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Abstract 

Drug delivery systems (DDS) have highly evolved in the last decades with the 

development of hydrogels and nanoparticles. However, high systemic uptake, side effects, low 

bioavailability, and encapsulation efficiency continue to be a major hurdle faced by such DDSs.   

Nanoparticles and hydrogels can be specifically designed for targeted DDSs to mitigate 

some of the problems.  This dissertation aimed to design two DDSs for ocular drug delivery and 

one for cancer treatment. The first project sought to develop chitosan nanoparticles (Cs-NP) 

using PEGDA as a copolymer to encapsulate gentamicin (GtS) for ocular drug delivery. Cs-NPs 

contain positive charges that can interact with negatively charged ocular proteins to increase the 

NP residence time. Simultaneously, ocular enzymes degrade the chitosan β-(1→4)-glycosidic 

bonds to release GtS at the eye's surface, therefore, preventing premature release of GtS. 

PEGDA was used to increase drug encapsulation by shielding the repelling forces of like 

charges between Cs and GtS. The data shows PEGDA does not hinder enzymatic degradation 

while increasing drug encapsulation efficiency and producing more stable and homogeneous 

particles.  

The second project utilized Michael's reaction to crosslink Cs, Cs-NPs, and PEGDA to 

produce a film designed for ocular drug delivery. The film serves as an anchor for the NPs to 

prevent drug removal by tears and blinking. The data shows that crosslinking of Cs and PEGDA 

does not affect lysozyme activity, and NPs could successfully release GtS without affecting GtS 

activity.   

Finally, the third project sought to compare the cytotoxicity of the polysaccharide 

fucoidan (FU) encapsulated into chitosan nanoparticles (CFU) and without encapsulation (free-

FU) and their effects on two cancer cell lines. The results indicate that free-FU has very little 

toxicity to MDA-MB-231 cancer cells compared to MCF-7. However, cytotoxicity to MDA-MB-



 
 

231 cells was increased by delivering encapsulated FU. Free-FU can enter MCF-7 cells using 

surface receptors that are not present in MDA-MB-231 cells. Therefore, by encapsulating FU 

into Cs-NPs, cytotoxicity can be increased as Cs-NPs containing FU are endocytosed into the 

MDA-MB-231 cells. 
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Introduction 

The field of drug delivery (DD) has evolved from medicinal plants' liquid concoctions to 

developing the first pills in ancient Egypt. Although drug delivery systems (DDS) have vastly 

changed, many of the goals remain the same: improving patient compliance, drug stability, 

bioavailability, and efficacy while reducing side effects, doses, and overall costs (Figure 1) 

(Saikia & Gogoi, 2015). Today, we boast from various delivery systems, but some delivery 

routes such as topical ocular remain very inefficient due to high systemic uptake and physical 

barriers (Gaudana, Ananthula, Parenky, & Mitra, 2010). Another major obstacle to current DDSs 

is drug side effects. A recent study reported that 93% of women treated for early-stage invasive 

breast cancer experienced one or more toxicity from treatment (Friese et al., 2017). Thus, 

engineering DDSs for specific environments to provide targeted delivery and improve drug 

specificity to lower systemic uptake while simultaneously increasing drug bioavailability remains 

of utmost importance.   

 

Figure 1 Advantages of smart drug delivery systems. 
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Drug bioavailability, the amount of drug that reaches its intended biological destination, 

and drug delivery rate depends on the route of administration (Price & Patel, 2020). For 

instance, 80-90% of solutions instilled into the anterior surface of the eye get drained into the 

nasal-lacrimal duct, and as little as 5% of eye drops reach the ocular target (Agrahari et al., 

2016). The intravenous route is the most effective delivery method into the systemic circulation, 

and it yields the greatest bioavailability, but its invasiveness can lead to problems such as 

contamination and pain (Yalkowsky, Krzyzaniak, & Ward, 1998). This dissertation focuses on 

developing improved targeted drug delivery systems for (1) ocular and (2) topical delivery and 

(3) the use of a biological molecule with cancer cell specificity for cancer treatment. 

The first system focused on designing a delivery system specific for the ocular surface to 

deliver aminoglycosides to the eye's anterior segment using chitosan nanoparticles (Cs-NP) 

while simultaneously increasing drug encapsulation. Chitosan (Cs) is a biocompatible 

polysaccharide derived from chitin that can form positively charged nanoparticles and become 

degraded by ocular enzymes. The benefits of encapsulating gentamicin (GtS) in Cs-NPs are 

many. It maintains drug stability during storage, prevents drug dilution, increases drug residency 

time due to the charge interactions between Cs and mucins in the eye, and degradation by 

ocular enzymes provides a controlled release system specific to the eye’s anterior segment. 

However, aminoglycosides such as gentamicin have low encapsulation efficiency into Cs-NPs 

due to charge repellence (Lu, Franzblau, Onyuksel, & Popescu, 2009). Therefore, to increase 

encapsulation efficiency, the biocompatible synthetic polymer poly(ethylene glycol) diacrylate 

(PEGDA) was used as a non-ionic dispersing agent (Figure 2).  
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Figure 2 Chitosan nanoparticles containing gentamicin can be added to therapeutic contact 
lenses to treat conjunctivitis. 

The second system sought to fabricate a chitosan-PEGDA film that can be 

functionalized with nanoparticles to deliver ocular medication. The film anchors the 

nanoparticles until contact with eye lysozymes release the drugs into the ocular surface. The 

film prevents the medication from being released prematurely and stops it from being removed 

from the eye surface due to blinking. Cs and PEGDA are both biocompatible materials used in 

hydrogel synthesis. Poly(ethylene glycol), the parent molecule of PEGDA, is a highly lubricating 

agent used in contact lens synthesis and dry eyes treatment, a symptom associated with 

bacterial eye infections. The diacrylate form of PEG can be crosslinked with Cs by Michaels 

addition reaction to form a hydrogel that can be functionalized with drug-loaded nanoparticles. 

As previously stated, Cs become degraded by ocular enzymes to release the nanoparticles at 

the eye's anterior surface (Figure 3).  

 

Figure 3 Chitosan nanoparticles containing gentamicin chemically attached to chitosan-PEGDA 
film. 
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The third system sought to use a polyvinyl alcohol (PVA) hydrogel to deliver a large 

protein, pneumococcal surface protein A (PspA), as a proof of concept for future microneedle 

vaccine delivery applications (Figure 4). The use of hydrogels in protein delivery is limited by 

protein size (Nikolaos A. Peppas & Mongia, 1997; N. A. Peppas & Simmons, 2004). PspA is a 

large protein of approximately 38kD shown to elicit protective immunity against pneumococcal 

infection. Successful incorporation and release of PspA from the hydrogel while maintaining 

protein stability and activity is the first step in developing a microneedle vaccine delivery (Leone, 

Mönkäre, Bouwstra, & Kersten, 2017).   

 

Figure 4 Incorporation of PspA into the PVA hydrogel and diffusion of PspA graphic abstract. 

  Finally, there is a need to design target-specific delivery systems to enhance 

bioavailability and reduced off-target effects, especially in cancer treatment, where the lack of 

target-specificity and high cancer heterogeneity often leads to debilitating side effects. As drug 

resistance increases, expanding the anticancer drug arsenal is also equally important, and 

bioactive molecules with cancer specificity are great candidates (Workman & Collins, 2008). A 

potential anticancer treatment for breast cancer is the naturally occurring polysaccharide 

fucoidan (FU). FU has been extensively investigated as an oral supplement and a component 

for drug delivery vehicles, but its use as an anticancer drug delivered by nanoparticles to 

enhance cytotoxicity to breast cancer cells has not been investigated (Wang et al., 2019). 

Chitosan is a polysaccharide with anticancerous properties that can synthesize biocompatible 
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and non-toxic NPs with target specificity. Targeted delivery is possible due to the enhanced 

permeability effect (EPR), in which small molecules such as NPs accumulate at the tumor site 

while normal tissue is left unharmed.  

By delivering FU to the tumor site, side effects can be reduced, and efficacy increased 

by reducing systemic uptake. This study aimed to encapsulate FU into chitosan NPs to 

investigate their effects on MCF-7 and MDA-MB-231 cell lines compared to non-encapsulated 

FU. Furthermore, this study examines the cytotoxic effects of FU on cancerous and normal cell 

lines as a way of establishing the safety of using FU in breast cancer treatment (Figure 5). 

 

Figure 5 Testing cytotoxicity of chitosan nanoparticles containing fucoidan using MTT assay. 
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Literature Review 

Historical progress of drug delivery (DD)  

In the quest to "enhance health, lengthen life, and reduce the burdens of illness and 

disability" (2011), scientists have continued to search for innovative ways to overcome obstacles 

in drug delivery. Although much progress has been made in drug development from medicinal 

herbs to synthetic drugs, biological barriers such as metabolism, absorption, excretion, and 

mode of drug delivery and release can and do affect the drug pharmacokinetics. In order to 

overcome these barriers, delivery systems have been engineered to control drug release rate 

and release location in the body.    

The oldest recorded controlled delivery system, the pill, dates back to over 1000 years ago 

in Ancient Persia (Reza Rezaie, Esnaashary, Aref arjmand, & Öchsner, 2018), and its use 

continued to develop in the nineteenth and twentieth centuries. However, it was not until the late 

1940s and early 1950s when the field of drug-delivery technology began to sprout with the 

development of the first-generation of sustained-release products, followed by a better 

understanding of drug pharmacokinetics in the 1960s (Rosen & Abribat, 2005). It was also in the 

1960s when polymers began to be used in delivery systems (Rosen & Abribat, 2005).  

Fast forward a couple of decades (1980-2010), and now we enter the second-generation 

drug delivery systems (DDSs) with the development of smart polymers, hydrogels, 

biodegradable microparticles, solid implants, and in-situ gel-forming implants (Reza Rezaie et 

al., 2018). Therefore the third generation of drug delivery systems is left with the task to 

overcome some of the barriers faced by the previous generations of DDSs, which include 

delivery of poorly water-soluble drugs, large molecules such as peptides, proteins, and nucleic 

acids, and better control of nanoparticles for drug delivery (Reza Rezaie et al., 2018). 
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Routes of drug administration  

Oral delivery 

 When designing a DDS, it is crucial to consider the drug target site to establish the best 

administration route (Figure 6). Oral delivery is the most used method for delivery into systemic 

circulation due to its convenient and non-invasive nature. However, most therapeutic peptides 

and proteins, due to their large size, cannot be transported across the epithelium and become 

rapidly degraded by the gastrointestinal tract (Alkilani, McCrudden, & Donnelly, 2015). In order 

to avoid drug breakdown and peak of drug release, systems such as controlled-release oral 

osmotic (OROS) delivery systems and spheroidal oral absorption systems (SODAS) have been 

designed to provide a continued release drug profile (Gulledge, Aggen, & Chamberlin, 2003).  

Transdermal delivery 

Drugs can also enter the systemic circulation by the transdermal route, which avoids the 

hepatic first-pass metabolism, therefore, improving bioavailability (Rosen & Abribat, 2005). 

Additionally, dendritic cells (antigen-presenting cells) in the epidermal and dermal layers of the 

skin make it an ideal vaccination route (Alkilani et al., 2015). While birth control hormones, 

nicotine, and other small molecular weight molecules (<500Da) have been successfully 

delivered by transdermal patches since the 1990's the delivery of larger molecules and non-

lipophilic drugs remain problematic due to low drug permeation across the skin (Alkilani et al., 

2015; Patel & Shah, 2018; Rastogi & Yadav, 2012). Therefore, new techniques have been 

developed to enhance drug skin permeabilization. These include laser and radiofrequency, 

iontophoresis, electroporation, microneedles, jet injectors, and ultrasounds (Alkilani et al., 2015).  

Transmucosal delivery 

The transmucosal route, which includes buccal, nasal, vaginal, rectal, intrauterine, and 

ocular mucosa, has many advantages (Rosen & Abribat, 2005). Besides being relatively pain-
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free, the combination of high membrane permeability and rich blood flow leads to quick systemic 

circulation uptake (Abhang, Momin, Inamdar, & Kar, 2014).  Some common transmucosal drug 

delivery approaches include tablets, patches, films, gels and ointments, sprays, in-situ gels, 

microemulsions, liposomes, vaginal ring, drops, powders and microparticles, ophthalmic 

inserts/films, microspheres & nanoparticles, ion exchange resins, and capsules (Abhang et al., 

2014).  

 

Figure 6 Routes of Drug Administration. 

Ocular drug delivery 

Eye drops are a conventional treatment for anterior eye diseases, and although non-

invasive and easily applied, they are often inefficient drug delivery vehicles due to the rapid drug 

clearance through the canalicular drainage (Maulvi, Soni, & Shah, 2016). Upon contact with the 

eye, the drug diffuses into the cornea and conjunctiva, the latter being the preferential path due 

to its larger size and transported into the systemic circulation (Figure 7). Systemic uptake leads 

to side effects, and less than 5% of the drug reaching the anterior eye (Gaudana, Ananthula, 

Route of Drug 
Administration

Local 

- Skin topical

- Intranasal

- Ocular drops

- Mucosal (mouth, 
throat, ear, vagina)

- Inhalational

- Transdermal

Systemic

Enteral

- Oral

- Sublingual

- Rectal

Parenteral

- Inhalational

- Injections

- Transdermal
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Parenky, & Mitra, 2010). Thus, requiring multiple applications and variations in drug mass 

reaching the targeted site, further reducing desired pharmacokinetic drug profiles. Furthermore, 

studies suggest that multiple applications lead to lower patient compliance, which could 

compromise treatment outcomes (Mutlu, Shams Es-Haghi, & Cakmak, 2019).   

 

Figure 7 Anatomical ocular barriers and routes of drug administration. a) ocular barriers and b) 
methods to drug delivery. 

Developing more effective ocular drug delivery systems remains a challenge, and 

nanocarriers and therapeutic contact lenses are promising tools in treating anterior eye 

diseases such as bacterial conjunctivitis. Nanocarriers have been shown to promote sustained 

and targeted drug release, increase drug bioavailability, lead to fewer applications, and increase 

patient compliance (Deepthi & Jose, 2019; Gaudana et al., 2010). 
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Uses of Hydrogels in Drug Delivery 

Hydrogels and nanoparticles are incredibly versatile and have been used in all drug 

administration routes together and individually. Hydrogels were the first materials developed to 

be used within the human body (Kopecek, 2007; S. C. Lee, Kwon, & Park, 2013; Yahia, 2015). 

In biological applications, they are often used as matrices in tissue engineering, biosensing, and 

drug delivery (Choi, Yong, Choi, & Cowie, 2019). Hydrogels are produced by crosslinking water-

soluble polymers to form 3D structures that take various physical forms from 

micro/nanoparticles to films (Hoare & Kohane, 2008). Physical properties such as swelling, 

tunable pore size for drug loading and release, biodegradability, and biocompatibility have put 

hydrogels at the forefront of drug delivery materials. Alas, amidst so many benefits, their use in 

drug delivery remains restricted by large pore sizes and high-water content that lead to rapid 

drug release.  

 

Figure 8 Materials used in Hydrogel Synthesis. 

 

Hydrogels

Natural

Protein Based

Collagen
Elastin
Fibrin

Gelatin
Silk fibroin

Polysaccharide Based

Glycosaminoglycans
Alginates
Chitosan

Decellularized 
Hydrogels

Synthetic

Poly(ethylene glycol)
Poly(vinyl alcohol)

Polyamides
Poly(lactic acid)

Poly(lactic-co-glycolic acid)*



12 
 

Another drawback is the low tensile strength of many hydrogels, which has limited their 

use in load-bearing applications, such as the development of microneedles (Hoare & Kohane, 

2008). An additional desirable characteristic of hydrogels is the ability to be chemically and 

physically modified to produce smart hydrogels. Smart hydrogel systems (SHS) have been 

designed to respond to external stimuli, including temperature, pH, ionic concentration, light, 

magnetic field, electrical fields, and chemicals (Yahia, 2015).  

Hydrogels can be produced from natural and synthetic polymers or a hybrid. Natural 

hydrogels are synthesized from biological molecules that make up the extracellular matrix in 

vivo, such as collagen, hyaluronic acid, chitosan, and alginates (Figure 8). Therefore, natural 

hydrogels are similar to the physiological environment, which renders them biocompatible 

(Catoira, Fusaro, Di Francesco, Ramella, & Boccafoschi, 2019; Yahia, 2015). On the other 

hand, synthetic hydrogels are derived from synthetic polymers such as poly(ethylene glycol) 

(PEG), poly(ethylene glycol) diacrylate (PEGDA), poly(vinyl alcohol) (PVA), and polyamides 

(Figure 8). They are hydrophobic and possess greater mechanical strength and durability than 

natural hydrogels (Gyles, Castro, Silva, & Ribeiro-Costa, 2017). Another benefit of synthetic 

polymers over natural polymers is reproducibility. Natural polymers vary in composition from 

one batch to another, which causes reproducibility hard to attain (Yahia, 2015).  

Since the first hydrogel development for biological use in 1960 (Wichterle & LÍM, 1960), 

much has changed. Today's smart hydrogels seek to combine synthetic and natural polymers 

and materials to produce gels with tunable properties and responsive to stimuli (Yahia, 2015). 

Unfortunately, as these hydrogel blends emerge, many still require potentially harmful chemicals 

during synthesis. Hence, developing hydrogels without the use of harsh chemicals remains a 

necessity.  
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PEGDA in drug delivery systems 

PEGDA properties 

In the early 1990s, new methods using mild conditions to crosslink polymers using 

visible and UV-light were developed (Amsden, 2016), and with it, new photoinducible polymers 

such as PEGDA. PEGDA is a synthetic polymer derived from PEG (Figure 9). By substituting 

terminal hydroxyl groups in PEG with acrylates, the molecule can undergo free-radical 

polymerization in the presence of a photoinitiator (Choi et al., 2019). PEGDA hydrogels have a 

high molecular weight (MW) ranging from 200-2000Da and are considered non-toxic at MW 

above 400Da (O'Donnell, Boyd, & Meenan, 2019).  

Figure 9 PEGDA chemical structure. 

Another characteristic inherited from its parent molecule, PEG, is low immunogenicity 

and low cell attachment due to natural resistance to protein adsorption (Choi et al., 2019; 

O'Donnell et al., 2019; Tan et al., 2012). PEGDA has been extensively used in long-term 

controlled drug release because of its good biocompatibility, biodegradability, hydrophilicity, and 

slow degradation rate (Choi et al., 2019). Additionally, PEGDA can be physically and chemically 

crosslinked to form hydrogels (O'Donnell et al., 2019), and the presence of two acryl groups 

also allow for functionalization, as demonstrated by Jia et al. The group produced a PEGDA 

hydrogel microarray functionalized with peptides for stem cells and tissue engineering (2016).  
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PEGDA hydrogels  

Photocrosslinked PEGDA hydrogels have been successfully used to coat ureteric stents 

to enhance drug release and transport in ureteric tissue (Lim et al., 2018), in 3D printing for 

microfluidic structures in tissue engineering (Warr et al., 2020), microneedle patches for 

antibacterial applications (Gao et al., 2021), ultrasmall nanogels for drug delivery (X. Wang, 

Peng, Pena, & Xing, 2021) and as a copolymer in the fabrication of programmable nanofiber 

scaffolds for reduction of inflammation and thrombosis (H. Wang et al., 2020). However, 

skepticism over the reactivity between the free radicals formed during polymerization with other 

biological molecules and chemicals such as crosslinking agents, stabilizers, and catalysts 

leaching into the body, remains a concern (N. A. Peppas & Simmons, 2004).   

PEGDA nanoparticles 

 Although most PEGDA applications revolve around hydrogels, hydrogel nanoparticles 

(nanogels) (Stillman, Jarai, Raman, Patel, & Fromen, 2020), microbeads (Shikha, Zheng, & 

Zhang, 2018), and matrix-based nanoparticulate polymeric systems (Thukral, Dumoga, Arora, 

Chuttani, & Mishra, 2014) have been successfully employed in drug delivery of 

chemotherapeutic agents, and protein detection. 

PEGDA in ocular drug delivery 

PEGDA use in ocular delivery is relatively new, with a minimal number of publications as 

of 2021. Most work in ocular drug delivery has used PEGDA as a photo-induced crosslinker. 

Swindle-Reilly et al. used a PEGDA crosslinked with poly(ethylene glycol) methacrylate 

(PEGMA) hydrogel loaded with chitosan nanoparticles containing vitamin C for optical injection 

to improve drug stability (2020). PEGDA implants, which are less invasive than optical 

injections, have also been developed but are limited to drug delivery to the eye's anterior 

surface.   Photocrosslinked PEGDA implants have provided a controlled release system for 
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delivering small and large molecules like triamcinolone acetonide and ova albumin to the ocular 

surface (McAvoy, Jones, & Thakur, 2018). A combination of PEGDA and PLGA for in-situ 

photocrosslinked implants successfully delivered proteins to the eye for 4-6 months (Thakur, 

Wang, Soliman, Sonawane, & Jones, 2019). However, safety concerns over free radicals 

produced by photo-induction remain an issue.  

Use of PVA hydrogel in protein delivery 

Protein drugs have high clinical potential owing to specificity, low toxicity, and clear 

biological function. However, difficulties in protein delivery, mainly due to high molecular weight, 

poor biological membrane penetration, structural instability at low pHs, enzymatic degradation, 

and low bioavailability in the gastrointestinal environment, restricts the use of most delivery 

vehicles currently available (Asfour, 2021; Yang et al., 2019). Moreover, proteins have short 

half-lives, from minutes to several hours, which restricts how they can be administered to the 

body (Yang et al., 2019). Because of low oral bioavailability, most proteins are administered by 

the parenteral route, requiring needles (Asfour, 2021). In attempts to minimize patient 

discomfort, new delivery systems like hydrogel microneedles are being developed, but currently, 

such vehicles are limited to small molecules and cannot be used to transport large proteins, 

nucleic acids, and peptides (Reza Rezaie et al., 2018). Therefore, there is a need to fabricate 

hydrogels to deliver large molecular weight proteins while maintaining protein stability and 

increasing bioavailability. 

Polyvinyl Alcohol (PVA) hydrogel properties 

PVA hydrogels have been extensively used in the biomedical field due to their 

biocompatible, biodegradable, non-carcinogenic, and hydrophilic properties. Although PVA is 

hydrophilic, once crosslinked, they become insoluble in water. They are also stable at room 

temperature and swell when immersed in water (N. A. Peppas & Simmons, 2004). Their tissue-
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like elasticity and mechanical strength render PVA hydrogels an ideal material for tissue 

engineering, especially in the fabrication of arterial tissues, artificial grafts, and implants 

(Nuttelman, Mortisen, Henry, & Anseth, 2001). However, their use in drug delivery is limited to 

small molecules and by slow drug diffusion (Hoare & Kohane, 2008; N. A. Peppas & Simmons, 

2004).   

 

Figure 9  Chemical structure of PVA crosslinked with glutaraldehyde. 

PVA contains hydroxyl groups that can undergo hydrogen bonding to form hydrogels by 

physical or chemical interactions. Physical crosslinking can be achieved by cycles of freezing 

and thawing, while chemical crosslinking involves the use of radiation or crosslinking agents 

such as glutaraldehyde (Figure 10), methanol, ethanol, propanol, and acetone (Jiang, Liu, & 

Feng, 2011; Nkhwa, Lauriaga, Kemal, & Deb, 2014). Unfortunately, the toxicity of some 

chemicals used in chemical crosslinking has posed a barrier to their use in pharmaceutical and 

biological applications, but crosslinking by freeze-thaw is a safer alternative (N. A. Peppas & 

Simmons, 2004).  

Although PVA hydrogels and nanoparticles have been used to deliver various drugs and 

proteins, including indomethacin, glucose, insulin, heparin, and albumin; protein stability during 

long term storage remains a challenge (J. K. Li, Wang, & Wu, 1998; Nikolaos A. Peppas & 
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Mongia, 1997; Ye, Yu, Wen, Kahkoska, & Gu, 2018). For that reason, to preserve protein 

stability careful consideration is needed when selecting materials and formulations for hydrogel 

synthesis. Currently, microneedles are a promising transdermal protein delivery method, and 

partially dissolving microneedles of polyvinylpyrrolidone (PVP)/polyvinyl alcohol (PVA) have 

been developed for sustained delivery using bovine serum albumin (BSA) as a protein model (I. 

C. Lee, He, Tsai, & Lin, 2015).  

Chitosan/PEGDA hydrogels use in drug delivery 

Minimal research has been done using composite hydrogels made out of chitosan and 

PEGDA, and the two studies published used such hydrogels for regenerative medicine. Soriente 

et al. fabricated chitosan/PEGDA scaffolds for implants capable of stimulating 

neovascularization of tissue-engineered constructs for regenerative medicine (2021), while Sun 

et al. synthesized halloysites modified PEGDA/thiolated-chitosan hydrogels loaded with bone 

morphogenic protein-2 for rat skull regeneration (2021). 

Chitosan uses in drug delivery 

Chitosan properties 

Chitosan is a natural linear polysaccharide polymer. Although chitosan is found in limited 

quantities in nature, most commercially available chitosan is derived from chitin, the second 

most abundant polysaccharide globally. Chitin is a constituent in the exoskeleton of insects, 

crustaceans, arthropods, and the cell wall of fungi and some algae. However, chitin's primary 

source comes from shrimp, crab, and lobster (Whistler, 1993). Chitin is made up of 1-4 linked 2-

acetamido-2-deoxy-β-D-glucopyranose units that can become deacetylated by chemical 

hydrolysis under alkaline conditions or by enzymatic hydrolysis using deacetylase enzymes to 

produce chitosan.  
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Chitosan's chemical structure comprises randomly alternating β-(1→4)-linked d-

glucosamine and N-acetyl-d-glucosamine units (Figure 11), its molecular weight ranges 

between 300-1000kDa depending on the chitin source, and its degree of deacetylation varies 

between 60-100% (Ibrahim & El-Zairy, 2015; Whistler, 1993). Chitosan's molecular weight and 

degree of deacetylation affect its physicomechanical properties. For example, toxicity increases 

as molecular weight and degree of deacetylation increase. The same inverse relationship is also 

observed regarding solubility and degradation relative to molecular weight and degree of 

acetylation (Garg, Chauhan, Nagaich, & Jain, 2019).  

Although insoluble in water, chitosan is a weak acid (pKa 6.5) and can be solubilized in 

diluted acidic solutions (pH <6) by protonating amino groups (Ahmadi, Oveisi, Samani, & 

Amoozgar, 2015; Chandra Hembram, Prabha, Chandra, Ahmed, & Nimesh, 2016). This 

polycationic nature allows chitosan to interact with negative charges in cellular membranes to 

enhance membrane permeation and mucins to enhance mucoadhesiveness (Eliyahu, Aharon, & 

Bianco-Peled, 2018; Ibrahim & El-Zairy, 2015). For example, charge interactions between 

chitosan and clathrin proteins on the surface of cell membranes form clathrin-coated vesicles 

that lead to chitosan cellular uptake by endocytosis (Salatin & Yari Khosroushahi, 2017). 

Additionally, chitosan contains glycosidic bonds that are naturally degraded in vivo by 

proteases. Degradation in the human body requires lysozyme, acid, gastrointestinal enzymes, 

or colon bacteria. Chitosan can be degraded in vitro by β-N-acetylhexosaminidase, chitosanase, 

chitinase, and chitin deacetylase enzymes (Ahmadi et al., 2015). Moreover, amino and hydroxyl 

groups in the chitosan structure allow for several reactions, including etherification, 

esterification, and reductive amination reactions, to form stable covalent bonds (Ibrahim & El-

Zairy, 2015). 
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Figure 10 Chemical structure. a) Chitin is made up of 1-4 linked 2-acetamido-2-deoxy-β-D-
glucopyranose. b) Chitosan is made up of randomly alternating β-(1→4)-linked d-glucosamine 
(deacetylated unit) and N-acetyl-d-glucosamine (acetylated unit). 

Chitosan has many attractive properties for biological applications, including 

biocompatibility, biodegradability, and non-toxicity. It can be used as an analgesic, antifungal, 

antimicrobial material, a hemostatic agent, and chelating agent for cholesterol, fats, proteins, 

and metal ions (Ibrahim & El-Zairy, 2015; Zalloum & Mubarak, 2013). Likewise, chitosan's 

versatility can be observed in medical, agricultural, food processing, cosmetic industries, and 

waste and water treatment (Ibrahim & El-Zairy, 2015). 

Chitosan applications  

Chitosan has been used in agriculture in seed coating to improve germination, leaf 

coating to enhance leaf growth and fertilizer for soil moisture retention. In the food industry, 

chitosan has been used in food storage and preservation due to its antimicrobial and antifungal 

properties. Furthermore, in water treatment to bind and remove metal ions from water. 

Chitosan's medical applications are vast, including tissue engineering, wound healing, contact 

lens, and drug delivery (Ibrahim & El-Zairy, 2015). 
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Chitosan hydrogels 

 Chitosan hydrogels can be synthesized by chemical or physical crosslinking. Chemically 

crosslinked chitosan hydrogels are covalently bonded at the amines and hydroxyl groups and 

form an irreversible bond (Ahmadi et al., 2015). Chemical crosslinking can be achieved using 

crosslinkers like glutaraldehyde, genipine, dextran sulfate, diisocyanate, and acrylic acid 

(Anitha, Rejinold, Bumgardner, Nair, & Jayakumar, 2012), or via photopolymerization using a 

photoinitiator along with visible or UV irradiation. In contrast, physically crosslinked chitosan 

gels are formed by ionic interactions (Ahmadi et al., 2015).  

 Because chitosan is a hydrophilic polymer, it can systemically be absorbed and 

eliminated by renal filtration. Therefore, the appropriate polymer molecular weight must be 

determined to prevent elimination (Ahmadi et al., 2015). Likewise, chitosan hydrogels' stability is 

also highly dependent on the polysaccharide molecular weight and ionic strength as chitosan 

polysaccharide chains can interact with each other by hydrogen, hydrophobic or ionic 

interactions (Ahmadi et al., 2015).  

Chitosan hydrogels have been used in drug delivery to the oral cavity, stomach, 

intestine, and colon.  Smart hydrogels have been developed by combining various polymers and 

grafting materials to respond to stimuli. Bai et al. recently developed a Thermo/pH-sensitive N‐

succinyl hydroxybutyl chitosan hydrogels with different substitution degrees of succinyl for oral 

delivery. The group could load and release BSA from their gel successfully at different rates 

according to local pH (Bai et al., 2018).  Pahani et al. designed a stomach-specific chitosan 

montmorillonite hydrogel for extended drug delivery of clarithromycin, an antibiotic used to treat 

duodenal ulcers caused by H. pylori (2019). A recently developed injectable hydrogel for colon 

cancer treatment using chitosan-grafted-dihydrocaffeic acid (CS-DA) and oxidized pullulan (OP) 

was designed with pH sensitivity and tissue adhesiveness for localized delivery of the 

anticancer drug doxorubicin (Liang et al., 2019).  
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Chitosan nanoparticles 

 Nanoparticles (NP) are solid colloidal drug carrier systems composed of natural and 

synthetic polymers. Sizes can range from 10-1000nm in diameter. However, most biological 

applications require particles of <200nm due to microcapillaries' width (Divya & Jisha, 2017; 

Nagpal, Singh, & Mishra, 2010; Singh & Lillard, 2009). The first NP systems were developed in 

the early 1970s. Since then, they have been widely used in drug encapsulation and delivery 

(Fattal & Vauthier, 2007), with polymeric nanoparticles at the forefront of drug delivery because 

of their stability and easy modification (Singh & Lillard, 2009).  

Chitosan nanoparticles have many advantages: low toxicity, enhanced biocompatibility, 

mucoadhesive character, stability, site-specific drug targeting, and enhanced drug therapeutic 

index. None of the less, some of its limitations include low solubility in neutral and alkaline pH, 

changes in intrinsic properties due to crosslinking, difficulties in controlling pore size, reduced 

mechanical resistance, and low encapsulation efficiency of hydrophobic drugs (Garg et al., 

2019).  

 Particle size and size distribution determine the NP in vivo distribution, biological fate, 

toxicity, targeting ability, and drug loading/release efficiency and stability. Smaller NPs have 

greater cell uptake and faster release due to increased surface-area-to-volume ratio, but they 

present a greater risk of aggregation during storage, transport, and dispersion. In contrast, 

larger particles have greater drug encapsulation and slower release (Singh & Lillard, 2009).  

 NP surface charges determine how quickly they become cleared by the immune system. 

Coating NPs with hydrophilic polymers such as PEG reduces the surface charge interaction with 

blood components and increases drug circulation time by preventing opsonization and 

phagocytosis.  The particle's zeta potential characterizes surface charge, and particles with zeta 

potential above ±30mV show reduced aggregation and greater stability (Singh & Lillard, 2009).   
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 Chitosan NPs can be prepared using the polyelectrolyte complex method, 

microemulsion, covalent crosslinking, incorporation and incubation, coprecipitation, complex-

coacervation, and the most common inotropic gelation (Table 1) (Chandra Hembram et al., 

2016).   

Table 1 Methods of preparation of chitosan NPs and particle size. Adapted from (Chandra 
Hembram et al., 2016) 

Method Nanoparticle Size 

Polyelectrolyte complex 50-700nm 

Inotropic gelation Size can be optimized as required 

Microemulsion <100nm 

Covalent crosslinking Variable sizes can be produced 

Incorporation and incubation 100-150nm 

Solvent evaporation 50-300nm 

Coprecipitation <10nm 

Complex-coacervation It Varies depending on the anionic coacervate used 

 

Chitosan in ocular delivery 

Drug delivery to the eye's anterior surface presents many challenges, one of which is 

low bioavailability. Only 5% of drugs delivered by eye drops penetrate the corneal epithelium. In 

recent years, contact lenses have been designed to deliver medication to the eye's anterior 

surface to increase bioavailability. However, their use in the delivery of highly hydrophilic drugs 

continues to be a major challenge (Behl, Iqbal, O'Reilly, McLoughlin, & Fitzhenry, 2016). 

Chitosan nanoparticles have been successfully used to encapsulate highly hydrophilic drugs to 

increase bioavailability. For example, Behl et al. were able to enhance dexamethasone delivery, 
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a highly hydrophilic drug used to treat inflammation post-cataract surgery, by incorporating drug-

loaded chitosan NPs into pHEMA contact lenses (2016).  

Mucoadhesion is another valuable property that chitosan possesses, making it an ideal 

material for ocular drug delivery. The anterior surface of the eye contains mucins, a type of 

glycoprotein present in the eye mucosa. Mucins contain negative charges that can interact with 

the positive charges present in chitosan to increase drug residence time (Yu et al., 2020).  Eye 

drops containing chitosan NPs have been developed to increase the effectiveness of traditional 

eye drops. Silva et al. investigated the mucoadhesive properties of a novel nanoparticle eye 

formulation using chitosan-hyaluronic acid for ocular delivery of ceftazidime. Their results 

indicate that the new formulation is stable, the drug is active after release, and the particles 

possess greater mucoadhesive properties (2017). Yu et al. were able to produce self-

assembling dexamethasone-glycol chitosan NPs with good ocular tolerance and extended pre-

corneal duration compared to traditional dexamethasone sodium phosphate formulation (2020). 

Acrylated chitosan nanoparticles with enhanced mucoadhesion for delivery through the mucosa 

were produced by grafting PEGDA to chitosan before NP synthesis, but their effectiveness was 

not tested in an ocular environment (Eliyahu et al., 2018). 

As previously mentioned, chitosan contains glycosidic bonds that lysozymes can 

enzymatically break. Although lysozymes can be found in almost all mammalian secretions, 

such as milk and saliva, their highest concentration is found in tears (Hankiewicz & Swierczek, 

1974; McDermott, 2013; Zahoor, Bahadar, Ayaz, Khan, & Shah, 2018). Lysozymes are 

produced and secreted by the lacrimal gland acinar cells at 1-3 mg/mL (Hanstock, Edwards, & 

Walsh, 2019) and can be used to degrade chitosan nanoparticles in the ocular environment for 

sustained drug release.  
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NP in cancer treatment 

Considerable progress has been made in cancer research in the last decades. Current 

treatments include surgery, chemotherapy, radiation, cryoablation, hormone therapy, 

immunotherapy, and targeted drug therapy, with the latter being significantly promising. 

Although cancer survival has increased overall, many cancers continue to evade even the most 

advanced treatments (Zugazagoitia et al., 2016). For instance, chemotherapy which is the most 

used treatment lacks specificity and makes it nearly impossible to distinguish normal cells from 

cancerous ones. This unwarranted attack on healthy cells often results in patients feeling sicker 

due to the harsh side effects and sometimes even their demise. Moreover, some cancers are 

known for developing resistance to the medication over time, thus reducing the treatment's 

efficacy (Mehta, 2020; Zugazagoitia et al., 2016). Therefore, there is a great need to develop 

new compounds and delivery systems that are highly effective and target specific, and some 

promising candidates are fucoidan and nanoparticles.  

One of the hallmarks of cancer is an increase in angiogenesis and vascularization at 

tumor sites. As highly vascularized tumor aggregates begin to form and increased vascular 

permeability increases, normal fluid transport is disrupted, leading to a phenomenon known as 

EPR effect, in which small particles accumulate in tumor tissue more than normal tissue (Singh 

& Lillard, 2009). Because of the EPR effect, NPs tend to accumulate at tumor sites, making 

them ideal drug vehicles for cancer treatment.   

Chitosan in cancer treatment 

Chitosan has been widely used in cancer treatment because it has been found to exert 

anticancer activity with minimal toxicity to normal cells, but its use as a therapeutic agent is 

hindered by poor solubility (Adhikari & Yadav, 2018). At The Same Time, its anticancerous 

properties are dependent on molecular weight and degree of deacetylation (Nawaz & Wong, 
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2020). The increased antitumor activity of low molecular weight chitosan is well established and 

has been extensively reported in the literature (Maeda & Kimura, 2004; Qin, Du, Xiao, Li, & 

Gao, 2002). Chitosan has shown cytotoxic activity in a dose-dependent toward hepatocellular 

carcinoma cells (Hep2), rhabdomyosarcoma (RD), T24 human urinary bladder cancer cell line, 

and breast cancer cell lines such as MCF-7 and MDA-MB-231 (Nawaz & Wong, 2020). 

By chemically modifying chitosan, scientists have synthesized chitosan derivatives with 

enhanced solubility and biological activity, such as sulfated chitosans and chitosan-metal 

complexes (Adhikari & Yadav, 2018). Chitosan-metal complexes with enhanced antitumor 

properties have been developed since the early 2000s, but metals' intrinsic potential to be toxic 

to humans has hindered their clinical use. None of the less, Zheng et al. were able to synthesize 

a chitosan-copper complex that selectively inhibits proliferation and enhances cytotoxicity 

toward 293 and HeLa cells (2006), while Wang et al. used a chitosan-zinc complex to inhibit the 

growth of SMMC-7721 cell lines in vitro (2009). 

In summary, most researchers have focused on using chitosan as a nanoparticle for 

cancer drug delivery because it combines the inherent chitosan anticancerous properties with 

the higher selectivity, reduced toxicity, longer clearance times, and increased efficacy of 

nanoparticles (Nawaz & Wong, 2020). Additionally, chitosan nanoparticles are easily 

synthesized to yield particles with long blood circulation times and low uptake by the 

reticuloendothelial system due to their smaller size. 

Chitosan in breast cancer treatment 

Chitosan derivatives and chitosan-based nanogels have been developed for breast 

cancer treatment. Chitosan derivatives have been shown to have cytotoxic effects against MCF-

7 cells by inhibiting proliferation, inducing apoptosis, blocking ERK phosphorylation, and 

chitosan oligosaccharides have been shown to suppress metastasis in MDA-MB-231 cells (M. 
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JIANG et al., 2011; Nam & Shon, 2009). Likewise, chitosan-based nanogel containing 

hydroxycamptothecin showed greater inhibition to the proliferation of breast cancer cells in vitro 

than the free drug (Guo et al., 2019).    

Fucoidan in cancer treatment 

In the last couple of decades, there was a surge in research using naturally occurring 

polysaccharides with anticancer activity and low toxicity to treat breast cancer. The rise in 

research of polysaccharide derived from algae in cancer treatment is due to their high 

availability and bioactivity properties (Boisson-vidal et al., 1995; Moussavou et al., 2014; Noda, 

Amano, Arashima, & Nisizawa, 1990; Reys et al., 2016; Teas, Vena, Cone, & Irhimeh, 2013).  

For instance, brown seaweed is the second most abundant seaweed (Davis, Volesky, & Mucci, 

2003) and contains various fucose components that can be used in cancer drug development 

and cosmetics, functional food, and other pharmaceutical business (Wijesinghe & Jeon, 2012). 

Fucoidan (FU) is a sulfated polysaccharide isolated from the cell wall and intercellular 

spaces of brown seaweeds (Lu et al., 2018) such as Fucus vesiculosus, Sargassum 

stenophyllum, Chorda filum, Ascophyllum nodosum, Dictyota menstrualis, Fucus evanescens, 

Fucus serratus, Fucus distichus, Caulerpa racemosa, Hizikia fusiforme, Padina gymnospora, 

Kjellmaniella crassifolia, Analipus japonicus, Laminaria hyperborean, Ecklonia kurome, and 

Undaria pinnatitinda (Aisha Abudabbus, 2017; Kim, Lee, & Lee, 2010). The FU structure 

comprises L-fucose, sulfate groups, and one or more small proportions of xylose, mannose, 

galactose, rhamnose, arabinose, glucose, glucuronic acid, and acetyl groups in a variety of 

brown algae (Aisha Abudabbus, 2017).  

The structure of FU varies among species and can be classified by two types of 

homofucose: type (I) contains repeated (1→3)-l-fucopyranose, and type (II) contains alternating 

and repeated (1→3)- and (1→4)-l-fucopyranose (Figure 12). This variation in the backbone 



27 
 

structure, the degree, and the pattern of sulfated branches result in different bioactivity among 

various species (Patankar, Oehninger, Barnett, Williams, & Clark, 1993; Zorofchian 

Moghadamtousi et al., 2014).   

 

Figure 11 Fucoidan structure. a) Type I structure and b) Type II structure. 

FU has been shown to have a plethora of medicinal properties, which include 

anticoagulant, antithrombotic, antitumor, immunomodulation, anticancer, antiproliferative, 

antivirus, antioxidant, and blood lipid reducing activities (Cumashi et al., 2007; Koyanagi, 

Tanigawa, Nakagawa, Soeda, & Shimeno, 2003; B. Li, Lu, Wei, & Zhao, 2008; Wijesinghe & 

Jeon, 2012). FU safety has been assessed in vitro and in vivo, and no toxic effects were 

observed regardless of source and acute or chronic exposure (Kim et al., 2010).  

Although FU has been successfully used in treating various cancers in vitro and in vivo, 

its clinical use has not been approved by the Food and Drug Administration. There are currently 

three clinical trials using FU. Two clinical trials are assessing its safety as a supplemental 

therapy for advanced hepatocellular carcinoma (ClinicalTrials.gov, Identifier: NCT04066660) 
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and as a dietary supplement in addition to chemotherapy on quality of life (ClinicalTrials.gov, 

Identifier: NCT03130829), and a third one is assessing the safety of radiolabeled fucoidan as a 

non-invasive imaging agent (ClinicalTrails.gov, Identifier: NCT03422055). 

Fucoidan in breast cancer treatment 

 However, many factors play a role in FU bioactivity toward cancer cells, from structure to 

purification methods. FU is highly heterogenic, and molecular weight, sulfate content, sugar 

composition can adversely affect its antitumor properties. Regarding antitumor activity, lower 

molecular weight, high sulfate content, and structure branching yield greater toxicity toward 

breast cancer cell lines (Lu et al., 2018; Oliveira et al., 2017).  Bioactivity can also be affected 

depending on the extraction and purification methods used by reducing sulfate content and 

removing other compounds that enhance activity, such as uronic acid, proteins, and other 

components found in crude FU (Mak et al., 2014; Zayed et al., 2019). Additionally, other studies 

also indicate harvest time to play a significant role in antitumor activity (Lu et al., 2018; 

Skriptsova, Shevchenko, Zvyagintseva, & Imbs, 2009; Zvyagintseva et al., 2003).  

In vitro studies using low molecular weight FU has been shown to inhibit the proliferation 

of breast cancer cell lines MCF-7 and MDA-MB-231 while normal cells remain unaffected (A. 

Abudabbus, Badmus, Shalaweh, Bauer, & Hiss, 2017; Wu, Yan, Wu, Yuan, & Liu, 2016; Zhang, 

Teruya, Eto, & Shirahata, 2011). Although there have been no clinical trials examining the 

safety and efficacy of FU in the treatment of breast cancer in the United States, an Australian 

study showed no adverse drug interactions when FU is taken concomitantly with letrozole and 

tamoxifen. In the study, breast cancer patients orally ingested a 500 mg capsule of Maritech 

extract containing 88.9% FU in the morning and at night after food (Tocaciu et al., 2018).  
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Chapter 1  

Chitosan-PEGDA nanoparticle for ocular delivery of gentamicin  

Introduction 

Bacterial infections of the eye affect approximately 6 million people and account for 1% 

of all primary care office visits in the US yearly (Shields & Sloane, 1991; Udeh, Schneider, & 

Ohsfeldt, 2008). The treatment often consists of ophthalmic antibiotic eyedrops or ointments 

(Azari & Barney, 2013; Morrow & Abbott, 1998). Although easily applied and convenient, eye 

drops are often inefficient drug delivery vehicles due to the rapid drug clearance through the 

canalicular drainage (Lanier et al., 2021). Upon contact with the eye, the drug diffuses into the 

cornea and conjunctiva, the latter being the preferential path due to its larger size and 

transported into the systemic circulation. Systemic uptake leads to side effects, and less than 

5% of the drug reaching the anterior eye (Gaudana, Ananthula, Parenky, & Mitra, 2010; Nayak 

& Misra, 2018). Thus, requiring multiple applications and variations in drug mass reaching the 

targeted site, further reducing desired pharmacokinetic drug profiles.  

Nanoparticle systems for targeted drug delivery have been shown to improve 

bioavailability by increasing drug residence time and sustained release. Chitosan nanoparticles 

are very promising because of their biocompatibility, low immunogenicity, low toxicity, 

antimicrobial, mucoadhesive properties, and ability to spontaneously form nanoparticles in the 

presence of tripolyphosphate (TPP) (Anand, Sathyapriya, Maruthupandy, & Hameedha Beevi, 

2018; Barbosa, Coutinho, Costa Lima, & Reis, 2019; Chandra Hembram, Prabha, Chandra, 

Ahmed, & Nimesh, 2016; Desai, 2016; Monteiro et al., 2015). However, what makes chitosan an 

ideal polymer for sustained drug delivery at the eye’s surface is its ability to form nanoparticles 

that the ocular enzyme lysozyme can degrade (Han, Nwe, Furuike, Tokura, & Tamura, 2012; 

Kim et al., 2018; Lončarević, Ivanković, Rogina, & Ye, 2017; Pangburn, Trescony, & Heller, 
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1982; Stokke, Varum, Holme, Hjerde, & Smidsrsd, 1995). Lysozymes are present in various 

body fluids, but their highest concentrations are found in human tears and range between ~1-3 

mg/mL (Hankiewicz & Swierczek, 1974; McDermott, 2013). The enzyme can catalyze the 

hydrolysis of the β-(1→4)- glycosidic bonds of chitosan to release the contents stored inside the 

nanoparticle (Stokke et al., 1995). Furthermore, chitosan cationic nature can be used to 

increase drug residence time at the ocular surface by interacting with ocular mucins, negatively 

charged proteins present at the ocular surface epithelia (Abhang, Momin, Inamdar, & Kar, 2014; 

Collado-Gonzalez, Gonzalez Espinosa, & Goycoolea, 2019; Mantelli & Argüeso, 2008).  

Unfortunately, gentamicin, an aminoglycoside antibiotic used to treat conjunctivitis, has 

low encapsulation efficiency into chitosan nanoparticles due to charge repellence between the 

positive charges of gentamicin and chitosan. Lu et al. successfully increased encapsulation of 

aminoglycosides into chitosan nanoparticles using counterions (2009). However, various 

poly(ethylene glycol) diacrylate (PEGDA) properties make it a better candidate for ocular 

delivery, including low immunogenicity, low toxicity, and biocompatibility (L. Huang et al., 2019; 

Y. C. Huang, Li, Chen, & Chen, 2016). Furthermore, PEGDA shares many of the same 

characteristics of its parent molecule poly(ethylene glycol) (PEG), which has been extensively 

used as a lubricating agent and main component in the treatment of dry eyes, a common 

symptom of conjunctivitis (Azari & Barney, 2013; Cohen, Martin, & Sall, 2013). Therefore 

PEGDA can be used as a non-ionic dispersing agent to increase drug encapsulation by 

shielding the charge interactions of chitosan and gentamicin while providing eye lubrication.  

Methodology 

Synthesis of chitosan nanoparticles 

Prepared chitosan stock solution by diluting 50 mg of chitosan in 50 mL of 0.05% acetic 

acid (1mg/mL) stirred for two hours at 1000 rpm; tripolyphosphate (TPP) stock solution by 
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diluting 50 mg of TPP into 50 mL of DI water; and PEGDA stock solution by diluting 6.7 mL of 

PEGDA in 18.3 mL of DI water.  

Chitosan nanoparticles (Cs NP) 

Added 5 mL of 1 mg/mL chitosan into 2 mL of 1 mg/mL of TPP dropwise using a syringe 

pump set to 0.083 mL/min while stirring (1000 rpm) at room temperature. The solution continued 

to stir for an hour, followed by dialysis overnight. Next, the solution was centrifuged for one hour 

at 3750 rpm and four °C, and the opalescent top layer was collected.   

Chitosan-Gentamicin nanoparticles (Cs-GtS NP) 

Added 5 mg of gentamicin to 5 mL of 1 mg/mL chitosan dissolved in 0.05% acetic acid. 

Next, the solution was added into 2 mL of 1 mg/mL of TPP dropwise using a syringe pump set 

to 0.083 mL/min while stirring (1000 rpm) at room temperature. The solution continued to stir for 

an hour, followed by overnight dialysis. Next, the solution was centrifuged for one hour at 3750 

rpm and 4°C, and the opalescent top layer was collected.   

Chitosan-PEGDA-Gentamicin nanoparticles (Cs-PEGDA-GtS NP) 

Added 5 mg of gentamicin to 5 mL of 1 mg/mL chitosan dissolved in 0.05% acetic acid, 

followed by adding 0.5 mL of PEGDA stock solution. Next, the PEGDA-Cs-GtS mixture was 

added dropwise using a syringe pump set to 0.083 mL/min with stirring to 2 mL of 1 mg/mL 

TPP. The solution was allowed to stir at room temperature for one hour before dialyzing 

overnight. Next, the solution was centrifuged for one hour at 3750 rpm and 4°C, and the 

opalescent top layer was collected. 

Characterization of chitosan nanoparticles 

FTIR of chitosan nanoparticles 

Fourier-Transform Infrared Spectroscopy (FTIR) was used to identify the functional 

groups present in the nanoparticles after synthesis. One microliter of nanoparticle solution was 
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placed on the crystal and dried using nitrogen gas before the analysis. The samples' FTIR 

spectra were recorded in the 4000-400 cm-1 region with a spectra resolution of 4cm-1. 

Morphology of chitosan nanoparticles  

The scanning electron microscope (SEM) images were captured using a Philips XL30 

environmental scanning electron microscope. Samples were placed on an SEM stub and 

sputter-coated with titanium for 120 seconds. 

Transmission electron microscope (TEM) images were captures using a Titan 80-3000 

TEM. Samples were dipped onto a TEM copper grid and allowed to dry at room temperature for 

72 hours before analysis.  

Dynamic light scattering (DLS) and zeta potential 

DLS was used to establish particle size, zeta potential, and polydispersity index (PDI). 

Samples were sonicated for 5 min, followed by a 100X dilution (10 mL in 1000 mL aqueous 

solution of 10 mM NaCl). Diluted samples were sonicated again for 15 min immediately before 

analysis. 

Encapsulation efficiency 

UV-vis was used to detect the gentamicin concentration post-synthesis to determine the 

encapsulation efficiency. Ninhydrin can be used as a colorimetric reagent to detect the 

absorption of gentamicin. Colorimetric reagent stock was made by diluting 50 mg of ninhydrin in 

10 mL of phosphate-buffered saline. Samples were centrifuged for 2 minutes at 1300 rpm. The 

supernatant was collected, and an equal amount of colorimetric reagent was added to the 

solution. The sample was incubated at 95°C for 15 minutes, followed by 10 minutes in an ice-

cold water bath. Absorption was taken using Shimadzu's UV-vis spectrophotometer at 418 nm 

wavelength. Encapsulation efficiency was determined using the following Equation: 

𝐸𝐸 (%) =  
𝐺𝑡𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 − 𝐺𝑡𝑆𝑛𝑜𝑛−𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑒𝑑  

𝐺𝑡𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
 𝑋 100 
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In vitro degradation studies 

Chitosan nanoparticle lysozyme degradation  

Chitosan nanoparticles were resuspended in 1 mL of 2 mg/mL lysozyme solution 24 

hours with stirring at 37°C.  

FTIR of chitosan nanoparticles post lysozyme degradation 

Fourier Transform-Infrared spectroscopy (FTIR) was used to identify the functional 

groups present in the nanoparticles after lysozyme degradation. One microliter of the 

nanoparticle-lysozyme solution was placed on the crystal and dried using nitrogen gas before 

the analysis. The samples' FT-IR spectra were recorded in the 4000-400 cm-1 region with a 

spectra resolution of 4cm-1.   

Antimicrobial assay to assess gentamicin activity post-release 

A single colony of E. coli was inoculated in 10 mL of LB media containing 10 µL of 

ampicillin overnight. Agar plates were coated with 100 µL of bacterial growth, and 200 µL of NP 

solution was dropped in the center of the plate and incubated overnight at 37°C.  

ELISA assay to assess gentamicin activity post-release 

 MaxSignal® Gentamicin ELISA kit purchased from PerkinElmer, USA, was used to 

determine the gentamicin concentration post-release.  

Results and Discussion 

Nanoparticle characterization results 

Nanoparticle FTIR  

Fourier-transform infrared spectroscopy (FTIR) of chitosan nanoparticles was performed 

to establish the interactions between chitosan and PEGDA. Characteristic peaks of chitosan are 

also present in all three nanoparticles, including a broad band between 3250 and 3361 cm-1 due 



43 
 

to the stretching vibrations of O−H or N−H groups. The band at 1639 cm−1 is related to the 

vibrations of carbonyl bonds (C=O) (amide I) of O=C-NHR, while the peak at 1571 cm−1 

corresponds to the bending of N−H bonds (amide II) (NH2). Two peaks corresponding to the 

saccharide structure are seen at 895 cm-1 and 1150 cm-1, the latter relating to the asymmetric C-

O-C stretching associated with the glycosidic bonds, while the two broad peaks at 1030 and 

1073 cm-1 relate to the C-O stretching vibrations in chitosan. The peak at 1530 cm-1 

corresponds to C-H vibrations of the alkyl group and the peak at 1650 cm-1 to the C-N stretching 

from amide II.  

 

Figure 1.1 FTIR spectrum region between 4000 and 650 cm-1
. Red chitosan associated peaks: 

peak 829 cm-1 C-O-C from the saccharide structure, two broad bands at 1030 and 1073 cm-1 
due to C-O stretching, 1150 cm-1 peak from asymmetric C-O-C stretching of the glycosidic 
bonds, peak at 1571 cm-1 from N-H bending (amine) and 1650 cm-1 from C-N stretching (amide 
II). Blue PEGDA peaks: 1617 and 1641 cm-1 C=C asymmetric and symmetric stretching, 
respectively. Peak 1725 cm-1 C=O carbonyl group symmetric stretching and 2879 and 2931 cm-

1due to C-H stretching. 
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PEGDA contains four characteristic peaks, one at 1725 cm-1 attributed to asymmetric 

stretching of C=O, two bands around 2879 and 2931 cm-1 due to C-H stretching, and vibrational 

bands at 1641 cm-1 (C=C symmetric stretching) and 1617 cm-1 (C=C asymmetric stretching). All 

characteristic peaks of PEGDA were present on the Cs-PEGDA-GtS spectra. However, most 

Cs-PEGDA-GtS peaks overlap with peaks present on chitosan except for the peak 1725 cm−1 

which corresponds to a carbonyl group (C=O) symmetric stretching found in Cs-PEGDA-GtS 

and PEGDA spectra (Figure 1.1). 

Morphological characterization  

Transmission electron microscopy (TEM) was used for the morphological 

characterization of the nanoparticles (Figure 1.2). Cs-PEGDA-GtS particles were overall 

smaller, 4.5-7.3nm in size, and more homogeneous than Cs and Cs-GtS NPs. Cs-GtS showed 

the largest particles ranging from 4.9-14.9 nm.  

 

Figure 1.2 TEM images of nanoparticles. a) chitosan b) Cs-PEGDA-GtS c) Cs-GtS 
nanoparticles at 300000X magnification. 

Dynamic Light Scattering (DLS)  

DLS was used to determine particle size distribution, a zeta potential (ZP) analyzer to 

measure particle surface charge, and polydispersity index (PDI) to measure particle size 

distribution. ZP is used to estimate the surface charge of nanoparticles, which is indicative of the 
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particle's physical stability. Small ZP can result in particle aggregation due to van der Waals 

interparticle attraction. In general, NPs with ZP ranging from +30 mV to -30 mV display a high 

degree of stability. Perfectly uniform samples have a PDI of zero, while moderate polydisperse 

samples range from 0.1-0.4, and highly disperse samples have PDI's >0.4.  

All particles had acceptable ZP, with Cs-PEGDA-GtS NP and Cs-GtS NP having a 

greater ZP than Cs NP. The increase in ZP can be explained by the encapsulation of GtS, 

which is positively charged in neutral pH, therefore increasing the positive overall surface 

charge of the cationic Cs NP. The addition of PEGDA increased the ZP by 0.34 mV compared 

to Cs-GtS, making the NP slightly more stable and more homogeneous with a PDI of 0.35±0.11. 

Even Though Cs-GtS NPs produced the smallest particles, the particles were highly 

polydisperse with sizes ranging from 225.54 to 404.58 nm (Table 1.1).  

Altogether, the data shows that adding PEGDA during C-GtS NP synthesis produces 

more stable and homogeneous particles.  

Table 1.1 Dynamic light scattering was used to determine particle size distribution, zeta 
potential analyzer to measure particle surface charge, and PDI to measure sample size 
heterogeneity. All samples were analyzed in triplicates, and the averages were reported. 

 

 Z-average (nm) Zeta Potential (mV) Polydispersity Index 

Cs-PEGDA-GtS NP 370.89 ± 44.68 20.14 ± 4.56 0.35 ± 0.11 

Cs-GtS NP 315.06 ± 89.52 19.8 ± 2.9 0.48 ± 0.09 

Cs NP 421.57 ± 18.83 16.06 ± 1.12 0.46 ± 0.08 
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Nanoparticle encapsulation efficiency 

 UV-vis spectroscopy was used for the detection of gentamicin post-NP synthesis to 

determine the drug encapsulation efficiency. Ninhydrin reacts with amines present in gentamicin 

to give Ruhemann's purple (Figure 1.3b).  

 

Figure 1.3 Gentamicin encapsulation efficiency. a) Chitosan-PEGDA nanoparticles had 9.1% 
greater gentamicin encapsulation compared to chitosan alone. b) Colorimetric test using 
ninhydrin for the detection of gentamicin. b1) chitosan, b2) chitosan-gentamicin and b3) 
chitosan-PEGDA-gentamicin. All assays were done in triplets, and the averages were used to 
determine the encapsulation efficiency.  

Figure 1.3a shows Cs-PEGDA-GtS NPs had 9.1% greater encapsulation efficiency than 

Cs. The better encapsulation efficiency observed in Cs-PEGDA-GtS NPs can be explained by 

PEGDA's ability to shield the repelling forces between the positive charges of chitosan and 

gentamicin. Figure 1.3b shows a stronger purple hue indicative of greater GtS concentration in 

the post-encapsulation solution of the CG sample.   

Enzymatic degradation results  

Nanoparticle degradation by lysozyme 

NPs were incubated with lysozymes to determine if the addition of PEGDA affected the 

activity of lysozymes on particle degradation. FTIR was used on particles before and after 

degradation to determine changes in sample composition. Polysaccharides with 1-4 glycosidic 



47 
 

linkage are characterized by absorption bands in the 1175-1140 cm-1 range due to the C-O-C 

bridge between monomers. Figure 1.4 shows sharp peaks associated with glycosidic bonds 

before digestion for all three samples. Lysozymes catalyze the hydrolysis of glycosidic bonds in 

chitosan. Considering the characteristic peaks of lysozyme are found at 1655 cm-1 (amide I), 

1542 cm-1 (amide II), and 1453 cm-1 (amide III), and the disappearance of the sharp peak 

associated with the glycosidic bridge is no longer present post-degradation in all samples, the 

data indicates that the addition of PEGDA to Cs-NPs does not affect lysozyme activity. 

 

Figure 1.4 FTIR of nanoparticles post-degradation highlighting the peaks associated with the C-
O-C bridge of chitosan. a) chitosan-gentamicin b) chitosan-PEGDA-gentamicin, and c) chitosan 
nanoparticles spectra.  
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Antimicrobial activity results 

Nanoparticle antimicrobial activity 

To further confirm lysozyme's ability to degrade the chitosan nanoparticles, the particles 

were incubated with buffer and lysozyme for 24 hours, and the solution was added to an agar 

plate containing E. coli.  The antimicrobial assay was also used to determine the capacity of 

gentamicin to inhibit bacterial growth post-release.  

 

Figure 1.5 Agar plates of E. coli BL-21 for antibacterial assay of chitosan nanoparticles to 
assess gentamicin activity. Top row: nanoparticle antimicrobial activity pre-enzymatic 
degradation. Bottom row: nanoparticle activity post-enzymatic degradation by lysozyme. a & d) 
Chitosan-NP b & e) Chitosan-PEGDA-Gentamicin NP c & d) Chitosan-Gentamicin NP. 

  Cs NPs showed no antimicrobial activity when incubated with buffer, but Cs NPs 

incubated with lysozymes did show some growth inhibition (Figure 1.5 a & d). Although chitosan 

is known for possessing antimicrobial properties, its antibacterial ability depends on chitosan's 
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molecular weight and degree of deacetylation, explaining the difference in results considering 

control plates (lysozyme only) did not prevent bacterial growth. Cs-PEGDA-GtS NPs and Cs-

GtS NPs incubated in buffer solution showed some inhibition indicating that NPs can degrade 

and release GtS in buffer (Figure 1.5 b & c). However, compared to the NPs incubated in 

lysozyme solution, the inhibition was significantly smaller, which suggests GtS was released at 

a much slower rate (Figure 1.5 e & f). This finding supports other reports of Cs NP releasing 

loaded drugs without chemical and enzymatic hydrolysis (Islam, Dmour, & Taha, 2019; 

Mohammed, Syeda, Wasan, & Wasan, 2017). Although both Cs-PEGDA-GtS NPs and Cs-GtS 

NPs showed significant inhibition, Cs-PEGDA had a larger zone of inhibition (Figure 1.5 e & f). 

The greater inhibition of Cs-PEGDA-GtS can be best explained by the 9.1% increase in 

encapsulation efficiency compared to Cs-GtS NP.  

ELISA of nanoparticle release  

ELISA was used for the detection and quantification of gentamicin after release from the 

nanoparticles. In this competitive ELISA assay, GtS present in the sample competes for the 

primary antibodies, preventing the binding of the primary antibodies to the GtS coated plate. 

Once the secondary antibody tagged with peroxidase enzyme is added, it targets the primary 

antibody complexed to the GtS coated plate resulting in a color change when TMB substrate is 

added. Therefore, as the concentration on the sample increases, the intensity of the dye 

decreases. Cs nanoparticles did not contain gentamicin, resulting in an intense yellow signal 

due to primary antibodies binding to the plate. As a result, the coloration was like that of the 

negative control (Figure 1.6 1A-B and 4A-B). Meanwhile, GtS in the solution of Cs-PEGDA-GtS 

and C-GtS samples resulted in a reduction of primary antibodies binding to the plate, causing 

the dye's intensity to diminish, confirming the presence of GtS in both samples (Figure 1.6 3A-B 

and 5A-B).  
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The gentamicin concentration of each sample was calculated using a gentamicin 

standard curve with a detection range of 2.7-0.05 ng/mL. Cs-PEGDA-GtS concentration was 

~1.4 mg/mL and Cs-PEGDA ~1.7 mg/mL after accounting for the sample dilution. 

 

Figure 1.6 1A-B: negative control, 2A-B: positive control (2.7ng/mL gentamicin), 3A-B: Cs-
PEGDA-GtS, 4A-B: Cs and 5A-B: Cs-GtS. There is an inverse relationship between gentamicin 
concentration and the intensity of the dye.   

Conclusion 

This study aimed to assess the ability of Cs-NP and Cs-PEGDA NPs to be enzymatically 

degraded by lysozymes at an ocular concentration to provide a targeted drug delivery system 

for the anterior surface of the eye. The model drug in this study, gentamicin, has a low 

encapsulation efficiency into Cs-NPs due to charge repulsion between the positive charges of 

chitosan and gentamicin. PEGDA was added as a copolymer to mitigate chitosan and 

gentamicin's charge interactions to increase gentamicin's encapsulation efficiency. The results 

show that the addition of PEGDA did not affect lysozyme activity, and NPs incubated with 

lysozymes had greater gentamicin release than those in buffer solution. The addition of PEGDA 

increased encapsulation by 9.1%, further supporting the use of PEGDA as a non-ionic 

dispersing agent to stabilize the charge interactions between chitosan and gentamicin. The 

increased encapsulation efficiency of Cs-PEGDA-GtS NPs caused the particles to be slightly 

larger. However, Cs-PEGDA-GtS NPs had the best PDI and ZP values of all three NPs, 
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indicating that adding PEGDA helps produce more stable and homogeneous particles. 

Altogether the data indicates that Cs-PEGDA NPs is a better drug delivery system for 

aminoglycosides and a viable system for ocular targeted drug delivery. 

Future works 

It is important to assess the effects of PEGDA on particle residence time and chitosan’s 

ability to interact with ocular mucins. It is also necessary to establish the system's safety and 

efficacy through tissue culture experiments using corneal epithelial cells and animal models that 

closely resemble the human system. 
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Chapter 2 

Chitosan film and derivatives methodology 

Introduction 

Nanoparticles have greatly improved ocular drug delivery. However, major physical 

barriers such as blinking and high tear turnover rate remain a challenge when nanocarriers are 

delivered by eye drops and ointments, leading to low drug bioavailability, requiring higher drug 

concentrations to reach the desired effects and daily recurring applications (Dubey, Prabhu, 

Parth, & Ghate, 2015; Hu et al., 2011; Maulvi, Lakdawala, et al., 2016). Therapeutic contact 

lenses have been employed to mitigate some of these issues by entrapping nanoparticles within 

hydrogel matrixes, but storage can lead to drug leaching before reaching the target site (Maulvi, 

Soni, & Shah, 2016; Mutlu, Shams Es-Haghi, & Cakmak, 2019). Because lysozymes present in 

tears degrade chitosan nanoparticles, chitosan nanoparticles can be used for drug 

encapsulation and further chemically attached to contact lenses to prevent premature drug 

release (Han, Nwe, Furuike, Tokura, & Tamura, 2012; Islam, Wang, Maqbool, & Ferro, 2019; 

Kim et al., 2018; Lončarević, Ivanković, Rogina, & Ye, 2017; Pangburn, Trescony, & Heller, 

1982).  

Poly(ethylene glycol diacrylate) (PEGDA) is a synthetic polymer derived from 

poly(ethylene glycol) (PEG), a common polymer used in the synthesis of contact lenses. 

PEGDA contains two acryl groups that can covalently bond with the amine groups of chitosan 

and chitosan nanoparticles in the presence of a strong base by Michael’s reaction, and further 

be crosslinked by freeze-thaw to produce a film (Al-Matar, Khalil, Meier, Kolshorn, & Elnagdi, 

2008; Ma, Zhang, Han, Song, & Nie, 2009; Sashiwa, Yamamori, Ichinose, Sunamoto, & Aiba, 

2003). Once the film containing the loaded nanoparticles becomes in contact with the eye, they 

are exposed to lysozymes secreted by the lacrimal glands. Lysozyme can cleave the β-(1→4)-
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glycosidic bonds of chitosan nanoparticles, slowly releasing the drug at the ocular surface. 

(McDermott, 2013; Zahoor, Bahadar, Ayaz, Khan, & Shah, 2018).  

Methodology 

Film synthesis 

Synthesis of chitosan (Cs) film  

Cs film was made by dissolving 0.25 g of chitosan in 12.5 mL of 1% acetic acid with 

stirring at 50°C. Next, the sample was dialyzed overnight for 48 hours. The sample was cast in 

between two glass plates following 3 cycles of 20-hour freezing and 4 hours thaw to make the 

film. 

Synthesis of chitosan-PEGDA film  

Cs-PEGDA films were synthesized by Michael's addition reaction. Cs-PEGDA was made 

by dissolving 0.25g of chitosan in 12.5 mL of 1% acetic acid with stirring at 50°C. Next, 267 µL 

of PEGDA400 was added to the solution, and the pH was adjusted to 8.5 using sodium 

bicarbonate powder. Samples were dialyzed overnight for 48 hours. The samples were cast in 

between two glass plates following 3 cycles of 20-hour freezing and 4 hours thaw to make the 

films.  

Synthesis of chitosan-PEGDA-CGNP film 

Cs-PEGDA-CG(NP) films were synthesized by Michael's addition. Cs-PEGDA-CGNP 

was made by dissolving 0.25g of chitosan in 12.5 mL of 1% acetic acid with stirring at 50°C. 

Next, 267 µL of PEGDA400 and 70 mg of chitosan nanoparticles containing gentamicin were 

added to the solution, and the pH was adjusted to 8.5 using sodium bicarbonate powder. The 

sample was dialyzed overnight for 48 hours. The sample was cast in between two glass plates 

following 3 cycles of 20-hour freezing and 4 hours thaw to make the film. 
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Synthesis of chitosan-PEGDA film 

Cs-PEGDA-GtS films were made by dissolving 0.25 g of chitosan in 12.5 mL of 1% 

acetic acid with stirring at 50°C. Next, 267 µL of PEGDA400 and 63.8 mg of gentamicin were 

added to the solution, and the pH was adjusted to 8.5 using sodium bicarbonate powder. The 

sample was dialyzed overnight for 48 hours. The sample was cast in between two glass plates 

following 3 cycles of 20-hour freezing and 4 hours thaw to make the film. 

Cs-PEGDA film characterization 

FTIR of Cs-PEGDA films 

Fourier-Transform Infrared Spectroscopy was used to identify the functional groups 

present in the film after synthesis. Membranes were placed in a covered petri dish and allowed 

to air dry for 72 hours. The samples' FT-IR spectra were recorded in the 4000-400 cm-1 region 

with a spectra resolution of 4cm-1.   

Morphology of CS-PEGDA films 

The scanning electron microscope (SEM) images were captured using a Philips XL30 

environmental scanning electron microscope. Samples were placed on an SEM stub and 

sputter-coated with titanium for 120 seconds.  

CS-PEGDA film swelling studies 

2 mg/mL of Lysozyme stock solution was made by dissolving 100 mg of lysozyme in 50 

mL of 20mM phosphate buffer at pH 7.4. 5 mg of membranes were cut off and placed inside 

individual glass vials containing 5 ml of lysozyme solution and incubated with a cap on and 

stirring for 2 hours at 37°C. After two hours, the membranes were removed from the lysozyme 

solution and dried at 37°C. The samples were weighed before (Wwet) and after drying (Wdry). The 

equilibrium solution content (ESC) was determined using the following equation: 
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𝐸𝑆𝐶(%) =
𝑊𝑤𝑒𝑡 − 𝑊𝑑𝑟𝑦

𝑊𝑤𝑒𝑡
𝑥100 

 

In vitro degradation studies 

Cs-PEGDA film in vitro lysozyme degradation 

2 mg/mL of Lysozyme stock solution was made by dissolving 100 mg of lysozyme in 50 

mL of 20mM phosphate buffer at pH 7.4. 5 mg of membranes were cut off and placed inside 

individual glass vials containing 5 ml of lysozyme solution and incubated with a cap on and 

stirring for 2 hours at 37°C. After two hours, the membranes were removed from the lysozyme 

solution, rinsed with DI water, and gently pat dried using a Kimwipe and allowed to dry at 37°C 

before FTIR and SEM images. 

Morphology of Cs-PEGDA films post lysozyme degradation 

The scanning electron microscope (SEM) images were captured using a Philips XL30 

environmental scanning electron microscope. Samples were placed on an SEM stub and 

sputter-coated with titanium for 120 seconds.  

FTIR of Cs-PEGDA films post lysozyme degradation 

Fourier-Transform Infrared Spectroscopy (FTIR) was used to identify the functional 

groups present in the film after lysozyme degradation. Membranes were placed in a covered 

petri dish and allowed to air dry for 72 hours. The samples' FTIR spectra were recorded in the 

4000-400 cm-1 region with a spectra resolution of 4 cm-1.   

Antimicrobial assay to test gentamicin activity post-release 

A single colony of E. coli was inoculated in 10 mL of LB media containing 10 µL of 

ampicillin overnight. Agar plates were coated with 100 µL of bacterial growth, and 200 µL of NP 

solution was dropped in the center of the plate and incubated overnight at 37°C.  



59 
 

Results and Discussion 

Film characterization results 

Morphological characterization of Cs-PEGDA and Cs-PEGDA-CG(NP) films 

Scanning electron microscopy (SEM) was used to obtain images of the films to confirm 

the presence of chitosan-gentamicin nanoparticles (CGNPs) at the surface. Cs-PEGDA film 

images show a smooth surface with no visible particles at the surface (Figure 2.1a). As 

expected, Cs-PEGDA-CGNP films contain particles in the nano range at the surface of the film, 

confirming the presence of CGNPs (Figure 2.1b). Cs-PEGDA film images were taken at 80x, 

500x magnification, and Cs-PEGDA-CGNP images were taken at 3500x and 10000x.  

 

Figure 2.1 SEM film characterization. a) CS-PEGDA film and b) Cs-PEGDA-CGNP. SEM 
image was taken at 80x and 500x magnification.  

Cs-PEGDA and Cs-PEGDA-CGNP Film FTIR  

Fourier-transform infrared spectroscopy (FTIR) of chitosan films was performed to 

establish the interactions between chitosan and PEGDA. Characteristic peaks of chitosan are 

also present in the chitosan film FTIR, including an N-H bending at 1560 cm-1 indicative of 

amine, another peak at 1650 cm-1 C-N stretching from amide II, and a peak at 1150 cm-1 of the 

asymmetric C-O-C stretching. The Cs-PEGDA film spectrum is similar to the Cs film, with the 

added ester pattern of three peaks 1727, 1202, and 1150 cm-1 found in PEGDA. The Cs-
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PEGDA spectrum also shows a shoulder at 1641 cm-1 in the range of monosubstituted alkenes 

(1648-1638 cm-1) not present in the Cs film (Figure 2.2a).  

 

Figure 2.2 FTIR characterization. a) Cs-PEGDA film spectra show a new peak at 1720 cm-1 
attributed to the ester functional group of PEGDA. b) Cs-PEGDA-CGNP film spectra showing a 
new peak at 1722 cm-1 attributed to the ester functional group of PEGDA. 
 

Although the FTIR confirms the presence of PEGDA, it cannot confirm the chemical 

attachment of PEGDA and Cs due to overlapping peaks. Meanwhile, Cs-PEGDA-CGNP also 
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contains the characteristic ester peaks at 1728, 1202, and 1146 cm-1, but no shoulder at 1640 

cm-1 is present (Figure 2.2b). 

Swelling behavior of Cs films  

Equilibrium solution content (ESC) was calculated to investigate the effect of adding 

PEGDA to Cs film swelling. The addition of PEGDA did not significantly alter the film's swelling 

properties. However, adding GtS to the film increased the ESC by 9.3% and doubled the 

swelling ratio compared to the Cs-film (Figure 2.3).  

 

Figure 2.3 Swelling behavior of films. a) Equilibrium solution content and b) swelling ratio of 
chitosan films and derivatives. Adding PEGDA to chitosan did not significantly affect the films 
swelling properties. However, adding GtS to the Cs-PEGDA film increased the ESC by 9.3%, 
and the swelling ratio nearly doubled compared to the Cs film. 

The data indicate that adding GtS causes the pore size to increase, which can be 

explained by GtS being physically entrapped within the film's pores during crosslinking, 

consequently increasing the ESC and swelling ratio. The larger pore also explains the quicker 

degradation of Cs-PEGDA-GtS films than the other films (Figure 2.4). On the other hand, the 

similar swelling behavior between Cs-PEGDA-CGNP and the Cs films suggests that CGNPs 

were not entrapped in the pores but were involved in the crosslinking process. 
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Figure 2.4 Vials containing films incubated with 2mg/mL lysozyme for one week. Cs-PEGDA-
GtS film was completely degraded after one week. Chitosan film was the most stable. a) 
Chitosan-PEGDA film b) Chitosan-PEGDA-GtS film c) Chitosan-PEGDA-CsGtSNP film d) 
Chitosan. 

Film enzymatic degradation results 

SEM images of films post degradation   

Cs-PEGDA film was incubated with 1mL of 2 mg/mL of lysozyme pH 7.4 for 24 hours to 

test lysozyme's ability to degrade the film. Lysozyme enzymatically degrades Cs by hydrolysis 

of β-(1→4) N-acetylglucosamine units. The SEM images were taken before and after incubation 

with lysozyme (Figure 2.5a and b, respectively). Before incubation with lysozymes, no pores 

were visible on the film's surface (Figure 2.5a). However, visible signs of degradation were 

observed after incubation, as evident by the various pores on the film's surface in agreement 

with other reports of chitosan hydrogel degradation (Tanuma et al., 2010). The SEM images 

indicate that adding PEGDA to chitosan did not prevent lysozyme activity.  
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Figure 2.5 SEM images of Cs-PEGDA films a) before and b) post degradation with lysozymes. 
SEM image b shows signs of degradation after being incubated with lysozyme for 24 hours.  

FTIR of films post degradation 

FTIR was used to further determine changes to the film post-incubation with lysozyme. 

Figure 2.6a shows the spectra for Cs-PEGDA film before and after incubation with lysozyme.  

Figure 2.6b highlights the symmetric and asymmetric glucoside C-O-C stretching bands. 

Deconvolution of the peaks and area under the peaks showed no significant changes between 

films before and after incubation. 

 

Figure 2.6 FTIR of Cs-PEGDA films. a) Cs-PEGDA film spectra before and after enzymatic 
degradation. b) Magnified spectra highlighting the absorbance changes for the symmetric and 
asymmetric C-O-C glycosidic bridge, 908 and 1147 cm-1, respectively. 
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Antimicrobial results 

Film antimicrobial properties 

Individual films were dipped into an overnight bacterial growth and incubated for 24 

hours to determine if bacteria could grow on the films. The results show that bacteria were 

unable to grow on Cs-PEGDA, Cs-PEGDA-CGNP, and Cs-PEGDA-GtS films. Of the three, Cs-

PEGDA-GtS showed the most antimicrobial activity by further preventing bacteria from growing 

on the agar plate on the films’ edges. However, few bacterial colonies were visible on Cs film 

(Figure 2.7e). The results indicate that adding PEGDA did not reduce chitosan’s inherent 

antimicrobial activity but indeed enhanced it.  

 

Figure 2.7 Cs films inoculated with liquid bacterial growth. a) chitosan film, b) Cs-PEGDA, c) 
Cs-PEGDA-GtS, d) Cs-PEGDA-CGNP, and e) magnified image of the chitosan film in which 
bacterial colonies can be seen.  
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Antimicrobial properties of post lysozyme incubation solution 

Individual films were incubated in 1 mL of 2 mg/mL lysozyme solution to determine the 

effects of crosslinking PEGDA to chitosan on lysozyme activity. Next, 100 µL of the solution was 

added to agar plates inoculated with E. coli BL-21 to determine gentamicin's presence and 

activity in the solution.  

 

Figure 2.8 Cs films and derivatives were incubated in 1 mL of 2 mg/mL lysozyme solution for 
six days to determine if the addition of PEGDA affected lysozyme activity. The post-incubation 
solution was plated on agar plates inoculated with E. coli BL-21 to assess gentamicin's 
presence and activity in the solution. a) chitosan film, b) cs-PEGDA film, c) chitosan-PEGDA-
CGNP, and d) Cs-PEGDA-GtS. 
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No inhibition was observed from the Cs-film solution, and a very small area of inhibition 

was present from the Cs-PEGDA film solution. Chitosan is known for having antimicrobial 

properties dependent on the degree of acetylation, which could explain the lack of inhibition for 

the Cs film and the small area of inhibition on the Cs-PEGDA solution. An obvious area of no 

bacterial growth of approximately similar size was present on both Cs-PEGDA-CGNP and Cs-

PEGDA-GtS film solutions indicating that GtS was released from CGNPs and Cs-PEGDA-GtS 

films during incubation (Figure 2.8).  

Conclusion 

FTIR spectra of Cs-PEGDA and Cs-PEGDA-CGNP films show the presence of the three 

peaks characteristic of unsaturated ester bonds at 1727, 1200, and 1150 cm-1 for Cs-PEGDA 

and 1728, 1202, and 1146 cm-1 for Cs-PEGDA-CGNP. The FTIR data alone cannot confirm 

PEGDA and Cs' chemical attachment by Michael's addition, but preliminary H-NMR data 

indicates that the reaction was successful.  Furthermore, the addition of PEGDA did not hinder 

the film enzymatic degradation by lysozyme, as confirmed by the SEM images; however, no 

significant changes were observed on the FTIR of degraded films to indicate hydrolysis of the 

glycosidic bonds.  Similar antimicrobial activity of Cs-PEGDA-CGNP film and Cs-PEGDA 

indicates that NPs could release gentamicin after incubation with lysozyme, providing more 

evidence that enzymatic degradation took place. Lastly, adding PEGDA does not significantly 

alter chitosan's antimicrobial activity, as evidenced by the lack of bacterial colonies on Cs-

PEGDA, Cs-PEGDA-CGNP, and Cs-PEGDA-GtS films dipped in bacterial growth. 

Future works 

To determine if the Cs-PEGDA-CGNP film is a viable candidate material for therapeutic 

contact lenses studies to determine the film's optical transparency, mechanical properties, and 

oxygen permeability are needed. 
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Chapter 3 

Chitosan-Fucoidan nanoparticles for the treatment of breast cancer 

Introduction 

Breast cancer (BC) is the second leading cause of cancer death among women, and 

although the incidence rate has slightly increased between 2012-2016, the death rate has 

steadily declined (Desantis et al., 2019). Early intervention and effective drug therapies have 

radically altered the outcome of BCs, but unfortunately, the outcome is not quite as bright when 

it comes to triple-negative breast cancers. Triple-negative BCs have high molecular 

heterogeneity, and the lack of estrogen receptor, progesterone receptor, and HER2 

overexpression makes it extremely difficult to develop targeted therapies (Lee & Djamgoz, 

2018).  

Fucoidan (FU), a natural sulfonated polysaccharide derived from brown seaweed, is 

known to inhibit tumor growth and metastasis in vitro and in vivo while displaying low human 

toxicity. Moreover, in vitro studies using low molecular weight FU has been shown to inhibit the 

proliferation of the receptors positive MCF-7 and the triple-negative MDA-MB-231 BC cell lines 

while normal cells remain unaffected (Abudabbus, Badmus, Shalaweh, Bauer, & Hiss, 2017; 

Wu, Yan, Wu, Yuan, & Liu, 2016; Zhang, Teruya, Eto, & Shirahata, 2011). Although variation in 

the polysaccharide backbone structure, the degree, and the pattern of sulfated branches result 

in different bioactivity among various species (Patankar, Oehninger, Barnett, Williams, & Clark, 

1993; Zorofchian Moghadamtousi et al., 2014), multiple studies have reported FU to exert 

greater toxicity toward MCF-7 cells than MDA-MB-231 which further supports the difficulty in 

treating triple-negative BC (Lu et al., 2018; Zhang et al., 2011). However, no studies reported on 

the cytotoxicity of FU delivered to MCF-7 and MDA-MB-231 cells using chitosan nanoparticles 

as of the time of this publication. Chitosan nanoparticles enter the cell via endocytosis, providing 
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an alternative cellular entry for FU into MDA-MB-231 cells to increase cytotoxicity (Salatin & Yari 

Khosroushahi, 2017). 

Methodology  

Synthesis of Chitosan-Fucoidan Nanoparticles 

Preparation of low molecular weight fucoidan  

 500 mg of fucoidan was diluted in 4 mL of DMSO and 6 mL of DI water. Once the 

sample was completely dissolved, the sample was further diluted with 10 mL of DI water. 

Fucoidan was separated using 300k, 100k, and 30k centrifuge filters and stored at -20°C. 

Preparation of stock solutions 

Prepared chitosan stock solution by diluting 50 mg of chitosan in 50 mL of 0.05% acetic 

acid (1 mg/mL) stirred for two hours at 1000 rpm and TPP stock solution diluting 50 mg of TPP 

into 50 mL of DI water.  

Chitosan nanoparticles 

Added 5 mL of 1 mg/mL chitosan into 2 mL of 1 mg/mL TPP dropwise using a syringe 

pump set to 0.083 mL/min while stirring (1000 rpm) at room temperature. Let the solution 

continue to stir for an hour after all the content has been mixed before dialyzing overnight. Next, 

the solution was centrifuged for one hour at 3750 rpm and 4°C, and the opalescent top layer 

was collected. 

Chitosan-Fucoidan nanoparticles 

Added 1.05 mL of 10 mg/mL fucoidan into 5 mL of 1 mg/mL chitosan. Next, the solution 

was added into 2 mL of 1 mg/mL of TPP dropwise using a syringe pump set to 0.083 mL/min 

while stirring (1000 rpm) at room temperature. Let the solution continue to stir for an hour after 
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all the content has been mixed before dialyzing overnight. The solution was centrifuged for one 

hour at 3750 rpm at 4°C, and the opalescent top layer was collected. 

Chitosan-Fucoidan nanoparticle characterization 

Morphology of chitosan nanoparticles  

Transmission electron microscope (TEM) images were captures using a Titan 80-3000 

TEM. Samples were dipped onto a TEM copper grid and allowed to dry at room temperature for 

72 hours before analysis. 

Dynamic light scattering (DLS) and zeta potential 

DLS was used to establish particle size, zeta potential, and polydispersity index (PDI). 

Samples were sonicated for 5 minutes, followed by a 100X dilution (10 mL in 1000 mL aqueous 

solution of 10 mM NaCl). Diluted samples were sonicated again for 15 min immediately before 

analysis. 

Encapsulation efficiency 

UV-vis was used to detect the fucoidan concentration post-synthesis to determine the 

encapsulation efficiency. Phenol sulfuric method was used to measure the total carbohydrate 

content post encapsulation. 0.5 mL of 5% phenol solution was added to 0.5 mL of the sample, 

followed by the immediate addition of 2.5 mL concentrated sulfuric acid. The sample was 

incubated at 95°C for 15 minutes, followed by 10 minutes in an ice-cold water bath. Absorption 

was taken using Shimadzu's UV-vis spectrophotometer at 490 nm wavelength. Encapsulation 

efficiency was determined using the following Equation: 

 

𝐸𝐸 (%) =  
𝐹𝑢𝑐𝑜𝑖𝑑𝑎𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 − 𝐹𝑢𝑐𝑜𝑖𝑑𝑎𝑛𝑛𝑜𝑛−𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑒𝑑  

𝐹𝑢𝑐𝑜𝑖𝑑𝑎𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
 𝑋 100 
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Cytotoxicity Assay 

Cell culture  

MCF-7 and MDA-MD-231 were grown in DMEM medium supplemented with 5% FBS 

and 1% penicillin/streptomycin.  

MTT assay 

Cells were grown to 90% confluence. Cells were dissociated by adding 0.05% trypsin to 

the flasks and quenched with 5 mL of complete media. Next, one hundred microliters of cell 

solution were seeded in 96 well plates at the density 5×104 cell/mL and incubated at 37 ºC in 

5% CO2 for 24 h. The next day each well was treated with 100 µL of serial dilutions of fucoidan, 

chitosan-fucoidan nanoparticle, and chitosan-nanoparticle starting at 1600 µg/mL concentration, 

in triplicates, and incubated for 48 h. Tetrazolium dye was used to determine the cell viability by 

measuring the fluorescent absorbance at 580 and 620 nm wavelength using a microplate 

reader.   

Results and Discussion 

CFU Nanoparticle characterization results 

Dynamic Light Scattering (DLS)  

DLS was used to determine particle size distribution, a zeta potential (ZP) analyzer to 

measure particle surface charge, and polydispersity index (PDI) to measure particle size 

distribution. ZP is used to estimate the surface charge of nanoparticles, which is indicative of the 

particle’s physical stability. Small ZP can result in particle aggregation due to van der Waals 

interparticle attraction. In general, NPs with ZP ranging from +30 mV to -30 mV display a high 

degree of stability. Perfectly uniform samples have a PDI of zero, while moderate polydisperse 

samples range from 0.1-0.4, and highly disperse samples have PDI’s >0.4. CFU particle size 

was on average 366.27 ± 39.75 nm, which is ~55.3 nm smaller than Cs NP, 421.57 ± 18.83. 
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According to the ZP data, both samples have values in the stable range, although CFU 

NP was slightly more stable as indicated by the greater ZP than Cs NP, 17.79 and 16.06, 

respectively. The variance in particle size and ZP can be best explained by chitosan’s molecular 

weight as various reports in the literature indicate that as molecular weight increases, particle 

size increases and zeta potential decreases (Nguyen, Nguyen, Wang, Vo, & Nguyen, 2016). 

Although both samples were moderately dispersed, CFU NP had slightly lower PDI, 0.40, than 

Cs NP, 0.46 (Table 3.1). However, a PDI of <0.3 is considered ideal for nanoparticles for cancer 

treatment, and both particles have greater PDI than that (Danaei et al., 2018). 

Table 3.1 Dynamic light scattering was used to determine particle size distribution, zeta 
potential analyzer to measure particle surface charge, and PDI to measure sample size 
heterogeneity. All samples were analyzed in triplicates, and the averages were reported. 

 
 

Z-average (nm) Polydispersity Index Zeta Potential (mV) 

CFU NP 366.27 ± 39.75 0.40 ± 0.05 17.79 ± 2.22 

Cs NP 421.57 ± 18.83 0.46 ± 0.08 16.06 ± 1.12 

 

Morphological characterization of nanoparticles 

Transmission electron microscopy (TEM) was used for the morphological 

characterization of the nanoparticles (Figure 3.1). CFU NP displayed greater size variation, but 

particle morphology is similar to Cs NP. Images were taken at 100k magnification. 
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Figure 3.1 TEM images of a) chitosan np and b) CFU np at 100000x magnification. 

Cytotoxicity assay 

MTT assay was used to establish the cytotoxicity of CFU NP, Cs NP, and low molecular 

weight free-FU on the triple-negative breast cancer cell line MDA-MB-231, the estrogen 

receptor-containing breast cancer cell line MCF-7. MDA-MB-231 cells were mostly unaffected 

by free-FU at all concentrations tested. The lowest viability to MDA-MB-231 cells was 93% at 

2.4 mg/mL. On the other hand, MCF-7 cells showed a significant decrease in cell viability when 

treated with free-FU. At 1.2 mg/mL, viability decreased by 31% and at 2.4 mg/mL by 26%. The 

results are congruent to what has been reported in the literature, in which FU is cytotoxic to 

MCF-7 cells but not MDA-MB-231 (Figure 3.2).    



75 
 

 

Figure 3.2 Fucoidan cytotoxicity to MDA-MB-231 and MCF-7 cells. MCF-7 cells viability 
decreased by 31% at 1.2 mg/mL and 26% at 2.4 mg/mL. MDA-MB-231 remained mostly 
unaffected. 

Interestingly, encapsulating FU into Cs NPs increased FU's toxicity toward MDA-MB-231 

cells. Cell viability for MDA-MB-231 steadily decreased in a dose-dependent manner from 

92.87%, 87.41% and 82.08% cell viability at 0.6, 1.2 and 2.4 mg/mL, respectively. MCF-7 cells 

also displayed a dose-dependent response to CFU NP, and at 0.6 mg/mL viability was 89.82%, 

at 1.2 mg/mL 85.41%, and at 2.4 mg/mL 73.86%. CFU and free-FU presented similar 

cytotoxicity toward MCF-7 except for 1.2 mg/mL concentration, in which free-FU 16.43% more 

cytotoxic than CFU (Figure 3.4). The MDA-MB-231 lack of receptors can best explain the 

discrepancy in FU's cytotoxicity between cancer cell lines. Chitosan nanoparticles enter the cell 

via endocytosis, and the data indicates that this delivery system is suitable for the cellular 

uptake of FU into MDA-MB-231 cells to increase toxicity to triple-negative BC cells. 
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Figure 3.3 Chitosan-fucoidan nanoparticle cytotoxicity to MDA-MB-231 and MCF-7 cells. 

To determine if the cytotoxicity observed was due to Cs NP or encapsulated FU, the 

cells were also treated with Cs NPs. MDA-MB-231 cells were not significantly affected by Cs 

NPs, and cell viability remained above 95.7% for all concentrations. The same was true for 

MCF-7 cells, although viability slightly decreased to 91.63% at 0.15 mg/mL and 85.11% at 2.4 

mg/mL (Figure 3.5). The result supports the use of CFU as a delivery system to enhance FU's 

toxicity against MDA-MB-231 cells. 

 

Figure 3.4 Chitosan nanoparticle cytotoxicity to MDA-MB-231 and MCF-7 cells. Cs-NPs did not 
affect the cell viability of MDA-MB-231 cells. However, the cell viability of MCF-7 cells treated 
with Cs-NPs started to decrease at 1.2 mg/mL.. 
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Conclusion 

 The data further supports the findings of other published works in which FU shows 

greater cytotoxicity toward MCF-7 cells than MDA-MB-231. The different effects of FU on both 

cell lines are best explained by FU’s ability to interact with BC receptors at the surface of MCF-7 

cells to enter the cell. MDA-MB-231 and MCF-7 cells showed dose-dependent cytotoxicity when 

treated with CFU starting at 0.6 mg/mL. However, no significant difference in toxicity was 

observed on MCF-7 cells treated with FU and CFU. Cs NPs, on the other hand, enter the cells 

via endocytosis, and the data shows it to be a viable delivery system to increase the cytotoxicity 

of FU toward MDA-MB-231. This finding is important considering triple-negative breast cancers 

are hard to treat, and drug resistance is common. Furthermore, blank Cs-NPs did not affect cell 

viability of MDA-MB-231 cells, while MCF-7 cells had viability reduced by 15% at 2.4 mg/mL.  

Future works 

 Various FU species have been shown to possess different anticancerous properties, and 

as described in this study, cell lines can respond differently to FU treatment. In the future, 

testing the effects of various species of FU using multiple breast cancer cell lines may shed light 

on which species and cancer cell lines are better suited for FU treatment and their mechanism 

of action.  
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Chapter 4 

Study of Pneumococcal Surface Protein, PspA, Incorporated in Poly(Vinyl Alcohol) 

Hydrogel Membranes 

Introduction 

Despite research and advances in the use of therapeutic proteins, delivery vehicles have 

limited their use (Bruno, Miller, & Lim, 2013; Craik, Fairlie, Liras, & Price, 2013). Therapeutic 

protein delivery has been explored via hydrogel membrane systems to avoid degradation and 

restrictive gastrointestinal absorption, intravenous (Bruno et al., 2013; Craik et al., 2013; Park, 

2014). The use of membranes will potentially decrease the use of needles for vaccines and, 

consequently, increasing patient comfort and compliance. Controlled drug delivery has 

progressed over the years and is improving with the use of different types of hydrogel 

membranes. Understanding polymers, protein release mechanisms, and molecular interactions 

are necessary for efficient design and fabrication (Bruno et al., 2013; Park, 2014). Desired 

protein drug release kinetics requires an understanding of the proposed mechanism and 

delivery material (Ahmed, 2015; Barzegar-Jalali et al., 2012).  

Streptococcus pneumoniae (pneumococcus) is a gram-positive, alpha-hemolytic 

bacterium with 91 serotypes. S. pneumoniae is known for causing human diseases such as 

osteomyelitis, keratitis, septic arthritis, endocarditis, peritonitis, cellulitis, brain abscesses, and 

otitis media. It is a primary cause of morbidity and mortality; therefore, a vaccine has been 

administered since the 1970s (Briles et al., 1998). Studies have shown a reduction in the 

prevalence of the disease as a result of the various vaccines (M. R. Moore et al., 2015). This 

study investigates the interaction, release rates, and diffusion efficiency of different proteins 

from a hydrogel membrane. 
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A surface protein of S. pneumoniae, PspA (Pneumococcal Surface Protein A), elicits 

protection against pneumococci. PspA contains four distinctive domains, which include the N-

terminal domain, alpha-helical domain, a proline-rich domain, and a choline-binding (Norcross, 

Sanders, Moore, & Marquart, 2011). The alpha-helical domain contains protection-eliciting 

epitopes. It has a high degree of serological variability with a size ranging from 67 to 99 kDa, 

however, this study uses a truncated version (the alpha helix), 38 kDa (Jedrzejas, 2001). The 

truncated PspA has been proven to elicit immunity (Q. C. Moore, Bosarge, Quin, & McDaniel, 

2006). PspA is highly electrostatic with an elongated rod-like shaped, coiled-coil structure 

(Jedrzejas, 2001), and the functional N-terminal end is electronegative. Regarding PspA 

virulence, studies have shown that the presence of PspA protects pneumococci from clearance 

in the blood of infected mice (Jedrzejas, Lamani, & Becker, 2001; Q. C. Moore, Johnson, 

Repka, & McDaniel, 2007). The evidence demonstrated that PspA incorporated into a 

poly(ethylene oxide) matrix inhibits complement activation through the interference with the 

deposition of C3b; this inhibition can occur in classical and alternative pathways (Briles et al., 

1998; Q. C. Moore et al., 2007). Studies on PspA reported that it is a promising vaccine 

candidate (Briles et al., 1998; Q. C. Moore et al., 2007; Yatim et al., 2013). 

Poly(vinyl alcohol) (PVA) cross-linked with glutaraldehyde (GA), a prolonged-release 

micrometrics, is useful for drug delivery (Chaouat et al., 2008; Kamoun, Chen, Mohy Eldin, & 

Kenawy, 2015). PVA swells and absorbs water to create a swelling-controlled delivery system, 

and various studies are being conducted worldwide for the application of hydrogels as controlled 

released drug delivery systems (Kamoun et al., 2015; Prabhu, Dubey, Parth, & Ghate, 2015; 

Sittiwong, Niamlang, Paradee, & Sirivat, 2012). We are studying the PVA membrane for its use 

and ability to deliver a large protein into the desired environment (Censi, Di Martino, 

Vermonden, & Hennink, 2012; Kamoun et al., 2015). Furthermore, the use of PVA increases the 

bioavailability of drugs (Sittiwong et al., 2012) and decreases drug loss due to the increase in 
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viscosity (Ibrahim, 2010; Kiani, Shahbazi, & Asempour, 2012; Kulkarni, Sreedhar, Mutalik, Setty, 

& Sa, 2010). PVA membranes are non-biodegradable, and the retained structure allows the 

space for drug release (Juntanon, Niamlang, Rujiravanit, & Sirivat, 2008; Sirousazar, Kokabi, & 

Hassan, 2012; Thompson, Nguyen, & Nave, 2013). A saturated solution of the drug is 

entrapped within the PVA membrane structure, and the drug diffuses across the hydrogel matrix 

when the surface of the PVA hydrogel encounters hydrophilic solution (Barbara, 2008; Juntanon 

et al., 2008; Kulkarni et al., 2010; Mishra, Majeed, & Banthia, 2011). Therefore, the PVA 

crystalline-like structure can be modified to control the diffusion rate of the drug via the cross-

linking ratio (Figueiredo, Alves, & Borges, 2009; Thompson et al., 2013; Varshosaz & Hajian, 

2004). 

With the isolation of a truncated fragment of PspA from E. coli, this study investigates 

the release of PspA from the open-mesh of hydrogel membranes cross-linked with 

glutaraldehyde. Many characteristics play a part in this study, including testing protein release 

and diffusion at pH 7.4 (which represents any biological environment), calculating the 

Equilibrium Solution Constant, and determining protein presence in the gel after incorporation 

using ATR-FTIR. This study also investigated the release mechanism of PspA and how a 

sufficient amount of protein is released from a membrane over time. With the characterization of 

the PspA filled thin film hydrogel membrane, it provides the necessary information to develop a 

drug delivery system. This system represents a proof of concept for a large protein. The 

mechanism of hydrogel formation allows modifications that control protein entrapment and 

release. 
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Materials and Methods 

Materials  

The hydrogels used for this study were prepared using poly(vinyl alcohol) PVA (98% 

hydrolyzed, the molecular weight of 70,000 - 100,000 g/mol−1), acetic acid (AA), and 

glutaraldehyde (GA) (50% aqueous solution). All materials for the formation of membranes were 

purchased from Sigma-Aldrich chemical company (St. Louis, MO, USA). Nitrogen gas was 

purchased from Airgas, USA. Ampicillin was also purchased from Sigma-Aldrich chemical 

company. Sodium phosphate and Luria broth were purchased from Fisher Scientific. All 

chemicals were used without further purification and were of analytical grade. The alpha-helical 

domain of PspA was purified from the E. coli clone. Anti-6x His tag antibody was purchased 

from Abcam, USA. Anti-PspA mouse monoclonal antibody XiR278 (IgG) was gifted from Dr. 

Larry McDaniel at the University of Mississippi Medical Center. Secondary antibody Alkaline 

Phosphatase-conjugated AffinPure Goat Anti-Mouse IgG (H + L) was purchased from Jackson 

ImmunoResearch Laboratories, USA. 

Growth and Purification of Pneumococcal Surface Protein A(PspA) 

PspA is highly expressed in E. coli. 5 ml of E. coli overnight growth was inserted into a 

flask containing 1 liter of Luria Broth (LB) and 75 µg/ml of ampicillin. The starter culture was 

then incubated in a shaker for 2.5 hours with an RPM of 200 at 37˚C. Cells were grown to an 

OD600 of 0.6 - 0.9 at 37˚C, and 1 mM IPTG was added for the expression of PspA. Cells were 

allowed to continue growing for 4 hours after induction. Cells were harvested and sonicated. 

The lysate was subjected to purification using the Fast Protein Liquid Chromatography (FPLC) 

system from ӒKTA Amersham Pharmacia was used to purify PspA. Recombinant PspA was 

designed with His-tag on the C-terminal to facilitate the purification steps using IMAC nickel 
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loaded HiTrap IMAC FF column (Ni-NTA). Sodium dodecyl polyacrylamide gel electrophoresis 

(SDS-PAGE) and Western Blot was used to confirm the isolation, purity, and activity of PspA. 

Preparation of PspA-Loaded Poly(Vinyl) Alcohol (PVA) Hydrogels 

The hydrogels were made by dissolving 5 g of high molecular weight PVA in 40 ml of 

boiling deionized water, allow the solution to cool to room temperature. Mix 250 μl of PspA (final 

concentration, 0.12 mg/ml or 0.7 mg/ml) and 960 μl of PVA solution with 108.75 μl of 10% (v/v) 

sulfuric acid (catalyst), 36.25 μl of 10% (v/v) acetic acid (buffer), 36.25 μl of 50% (v/v) methanol 

(quencher) and 108.75 μl of 1% (v/v) Glutaraldehyde (cross-linker). The solution was poured on 

a glass plate to form a membrane. The membrane was cross-linked overnight at room 

temperature inside a nitrogen gas chamber to control humidity. 

(0.12 or 0.7 mg ml PSA)(1.5 ml PVA) = (CO )(250 ul PspA) 

CO = Concentration of PspA stock. 

Equation (1) Equation for Constitutional formula of PspA, Poly(vinyl alcohol). 

Diffusion Cell Experiments (DC) 

Hydrogel membranes were placed between two adjacent diffusion cells to perform drug 

diffusion experiments. One chamber was vacant, and the other contained 5 mL of 20 mmol 

sodium phosphate buffer solution exposing only one face of the membrane to a concentration 

gradient. The solution is stirred continuously using a stirring rod and maintained at 37˚C by 

circulating heated water through the jacketed diffusion cells. A UV spectrophotometer is used to 

calculate the concentration of protein diffused into the buffer solution. Samples are taken 

periodically over 48 hours, and absorbance is recorded at 277 nm for PspA. The protein 

concentration was calculated using Beer’s Law, A = εlc. 
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Equilibrium Solution Content (ESC) of Protein-loaded PVA Hydrogel 

The equilibrium solution content was calculated to determine the characterization of the 

porous structure of the hydrogel for the drug delivery system of PspA. This measurement 

provides the relative measure of swelling to approximate the mesh size of the hydrogel. The 

ESC was determined by placing the hydrogel in buffer solutions ranging at pH 7.4 for this study. 

ESC, swelling ratio, and mesh size were calculated using Equations (2)-(4) (Matsuyama, 

Teramoto, & Urano, 1997). 

𝐸𝑆𝐶 = (
𝑊𝑤𝑒𝑡 − 𝑊𝑑𝑟𝑦

𝑊𝑤𝑒𝑡
) × 100% 

Equation 2. Equation for ESC.  

𝑆𝑤𝑒𝑙𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 =  
𝑊𝑤𝑒𝑡

𝑊𝑑𝑟𝑦
 

Equation 3. Equation for the swelling ratio. 

𝜉𝑆 = 𝑙𝑐 (
𝑀𝑐

𝑀𝑟
)

1
2

𝐶𝑛

1
2 𝑣2

1
3   

Equation 4. Equation for the mesh size. 

Cn is the rigidity coefficient, Mc is the number of average molecular weight between 

junction, Mr is the molar mass of repeating units of PVA, lc is the C-C bond length (0.154 nm), v2 

is the swollen polymer volume fraction after equilibrium. 

Application of Mass Transport Equations 

Higuchi’s Equation can be applied because the experimental system follows the same 

basic principles from the original derivation. Higuchi’s equation assumes a pseudo-steady-state 
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in which the initial drug concentration is at least ten times greater in magnitude than the drug 

solubility (Siepmann & Peppas, 2011). 

𝑘𝐻 =
𝑀𝑡

√𝑡
, 𝐷 =

𝜋

𝑡
(

𝑀𝑡

2𝑀0𝐴
)

2

 

Equation (5) Higuchi K Constant and Equation (6) Diffusion Coefficient.  

Mt     = the mass [mg] diffused at time t, √t = square root of time [seconds]; 

Mt     = the mass [mg] diffused at time t; 

M0 = initial mass [mg] diffused at time 0, t = time [seconds]; 

A = the exposed surface area of hydrogel. 

Protein Release Study (PR) 

PspA hydrogel membranes were submerged in 5 mL of 20 mmol sodium phosphate 

buffer of pH 7.4. The tubes are incubated at 37˚C with agitation. UV spectrophotometer was 

used to measure PspA concentration by recording absorbance at 277 nm. The aliquot was 

returned to the sample. SDS-PAGE and native gel electrophoresis were used to confirm PspA 

diffusion from the PVA membranes. Western blot was used to validate that the released protein 

was active. 

Fourier Transform Infrared Spectroscopy (FTIR).  

Membranes with and without protein were dried at 90˚C, and ATR-FTIR (IR-Affinity) was 

used to analyze the surface of the membrane. This technique was used to determine functional 

groups, such as hydroxyl groups present within the cross-linked membrane matrix, and peaks 

associated with the presence of protein. 
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Human Corneal Epithelial Cells 

Human Corneal Epithelial Cells (HCEC) were purchased from Invitrogen and maintained 

in Keratinocyte media supplemented with 0.2% v/v Bovine pituitary extract (BPE), 1 µg/mL 

Recombinant human insulin-like growth factor-I, 0.18 µg/mL Hydrocortisone, 5 µg/mL Bovine 

transferrin and 0.2 ng/ml human epidermal growth factor. HCEC were grown to confluency and 

were introduced to the hydrogel with or without the protein (PspA), for 24 hours in separate 

experiments. The supernatant was collected to use in both Cytokine Arrays and Enzyme-linked 

immunosorbent assay (ELISA). The assay’s protocol was performed according to the 

manufacturer’s guidelines. 

Cytokine Assays 

Supernatants from Human Corneal Epithelial Cells (HCEC) exposed to growth media, 

and PspA hydrogel was collected 18 - 20 hours following exposure. Homogenates were 

analyzed with human cytokine antibody array 7 (Ray Biotech) according to the manufacturer’s 

specifications. Briefly, antibody array membranes 7 were placed into eight-well trays and 

blocked with 2 ml of blocking buffer for 30 minutes. Blocking buffer was decanted, and 

membranes were incubated at 25˚C for 2 hours with l ml of supernatants. Samples were 

decanted, and membranes were washed three times with 1x wash buffer I followed by 2x wash 

buffer II at 25˚C with shaking. Diluted biotin-conjugated antibodies (1 ml) were added to each 

membrane and allowed to incubate at 4˚C overnight. Membranes were again washed with 1x 

wash buffers I and II prior to being incubated at 25˚C for 2 h with diluted horseradish 

peroxidase-conjugated streptavidin. Following a final wash, the membranes were incubated with 

detection buffers C and D. The chemiluminescent signal was then detected by exposure to film, 

and intensity was determined by densitometry. Signal intensities were quantitated using the Gel 

Doc system (BioRad), and the increased levels of cytokines from the exposure were compared. 
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ELISA 

HCEC exposed supernatants were analyzed with specific ELISA Kits Interleukin-6 (IL6), 

Interleukin-8 (IL8), Interferon gamma (IFN-γ), Tumor necrosis factor alpha (TNF-α), Interleukin-

12 (IL-12) P40, Interleukin-12 (IL-12) P70, Interleukin-16 (IL-16) and GRO-α (Ray Biotech). The 

homogenates were incubated in the ELISA plate at 4˚C overnight, which was followed by wash 

according to the wash solutions in the kit. Diluted biotin-conjugated antibodies specific to the 

cytokine being evaluated was added to each well and allowed to incubate at 4˚C overnight. 

Wells were washed and incubated at 25˚C for 45 min with diluted horseradish peroxidase-

conjugated streptavidin. The wells were washed, and 100 μl of TMB One-Step Substrate 

Reagent was added to each well and allowed to incubate at room temperature for 30 min. The 

reaction was stopped solution and read at 450 nm immediately with the Biotech plate reader at 

450 nm for ELISA analysis. 

Statistical Analysis: Multi-way ANOVA and post-hoc Tukey HSD tests were performed 

using GraphPad Prism 8 software. Significance was defined by α = 0.05. 

All experiments were carried out at the University of Arkansas except the Cytokine 

Assays and ELISAs. 

Results and Discussion 

Recombinant PspA Purification 

E. coli BL21 cloned with PspA plasmid lysate was purified using Ni-NTA. The SDS-page 

stained with Coomassie Brilliant Blue shows a strong band at 38kD for 32.25 mM and 62.5 mM 

fractions (Figure 4.1(a)). The 32.25 mM imidazole fraction (lanes 4 - 6) shows some impurities 

while the 62.5 mM imidazole fractions (lanes 7 - 9) show a pure 38 kD band, which represents 

recombinant PspA. Western blot result confirmed the 38 kD fraction has a His-tag protein signal 
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related to the recombinant PspA (Figure 4.1(b)). Purified PspA from 62.5 mM imidazole fraction 

was used for future experiments and application. 

 

Figure 4.1 Coomassie Brilliant Blue staining and Western blot using Anti-6x His-tag antibody of a 
riveting IMAC fraction of recombinant PspA. For both methods; a. CBB and b. WB. Lanes 1—molecular 
weight marker; 2—lysate; 3—flow through; 4 - 6—fraction 9 to 11 respectively; 7 - 9—fraction 18 to 20, 
respectively. 

The results of the PspA diffusion cell experiments are presented in Figure 4.2. At the 

neutral pH of 7.4, the maximum diffusion experienced was ~60%. The “initial burst effect” is 

experienced, and the diffusion profile demonstrates a constant release until equilibrium is 

reached (Figure 4.2(a)) (Huang, Chestang, & Brazel, 2002; Zu et al., 2012). After 12 hours, the 

rate appears to decline. The calculated Diffusion coefficient [cm2/s] in Figure 4. 2(b), correlates 

with the release percentage data. The rate is initially faster and plateaus around 18 hours in the 

experiment. 

Swelling Behavior of the Protein-Loaded PVA Hydrogel 

The equilibrium solution content was calculated to characterize the porous structure of 

the hydrogel for the drug delivery system of PspA. The results show that swelling of 1% GA 

membranes is close and above 80% after 24 hours of swelling and above 90% after 48 hours of 

swelling (Figure 4.3(a)). The equilibrium solution results from release experiments illustrate a 
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similar ESC value between 0.12 mg/ml drug-loaded membranes and its respective controls 

(Figure 4.3(a)). However, the data shows that at the higher concentration, 0.7 mg/ml, PspA 

membranes at 24 h have a 12.5% larger ESC compared to 24 h control (p ≤ 0.0001). The ESC 

value for 0.7 mg/ml has less than 1% increase at 48 hours, suggesting that 0.7 mg/ml 

membranes are near equilibrium at 24 hours, while 0.12 mg/ml membranes may take over 48 

hours to do the same. At 0.12 mg/ml concentration, the protein molecules are more dispersed, 

making it more difficult for collisions between molecules to happen, therefore slowing down the 

diffusion out of the membrane. The results demonstrate that protein concentration affects the 

swelling and mesh size of the hydrogel (Huang et al., 2002; Nave, Luo, & Coleman, 2008). The 

higher protein concentration produces a greater concentration gradient that leads to a rapid 

increase in swelling and pore size (Å) until equilibrium is reached (Sirousazar et al., 2012). 

There were no significant changes in swelling properties between 0.12 mg/ml PspA 

membranes with corresponding controls at 24 and 48 hours (Figure 4.1(b)). Both membranes 

nearly double in the swelling ratio at 48 hours. However, at 24 hours, the 0.7 mg/ml PspA 

membrane had three times the swelling ratio of its respective control (p ≤ 0.0001). While the 

control membrane had a significant increase in swelling with time (p = 0.0029) (Jensen, Dávila, 

& Zelikin, 2016; Sirousazar et al., 2012), the 0.7 mg/ml PspA membrane did not. The results 

indicate that the 0.7 mg/ml hydrogel was already swollen to near its maximum capacity with the 

more significant protein concentration, while the control and 0.12 mg/ml PspA membranes 

expanded with the influx of buffer at 48 hours. 
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An evaluation of the hydrogel pore structure shows that mesh size increases with the 

protein concentration of the hydrogel (Figure 4.3(c)). The mesh size for 0.12 mg/ml PspA 

membranes relative to its controls is not significantly different, signifying that 0.12 mg/ml is such 

a low concentration that the gel mesh size is virtually unaltered (Nave et al., 2008; Thompson et 

al., 2013). However, increasing the concentration to 0.7 mg/ml of PspA causes the mesh size to 

rise by 335 Å relative to 24 hr control (p≤ 0.0001). While the control and 0.12 mg/ml membrane 

continued to increase in mesh size at 48 hours, the 0.7 mg/ml membrane only showed a 

neglectable increase. 

 

The higher protein concentration causes the mesh to be so stretched that as proteins is 

released and buffer diffuses in, the size remains nearly the same. At lower protein 

concentration, however, the membrane pores are not fully stretched, so as the buffer moves into 

the hydrogel, the pore increases in size, and the membrane swells.  

Figure 4.2 (a) The percentage of PspA released in 5 mL Sodium Phosphate, pH 7.4 (b) Calculated 

Diffusion Coefficient [cm2/s]. 
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Figure 4.3 (a) Equilibrium Solution Content of protein-loaded PVA hydrogel at 0.12 mg/ml and 
0.7 mg/ml PspA concentrations. (b) Swelling ratio of hydrogels from 0.12 mg/ml and 0.7 mg/ml 
PspA membranes at 24-hours and 48-hours. (c) Mesh size in Å of hydrogels from0.12 mg/ml 
and 0.7 mg/ml PspA membranes at 24-hours and 48-hours. 

Two different methods were used to confirm protein release. The UV-vis result shows no 

significant changes in the amount of protein released from 24 hours to 48 hours for 0.7 mg/ml 

membranes and 0.12 mg/ml membranes, indicating that all the protein within the hydrogels is 

released at 24 hours. The 24-hour membranes had 5% less release than 48-hour most likely 

due to the increased space between the molecules, and the random motion of proteins in and 

out of the membrane, which explains the larger standard deviation for the 0.12 mg/ml 

membranes (Figure 4.4(a)). Native gel confirmed that encapsulating the protein within the 

hydrogel does not lead to protein aggregation and that the protein integrity is not affected after 

release (Figure 4.4(b)). Recombinant PspA was designed with 6x His-tag in C terminus to 

facilitate purification of the protein using Ni-NTA. Also, 6x His-tag was used in this experiment 

as a standard to estimate the relative activity of PspA after release from the hydrogel. After 

release, the 6x His-tag PspA molecules from the hydrogel can be detected using western blot 

with anti-6x His-tag antibody while the anti-PspA antibody had been used to identify the active 

PspA after release (Q. C. Moore et al., 2006). Figure 4.5 validates the release of PspA at 0.12 

mg/ml concentration from the hydrogel and confirms its activity due to its strong interaction with 
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Anti-PspA (IgG). These results confirm the released PspA is completely active, and the hydrogel 

system facilitates a high molecular weight protein delivery. Thus, the system is suitable for 

vaccine delivery.  

 

Figure 4.4 (a) Protein release calculated from UV-Vis concentration; (b) The native gel of 0.12 
mg/ml membrane release after 24 hours and 48 hours. 
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Figure 4.5 1. Coomassie Brilliant Blue (CBB) staining and Western blot (WB) of PspA released 
from hydrogel using Anti-6x His-tag antibody. 2. Coomassie Brilliant Blue staining and Western 
blot of PspA released from hydrogel using Anti-PspA antibody. a1 & a2. Release after 24 hours. 
Lane 1—molecular weight marker: 2—0.7 mg/ml PspA; 3 - 5—PspA release. b1 & b2. Release 
after 48 hours. Lane 1—molecular weight marker; 2—0.7 mg/ml PspA; 3—2 PspA released.   

ATR-FTIR spectroscopy 

 The interaction of cross-linkage was examined by Attenuated Total Reflection- 

Fourier Transform InfraRed (ATR-FTIR) spectroscopy. The resulting spectra show all major 

peaks (3300, 2940, 1731, 1141, and 1087) related to hydroxyl and acetate groups, which are 

indicative of a PVA hydrogel crosslinked with glutaraldehyde. Aldehyde peaks at 1735 (C=O 

stretch), 2850 (C-H stretch, and 1650 (OH def) cm−1 with intermolecular hydrogel bonding of 

water are also visible. The spectrum showed bands at 1140 (anti-sym) and 872 (sym) cm−1 

indicative of the C-O-C-O-C stretch vibrations from acetal functional groups, which can 

represent an Acetal Ring Group or Ether Linkage Formation Structure resulting from binary 

functionalization. The PVA hydrogel with PspA incorporated displayed new vibration bands at 

1648 and 1542 cm−1 in comparison to PVA hydrogel without protein (Chaouat et al., 2008; 

Prabhu et al., 2015); these bands represent the Amide I and Amide II similar to what others 

have seen when protein is present (Mansur, Oréfice, & Mansur, 2004; Reis et al., 2006). The 
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readings confirmed the incorporation of protein, seen in Figure 4.6. The appearance of these 

bands was decreased after release experiments, thus, indicating the release of PspA. 

 

Figure 4.6 ATR FTIR, spectra of 1% GA PVA hydrogel membrane (green), and 1% GA PVA 
hydrogel membrane with the protein, PspA, incorporated (red). 

Cytokines Expression and ELISA 

As proof of the safety of the hydrogel system, cytokine antibody array analysis was 

utilized to investigate host immune factors that are involved in the ocular environment when the 

hydrogel is present and the release of the PspA protein. The corneal homogenates collected at 

post-exposure were analyzed using human inflammatory cytokine arrays. Chemiluminescent 

was used to detect signal intensities, and the signals were highlighted to show areas that had 

increased signals (Figure 4.7). The cytokine difference relative to the media and PspA hydrogel 

was determined and listed in Table 4.1. Of 60 cytokines assayed, there was a slight increase in 

the presence of GRO alpha and IL-8 in both conditions. The results demonstrated no contrasts 

in the cytokine expression profiles in the corneal homogenates collected from exposure to 

media alone and PspA hydrogel. 
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Table 4.1 Cytokine profiles of Human Corneal Epithelial Cells Exposure to Hydrogel Drug Delivery 
System with PspA. 

 

 

Figure 4.7 12 Film images of cytokine arrays. A total of 60 cytokines were analyzed, (a) 
Representative of media 18 hours post-infection (b) Representative of PspA hydrogel 18 hours 
post-infection. 

To further evaluate the introduction of the hydrogel delivery system in the ocular 

environment, the innate immune response was assayed using cytokine antibody arrays. The 

results from the cytokine arrays were identical in cytokine expression. In these experiments, we 

identified GRO alpha and IL-8 were slightly upregulated in both media and PspA hydrogel. The 

immune response was further investigated utilizing specific ELISA assays of cytokines present 

during infection. It was noted that there was not an increase in the presence of the proteins, 

which is indicative of a normal immune response based on the data from the control samples. 
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Conclusion 

With the isolation of a truncated fragment of PspA from E. coli, this study investigates 

the release of PspA from the open-mesh of hydrogel membranes. With the characterization of 

the PspA filled thin-film hydrogel membrane, it provides the necessary information to develop a 

modern biotechnology technique for the drug delivery system of high molecular weight proteins. 

This technique expands the current use of hydrogels and its application for vaccine delivery. 

The system represents a proof of concept and applies to proteins of similar size. The 

mechanism of hydrogel formation allows modifications that control protein entrapment and 

release. In conclusion, time and protein concentration affect the hydrogel pore size and drug 

release. Altogether, the data indicate that membranes with low protein concentration behave 

similarly to control membranes. Pore swelling and mesh size increase with time, with larger 

pores having higher protein release. Most of the protein within the hydrogel gets released within 

24 hours, with membranes with 0.7 mg/ml concentration having the most release. The results 

from this study give insight into the minimum presence of cytokines, which are indicators of the 

innate immune response. Based on these findings, the presence of the hydrogel will not trigger 

an immune response that could potentially hinder the action of the drug therapy. Based on this 

study, we have provided evidence of an efficient hydrogel membrane system for protein 

delivery. With the characterization of PspA into a thin film hydrogel, it provides the necessary 

information of PspA transient entrapment within the membrane. This study provides the 

groundwork for applications of this hydrogel membrane delivery system in various infection 

models.  
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Conclusion 

Delivery systems continue to evolve to provide safer and more efficient alternatives to 

drug delivery. This dissertation presented four delivery systems specifically designed to 

overcome delivery barriers that affect drug bioavailability. In chapter 1, drug delivery to the 

ocular surface was enhanced by using chitosan-PEGDA nanoparticles for targeted delivery of 

gentamicin. This system showed better encapsulation efficiency, more stable and homogeneous 

particles, and greater antimicrobial properties than chitosan gentamicin nanoparticles without 

compromising lysozyme activity. In chapter 2, a chitosan-PEGDA film containing covalently 

linked nanoparticles was synthesized for ocular delivery. This study was a proof of concept for 

future contact lens synthesis. The results indicate that covalently attaching nanoparticles to the 

film did not disturb lysozyme activity, resulting in the successful release of the drug leading to 

bacterial growth inhibition.  In chapter 3, the cytotoxicity of the polysaccharide fucoidan to 

cancer cells, MCF-7 and MDA-MB-231, were assessed and compared to chitosan encapsulated 

fucoidan. The data shows fucoidan to be more cytotoxic to MCF-7 than MDA-MB-231. However, 

cytotoxicity to MDA-MB-231 was increased by using chitosan nanoparticles. This study provides 

a new therapeutical approach to treating the hardier triple-negative cancers using a natural 

compound with low toxicity to normal cells. Lastly, in chapter 4, a PVA hydrogel for the delivery 

protein was synthesized, and its safety was assessed in vitro. Proteins possess incredible 

potential in disease treatment and prevention. However, their stability and size have hindered 

their capacity to be used on a broader scale. In this study, a poly(vinyl) alcohol membrane 

successfully entrapped and released a truncated version of PspA while maintaining the protein 

stability and activity after release. Furthermore, the data shows that hydrogel formation can be 

manipulated to control protein entrapment (concentration) and release (time), with lower protein 

concentrations having the most release. Therefore, PVA hydrogels are a suitable delivery 
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vehicle for proteins, and their application in microneedle drug delivery should be further 

investigated. 

 

 

 

 

 

 


	Development of Biomaterials for Drug Delivery
	Citation

	tmp.1626988323.pdf.RtYlt

