋𝑛𝑖

(𝑖)} 𝑎𝑛𝑑 {𝑋1
(𝑗)

, … , 𝑋𝑛𝑗

(𝑗)
} are samples of 𝑋𝑖 and 𝑋𝑗 respectively. Finally, p-values 

are obtained using a simple permutation procedure described in [17]. 

Our proposed method was evaluated by an extensive simulation study where all the settings are 

high dimensional and over-dispersed. Using a fixed dimension 𝑝 = 200 and different sample sizes 

𝑛1 = 𝑛2 = 50 and 𝑛1 = 𝑛2 = 100, we generated the abundance 𝑊𝑖𝑗
(𝑘)

 from 3 different settings as 

below: 
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Setting 1: 𝑊𝑖𝑗
(𝑘)

∼ NegBin(𝜇𝑗
(𝑘)

, 𝑟𝑗
(𝑘)

),  for 𝑖 = 1, … , 𝑛𝑖,  𝑗 = 1, … , 𝑝,  𝑟𝑗
(1)

 ~ Unif(0.1,1), 𝑟𝑗
(1)

=

𝑟𝑗
(2)

 and 𝜇𝑗
(1)

∼ Unif(10,15). Let 𝐼 = {𝐼+, 𝐼−} be the set of taxa with different abundances in two 

conditions, 𝜇𝑗
(2)

= 𝜇𝑗
(1)

+ 𝛥 𝑓𝑜𝑟 𝑗 ∈ 𝐼+ 𝑎𝑛𝑑 𝜇 𝜇𝑗
(2)

= 𝜇𝑗
(1)

− 𝛥 𝑓𝑜𝑟 𝑗 ∈ 𝐼−,   𝜇𝑗
(2)

= 𝜇𝑗
(1)

 for 𝑗 ∉

𝐼, |𝐼+| = |𝐼_| = 𝑑𝑝, where | · | represents set cardinality, and d is the proportion of differential 

means. Given d=5%,20%, representing relatively sparse and dense signals in mean difference, 

we used Δ={0.5,1.0,1.5,2.0,2.5,3.0}. 

Setting 2: Same as Setting 1, but 𝜇𝑗
(1)

∼ 𝑈𝑛𝑖𝑓(5,10) 

Setting 3: (Negative binomial model with excess zeros): 𝑊𝑖𝑗
(𝑘)

= 0 with  probability  𝜋 =

(10%, 20%),  𝑊𝑖𝑗
(𝑘)

∼ 𝑁𝑒𝑔𝐵𝑖𝑛(𝜇𝑗
(𝑘)

), 𝑟𝑗
(𝑘)

 ) with probability 1 − 𝜋, let 𝑑=10%, 

Δ={0.5,1.0,1.5,2.0,2.5}. Other settings remain same as in Setting 1. 

The simulation abundance 𝑊𝑖𝑗
(𝑘)

 are then normalized to the composition 𝑋𝑖𝑗
(𝑘)

 to perform the test 

for the null hypothesis at the significant level of 0.05. We calculated test statistics 𝑀𝑛 and p-value 

from Gumbel distribution for the log-ratio based method (Cao et al.’s test, [17]), then compute p-

value from 5,000 permutations for our distance correlation test. For each setting, we simulate 1,000 

datasets, and compare the true positive rates (TPRs) by the two tests. By comparing the true 

positive rates (TPRs) of the two tests, as shown in Figure 2.0.1-2.0.3, our distance-based method 

outperforms the Cao et al.’s method throughout all settings. 
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Figure 2.0.1. TPR comparison in setting 1 

 

Figure 2.0.2. TPR comparison in setting 2 
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Figure 2.0.3. TPR comparison in setting 3 

It can be seen that our distance based-test consistently outperforms the log-ratio based method in 

all above settings. Particularly, in the dense setting (d=20%), our test achieves substantially higher 

TPR than the log-ratio test. For instance, in Setting 1, when Δ=2.0, n1=n2=50, our test achieves a 

high TPR of 0.97 while the TPR by log-ratio test is only 0.41. However, when Δ is subtle, 

e.g., Δ=0.50, both tests fail to detect the difference, even for relatively large sample size, 

e.g., n1=n2=100. 

In the second simulation study, we change the dimension p from 100 to 500. The sample size is 

fixed at 𝑛1 = 𝑛2 = 100. We investigate the effect of dimension on the true positive rate. The 

abundance 𝑊𝑖𝑗
(𝑘)

 is generated from 2 settings: 

Setting 4: Same as Setting 1, except for fixed Δ=1.5 and 𝑑𝑝 =10. 
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Setting 5: (Negative binomial model with excess zeros): 𝑊𝑖𝑗
(𝑘)

= 0 𝑤𝑖𝑡ℎ  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝜋 = 10%,  

𝑊𝑖𝑗
(𝑘)

∼ 𝑁𝑒𝑔𝐵𝑖𝑛(𝜇𝑗
(𝑘)

), 𝑟𝑗
(𝑘)

 ) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜋. Other settings remain the same as in 

Setting 4. 

 

Figure 2.0.4. TPR comparison in setting 4 and 5 

 

Figure 2.0.4 shows that the distance-based test outperforms the log-ratio test especially when the 

dimension is relatively low. When the dimension is high, for instance p=500, the two tests are 

comparable. More importantly, there is a substantial decrease of TPR as p increases, indicating 

that a feature screening could improve the test performance when p is large. 

In the third study, we consider testing the compositional difference between multiple groups. We 

set K=4 with sample sizes 𝑛1 = 𝑛2 = 𝑛3 = 𝑛4 = 50, fixed dimension p at 200. The 

abundance 𝑊𝑖𝑗
(𝑘)

 are generated from the negative binomial model with excess zeros. testing the 

compositional difference between multiple groups.  
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The abundance  𝑊𝑖𝑗
(𝑘)

 are generated with excess zeros π = P(𝑊𝑖𝑗
(𝑘)

=0), with probability 1- π. 

𝑊𝑖𝑗
(𝑘)

∼ NegBin(𝜇𝑗
(𝑘)

, 𝑟𝑗
(𝑘)

),  for 𝑖 = 1, … , 𝑛𝑖 ,  𝑗 = 1, … , 𝑝,   𝑟𝑗
(1)

 ~ Unif(0.1,1),   

𝑟𝑗
(3)

 ~ Unif(0.1,1),   𝑟𝑗
(1)

= 𝑟𝑗
(2)

 , 𝑟𝑗
(4)

= 𝑟𝑗
(3)

,  and 𝜇𝑗
(1)

∼ Unif(10,15), and 𝜇𝑗
(3)

∼ Unif(10,15).  

Let 𝐼 = {𝐼+, 𝐼−} be the set of taxa with different abundances in two conditions, 𝜇𝑗
(2)

= 𝜇𝑗
(1)

+

𝛥 𝑎𝑛𝑑 𝜇𝑗
(4)

= 𝜇𝑗
(3)

+ 𝛥 𝑓𝑜𝑟 𝑗 ∈ 𝐼+ 𝑎𝑛𝑑 𝜇𝑗
(2)

= 𝜇𝑗
(1)

− 𝛥 𝑎𝑛𝑑𝜇𝑗
(4)

= 𝜇𝑗
(3)

− 𝛥𝑓𝑜𝑟 𝑗 ∈ 𝐼−,   𝜇𝑗
(4)

=

𝜇𝑗
(3)

=  𝜇𝑗
(2)

= 𝜇𝑗
(1)

 for 𝑗 ∉ 𝐼,  |𝐼+| = |𝐼_| = 20, where | · | represents set cardinality, with given 

d=10%,20% and Δ={0.5,1.0,1.5,2.0,2.5}. 

We calculated p-value based on 5,000 permutations for distance based-test and for Cao et al.’s test, 

p-values computed by Gumbel distribution from six pairwise comparisons, and use the smallest p-

value for decision-making. Figure 2.0.5 summarizes the TPRs by the two tests, where it can be 

seen that our proposed test performs consistently better than the log-ratio based test. Notably, in 

the setting π=20% and Δ=2.0, the distance correlation test achieves a TPR of 0.83, compared to 

the TPR of 0.46 by the log-ratio test. 

 
Figure 2.0.5. TPR comparison in the third study 
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Study the TPRs of the two tests at significant level α=0.05 shows that the distance-based test again 

outperforms the log-ratio test especially when the dimension is relatively low. When the dimension 

is high, TPR decrease as p increases, which also improving test performance. 

To evaluate the robustness of the proposed method, we conducted a sensitivity analysis for setting 

2. For each simulation run, we randomly select 50% of taxa and calculate the p-value using 

distance correlation test. The empirical true positive rate is summarized in Figure 2.0.6. 

 

Figure 2.0.6. Sensitivity analysis for setting 2 
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It can be seen that under all sample sizes and signal densities (𝑑), the empirical true positive rate 

using randomly selected 50% taxa is comparable to the one with complete variable set, indicating 

that the distance-based method is fairly robust. 

In addition to the simulation study, we have applied this method to analyze two microbiome 

datasets. 

 

2.4 Applications 

2.4.1 Analysis of Throat microbiome data: 

Data description: The download data (observed abundance) retrieved from GUniFrac R package 

[19], including two parts which are throat.otu.tab and throat.meta, supporting the study of smoking 

effect on the upper respiratory tract microbiome. The dataset contains read counts of 856 

predefined operational taxonomic units (OTUs, or phylotypes) on 62 samples from the throat 

microbiome of left body side. There are total 60 subjects (patients) consisting of 32 nonsmokers 

and 28 smokers. 

Applying both tests including the log-ratio based test and distance-based test in the analysis of the 

throat dataset, we are interested in testing whether there is any significant difference in microbial 

compositions between smokers and non-smokers. First, we need to clean the data by deleting 

OTUs with extremely small number of reads (less than 20 reads in total), resulting a final set of 

190 OTUs. Next, to perform our distance correlation test, we normalized the abundance W to get 

the composition for each sample, then calculate the sample proportions  �̂�𝑖 , and the inter-group 

distances  �̂�𝑖𝑗 for 𝑖, 𝑗 = 1, . . . , 𝐾 (applied Eqs. (2) and (3)). And the last step is to compute the 

permutation p-value based on the distance covariance 𝑑 𝐶𝑜𝑣(𝑋, 𝑌)̂ . The results yield a p-value of 

0.0027, indicating a significant difference between smokers and non-smokers in microbial 
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composition. However, the test performed by Cao et al.’s gives a p-value of 0.098, thus fails to 

reject the null hypothesis of equal means at the level of 0.05 of significance.  

The different results between these two tests alerts the existence of nonlinear effects and over-

dispersion, since our methods focus on the distributional difference while the log-ratio test only 

targets on the means. We also implement additional analyses by taking two examples of bacteria 

2434 and bacteria 2831 (see Fig 2.0) to enforce the significant difference in distribution using the 

centered log-ratios plots; however, Cao et al.’s test gives the insignificant result by the mean 

difference due to the nonlinear effect and heavy tails, which inflates the variance estimates. 

 

 

Fig 2.0 Comparison of two groups in bacteria 2434 and bacteria 2831 of throat microbiome data. 

The distributions of inter-point distance and 3-minimum spanning tree (3-MST) were also used to 

compare the difference between smokers and non-smokers. According to Szekely et al. (2007), if 

two multivariate distributions are identical, the inter-point distances within each group have the 
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same distribution [17]. The below illustration (Fig 2.1) have shown there is some differences in 

the inter-point distance distributions of two groups of smokers and non-smokers.  

 

Fig 2.1. Distribution of inter-point distance of throat microbiome 
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Fig 2.2. 3-MST of throat microbiome 

In addition, the tree-based visualization (Fig 2.2) shows a set of 12 smokers (circled) that are highly 

connected to each other (a connection in the network represents compositional similarity between 

samples), but with very few connections with non-smokers. If two samples do not show equal 

chance to connect with any other sample, they do not have the same distribution. Therefore this 3-

MST again confirm a distributional difference that found between these two groups.  
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2.4.2 Analysis of intestinal microbiome data 

Data description: The data is collected by Lahti et al. (2014) [20] to study the microbial 

communities living in the human intestine, which have a big impact on our well-being and health. 

The data consists of phylogenetic intestinal microbiota of 1,006 western adults from Europe and 

the United States with altogether 1172 samples and 130 genus-like phylogenetic groups.  The 

clinical data contains many variables including age, sex, nationality, BMI, DNA extraction method 

etc., and we will take Age as the outcome variable to test our method.  

To test whether there is any difference in microbiome composition among different age groups, 

here we define 3 different age groups: young (<40), middle (41–60) and old (>61), as suggested 

by Lahti et al. (2014). The distance-based test results in a p-value of 3.0×10−6, moreover, the p-

values from three pairwise comparisons are: 8.2×10−5 for young vs middle, 2.2×10−5 for young vs 

old, and 0.081 for middle vs old, indicating a significant difference in microbiome compositions 

between young and other groups.  

 

 

Fig 2.3. Center log-ratio of group 25 

 

Fig 2.4. Center log-ratio of group 60 
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Some additional visualizations were performed to confirm our findings. Two examples of group 

25 and group 60 are shown in Fig 2.3 and Fig 2.4), where the discrepancy is observed between 

young and middle/old subjects (see Fig 2.5) from the distribution difference of inter-point distance. 

 

 

Fig 2.5. Distribution of inter-point distance of intestinal microbiome data. 

In summary, our distance-based method is more sensitive to compositional difference. It is easy to 

implement and computationally efficient, compatible to high dimensional, compositional, over-

dispersed or zero-inflated data.  
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In the next chapter, we will conduct model-based procedure to select the subset of significant 

variables contributing to the differences between groups. The identifies variables set can be used 

as a microbiome signature that differentiate phenotypic groups. 
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Chapter 3 

VARIABLES SELECTIONS 

Here we present variable selection results from different statistical models. We will define a 

consensus set of variables as the final set. 

3.1 Summary Table: 

Our summary tables list the most significant genus in the throat microbiome and the intestinal data. 

The count tables show the number of genus shared by multiple penalized regressions including 

Ridge, LASSO, Elastic Net regression and the Multicategories logits models.  

3.1.1 Variables selections of intestinal microbiome data 

We performed the analysis utilizing the most significant ones among 130 bacteria. We selected the 

50 most statistically significant genus from each method Ridge, LASSO, Elastic Net Regression, 

cumulative Logits and Adjacent-category Logit models.  

The cumulative Logits and the Adjacent-category Logit model select significant variable based on 

their adjusted p-value (< .05). The penalized regressions choose variables based on their beta values, 

the larger the beta value is, the more significant the genus is.  

Table 1. Frequency table of significant intestinal bacteria shared among regression models 

 Cumulative 

Logit 

Adjacent-

Category Logit 

LASSO 

Regression 

Ridge 

Regression 

Elastic Net 

Regression 

Cumulative Logits 50 49 18 27 20 

Adjacent-Category Logit 49 50 19 27 21 

LASSO Regression 18 19 50 28 41 

Ridge Regression 27 27 28 50 32 

Elastic Net Regression 20 21 41 32 50 
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From the most 50 significant bacteria, we generate a count table that summarize the number of genus 

identified by some of all of the 5 methods. From the above table, we can see that among 50 most 

significant selected from 5 methods, cumulative Logits and Adjacent-category Logit method agree 

perfectly well (49/50), LASSO and Elastic Net regression share 41 significant genus, LASSO and 

Ridge share 27 significant genus, while Cumulative Logits model and LASSO regression have 18 

significant bacteria in common. 

We also produce the following table that lists all the bacteria with occurrence (5,4,3,2,1) from the 

count table. 

Table 2. Names of significant throat bacteria shared among regression models 

5 4 3 2 1 

V108, V110, 

V114, V121, 

V26, V37, 

V38, V43, 

V48, V49, 

V80, V9. 

V111, V12, 

V16, V18, 

V21, V46, 

V54, V95. 

V100, V102, V11, 

V115, V119, V120, 

V126, V128, V13, 

V131, V2, V22, V27, 

V3, V30, V31, V32, 

V41, V42, V50, V60, 

V61, V64, V68, V76, 

V88, V93, V96. 

V10, V101, V112, 

V116, V123, V14, 

V19, V20, V23, V24, 

V25, V29, V35, V44, 

V45, V52, V53, V55, 

V6, V69, V7, V77, 

V78, V8, V81, V83, 

V86, V89, V90, V97. 

V106, V127, 

V17, V39, V47, 

V5, V58, V62, 

V63, V73, V82, 

V87, V94, V99. 

 

This table shows that among 50 bacteria, there are 12 having statistically significant effect on the 

age group difference. There are 8 bacteria that are selected in 4 methods. We then selected the 20 

most significant ones based on this table, which appeared in all five or four variables selection 

methods for the use in Chapter 4. 
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3.1.2 Variables selections of throat microbiome data 

The throat microbiome dataset shows that the smoker and non-smoker status of patient have 

significant difference in term of throat microbiome. 

We utilized four different methods to select variables, including Logit Model, Ridge, LASSO, 

Elastic Net Regression to find the 50 most significant genus from 190 bacteria. 

The Logit model selects significant variable based on their p-value (< .05) and we found 13 bacteria 

with significance. The penalized regressions evaluate variables based on their beta values, the larger 

the beta value is, the more significant the genus is.  

We use the following table to summarize the number of genus selected by different methods: 

Table 3. Frequency table of significant throat bacteria shared among regression models 

 Logit Model 

LASSO 

Regression 

Ridge 

Regression 

Elastic Net 

Regression 

Logit Model 50 24 23 29 

LASSO Regression 24 50 20 36 

Ridge Regression 23 20 50 29 

Elastic Net Regression 29 36 29 50 

 

As seen from this table, for the top 50 selected bacteria which have smallest p-value or biggest beta 

value from LASSO and Elastic Net regression, Logit Model shared 24, 23 and 29 significant bacteria 

with LASSO, Ridge and Enet regression respectively. LASSO and Ridge has the least in common 

(only 20 bacteria), while LASSO and Elastic Net regression have the most in common (36/50).  

We also produce a table that lists all the bacteria with occurrence (4,3,2,1) from the above count 

table. Table 4 shows there are 14 significant bacteria shared the significant effect on human throat 
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selected from 3 regressions models. Also, there are 16 bacteria have significant effect on human 

throat were appeared in all four models, they will be chosen to represent the throat microbiome data 

for further analysis in Chapter 4. 

Table 4. Names of significant throat bacteria shared among regression models 

4 3 2 1 

X1478 X1490 

X2382 X3246 

X3839 X4194 

X4223 X4363   

X44 X4422 

X4457 X4703 

X4707 X5287 

X548   X93 

X1371 X1540 

X2047 X2132 

X2705 X2831 

X3954 X4036 

X4243 X4912 

X501 X5129 

X5160 X689 

X1024 X1280 

X1511 X1596 

X1618 X181 

X2046 X257 

X2928 X3227 

X332 X3391 

X392 X4321 

X4608 X483 

X4966 X5045 

X5414 X5496 

X5563 X5661 

X990 

X1036 X1204 X154 X1633 X1936 

X2082 X2300   X24 X2434 X2572 

X2621 X2718 X2839 X3026 

X3105 X3147 X3276 X3418 

X3427 X3538 X3878 X3943 

X3945 X3957 X3988 X4131 

X4248 X444 X4793 X4813 X4816 

X4871 X4964 X5111 X5273 

X5308 X5313 X5394 X5460 

X5468 X5583   X58 X618 X625 

X667 X760 X772 X898 
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3.2 Venn Diagram: 

In addition to the summary tables, we have produced the Venn to illustrate the agreement between 

different variable selection methods. 

3.2.1 Venn diagrams of selected variables of intestinal microbiome dataset 

 

Fig 3.1. Venn Diagram of 5 methods for intestinal dataset (50 genus) 

The Fig 3.1. is a Venn diagram shows all the possible relationship among 5 different variables 

selection methods applied for the intestinal microbiome dataset. There are 12 significant bacteria in 

the difference among three different age groups (young < 40 years, 40<middle<60, old >60 years) 

found in all five alternatives. We can also read that there are 4 bacteria found significant by all four 

methods (except for Ridge regressions).  
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The below pair Venn diagram illustrate a very nice result from Cumulative and Adjacent-category 

Logit models, that share perfectly 49 out of 50 most significant bacteria in common. 

 

Fig 3.2. Pair Venn Diagram of Cumulative Logits and Adjacent-category Logits 

 for intestinal dataset (50 genus) 
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Fig 3.3. Tri Venn Diagram of Cumulative Logits, Adjacent-category Logits and LASSO regression 

 for intestinal dataset (50 genus) 

The TriVenn diagram above shows that there are 18 common bacteria found in three different 

methods, including LASSO regression, Cumulative and Adjacent-category Logits. There is only 1 

bacteria is not in common as significance found by Cumulative and Adjacent-category Logit 

methods, which made them perfectly well sharing the same bacteria with significant effect by 

different age groups. 

Another TriVenn diagram (see Fig 3.4.) illustrate the three penalized regressions have share 27 

bacteria in common in contributing in making the difference in three groups of age of intestinal 

microbiome data. 
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Fig 3.4. Tri Venn Diagram of 3 penalized regressions for intestinal dataset (50 genus) 

3.2.2 Venn diagrams of selected variables of throat microbiome dataset 

The Venn diagram of all four methods used in selecting variables which have significant effect by 

smoking status in throat microbiome data is shown in Fig 3.5. There are 16 bacteria are found 

significant in all 4 methods among the selected 50 genus from each method.  
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Fig 3.5. Venn Diagram of 4 methods applied for throat microbiome data (50 bacteria) 

 

Figure 3.5 shows that there are 4 bacteria shared the role of significance from 3 regression models, 

including LASSO, Ridge and Elastic Net. This is magnified in the next illustration Fig 3.6. 



 

50 

 
Fig 3.6. Venn Diagram of 3 penalized regression for throat microbiome data (50 bacteria) 

The tri-Venn diagram in Fig 3.6 shows 20 common significant bacteria shared by all 3 penalized 

regressions methods; while there are 16 bacteria shared solely between LASSO and Elastic Net, 

which made a total of 36 significant bacteria found by both these two regression methods. 

The next illustration is pair diagram showing that Logit and LASSO have 23 most significant 

bacteria being affected by smoking status in the throat microbiome data, which is the least common 

comparing to other pair comparisons between Logit model with Ridge and Elastic net regressions. 
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Fig 3.7. Pair Venn Diagram of Logits model and Ridge regression 

for throat microbiome data (50 bacteria) 

In the next chapter, we will illustrate these selected variables are important in making the significant 

effect on different smoking status in throat microbiome data or among multiple age groups in 

intestinal microbiome data.  
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Chapter 4 

VISUALIZATION & VALIDATION OF THE RESULTS FROM CHAPTER 3 

To illustrate the difference among groups in terms of microbiome composition, we use some 

routine visualization including boxplots and density plots, as well as a dimensional reduction 

technique, namely, the multi-dimentional scaling (MDS) plot which is briefly introduced below. 

4.1 Multi-dimentional Scaling (MDS) plot 

MDS plot is a widely used visualization method to display separation of multiple groups in a multi-

dimensional space. MDS arranges the points into an abstract Cartesian space, where the points are 

computed based on the distance matrix. First, distances between points on the plot approximates 

their multivariate dissimilarity as closely as possible. In the context of compositional data, the 

points located closely (or as a cluster) on the MDS plot indicates samples that have similar species 

composition. 

Like other popular dimension reduction methods or visualizations such as Principal Component 

Analysis (PCA), MDS takes the matrix of pairwise dissimilarities between samples of input and 

outputs a coordinate matrix whose configuration minimizes a pre-defined loss function.  

To be specific, a collection of objects (patients, bacteria, etc) on which a distance function 

(dissimilarity matrix) is defined as  

𝐷 ≔ ([

𝑑1,1 ⋯ 𝑑1,𝑀

⋮ ⋱ ⋮
𝑑𝑀,1 ⋯ 𝑑𝑀,𝑀

]) 

where 𝑑𝑖,𝑗 is distance between i-th and j-th objects. 

The goal of MDS is formulated as an optimization problem, to find M vectors  𝑥1, 𝑥2, … 𝑥𝑀 ∈

ℝ𝑁  such that ||𝑥𝑖 − 𝑥𝑗||  ~ 𝑑𝑖,𝑗  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗 ∈  (1, … , 𝑀). The solution of this problem 

https://en.wikipedia.org/wiki/Cartesian_coordinate_system
https://en.wikipedia.org/wiki/Loss_function
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min
𝑥1,𝑥2,…𝑥𝑀

∑ (||𝑥𝑖 − 𝑥𝑗|| −  𝑑𝑖,𝑗)
2

𝑖<𝑗

 

is then found by numerical optimization techniques.  

This technique is then applied in both throat and intestinal microbiome datasets. 

4.2 Throat Microbiome Data 

Fig 4.1 are examples of boxplots of bacteria X1478, X1490, X4703, X3246.  
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Fig 4.1. Boxplots of some significant bacteria of throat microbiome dataset 

By looking at these above boxplots, we have seen the quartiles of the Smoker groups in bacteria 

X1478 is slightly different; bacteria X1490, X4703 and X3246 show obvious difference of the 

quartiles between Smokers and Non-Smokers. These depict the effect of the smoking status in 

throat microbiome. 

Next, to emphasize the effect of these bacteria on the age group, I also conducted the density plots 

of bacteria X1478, X1490, X4703 and X3246, chosen from the most 16 significant bacteria of the 

throat microbiome data selected from 4 selection methods in chapter three.   
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Fig 4.2. Density plots of some significant bacteria of throat microbiome dataset 

In fig 4.2, the red and blue curves represent the density distribution of Smokers and Non-Smoker 

of these defined throat bacteria. They depict the different shapes between Smokers and Non-

Smokers, emphasize the difference among these two groups, which tells us smoking status has 

statistically significant effect on the throat microbiome.  

The Multi-dimentional scaling plot is used for this dataset to visualize the relationship between 

Smokers and Non-Smokers in throat microbiome dataset. Each dot represents an individual 

participated in the throat data study, there are 60 individuals which include 32 Smokers (red dots) 

and 28 Non-Smokers (blue dots).   
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Fig 4.3. MDS plot of throat microbiome dataset 

In the Fig 4.3, there are red and blue contours separating two clusters forming from the Smoker and 

Non-Smoker groups, indicating that Smoking status have significant effect on throat disease. The x-

axis and y-axis are optimized values calculated from the dissimilarity function of MDS method as 

described above.  

4.3. Intestinal Microbiome Data 

Different from analysis of the throat microbiome data where we studied the difference between 

two groups of smoking status, the intestinal microbiome data are applied with the study among 

three age groups.  
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Fig 4.4. Boxplots of some significant bacteria of intestinal microbiome dataset 

Above are examples of the bacteria V108, V110, V114 and V261 among the most significant 

bacteria in intestinal microbiome dataset, which are selected from five different variable selection 

methods described in chapter three. Fig 4.4 are the boxplots of these bacteria, show that the young 

age group has the median is higher than those of the middle and old age groups, which indicate 

these bacteria are significant in making effect among age groups. 
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We also plot the density distribution for three age groups of the bacteria V108, V110, V114 and 

V26, among the twenty most significant bacteria of the intestinal dataset selected from five 

different variable selection methods described in chapter three in order to see their effect on age.  

 
Fig 4.5. Density plots of some significant bacteria of the intestinal microbiome dataset 

In figure 4.5, three color lines (red, green and blue) represent the distribution of the young, middle 

and old age group respectively. We could have seen that the red line shape is obviously to the right 

of the other two lines, indicating young age group is different than the middle and old age group. 

In other words, age have significant effect on these important intestinal bacteria. 

Similarly, we conducted MDS plot for intestinal microbiome dataset to visualize the difference 

among three different age groups. 
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Fig 4.6. MDS plot of intestinal microbiome dataset 

In the Fig 4.6, there are three colors red, green and blue represent three different age groups young, 

middle and old age. There are 950 individuals shown as dots. The three different colored contours 

formed clusters of those three age groups.  
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Fig 4.7. MDS plot of two age groups (young vs. middle) in intestinal microbiome dataset 

As shown in the previous part through the statistical methods in chapter 2, interpoint distance plot in 

chapter 3, as well as the boxplots and density plots, the young group is obviously significant different 

than the middle age group and the old age group. In addition to that, we have created pair 

comparisons for the young versus middle group (see Fig 4.7) and young versus old age group (see 

Fig 4.8) utilizing multidimensional scaling.  
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Fig 4.8. MDS plot of two age groups (young vs. old) in the intestinal microbiome dataset  

In the two above MDS plots, could have seen that clearly there are difference between red and cyan 

contours forming clusters for the difference two age groups in these two MDS plots, showing that 

age have significant effect in the intestinal microbiome dataset, especially the young age group is 

more different than the others. 

However, there is not statistically significant difference between middle age group and old age 

group, which is illustrated in Fig 4.9. The red and cyan contours in this plot seem mixing together 

and do not separate from each other. 
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Fig 4.9. MDS plot of two age groups (middle vs. old) in the intestinal microbiome dataset  
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Chapter 5 

CONCLUSION AND DISCUSSION 

5.1 Conclusion 

In this dissertation, we formulate a Bayesian testing framework to identify the compositional 

differences between multiple populations. In addition, we propose to use the distance correlation 

measure to test the null hypothesis. Simulation studies and two real applications in the human 

microbiome demonstrate that our test is more sensitive to the compositional difference than the 

mean-based method, especially when the data are over-dispersed or zero-inflated. The proposed test 

is easy to implement and computationally efficient, facilitating its application to large-scale datasets. 

Moreover, we conducted variable selection to select the most significant variables using multiple 

methods such as multi-category logistic models and penalized regression models. We illustrated 

the significance difference using various visualizations including density plots and the 

multidimensional scaling plots.    

As a whole, we put together a simple but powerful statistical framework to test the compositional 

difference between multiple populations and identify a small subset of taxa that drive the 

separation of different populations. 

5.2 Discussion 

Microbiome data are often compositional, high-dimensional and over-dispersed, which poses great 

challenges to the statistical analysis. To overcome these obstacles, we have formulated a new 

testable hypothesis from a Bayesian point of view and suggested a nonparametric test to detect the 

compositional difference between multiple populations. Compared to the existing tests, our 

method has several advantages. First, the distance-based test is free of parametric assumptions but 

directly targets the distributional difference, therefore it is capable of detecting nonlinear effects. 



 

64 

The application in throat microbiome provided a good example, where the new test successfully 

captured the difference between two phenotypes, while the mean based test failed to do so. In 

addition, our method can deal with multiple groups, while most of existing methods are only for 

two-group comparison. Third, our test does not require sparsity assumption on the mean 

differences as in Cao et al.’s test, and in our simulation study, the new test worked quite well 

against both sparse and relatively dense alternatives. 

There are several possible extensions of the proposed test. First, the distance based method can be 

readily extended to ordinal phenotypes (or conditions), although we have been using nominal 

phenotypes for illustrative purpose. For ordinal phenotype, Y∈{1,2,...,K}, where there is a natural 

ordering 1<2...<K, (e.g., {mild, moderate, severe} for severity of a disease, {I, II, III, IV} for 

cancer stage, or {non-smoking, light smoking, heavy smoking} for smoking status), we need 

predefine the distance matrix between categories i and j, for instance, dij=|i−j|, or dij=|i−j|2. The 

distance covariance between composition X and ordinal phenotype Y has the following expression 

𝑑𝐶𝑜𝑣2(𝑿, 𝑌) = (∑ ∑ 𝑝𝑖𝑝𝑗𝑑𝑖𝑗

𝐾

𝑗=1

) 

𝐾

𝑖=1

(∑ ∑ 𝑝𝑖𝑝𝑗𝐷𝑖𝑗

𝐾

𝑗=1

) 

𝐾

𝑖=1

+  ∑ ∑ 𝑝𝑖𝑝𝑗𝑑𝑖𝑗𝐷𝑖𝑗

𝐾

𝑗=1

 

𝐾

𝑖=1

− 2 ∑ ∑ ∑ 𝑝𝑖𝑝𝑗𝑝𝑙𝑑𝑖𝑙𝐷𝑖𝑗

𝐾

𝑙=1

) 

𝐾

𝑗=1

𝐾

𝑖=1

, 

and one may use the same permutation procedure to obtain p-values. In practice, the distance 

matrix dij should be carefully chosen to reflect the true spacings between categories. An 

inappropriate choice of dij may result in misleading conclusions. Second, our test might be 

improved by incorporating more information about bacteria taxa. For instance, one can assign 

different weights for different bacterial taxa based on their position in the polygenetic tree [28],  

and use weighted Euclidean distance to construct the test statistic. 
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In addition to the microbiome application that we illustrated in this paper, the proposed test can be 

readily applied to several other fields. For instance, the market share data in economics are 

compositional and often high-dimensional [57]. One may apply our test to detect the market share 

difference between multiple countries. In geology, it is often of interest to study the compositions 

of species in sediment [58] and it is possible to apply our test to detect the difference in species 

compositions between multiple locations. 
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