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ABSTRACT 

Artificial intelligence (AI) has experienced a tremendous surge in recent years, resulting 

in high demand for a wide array of implementations of algorithms in the field. With the rise of 

Internet-of-Things devices, the need for artificial intelligence algorithms implemented in 

hardware with tight design restrictions has become even more prevalent. In terms of low power 

and area, ASIC implementations have the best case. However, these implementations suffer from 

high non-recurring engineering costs,  long time-to-market, and a complete lack of flexibility, 

which significantly hurts their appeal in an environment where time-to-market is so critical. The 

time-to-market gap can be shortened through the use of reconfigurable solutions, such as FPGAs, 

but these come with high cost per unit and significant power and area deficiencies over their 

ASIC counterparts. To bridge these gaps, this dissertation work develops two methodologies to 

improve the usability of ASIC implementations of neural networks in these applications.  

The first method demonstrates a method for substantial reductions in design time for 

asynchronous implementations of a set of AI algorithms known as Recurrent Neural Networks 

(RNN) by analyzing the possible architectures and implementing a library of generic or easily 

altered components that can be used to quickly implement a chosen RNN architecture. A tapeout 

of this method was completed using as few as 112 hours of labor by the designer from RNN 

selection to a DRC/LVS clean chip layout ready for fabrication.  

The second method develops a flow to implement a set of RNNs in a single 

reconfigurable ASIC, offering a middle ground between fully reconfigurable solutions and 

completely application-specific implementations. This reconfigurable design is capable of 

representing thousands of possible RNN configurations in a single IC. A tapeout of this design 

was also completed, with both tapeouts using the TSMC 65nm bulk CMOS process. 
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1 Introduction 

1.1 Problem Statement 

With the huge rise in the utilization of machine learning algorithms, the varying demands 

for the implementations of such algorithms encompass a wide array of possibilities. These 

demands include reducing the power consumption, area, and cost per unit requirements to fit into 

Internet-of-Things (IoT) applications, as well as improving the range of usability of a single 

implementation through reconfigurable solutions. A fully reconfigurable solution would be the 

utilization of Field Programmable Gate Arrays (FPGAs); but FPGAs come with significant costs 

in the aspects of power, area, and cost per unit. Application Specific Integrated Circuit (ASIC) 

implementations would better fit the requirements of IoT devices, but generally come with high 

non-recurring engineering costs, longer time-to-market, and lack of flexibility.  

Ideal solutions to these implementation requirements would include either rapidly 

developed low power ASICs or some middle ground between FPGAs and ASICs which would 

allow for low area and power while also giving some degree of reconfigurability.  

1.2 Dissertation Statement 

This dissertation research focuses on the development of two methodologies for improving 

the design and implementation feasibility of neural network applications on ASICs, utilizing 

gated Recurrent Neural Networks (RNNs) to demonstrate the methodologies. The Quick Put-

Together (QPT) methodology demonstrates the analysis and implementation of RNNs with 

asynchronous generic components, reducing non-recurring engineering cost for the development 

of ASIC implementations and the time-to-market for similar designs. The other methodology 

demonstrates the methods for the development of a reconfigurable RNN architecture, utilizing 

reconfigurable ASICs as a feasible middle ground between fully reconfigurable solutions such as 
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FPGAs and completely fixed ASICs for neural network applications. Both methodologies utilize 

the low power, asynchronous Multi-Threshold NULL Convention Logic (MTNCL) design 

paradigm. 

1.3 Dissertation Organization 

This dissertation provides the necessary background knowledge for RNNs and MTNCL 

design theory before presenting the methods for developing the QPT and reconfigurable 

methods. Chapter 2 details background information regarding MTNCL design as well as RNN 

concepts. Chapter 3 describes the QPT methodology and covers the implementation of a sample 

RNN utilizing the QPT methods. Chapter 4 discusses the development and implementation of a 

reconfigurable RNN covering a large set of possible RNN configurations. Chapter 5 presents and 

analyzes the results of the completion of a full chip tape-out of both the QPT and reconfigurable 

designs. Finally, Chapter 6 summarizes the concepts and lessons learned from this dissertation 

research and discusses possible future work. 
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2 Background 

2.1 Multi-Threshold NULL Convention Logic (MTNCL) 

Multi-Threshold NULL Convention Logic (MTNCL) [1] is a quasi-delay insensitive (QDI) 

asynchronous design methodology which combines the principles of NULL Convention Logic 

(NCL) [2] with multi-threshold power gating. NCL, the precursor to MTNCL, is a QDI design 

paradigm that uses a dual rail encoding scheme and a set of fundamental NCL gates known as 

“threshold gates” to complete self-timed operations. NCL gates are defined by a threshold value 

and the number of inputs. The threshold and number of inputs are used to denote each gate 

through the naming convention, formatted as “THmn” where n is the number of inputs and m is 

the threshold. The threshold denotes how many of the inputs must be asserted before the output 

of the gate will be asserted. For example, a TH34 gate requires 3 of the 4 inputs to be asserted at 

the minimum for the output to assert. This can be any of the three inputs and will also assert 

when all four inputs are asserted, as the threshold has been met in any of these cases.  

Additionally, NCL gates can have weights associated with its inputs, included in the 

naming convention by appending a “w”, followed by any weights above 1, starting with input A 

and proceeding in order. For example, input A in the TH33w2 gate has a weight of 2. Asserting 

input A (weight 2) and either input B or C (weight 1 each) would assert the output of this gate by 

meeting the threshold of 3 (2+1). Table 1 lists the 27 fundamental NCL gates, the set of gates 

utilized to form any NCL design. One important characteristic of NCL gates is that once an 

output is asserted, all inputs must be de-asserted for the output to de-assert. This functionality, 

known as hysteresis, is essential to NCL and is one of the key differences between NCL and 

MTNCL gates. MTNCL gates do not require hysteresis, instead having a “sleep” input on each 

gate that forces the output to de-assert.  
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Table 1: Fundamental NCL gates [2] 
NCL Gate Boolean Function 

TH12 A + B 
TH22 AB 
TH13 A + B + C 
TH23 AB + AC + BC 
TH33 ABC 

TH33w2 AB + AC 
TH14 A + B + C + D 
TH24 AB + AC + AD + BC + BD + CD 
TH34 ABC + ABD + ACD + BCD 
TH44 ABCD 

TH24w2 A + BC + BD + CD 
TH34w2 AB + AC + AD + BCD 
TH44w2 ABC + ABD + ACD 
TH34w3 A + BCD 
TH44w3 AB + AC + AD 
TH24w22 A + B + CD 
TH34w22 AB + AC + AD + BC + BD 
TH44w22 AB + ACD + BCD 
TH54w22 ABC + ABD 
TH34w32 A + BC + BD 
TH54w32 AB + ACD 
TH44w322 AB + AC + AD +BC 
TH54w322 AB + AC + BCD 

THxor0 AB + CD 
THand0 AB + BC + AD 

TH24comp AC + BC + AD + BD 
 

The set of fundamental gates also applies to MTNCL, but due to removing the hysteresis 

condition and having the sleep signal in each gate, the gates have slight differences to their 

internal logic, resulting in a separate set of fundamental MTNCL gates with the same naming 

convention, followed by the letter m to denote that the gate is an MTNCL gate, such as a TH34m 

gate. NCL and MTNCL utilize a dual-rail data encoding scheme. Designing logic within the 

dual-rail scheme utilizes two wires, referred to as rails. These rails are denoted as RAIL0 and 

RAIL1, representing a single logical bit D. By selecting which of RAIL0 and RAIL1 are asserted or 

de-asserted, D is made to represent any value from the set {DATA0, DATA1, NULL}. When 
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RAIL0=1, RAIL 1=0, this corresponds to the state DATA0, which is equivalent to logic 0 or 

Boolean FALSE in single-rail paradigms. When RAIL 0=0, RAIL 1=1, this corresponds to the state 

DATA1, which is equivalent to logic 1 or Boolean TRUE in single-rail paradigms. D enters a 

NULL state when RAIL 0 and RAIL 1=0 meaning the value of D is not yet available. The state 

RAIL 0=1, RAIL 1=1 is not used in logic and should never occur, so it is considered an illegal 

state. This also means that RAIL 0 and RAIL 1 must be mutually exclusive in NCL/MTNCL logic.  

NCL and MTNCL accomplish pipelining via localized handshaking and alternating 

DATA/NULL wavefronts. In NCL, a DATA wave is always followed by a full NULL spacer, to 

ensure that all gates can return to zero. This NULL spacer must propagate through all the gates in 

the pipeline stage such that all the outputs of the stage return to NULL. In MTNCL, this 

complete NULL spacer is somewhat replaced by putting all gates in a pipeline stage into the 

sleep state. This maintains the characteristic alternating DATA/NULL waves of NCL but 

reduces the impact of the NULL waves by eliminating the time needed to propagate the NULL 

spacer through all the gates in the stage. It also makes use of the multi-threshold aspect of the 

MTNCL gates. The sleeping of the MTNCL pipeline stages is accomplished through 

handshaking signals generated by completion detection components, which check the input to a 

pipeline stage to ensure the complete set of inputs have all reached DATA. These handshaking 

signals are used in a specific pipelining architecture. This pipelining architecture, called Slept 

Early Completion Register Input-Incomplete (SECRII), is shown in Figure 1.  
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Figure 1: MTNCL Pipelined Architecture [1] 

In the figure, each combinational MTNCL logic unit is followed by an associated slept 

early completion detection unit and MTNCL register. The associated completion detection unit 

has an output signal ko which is responsible for three functions: requesting for DATA/NULL 

from the previous completion detection unit and its associated register/pipeline stage, sleeping its 

associated register, and sleeping the next set of combinational logic. In this way, when the ko for 

a stage is 1, the current register has not yet received a complete DATA wave, so it and the logic 

that would receive data from that register are slept, reducing the power consumption while the 

logic is not in use while also giving NULL to the next pipeline stage. When the ko is 0, the 

completion unit is requesting for NULL, informing the preceding completion detection unit that 

the data in the preceding register is no longer needed, and unsleeping the current register and 

subsequent logic, so that the next stage’s computation can begin. To simplify future figures, the 

completion detection components will be included as part of the MTNCL registers, and the 

handshaking and sleep signals will be omitted unless there is a particular complication to how 

they operate. 

2.2 Recurrent Neural Networks (RNNs) 
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Recurrent neural networks are a form of neural network [3] that primarily operate on 

sequences of data, adjusting computation over time based on the results from each value in the 

sequence of data. This adjustment over time is done by maintaining a hidden state, referred to as 

h, which is both the output and used as an input for the next calculation. The main input, referred 

to as x, is a sequence of inputs, one for each timestep t. The result is generally used for predictive 

or classification functions common in machine learning fields. Both h and x are vectors which 

vary in length, but x in particular can vary in two aspects – the length of the value at each 

timestep and the total number of values, equal to the total number of timesteps. At each timestep, 

the RNN receives a new input value xt, and a new hidden state ht is calculated as ht = f(xt, ht-1), 

where f is some non-linear activation function and ht-1 is the previous timestep’s hidden state 

(with some initial value for t=0). Although this function can be as simple as an element-wise 

sigmoid function, the RNNs discussed in this dissertation are larger, with similar architectures to 

Long Short-Term Memory (LSTM) [4]. After some number of timesteps, the hidden state can be 

taken as output from the RNN or followed by a small additional computation, after which all 

hidden states are reset to their initial state. 

LSTM is an early form of a class of RNNs known as gated RNNs. Gated RNNs are 

primarily constructed from their namesake gates, which are discrete mathematical units. A 

typical gate equation would be 𝑔" = 	𝜎(𝑊(𝑥" +	𝑈(ℎ"-. +	𝑏(). The values of W and U are 

“weight” values and the values of b are “bias” values. In neural networks, weight and bias values 

are trained utilizing another system for deciding what values perform better for different 

classification and prediction objectives and can be changed with additional training data and 

results. The non-linear function in the example case, s, can also be changed out for a variety of 

other non-linear functions, such as the hyperbolic tangent function, tanh. While RNNs can be 



8 
 

made of a single gate, many architectures use multiple gates. If there are multiple gates in an 

RNN, there will also be additional weight matrices and bias vectors, as well as additional 

computations used to calculate the hidden state from the results of the gates. Table 2 describes an 

LSTM with four gates (f, i, o,�̃�), and the element-wise operations that result in the hidden state.  

Table 2: LSTM Equations 
𝑓" = 	𝜎(𝑊4𝑥" +	𝑈4ℎ"-. +	𝑏4) 

𝑖" = 	𝜎(𝑊6𝑥" +	𝑈6ℎ"-. +	𝑏6) 

𝑜" = 	𝜎(𝑊8𝑥" +	𝑈8ℎ"-. +	𝑏8) 

�̃�" = 	 tanh(𝑊4𝑥" +	𝑈4ℎ"-. +	𝑏4) 

𝑐" = 	𝑓"•	𝑐"-. +	 𝑖"•	�̃�" 

ℎ" = 	𝑜"•	 tanh 𝑐" 

 

The size of the data required to compute a result is a common complicating factor for 

neural networks. In the case of LSTM in Table 2 and RNNs like it, the U matrix is a two-

dimensional matrix, where both dimensions are equal to the size of ht. The W matrix is also a 

two-dimensional matrix, but with one dimension equal to the size of xt and the other equal to the 

size of ht. The bias vectors are also the size of ht. Overall, the number of weights can be 

calculated as 𝑁	 = 	𝑔(|ℎ"|? 	+	 |ℎ"| ∗ |𝑥"| 	+ 	 |ℎ"|) where g is the number of gates. Additionally, 

individual RNNs can be chained to one another in sequence to form arbitrarily long networks 

composed of multiple RNNs, with each independent RNN comprising a single “layer” of a the 

overall RNN. The number of layers can increase prediction and classification performance at a 

significant cost to data size, training time, and computation time. The selection of these 
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parameters (e.g., number of layers, layer types, hidden state vector length, input vector length) 

greatly alter the overall functionality, as well as the efficacy, of the RNN as a whole. 

Since LSTM was developed, several attempts have been made to reduce the size of the 

RNNs while improving the accuracy or reducing the training time. Two of these attempts include 

GRU [5] and FastGRNN [6], which were selected as the primary focus of the reconfigurable 

portion of this dissertation in Chapter 4. 

The equations that make up the GRU algorithm are shown in Table 3. The objective of 

GRU was to create a method to eliminate short-term or irrelevant data from the hidden state 

while preserving long-term data dependencies by adaptively resetting or updating the current 

hidden state. This is done by having two primary gate units, the reset and update gates. The reset 

gate is intended to act as a computational switch, either allowing or disallowing the previous 

hidden state to contribute to the new hidden state. This is intended to resolve the short-term 

dependencies by removing no longer relevant information from the new hidden state. The reset 

gate is unique in terms of the gates in LSTM due to it being composed of two gate units 

connected in series rather than all in parallel. The update gate is intended to capture the longer-

term dependencies by allowing some amount of the previous hidden state to affect the current 

hidden state. GRU has been shown to outperform LSTM in the majority of applications [7]. 

Table 3: GRU Equations 
𝑧" = 	𝜎(𝑊B𝑥" +	𝑈Bℎ"-. +	𝑏B) 

𝑟" = 	𝜎(𝑊D𝑥" +	𝑈Dℎ"-. +	𝑏D) 

ℎE" = 	 tanh(𝑊F𝑥" +	𝑈F(𝑟"•	ℎ"-.) +	𝑏F) 

ℎ" = 	 𝑧"•	ℎ"-. +	(1 − 	𝑧")•	ℎE" 
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FastGRNN attempts to minimize the overall size of the network while still maintaining 

the accuracy of the network. Table 4 shows the equations of a FastGRNN network, which 

contains only two gates. The primary aspect of FastGRNN over other gated RNN architectures is 

that the W and U matrices are actually shared between the two gates, reducing the data size, as 

well as the computational cost, significantly. To reduce the size even further, the original 

FastGRNN work also discusses a version utilizing a byte quantization methodology, reducing the 

weights in U and W to a single byte in length. Overall, FastGRNN is capable of having a 

significantly smaller footprint that still matches or exceeds the prediction accuracies of LSTM or 

GRU [6]. 

Table 4: FastGRNN Equations 
𝑧" = 	𝜎(𝑊𝑥" + 	𝑈ℎ"-. +	𝑏B) 

ℎE" = 	 tanh(𝑊𝑥" + 	𝑈	ℎ"-. +	𝑏F) 

ℎ" = 	 𝑧"•	ℎ"-. +	(𝜁(1 − 	𝑧") + 	𝜈)•	ℎE" 
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3 Quick Put-Together Research Work 

While ASICs generally have the best-case performance, smallest size, lowest power 

consumption, or some combination of the three, their development is subject to long time-to-

market and high non-recurring engineering costs. The first principal contribution of this 

dissertation is an analysis of gated RNN architectures which facilitates the rapid implementation 

of asynchronous gated RNNs.  

In order to best facilitate the rapid construction of fully custom ASIC RNN 

configurations, this work makes use of the “correct-by-construction” aspect of MTNCL to form a 

library of generic reusable components that can be utilized to implement a wide variety of RNN 

configurations. Since MTNCL is asynchronous and quasi-delay insensitive, there is no need to 

verify timing requirements, which is a substantial concern and time cost in the development of 

synchronous ASIC designs. The primary objective is to make as much of the design generic as 

possible, while making the non-generic portions be easily altered or extended. The completion of 

this objective allows for drastic reductions in design time for the logic implementation of ASIC 

RNNs. 

3.1 RNN Architecture Analysis 

RNN implementations are composed of a set of component operations and dataflow, 

called the architecture, which dictates the computation performed to produce the hidden state. 

Example architectures include the LSTM, GRU, and FastGRNN algorithms. While the 

architecture describes the operations, there are several variables that the primary architecture 

does not specify. These variables are defined as the network’s configuration. While additional 

architectures may contain other configuration variables, an analysis of the equations of the 
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LSTM, GRU, and FastGRNN algorithms, as well as the ability to add additional layers in series, 

yields five configuration variables:  

1. The number of individual RNNs connected serially, referred to as layers 

2. The architecture of each layer (LSTM, GRU, or FastGRNN) 

3. The size of the hidden state of the layers 

4. The size and number of input vectors of the layers 

5. The data representation used in each layer (bitwidth of data, fixed-point or floating-

point number representation, etc.) 

This list of variables is used to determine which of these variables apply to the reusable 

components designed as part of establishing the QPT methodology for the architectures, so that 

they can be made generic, or at least easily altered manually, with respect to that variable. 

Looking at the equations presented in Tables 2, 3, and 4, it can be seen that these architectures 

consist of five mathematic operations: 

1. Vector-Matrix Multiplication 

2. Element-Wise Addition 

3. Element-Wise Non-Linear Function (implemented as a look-up table in ROM) 

4. Element-Wise Multiplication 

5. “1-Minus” Operation (implemented as Element-Wise Subtraction) 

With the exception of the vector-matrix multiplication, each of these operations are 

element-wise operations, performing the same operation on each value of a set of input vectors 

(just one input vector in the case of the non-linear function). In every case of these operations, 

the width of the vector(s) being operated on is equal to the size of the hidden state vector. These 

operations can most easily be implemented with |ht| copies of the respective individual operation. 
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For example, element-wise addition could be implemented with 128 parallel adders in the case 

where the size of the hidden state is 128. This solution is the fastest both in speed and time to 

implement, but also easily the least efficient, in terms of area and power, of handling these 

operations and should be reserved for applications where area is no issue and speed must take 

absolute precedence. For applications where area and power are greater concerns, an 

optimization solution is necessary and has been developed. Since element-wise operations 

perform the same operation on each value of the input vectors, they can be implemented as 

single-element operations that accept a streaming input, operating on each element in the vector 

one at a time. The assumption of a streaming input allows the design to reduce each component 

to their simplest version, e.g., a single adder for element-wise addition. This solution also allows 

for parallelism, allowing a balance to be struck between speed, area, and power for the chosen 

application. Figure 2 shows the basic implementation for these element-wise operations.  

 

Figure 2: Basic Element-Wise Implementation 

The assumption of a streaming input for the element-wise operations significantly 

simplifies them; but to satisfy this condition, a unit must be capable of producing these streaming 
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values as its output. The vector-matrix multiplication, the most complex unit in the list, is 

adapted to this purpose. The nature of vector-matrix multiplication is that each row of the matrix 

operates with the vector in the same way, multiplying the values of the row with the elements of 

the vector in an element-wise fashion and summing the results. This means that each row of the 

matrix produces exactly one value of the result vector. With this in mind, vector-matrix 

multiplication can be implemented as a single Multiply-Accumulate unit, iterating over the entire 

vector once for each row of the matrix, producing a single result at a time, creating the streaming 

output needed to satisfy the streaming input assumption of the element-wise units. This 

implementation also maintains the possibility for parallelism to match with the element-wise 

units if area and power constraints allow for it. Figure 3 illustrates the basic implementation of 

the vector-matrix multiplication operation. 
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Figure 3: Basic Vector-Matrix Multiply Implementation 

Due to its nature, the vector-matrix multiplication does require the entire vector to be 

present before any output values can be produced. Additionally, since the weight matrices 

represent a significant amount of data which is operated on many times, having the weight data 

come from off-chip represents a very high I/O cost. Instead, the values are loaded one time and 

stored on-chip, which also has its own significant cost. These factors lead to a set of five data 
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3. Weight Storage (SRAM) 

4. SRAM Read Unit 

5. Data Loading Unit 

The Vector Spooling Unit, also called the Vector Spooling Register, is responsible for 

collecting all the values of a vector into a single register, so that the whole vector can be output 

at the same time. This is necessary due to adapting the element-wise operations into streaming 

operations. The primary use of this component is converting the streaming output from the 

element-wise units into the full final hidden state vector at the output of a layer. It can also be 

used in cases such as the GRU, where the reset gate’s characteristic pair of gates in sequence 

require the completion of the entirety of the computation of the first gate before the second gate 

can produce any values.  

The Vector Un-Spooling Unit, also called the Vector Un-Spooling Register, signifies the 

reverse of the Vector Spooling Unit, taking in a full vector of values as input, and producing the 

values of the vector one at a time in order. This component’s primary purpose is to facilitate the 

usage of the input and previous hidden state vectors as the input to the Multiply-Accumulate 

components that perform the vector-matrix multiplication. Besides its primary purpose, it is also 

used in cases where the previous hidden state vector is used as part of an element-wise operation 

to convert the hidden state vector into a streaming input to the element-wise unit. To further 

clarify their function, the Vector Spooling and Un-Spooling units combined in that order would 

form a first-in first-out (FIFO) queue but are separated into two units for cases where a vector 

needs to be spooled but not immediately used in a queue-like manner or where different vectors 

need to be combined as part of the same output queue.  
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The weight storage is implemented as SRAM generated by the TSMC 65nm Memory 

Compiler tool. Due to this, the inner workings of the SRAM itself will not be discussed, but the 

function, size, number of units, and the method for including them into the design is covered in 

the following sections. Along with the SRAM comes a need to write the needed values to them 

as well as read the values from them, leading to the SRAM Read unit and the Data loading unit. 

In total, the analysis of these two algorithms resulted in ten components to analyze and 

implement as generic units where possible or in an easily extendable structure where not. 

3.2 Generic Units 

Of the ten units described in Section 3.1, seven of them are implemented as generic 

components. These are: 

1. Vector-Matrix Multiplication 

2. Element-Wise Addition 

3. Element-Wise Multiplication 

4. Element-Wise Subtraction 

5. Vector Spooling Unit 

6. Vector Un-Spooling Unit 

7. SRAM Read Unit 

While the element-wise non-linear function is not able to be made generic due to its 

implementation as a ROM, the implementation of the remaining computation units can be done 

generically. For these components, the computations occur entirely within the layer itself, and do 

not need to be sensitive to the number of layers or the architecture of the layer. This leaves only 

the size of the hidden state vector, size of the input vector, and the data representation to affect 

the units. Among these, the element-wise arithmetic functions are the easiest to make generic.  
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As described earlier, each element-wise component operates on a streaming input to form 

vector element-wise operations out of the simplest version of the computation. This serves the 

additional purpose of allowing each unit to be entirely unaffected by the sizes of the hidden state 

and input vectors. Instead, each of these units are only sensitive to the data representation. 

Making these arithmetic operations generic with respect to the bitwidth of the input values is 

already common in the field of digital design and is effectively trivial, but the numeric 

representation is more complex. The numeric representation refers to the way the bits of a binary 

value represent numeric values. Examples of different numeric representations include whether 

the data is signed or unsigned, if the values are integers or contain fractional values, and how the 

fractional values are represented such as fixed-point or floating-point formats. This aspect 

represents significant complexity, with the potential to add large amounts of logic to where 

might usually be a simpler function. In the QPT section of this dissertation, floating-point 

representations are not addressed and will be considered as part of the future work for this 

dissertation.  

To enable the element-wise components to be generic with respect to the numeric 

representation, a generic sub-component was developed for each of the arithmetic operations 

which allows for integer or fixed-point, signed or un-signed values to be performed by 

appending the sub-component to the end of each arithmetic component. This unit, referred to as 

an Arithmetic Helper unit, is made generic by defining the output of the arithmetic components 

by how they need to be corrected. In fixed-point and integer systems, the number of bits and 

what each bit represents is fixed, allowing these units to correct arithmetic outputs by truncating 

the results into the correct output representation. Figure 4 shows the architecture for the complete 

generic element-wise operations. 
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Figure 4: Generic Element-Wise Component  
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a Multiply-Accumulate unit, the generic multiplication unit covers the multiplication aspect, but 

additional logic is needed for the accumulation. The accumulate portion is covered by the 

generic adder unit along with registers to store the current accumulated value, and generic 

supporting logic that allows the unit to accumulate a programmable number of values before 

outputting the result and resetting the accumulated value. This generic supporting logic is 

another sub-component and is critical to several components in the overall design.  

This sub-component is described as a Self-Resetting Counter, a generic counter which has 

two controlling input ports: a Maximum Counter Value and a Count Enable port. The Maximum 

Counter Value declares the highest values the counter will count to. Once this value has been 

reached, the counter will reset to zero, and also raise its output control signal, the Counter Reset 

signal, that declares that the counter has reached its maximum value, which can be used to enable 

the output of the Multiply-Accumulator and reset the accumulated value. It is important to note 

that the Maximum Counter Value is a set of ports and not a generic variable, so these ports are 

tied to constants on chip. This allows the resetting portion of the Self-Resetting Counter to be 

implemented with a simple comparator. The other controlling input port, the Count Enable port, 

is an input that decides whether or not the counter accumulates on each DATA cycle. In the 

Multiply-Accumulator, this value is tied to logic high such that the counter accumulates on every 

DATA cycle but is used in other components to only count under specific circumstances.  
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Figure 5: Generic Multiply-Accumulate Component 
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into a single register as the output of the layer, this unit must also be capable of keeping track of 

the number of times it has been used, such that it can be aware of how many times the hidden 

state has been completed. This allows it to enable resetting the hidden state to its initial value 

once a set number of computations, specified by the total number of input vectors, have been 

completed. Figure 6 shows the main implementation details of the Vector Spooling unit. Note 

that the Hidden State Feedback with Reset logic is optional, and is only included when this unit 

is used in its main application as the primary output of an RNN layer. 

 

Figure 6: Vector Spooling Component 
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is used primarily to store a vector that represents the combined hidden state and input vectors and 

provide these vectors as the input to the Multiply-Accumulate units. As discussed earlier, the 

vector-matrix multiplication that the Multiply-Accumulate units represent requires that the vector 

be used in its entirety once for each row in the matrix. This means that they require each value in 

the combined vector to be provided in the same order a number of times equal to the size of the 

hidden state. Therefore, the Vector Un-Spooling unit must not only output the values in order but 

also be able to do so a programmable number of times.  

Both the Vector Spooling and Vector Un-Spooling units utilize the Self-Resetting Counter 

sub-component previously discussed. For the Vector Spooling unit, there needs to be a counter 

keeping track of how many times the Vector Spooling unit has been used. Once it has reached 

the maximum number, the Counter Reset signal is used to reset the hidden state.  

The Vector Un-Spooling unit has the more complex use case for the Self-Resetting 

Counter. The Vector Un-Spooling unit must keep track of two values that are incrementing over 

time. The first is the number of values that have been output for the current vector. The second is 

how many times the entire vector has been output. This is implemented with two copies of the 

Self-Resetting Counter, a lower level counter and an upper level counter. The lower level counter 

increments with every value that is output and resets once the total number of values in the 

stored vector has been reached. The upper level only counts each time the entire vector has been 

output. This case is where the functionality of the Count Enable control port is utilized. When the 

lower level count reaches its maximum value, its Counter Reset signal is raised. This Counter 

Reset signal for the lower level is used as the Count Enable signal for the upper level counter, 

causing the upper level counter to count once each time the lower level counter reaches its 

maximum value.  
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Unlike the Vector Spooling unit, which outputs a complete vector all at once, making its 

output function within the MTNCL pipeline as expected, the Vector Un-Spooling unit only 

outputs one of its values at a time. To perform this function, the lower level counter’s value is 

used with a multiplexor, selecting the correct value to be output from the internal register with 

the lower level count until the count reaches the maximum value, at which point the upper level 

count increments by one. Once both counters have reached their maximum values, the Vector 

Un-Spooling unit can return to the NULL state as part of obeying the MTNCL pipeline 

architecture. Figure 7 shows the primary details of the Vector Un-Spooling unit’s 

implementation. Because this unit adds complications to the MTNCL pipeline, the handshaking 

signal KO from the subsequent design unit is not omitted to illustrate its use to request 

DATA/NULL from the two counters, controlling the output of the register set, as well as its 

interaction with the output of the two counters to determine when the register set should receive 

a request for NULL. 
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Figure 7: Vector Un-Spooling Component 
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The SRAM Read Unit is responsible for ensuring the correct value is read out of SRAM 

for the current Multiply-Accumulate operation by generating the correct read address for the 

SRAM. It is important to note that this unit is distinct from the control of the SRAM itself, which 

is discussed as part of the SRAM implementation in Section 3.4. The address of the correct value 

is inherently dependent on the organization of the memory itself. In this case, an architectural 

decision needed to be made on how many individual memory units would be used to store the 

values. There are three main choices: single monolithic memory, single memory per layer, and 

individual memory per gate. The individual memory per gate was chosen, due to the significant 

reduction in complexity over the other two solutions, despite having the highest overhead. The 

reason the complexity is so much lower is due to the nature of vector-matrix multiplication. Each 

value in the matrix needs to be used exactly once to complete a full vector-matrix multiplication, 

so by localizing the matrix values to a single SRAM, the address generation can be as simple as a 

counter. The single monolithic memory would have resulted in the lowest power and least area 

overhead but with it comes a significant increase in the complexity of the control, as well as 

limiting the speed of the overall computation dramatically. The single memory per layer offers 

some tradeoffs between the two but adds significant complexity over the single memory per gate 

while also reducing the speed of each layer significantly. Given this choice, the SRAM Read unit 

can be as simple as using the count output from the preceding vector un-spooling unit for the 

address. However, the SRAM size is a significant limiting factor in terms of the size of the 

overall design, so methods for reducing the size of the matrices result in significant reductions in 

area and power, even if these methods add complexity to the SRAM Read component. 

In this dissertation, a method for reducing the size of the weight matrices is utilized, 

dividing the number of values in most matrices by eight. This methodology, which makes the 
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weight matrices block circulant [8], reduces the size of the matrices by reusing weights in a 

specific pattern. In this implementation, only the first row out of every eight rows needs to be 

stored, replacing the values for the remaining seven rows with values from the stored row. This 

results in a substantial reduction in area and power expenditure, while actually maintaining the 

computational power of the network. Table 5 demonstrates how a 16×16 matrix is implemented 

in a block circulant fashion, utilizing only 32 values to implement the entire matrix. In the table, 

the first and eight rows would be actually stored in SRAM. Each of the four 8×8 squares in the 

matrix get their values by shifting the values from the previous row to the right, wrapping around 

to the beginning. The values 0-7 are repeatedly used in the top-left 8×8 block and the values 8-

15 are repeatedly used in the top-right 8×8 block. The values 16-23 are used to form the bottom-

left 8×8 block and the values 24-31 are used to form the bottom-right 8×8 block, resulting in a 

set of two 16 entry rows that can be used in place of a 16×16 matrix. Since the matrices in the 

actual RNN implementations are much larger, such as the 256×128 matrices used as part of the 

implementation discussed in Section 3.4, this reduction is extremely significant, especially in 

networks with multiple layers or gates per layer. 

Table 5: Sample Block Circulant Matrix 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

7 0 1 2 3 4 5 6 15 8 9 10 11 12 13 14 

6 7 0 1 2 3 4 5 14 15 8 9 10 11 12 13 

5 6 7 0 1 2 3 4 13 14 15 8 9 10 11 12 

4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11 
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Table 5 (Cont.)  

3 4 5 6 7 0 1 2 11 12 13 14 15 8 9 10 

2 3 4 5 6 7 0 1 10 11 12 13 14 15 8 9 

1 2 3 4 5 6 7 0 9 10 11 12 13 14 15 8 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

23 16 17 18 19 20 21 22 31 24 25 26 27 28 29 30 

22 23 16 17 18 19 20 21 30 31 24 25 26 27 28 29 

21 22 23 16 17 18 19 20 29 30 31 24 25 26 27 28 

20 21 22 23 16 17 18 19 28 29 30 31 24 25 26 27 

19 20 21 22 23 16 17 18 27 28 29 30 31 24 25 26 

18 19 20 21 22 23 16 17 26 27 28 29 30 31 24 25 

17 18 19 20 21 22 23 16 25 26 27 28 29 30 31 24 

3.3 Non-Generic Units 

As the SRAM is generated individually by a memory compiler for the exact size needed, it 

cannot be considered a generic unit but can be put together very quickly. The element-wise non-

linear function units were also implemented as look-up tables in ROM, generated by the same 

memory compiler as the SRAM. The primary problem surrounding these units is the fact that the 

memory compiler used generates synchronous memory designs which also means these designs 

lack an output that denotes when an operation has been completed. This results in the need to 

develop a small amount of logic to act as a wrapper for the SRAM and the ROM such that they 

behave correctly as part of the MTNCL pipeline. This functionality is divided into two segments: 

Input Control and Output Control.  
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Input Control is responsible for providing the address, control signals, and data (in the case 

of writing to SRAM) to the SRAM or ROM before activating it in order to obey setup time 

restrictions. Output Control is responsible for ensuring enough delay occurs for the SRAM or 

ROM to complete its operation before the single-rail outputs are converted to dual-rail signals 

and output into the next stage of the MTNCL pipeline. The primary functionality in both cases is 

the addition of arbitrarily long delays to satisfy the setup time and execution time restrictions. 

These delays are introduced using buffer chains, which can be made arbitrarily long generically, 

so that a proper characterization of the delay per buffer allows the wrapper’s delays to be 

generated to be longer than the worst-case setup time or execution time for the memory 

component.  

To follow the MTNCL pipeline, these delays are introduced to the inverse of the sleep 

signal that would normally control the MTNCL logic for this pipeline stage. This way, when the 

pipeline stage containing the SRAM or ROM is unslept, the input values to the SRAM or ROM 

are ready and after the setup delay, the inverted sleep signal enables the memory. Then after the 

remaining delay for the worst-case execution time for the SRAM or ROM, the single-rail output 

of the memory is converted into dual rail signals and output to the next pipeline stage. The 

implementation of the SRAM/ROM with the necessary controls is shown in Figure 8. 
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Figure 8: SRAM and ROM Control 
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vector), the bitwidth of the data. Since this unit is responsible for reading in all constant values to 

the chip, it must also be aware of notable exceptions, such as the two constant values in the 

FastGRNN layers, 𝜁 and 𝜈. It would also need to be able to handle possible reductions in the 

weight matrices, such as the block circulant method discussed previously. Instead of creating and 

verifying a generic design of this complexity, the solution chosen was to create an easily 

extendable unit that is generic to only the bitwidth of the data. To that end, the memory write 

unit is an FSM with N+1 states, where N is the total number of data storages in the design. Data 

storages include SRAMs as well as registers storing constants like 𝜁 and 𝜈. Each state except the 

final state handles exactly one data storage. Each state writes a programmable number of values 

to the location it is connected to before transferring control to the next state. The final state acts 

as a start signal, signaling that all the data is loaded, and the circuit can begin computation.  

While it would be possible to make all of this into a generic unit, the primary reason this 

unit was not made generic is due to its nature as the only unit that is external to the layers of the 

RNN. In this design, it is assumed that due to I/O constraints, the overall design cannot afford to 

have an individual set of I/O ports dedicated to each data storage location. If that were the case, 

then a generic Data Loading unit would be extremely simple, and each data storage would be 

allocated a separate Data Loading unit. Under this assumption, this design utilizes a single set of 

I/O ports for all of the constant data to come through (connected to a flash memory unit in 

practice).  

With only a single set of I/O ports for all constant data, there must exist a single design that 

is external to the individual layers able to route the data to the correct data storage locations. In 

addition to that, there are a few exceptions to the rule that this unit is in charge of handling. One 

example is the 𝜁 and 𝜈 variables in the FastGRNN architecture. Each FastGRNN layer requires 
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two additional values not stored in the SRAM, instead being loaded into a register as a constant 

specific to the current set of weights. These values would also come through some external 

interface, so the Data Loading unit is also used for this data. Another example would be the Fully 

Connected Layer, an extra layer sometimes added to the end of an RNN configuration that 

reduces the final output down to a small number of values. In this dissertation, this is a single 

vector-matrix multiplication, with a number of rows in the matrix equal to the number of desired 

outputs. Since some unit must be aware of any exceptions like these, it was decided that the most 

effective solution would be to create an easily extendable FSM, rather than an extremely 

complex fully generic unit that may not be able to adapt to all exceptions.  

3.4 Case Study – Four Layer FastGRNN 

To demonstrate the Quick Put-Together methodology, an RNN configuration was selected, 

designed, and implemented as an MTNCL ASIC. The chosen configuration was a four-layer 

RNN, where each layer utilized the FastGRNN architecture. Each layer is defined with a hidden 

vector size of 128 values, and the input size of the initial layer is 1 value while the rest utilized 

the 128-value provided from the hidden state of the preceding layer. The data was represented as 

16-bit fixed-point values. 

As discussed earlier, one of the key points of the FastGRNN algorithm is that the weight 

matrices are shared between the two gates, with only biases and non-linearity being different. 

The architecture for each layer is identical, with only the initial layer differing in regard to the 

size of the weight matrices and number of values used in the vector-matrix multiplication. Figure 

9 shows the architecture for the FastGRNN gate and Figure 10 shows the architecture for the 

layers. Figure 9 represents a FastGRNN gate, where a standard gate in LSTM or GRU 



33 
 

architectures would contain only one of the non-linear units (σ or tanh) as well as only one of the 

adder and Vector Un-Spooling units responsible for the biases. 

 

Figure 9: FastGRNN Gate Architecture 

 

Figure 10: FastGRNN Layer Architecture  
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The main Vector Un-Spooling unit, shown at the far left of Figure 10 takes in 129 16-bit 

values in the initial layer, and 256 16-bit values in the other layers, corresponding to the sum of 

the sizes of the input vector (1 for the initial layer and 128 for the others) and hidden vectors 

(128 for all). The Multiply-Accumulate unit computes 128 16-bit results, performing 129 

multiplications per result in the initial layer and 256 multiplications per result in the other layers. 

The following element-wise units operate on each of the 128 resulting values one at a time, with 

the final result being the new hidden state which is loaded one value at a time into the Vector 

Spooling register.  

The hidden state of each layer is then used as the input of the next layer, shown in Figure 

11. The output of the final layer is used as the input to a fully connected layer, which computes a 

vector-matrix multiplication against a matrix with two rows, producing two final results. This 

result is only calculated after a set number of input values have been operated on, determined as 

part of the size of the input vector. In this implementation, the input vector is specified as a set of 

256 1-value vectors. This means that all four layers will compute a new hidden state 256 times 

before a final output is computed by the fully connected layer, at which time all the hidden states 

are reset to their initial values.  

 

Figure 11: Case Study Top Level Architecture  
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4 Reconfigurable RNN Research Work 

The second contribution of this dissertation is the development of a flow for the design 

and implementation of reconfigurable gated RNNs, which can take the place of a wide variety of 

gated RNN configurations in a single ASIC. This offers a middle ground solution between fully 

application-specific and fully reconfigurable solutions. 

4.1 Reconfigurable RNN Design 

The development of the reconfigurable RNN design makes use of the architectural 

analysis discussed in Section 3.2. The reconfigurable components significantly resemble the 

generic components discussed in Section 3, therefore many of the reconfigurable components 

will be discussed from the perspective of altering their related generic counterparts. The 

reconfigurable RNN is implemented as a single RNN layer that can be used sequentially to 

implement multi-layer networks. This results in the primary work for this design consisting of 

two parts: Reconfigurable Layer and Layer Wrapper. First, the development of the 

Reconfigurable Layer is completed by implementing a set of reconfigurable components. 

Second, the Reconfigurable Layer is supported by designing an external Layer Wrapper for the 

Reconfigurable Layer, adding components that support the Reconfigurable Layer by maintaining 

the hidden states of the RNN layers not currently being computed by the Reconfigurable Layer, 

as well as performing any conversions that may need to occur between RNN layers.  

It is important to note the distinction between the Reconfigurable Layer and the RNN 

layers. The Reconfigurable Layer refers to the set of physical components designed to compute 

the result of an arbitrary RNN layer, while the RNN layers refer to the set of layers in the chosen 

RNN configuration. For example, an RNN configuration could have 4 RNN layers, which will 

all be computed individually by the single Reconfigurable Layer. 
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To design an ASIC that is reconfigurable, the specification of what variables need to be 

implemented in a reconfigurable manner is critical. Table 6 lists each parameter and the set of 

possible values for each parameter. 

Table 6: Reconfigurable Variables 
Parameter Value Set 

Layer Architecture {GRU, FastGRNN} 
Number of Layers 2-4 

Hidden Vector Size {64, 128} 
Input Vector Width {1,64,128} 

Number of Input Vectors 2-256 
Data Representation {16-bit fixed-point, 8-bit floating-point} 

 

4.2 Reconfigurable Unit Adaptations 

The ten units listed for the Quick Put-Together methodology are still needed, but these 

units need to be designed to be reconfigurable to the same variables that needed to be generic in 

the QPT method. The four element-wise units: adder, subtractor, multiplier, and non-linear unit 

are only sensitive with respect to the data representation. In order to facilitate a variety of data 

representations, there are two options. The optimal solution would be to create fully 

reconfigurable units which can facilitate any data representation. This would come with greatly 

increased complexity for each of the units, a long design time, and significant on-chip overhead. 

For the purposes of this dissertation, there are only two possible data representations: 16-bit 

fixed-point and 8-bit floating-point. With only two representations, it was decided that the 

overhead of implementing these units by using separate computation units for each 

representation and multiplexing the output would be the optimal solution, while reconfigurable 

designs covering more representations may want to pursue the fully reconfigurable unit path for 

these units. Figure 12 shows the reconfigurable addition unit, as an example of how these four 

units were implemented. 
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Figure 12: Reconfigurable Adder Architecture  
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values as either 64 or 128. The unit must be able to hold 128 values for the worst case, so 

exposing all of the bits specifying how many values to accumulate would result in an additional 

7 control pins on each Vector Spooling unit, where in reality this implementation only requires a 

single bit to specify between 64 and 128. Figure 13 shows the architecture for the reconfigurable 

Vector Spooling unit. The primary changes from the generic version are that the Maximum 

Count value for the Self-Resetting Counter has been changed to an input to the design, along 

with the new input for the Hidden State Size that controls how many values the unit will store 

before outputting the vector. 

 

Figure 13: Reconfigurable Vector Spooling Architecture  
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and producing the amount of values in the set {64, 65, 128, 129, 192, 256}. The worst-case 

value, 256, would require an additional 8 control pins on each vector un-spooling unit, but since 

there are only six possible values, only three control pins are needed to cover the set of possible 

values. The unit must also have the ability to produce that number of values either 64 or 128 

times depending on the size of the hidden state vector. As was the case with the Vector Spooling 

unit, this adds a single additional control pin.. The reconfigurable implementation of the Vector 

Un-Spooling unit is detailed in Figure 14.  

 

Figure 14: Reconfigurable Vector Un-Spooling Architecture  
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For the data storage aspects, there must be SRAMs able to hold all the weights for all the 

layers. To accomplish this, each SRAM in the layer must have a separated memory bank for each 

possible RNN layer, with additional address bits that select which bank is currently in use based 

on the current RNN layer being executed. This causes the SRAM Read unit to have the most 

complex change. The SRAM storage is treated as a concatenation of the two weight matrices into 

a single larger matrix, used to perform the two vector-matrix multiplications and the addition of 

the resulting vectors in a single Multiply-Accumulate operation. This concatenated matrix has a 

number of rows equal to the size of the hidden state (64 or 128 in this system), and a number of 

columns equal to the size of the hidden state plus the size of the input (65, 128, 129, 192, 256). 

This is a very similar selection set to that of the Vector Un-Spooling unit and requires the same 

number of resulting control pins (3). As in the Quick Put-Together design, the SRAM Read unit 

uses the Vector Un-Spooling’s current count as the base address and performs a mapping of the 

count to the block circulant addresses of the SRAM. Figure 15 shows the SRAM storage. 
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Figure 15: Reconfigurable SRAM  
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reconfigurability would be to expose the count for each state as a port, but this leads to a large 

surge in reconfiguration control pins (~6 pins per state on average). However, the Data Loading 

unit runs only at the very beginning of execution and writes to every element of each storage 

location exactly once, it can remain entirely unaffected by the configuration. This comes with a 

tradeoff of longer startup time for smaller configurations (as unneeded locations are written to) 

as well as some additional energy consumption but reduces the size and complexity of this unit 

by a significant margin.  

The I/O for the configuration pins also influenced the decision between these two 

options. In the initial design phase, it was decided that the configuration pins would get 

dedicated I/O pads on chip, to avoid adding additional overhead in the form of another piece of 

I/O logic. With the number of pins that would be required to make the Data Loading unit 

reconfigurable, that decision would no longer have been feasible, and an additional component 

(with no reconfigurable aspects) would have been required to load in the chip’s configuration at 

startup. Overall, it was decided that leaving the Data Loading write unit as non-reconfigurable 

was the suitable choice for this design, while designs with different I/O requirements or stricter 

startup timing and power requirements may wish to opt for the additional logic. 

4.3 Reconfigurable MTNCL Completion Detection 

In order to complete the design of the Reconfigurable Layer, one additional component is 

required; a reconfigurable MTNCL completion detection unit. As discussed in Section 2.1, the 

MTNCL architecture requires completion detection, where every bit of dual-rail output from a 

pipeline stage must reach a DATA value before the stage can return to the NULL state. The 

design is required to be able to perform with different bitwidths (16-bit and 8-bit in particular), 

which presents a problem for the standard MTNCL register/completion detection unit pair. If a 
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16-bit register receives only 8 bits of data, the completion detection unit will not detect that as a 

complete DATA wave. Initially, this was solved by having every data unit fill unused bits with 

zero values, but this added logic to every unit and consumed power transferring unused data. 

Instead, the design requires a Reconfigurable Completion Detection unit.  

The MTNCL Completion Detection unit uses a tree structure using a set of THxor0m gates 

to check each bit in sets of two (with an additional TH12 gate if the number of bits is odd), and 

then using an MTNCL AND tree to check that every bit has reached DATA. For the 

reconfigurable version, the design needs to be able to effectively disable bits from contributing to 

the overall completion detection. This is a case where MTNCL is particularly more useful for 

this case than NCL. In NCL, all inputs to an NCL gate must return to logic 0 before the NCL 

gate can return to logic 0, but that is not true of MTNCL, and due to this, each bit that can be 

disabled of the MTNCL completion detection unit can contribute the result of the Boolean 

equation data1+data0+disabled to the MTNCL AND tree and the overall result will still be 

correct for the bits that are enabled. Additionally, this can be adjusted based on how fine-grained 

the reconfigurable aspect needs to be by performing the OR function with the disable signal at 

higher levels in the and tree. In the case of this design, only two options are needed, 8-bit and 16-

bit. By selecting that the 8 most significant bits of each register is able to be disabled, a single 

additional gate is added to the standard MTNCL completion detection unit, a TH12 gate, which 

takes the result of the most significant 8 bit’s AND tree and the disable signal, and contributes 

that result to the AND tree for the 8 least significant bits. With that, if the register is in 8-bit 

mode, the top 8 bits will always register as complete and only the non-disabled bits will measure 

current completion status, while in 16-bit mode all 16 bits will still contribute to the complete 



44 
 

status. This unit replaces the completion detection unit of every 16-bit register in any component 

in the design. Figure 16 demonstrates the design of this unit. 

 

Figure 16: Reconfigurable MTNCL Completion Detection  
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place of each layer in the configuration. This Reconfigurable Layer is the primary computation 

unit of the design. 

The reconfigurable components discussed in Section 4.2 allow the layer to handle all of the 

reconfigurable variables except for two: the number of layers and the architecture of each layer.  

The primary focus of the Reconfigurable Layer’s design must be able to handle both RNN layer 

architectures, GRU and FastGRNN. Tables 3 and 4 show the equations for each of the 

architectures. The initial implementation, shown in Figure 17, contains all the logic necessary to 

compute either layer, selecting which layer architecture is in use with a multiplexor while the 

other is placed in the sleep state to conserve power.  

 

Figure 17: Reconfigurable Layer – Worst Case 
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included in the design using already existing logic as effectively as possible. Figure 18 shows the 

implementation of the layer with only the GRU architecture.  

 

Figure 18: Reconfigurable Layer – GRU Only 
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by the result of the already present 1 − 𝑧" calculation, and 𝜈 is added to the result of that 

multiplication. Overall, FastGRNN can be included into the GRU layer with only an additional 

multiplier, adder, and two multiplexors. The final layer design is shown in Figure 19.  

 

Figure 19: Reconfigurable Layer – Final 
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convert to the current layer’s data representation if necessary. From these four functions, the 

wrapper’s architecture can be broken down into three components: the Control Register, Hidden 

State Storage, and Input Vector Management. 

First, the Control Register is created from the Vector Un-Spooling Register. This 

component contains a set of layer configuration values for each layer in the design (up to four in 

the case of this design), and outputs each set one at a time in order to set the layer into the current 

state. It also outputs the current count the same way the generic Vector Un-Spooling unit does, 

acting as the address for the currently needed hidden state from the hidden state storage. This 

function is repeated until reset, so the functionality that resets the Vector Un-Spooling Register 

after a set number of complete outputs is disabled in this case.  

The Hidden State Storage is implemented as a set of large registers, one for each possible 

RNN layer. The output of these registers is addressed by the layer counter from the Control 

Register, and whichever register’s output is used also receives the next output of the layer. 

Finally, the input vector origin needs to be selected and in some cases converted between 

possible numeric representations.  

The Input Vector Management unit receives the output of the layer and that layer’s data 

representation information. When the next layer’s control bits are output from the control 

register, the Input Vector Manager checks if the next layer to be computed is the initial layer. If 

so, the Input Vector Manager takes the input from the input vector ports on the chip. Otherwise, 

the Input Vector Manager compares the data representation from the previous layer and the new 

layer and determines if conversion is necessary, performing the conversion computation if 

needed. This conversion unit is only necessary if it is allowed for a configuration to differ in the 

data representation aspect, such that every layer of the RNN network is not required to have the 
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same data representation. If so, this computation is set at an architectural level, and must be 

created specifically for the data representation conversions specified.  

As the name implies, the Reconfigurable Layer is completely encased within the Layer 

Wrapper, with all of the Reconfigurable Layer’s inputs and outputs controlled by the Layer 

Wrapper. With both of these units designed, the final architecture of the Reconfigurable RNN is 

shown in Figure 20.  

 

Figure 20: Complete Reconfigurable Design 
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5 Results and Analysis 

The designs discussed in Sections 3.4 and 4.4 were both implemented into the TSMC 

65nm bulk CMOS process. 

5.1 Quick Put-Together RNN Results 

The Quick Put-Together case study was implemented onto a 3mm × 2.9mm integrated 

circuit. Figure 21 shows the full chip layout. The design is currently under fabrication at TSMC.  

 

Figure 21: Quick Put-Together Physical Layout 

The primary objective of the Quick Put-Together methodology was to show that with an 



51 
 

in-depth analysis of RNN architectures, a set of generic and extensible designs would allow for 

an asynchronous low power ASIC implementation to be completed in a short period of time. The 

logic design for this chip was performed twice, separately by two individuals whose experience 

with the methodology differed greatly. Individual 1 was the same individual that performed the 

RNN architecture analysis and implemented almost all of the generic designs, as well as having a 

previous experience implementing an LSTM ASIC. Individual 2 had no prior experience 

implementing RNNs and helped implement only a few of the generic designs. This disparity 

allows the results of the implementations to show an approximate range of the amount of labor 

that can be expected from future implementations following this methodology. Individual 1 

completed the logic design and verification in 30 hours of labor, while individual 2 required 123 

hours of labor. While this is a fairly wide range, the maximum value of 123 hours to complete a 

logical implementation of this size and complexity is quite fast, and with additional experience 

the number of hours for implementation drops up to 75.6%. The physical design was performed 

only once, as the time improvement for this methodology comes primarily from the reduction in 

the verification time that would be required for synchronous times to verify timing requirements. 

The physical design took 82 hours of labor, putting the total labor to complete an entire 

asynchronous ASIC implementation to between 112 and 155 hours of labor in total. Preliminary 

power and speed data were gathered by performing transistor level simulations which showed 

the following results. The design required 97.7 ms to complete a full characterization, utilizing 

10.1 mJ of active energy on average. When idle, the design utilizes 1.30 mW of standby power.  

The speed of the design is primarily limited by the vector-matrix multiplication. The non-

input layers each compute 32,768 Multiply-Accumulate functions to complete a single hidden 

state vector (input layer performs 16,512), and this must be performed 256 times to get a single 
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output. Overall, the speed is not extremely slow compared to the size of the calculation to be 

performed and can easily be improved significantly by adding parallelism to the Multiply-

Accumulation at the cost of increased power utilization. 

5.2 Reconfigurable RNN Results 

The Reconfigurable RNN case study was implemented onto a 3mm × 3.9mm integrated 

circuit. Figure 22 shows the full chip layout. The design is currently under fabrication at TSMC.  

 

Figure 22: Reconfigurable Physical Layout 
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The primary objective of the Reconfigurable RNN methodology was to utilize 

asynchronous MTNCL design methods to implement a wide array of gated RNN configurations 

in a single ASIC, to demonstrate the feasibility of incorporating reconfigurable ASIC 

implementations of machine learning algorithms into designs with power, cost, and security 

requirements that would not allow for fully reconfigurable solutions such as FPGAs. The chosen 

design covers thousands of possible gated RNN configurations in a single ASIC. Preliminary 

power and speed data were gathered by performing transistor level simulations which showed 

the following results. The design consumes 1.89 mW of idle power, but the time and energy for a 

complete characterization vary widely by configuration. The worst case, a 4-layer network with 

GRU layers and 16-bit data and 256 input vectors consumed 30.3 mJ of active energy on average 

while requiring 262.0 ms to complete a full characterization. The best-case results would be for a 

2-layer network with both layers using the FastGRNN architecture, 8-bit data, and only 2 input 

vectors. This configuration consumed 10.5 µJ of active energy on average and required 15.5 ms 

to complete a full characterization.  

A large portion of the time required, particularly for the best case, is consumed by the 

weight data loading process. This is primarily due to the external flash memory chosen to be 

used in conjunction with this design runs at 50 MHz and loads one bit of data per cycle, causing 

the data loading interface to be the slowest aspect of the design, consuming 14.5 ms and 9.75 µJ 

on average at the startup of any configuration. Additionally, since the design uses the single 

Reconfigurable Layer to compute each layer, the worst-case version has the Reconfigurable 

Layer perform a full execution 1024 times. Having multiple layers or increasing in-layer 

parallelism would significantly reduce the execution time, especially for larger networks. A large 

portion of the energy consumption, as well as the overall area, comes from the data storage. The 
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hidden state storages for all the layers requires 1 KB of storage for the worst case, and other 

large registers, such as the vector spooling and un-spooling registers continue to compound the 

large number of registers needed. Even after the block circulant method for reducing the weight 

matrix size, the input layer requires three sets of 4.25 KBs SRAM, and the three possible non-

input layers each require three sets of 8 KBs SRAM, for a total SRAM storage of 84.75 KBs of 

SRAM. Moving the weight storage into some off-chip interface that is faster than the flash 

chosen for this application would significantly reduce the power and area of the chip itself, as 

well as almost completely eliminating the setup time required before the network can begin 

computation. While this solution simply moves the burden of the area and power to some 

arbitrary off chip component, this would also eliminate a significant amount of complexity from 

the overall application, as the chip would no longer require the Data Loading component or the 

SRAM Reading component, instead just requiring some off-chip unit send data to the chip in a 

predefined order. 
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6 Conclusion and Future Work 

In conclusion, this dissertation work focuses on developing two methodologies for 

improving the feasibility of the design and implementation of neural network applications as 

ASICs, utilizing RNNs to demonstrate the methodologies. The first methodology demonstrates a 

method for analyzing and implementing RNNs with asynchronous generic components to reduce 

non-recurring engineering cost of ASIC development and the time-to-market for similar designs. 

The second methodology shows the development for a reconfigurable RNN architecture, 

demonstrating the feasibility of reconfigurable ASICs as a middle ground between fully 

application specific ICs and fully reconfigurable solutions for neural network applications.  

Analysis of several architectures of RNN was performed, and the result of the analysis is 

used to develop a set of generic components to cover a wide array of possible RNN architectures 

and configurations. The analysis of these architectures was also used to develop an architecture 

of a single RNN layer and supporting logic to implement a single asynchronous ASIC that can be 

reconfigured to a wide variety of RNN configurations.  The Quick Put-Together methodology is 

used to complete a tape-out in the TSMC 65nm bulk CMOS process to show the effectiveness of 

the methodology in reducing time spent on design and implementation after completing the 

architecture analysis and generic component implementation. A full tape-out was also completed 

for the Reconfigurable architecture, also in the TSMC 65nm bulk CMOS process.  

Future work in the Quick Put-Together methodology should include adding additional 

architectures to the set of generic components, as well as an analysis of the costs and benefits of 

making the generic components less fine-grained, such as a complete layer that is generic to all 

the aspects relevant to the layer. Future work for the Reconfigurable methodology should focus 

on the costs and benefits to making the non-reconfigurable units in this design fully 
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reconfigurable, such as arithmetic units that are reconfigurable to a wide array of data 

representations. Due to the high computation costs and large data sets of RNNs, there is a very 

large number of ways to tune the power, area, and speed to the application in question, opening a 

significant amount of work to be done to understand the best way to handle these architectures in 

ASIC implementations, but this dissertation has contributed significant work to the wider usage 

of ASIC neural networks more easily and in a wider array of applications.  
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