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Abstract

Breast conserving surgery (BCS) is a common breast cancer treatment option, in which the can-

cerous tissue is excised while leaving most of the healthy breast tissue intact. The lack of in-situ

margin evaluation unfortunately results in a re-excision rate of 20-30% for this type of procedure.

This study aims to design statistical and machine learning segmentation algorithms for the detec-

tion of breast cancer in BCS by using terahertz (THz) imaging. Given the material characterization

properties of the non-ionizing radiation in the THz range, we intend to employ the responses from

the THz system to identify healthy and cancerous breast tissue in BCS samples. In particular,

this dissertation covers the description of four segmentation algorithms for the detection of breast

cancer in THz imaging. We first explore the performance of one-dimensional (1D) Gaussian mix-

ture and t-mixture models with Markov chain Monte Carlo (MCMC). Second, we propose a novel

low-dimension ordered orthogonal projection (LOOP) algorithm for the dimension reduction of

the THz information through a modified Gram-Schmidt process. Once the key features within the

THz waveform have been detected by LOOP, the segmentation algorithm employs a multivariate

Gaussian mixture model with MCMC and expectation maximization (EM). Third, we explore the

spatial information of each pixel within the THz image through a Markov random field (MRF)

approach. Finally, we introduce a supervised multinomial probit regression algorithm with poly-

nomial and kernel data representations. For evaluation purposes, this study makes use of fresh and

formalin-fixed paraffin-embedded (FFPE) heterogeneous human and mice tissue models for the

quantitative assessment of the segmentation performance in terms of receiver operating character-

istics (ROC) curves. Overall, the experimental results demonstrate that the proposed approaches

represent a promising technique for tissue segmentation within THz images of freshly excised

breast cancer samples.
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Chapter 1

Introduction

1.1. Motivation

Breast cancer corresponds to one of the most commonly diagnosed types of cancer with a higher

incidence rate in women. According to [1], the U.S. estimates 284,200 new breast cancer cases

in 2021, with 99.07% of them targeting women. Among different treatment options for this dis-

ease, breast-conserving surgery (BCS) represents a suitable procedure for early stage breast cancer

patients, which is far less invasive than mastectomies.

BCS consists on excising the cancerous tissue from the breast surrounded by a small margin

of healthy tissue, therefore leaving most of the non-cancerous tissue intact. Against common

beliefs, extensive research has proven that BCS followed by radiation is as effective as mastectomy

procedures, particularly for early stage breast cancer. Within the benefits of BCS we can mention:

shorter recovery time, better aesthetics results, and fewer surgery complications. Despite these

facts, a significant amount of BCS candidates choose mastectomies as part of their cancer treatment

due to fear of cancer re-incidence and undergoing further medical procedures [2].

Considering that the chances of re-excision surgeries are associated with leaving cancerous

tissue behind, the accurate detection of breast cancer cells in the operating room is a key missing

component in BCS. To perform this detection in the state of art, surgeons send the excised tissue

to a pathologist to verify the presence of negative margins in the sample, which confirms the suc-

cessful extraction of the malign tissue. Although this procedure is effective, its main disadvantage

is the long waiting time for the processing of the tissue, which takes around 10-15 days to be com-

pleted. As a consequence, BCS has a higher rate of re-excision surgeries due to positive margins

after the pathology analysis, which varies from 20-30% in the literature [3]. Therefore, to decrease

these re-excision rates, it is necessary to develop a breast cancer detection imaging benchmark for

BCS that can be performed in the operating room.
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1.2. Literature Review

Terahertz (THz) imaging is a non-ionizing radiation technique that has obtained potential char-

acterization results for materials identification in different applications such as agriculture [4–6],

concealed object detection [7–9], radar design [10–12], and biomedical imaging [13–28]. Within

the latest, numerous studies have demonstrated the capacity of THz imaging for the detection of

cancer due to the water’s strong absorption properties in the THz frequency range [18–21, 29].

Since the water content and tissue density correspond to the key features for the detection of can-

cer, THz imaging is a strong candidate for the region segmentation of tumor samples in these

applications [22]. Despite its potential, THz image segmentation approaches are still in an early

stage of research and their detection rates vary across studies. Considering that doctors at the Uni-

versity of Massachusetts Medical School suggested cancer detection rates of no less than 90% [30],

it is necessary to design a segmentation algorithm that complies with this requirement in order to

establish a reliable clinical benchmark for THz imaging.

The literature presents a diverse array of segmentation approaches that rely on unsupervised

and supervised learning methods. The selection of the learning technique is based in terms of

the dataset size, ground truth availability, and prior knowledge on the application. For instance,

unsupervised learning performs inference on the structure of the dataset without prior knowledge

of its parameters distributions or ground truth. Therefore, unsupervised approaches are suitable

for initial exploratory testing on the datasets. Alternatively, supervised learning techniques use

part of the ground truth information to train their segmentation models. By performing this task,

these models capture fundamental links among the THz data per pixel and their corresponding

tissue regions, which are later used for discrimination purposes. Although supervised learning

models have gained popularity for segmentation and classification problems, the requirement of

large datasets, its complexity definition, and the bias-variance trade-off correspond to some of the

obstacles for its complete adoption [31]. Therefore, this section introduces some commonly used

segmentation techniques based on both unsupervised and supervised learning, and their results in

2



THz image segmentation.

Before introducing the details of existing segmentation algorithms, it is necessary to discuss

the implementation of feature selection techniques and their impact on the performance of the seg-

mentation process. According to Hughes phenomenon, the complexity of the segmentation process

increases with the dimension size of the input information [32]. This means that while a high-

dimensional input dataset provides plenty useful information, its dimension can negatively impact

the performance of the segmentation algorithm. In contrast, a relatively small-dimensional input

dataset will not provide enough data for the segmentation algorithm to work correctly. Hence, it is

necessary to minimize the dimension size of the input data while minimizing the loss of informa-

tion, such that the segmentation process can potentially obtain it’s optimal performance. In THz

research, some few studies rely on the utilization of physical characteristics within the reflected

THz waveform, such as time-domain peak value [4, 5, 13], absorption coefficient, and refractive

index [33]. Although the selection of single-feature characteristics minimizes the complexity of

the segmentation process, the information captured within the THz waveform per pixel is not fully

exploited. Alternatively, it is possible to automatically identify the fundamental features within

the THz waveform through dimension reduction approaches, such as principal component analy-

sis (PCA) [6, 19, 34, 35], partial least-squares discriminant analysis (PLS-DA) [36], non-negative

matrix factorization (NMF) [35], and independent component analysis (ICA) [37]. Overall, the

adoption of dimension reduction approaches can significantly reduce the impact of the curse of

dimensionality while efficiently employing the key intrinsic features in the THz waveform per

pixel.

Among unsupervised learning techniques, naive k-means is one of the most frequently used

segmentation algorithms in THz imaging research. K-means is a hard clustering technique that

utilizes the distance among each observation and k centroids to segment the data. Hence, this al-

gorithm aims to minimize the squared error metric, which corresponds to the Eucledian distances

between the observations assigned to a given cluster and its corresponding centroid [38]. Despite

its simplicity, k-means is a non-deterministic polynomial-time (NP) hard problem and it is solved
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heuristically. THz studies such as [18, 24] and [39] have utilized this technique for the segmen-

tation of liver tumors and moth wings, respectively. These studies have shown that k-means is

easy to implement, guarantees convergence, and can scale for large datasets. Unfortunately, its

dependency on the initialization setup, the curse of dimensionality, and its hard-clustering results

correspond to this method’s major disadvantages. To address these problems, [39] presents a mod-

ified k-means clustering technique based on simple random sampling and feature weighting, which

achieved promising detection rates in THz imaging of moth wings. Alternatively, fuzzy c-means

(FCM) clustering introduces a membership weight parameter to the k-means segmentation prob-

lem, which results in a soft clustering classification approach. Since observations can belong to

more than one cluster, this method outperforms k-means because it allows clusters to overlap.

FCM segmentation has been tested on THz datasets in [18, 23, 24]. For instance, [23] implements

a hybrid segmentation method for brain tumor detection in rats that consists in four stages: im-

age denoising, FCM clustering, smooth contouring, and edge detection. This hybrid FCM method

reported sensitivity and specificity rates of 84.5% and 97.7%, respectively, in a rat brain tumor

sample.

On the other hand, supervised learning techniques have received acclaim for their outstanding

performance in clustering and segmentation tasks. Within THz imaging research, methods such as

support vector machine (SVM) [4, 6, 19, 25, 35, 36], region growing [40], support vector regres-

sion (SVR) [34, 41], k-nearest neighbors (KNN) [4, 19, 25, 35], and random forest (RF) [6, 25, 36]

correspond to the most commonly used supervised learning algorithms. Among these methods,

SVM aims to estimate the optimal discriminating hyperplane for a given training set, which can be

implemented as a soft or hard clustering technique. Alternatively, KNN classifies a new observa-

tion by considering the labels of its k-nearest neighbors among the training dataset, where the final

label is chosen by following a voting process. Finally, RF utilizes a decision tree approach based on

bootstrapping theory, where testing observations are classified by popular vote among its decision

trees. The study presented in [25] compared the performance of these three methods for the detec-

tion of traumatic brain injury in fresh rat samples. According to this work, KNN presented the best
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precision results among the tested classifiers with rates of 87.5%, followed by RF with 84.2%, and

SVM with 75%. The training and testing stages are handled by the leave-one-out cross validation

(LOOCV) method and their classification results are presented as receiver operating characteristic

(ROC) curves.

Within the supervised learning regimen, deep learning corresponds to a subset of techniques

that implement hierarchical artificial neural networks (NN) for detection and estimation purposes.

Inspired by the operation of neurons in the human brain, NN consist on a series of artificial neurons

arranged in layers, such that each individual layer performs a simple task that collectively leads to a

final complex discrimination result at the output of the network. The network architecture consists

on an input layer, a fixed number of hidden layers, an output layer, and the connectors with their

respective weights. Although the weights of the connectors are determined during the training

phase, other aspects of the network should be established a priori, such as the number of hidden

layers, and the activation function per layer. Therefore, these parameters are estimated using cross-

validation approaches, which require extensive dataset availability. In THz research, [5, 7, 8] tested

the performance of convolutional neural networks (CNN) for the detection of impurities in wheat,

and concealed objects. According to [5], CNN has shown promising results for feature extraction

while simplifying the data pre-processing procedure. Moreover, experimental results in different

kinds of wheat samples showed that the testing accuracy reached a maximum of 97.83% for this

discriminating method. Similarly, [6] developed a probabilistic NN (PNN) for the detection of

liver cancer in THz imaging. Their proposed approach corresponds to a feed forward NN based

on Bayesian theory by using a Gaussian kernel as the activation function. In this application, PNN

achieved a maximum accuracy rate of 99.81% for the overall detection of the tumor. Considering

both studies, NN is a potential candidate for the segmentation of THz images, but the need for

large training datasets represents a major disadvantage for some applications.

In breast cancer research, the tissue collection process corresponds to an important aspect for

the margin assessment of BCS samples. To establish a on-site clinical benchmark for THz imag-

ing, it is necessary to quantitatively prove the accuracy of this technology by utilizing alternative
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models that closely resembles the BCS human samples. Several THz studies have employed an as-

sortment of tissue models, such as xenograft mice [13, 42], transgenic mice [14], Sprague-Dawley

rats [15], phantom tissue [16], and human samples [17, 43]. It is important to clarify that the fresh

human tissue utilized in THz research most commonly come from mastectomies and breast reduc-

tion surgeries, which are imaged within 24 hours of excision. Additionally, THz studies employ

homogeneous and heterogeneous samples from these models, that can be imaged fresh or after

dehydration. While some studies utilize homogeneous formalin-fixed paraffin-embedded (FFPE)

BCS samples [19], the work presented in this dissertation focuses on heterogeneous fresh xenograft

mice and human samples [43–45]. The utilization of these models represents an advantage due to

the presence of different regions in the same sample, such cancer, fibro, collagen, fat, and others,

which corresponds to a close representation of an actual BCS sample.

Overall, the literature presents an assortment of THz image segmentation approaches with per-

formances that vary significantly across studies. These segmentation algorithms use unsupervised

and supervised learning techniques depending on the size of the dataset, the ground truth avail-

ability, and the complexity of the segmentation task. Although further research in THz imaging

segmentation is necessary, the presented studies unanimously prove the potential of THz imaging

for material characterization, including breast cancer detection. Moreover, it is necessary to im-

prove the image segmentation models to achieve the detection rates requirement for a BCS imaging

benchmark based on THz technology.

1.3. Objectives

The aim of this dissertation is to implement novel image segmentation algorithms for the detection

of breast cancer in BCS through THz imaging. The study objectives of each proposed algorithm

are described below.

First, a one-dimensional Bayesian learning algorithm is implemented for the region segmenta-

tion in THz images of murine breast cancer samples. Considering that the prior knowledge of the

dataset distribution is limited, we intend to analyze the performance of Gaussian and t-distributed
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mixture models within an unsupervised Markov chain Monte Carlo (MCMC) estimation frame-

work. Additionally, we examine the performance of this single-feature classifier by utilizing the

power spectra and the amplitude peak of the THz waveform per pixel for fresh and FFPE tissue,

respectively.

Second, a dimension reduction algorithm is developed to extract the most relevant intrinsic

features within the THz waveform per pixel. For this purpose, the proposed algorithm implements

a modified Gram-Schmidt process to estimate the orthonormal basis of these key features. Once

this estimation process is completed, the features per pixel are obtained by projecting their THz

waveforms into the subspace spanned by the orthonomal basis. In addition, a new Bayesian clas-

sifier is introduced, which employs a multivariate GMM approach with MCMC and EM. Overall,

the performance of these and alternative algorithms are compared in fresh and FFPE human breast

cancer samples.

Third, the spatial information per pixel is incorporated into the segmentation models. Consid-

ering that the reflected waveform per pixel is collected from an specific location in the sample, the

correlation among neighboring pixels is higher when compared to those positioned at distant loca-

tions. Therefore, we aim to exploit the spatial information per pixel to account for this correlation

in our previously implemented segmentation models through a Markov random field approach.

Finally, a supervised probit regression model is introduced for the region segmentation in THz

images of freshly excised murine breast cancer tumors. The proposed algorithm considers two

main aspects within this research project: the limited amount of samples available for training

purposes, and the definition of the ground truth information due to tissue deformation during the

pathology process. By using a probit regression approach with polynomial and kernel data repre-

sentations, we reduce the number of estimation parameters, which decreases the amount of training

observations that are required for convergence. Moreover, the proposed algorithm implements a

novel reliability-based training selection process trough an unsupervised expectation maximization

(EM) clustering approach.
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1.4. Dissertation Outline

The rest of this dissertation is organized as follows:

Chapter 2: This chapter studies the implementation of Bayesian classifiers for the detection of

breast cancer in murine samples. For this purpose, two different mixture models are adopted based

on Gaussian and t-probability distributions. The proposed algorithms utilize a one-dimensional

(1D) discriminating feature, such as the spectral power and the time-domain peak amplitude for

fresh and FFPE tissue, respectively. Additionally, the parameter estimation process is performed

through an unsupervised MCMC process. The performance of both algorithms is analyzed in

murine samples with two and three regions.

Chapter 3: This chapter introduces a novel dimension reduction algorithm based on the estima-

tion of orthonormal key features from a given THz dataset. Such algorithm implements a modified

Gram-Schmidt process for the definition of its orthonormal basis, which contains the most relevant

information within the THz pulses. By using this basis, the algorithm proceeds to project the THz

waveform per pixel into the orthonormal basis to obtain their lower-dimensional representation.

This chapter analyzes the performance of this dimension-reduction method for the segmentation

of THz images through a Gaussian mixture model. Unlike chapter 2, the proposed classifier uti-

lizes the magnitude and complex frequency-domain representation of the THz information, and

its parameter estimation process is performed through unsupervised MCMC and EM algorithms.

Finally, this chapter compares the performance of the proposed classifier with respect to alternative

approaches, such as k-means, SVM, and PCA, in fresh and FFPE human breast cancer samples.

Additionally, this chapter builds on the algorithm presented in [43] by introducing the analysis

of the neighborhood information within the probabilistic model definition. Based on the assump-

tion that neighboring pixels have a higher probability to belong to the same region, the proposed

algorithm aims to exploit the pixel location information through a Markov random field (MRF)

framework. Hence, the overall segmentation process introduces a Gibbs prior to the region labels

into the GMM classifier with EM. The performance of the proposed algorithm is then compared
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with respect to the 1D MCMC classifier in fresh human breast cancer samples.

Chapter 4: This chapter analyzes the performance of supervised learning algorithms for breast

cancer detection in THz images of fresh murine samples. For this purpose, we propose the imple-

mentation of probit regression-based segmentation approaches with two non-linear models, such

as polynomial and kernel data representations. A key aspect of this approach consists on the small

number of estimation parameters involved in these processes, which results on a small training

set size. It is important to consider that the ground truth information utilized during the training

process is collected from the histopathology analysis of the samples after dehydration, while the

final evaluation of the segmentation algorithm is observed within the THz data collected when the

tissue was still fresh. Hence, the proposed methodology presents a training selection algorithm

that evaluates the reliability of the training observations by using an unsupervised EM approach.

Chapter 5: This chapter introduces the conclusion remarks and major contributions of this

work. Additionally, a list of potential research subjects is presented in this chapter for future

consideration.
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Chapter 2

Unsupervised Bayesian Learning for Cancer Detection with Terahertz Imaging

2.1. Abstract

This chapter develops unsupervised Bayesian learning algorithms for breast cancer detection in

Terahertz (THz) imaging of freshly excised murine tumors. Unlike most existing works with

deterministic detection methods, we adopt a probabilistic learning approach that can iteratively

calculate the probability each pixel in a THz image belonging to different types of tissues, such

as cancer, fat, muscle, fibrous tissue, etc. Such a probabilistic approach produces important re-

liability information about the detection results that are not available in conventional methods.

Specifically, under a Bayesian framework, a finite mixture model is used to represent the probabil-

ity distributions of the intensities of pixels in the THz image, with each component in the mixture

model corresponding to one tissue type. The prevalence of a specific type of tissue in a pixel can

be represented through the weights of corresponding component to be learned through the data,

without the need of labeled training data. Two different mixture models, Gaussian mixture and

t-mixture models, are employed in the analysis. The empirical posterior distributions of param-

eters from both models are estimated by using a Markov chain Monte Carlo (MCMC) technique

with Gibbs sampling. The performance of the algorithms is evaluated by comparing the detection

results to their corresponding pathology results, and experiment results demonstrate the proposed

algorithm can classify different tissue types with high accuracy. Overall, THz imaging shows good

qualitative comparison to pathology.

2.2. Introduction

Breast cancer is the second most commonly diagnosed type of cancer and it has the second highest

cancer death rate for women in the United States [1]. When breast cancer is detected in its early

stage, breast-conserving surgery is a feasible treatment option in which the breast cancer tumors
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are excised entirely while leaving as much healthy breast tissue as possible. For this procedure to

be successful, it is necessary to accurately distinguish between healthy and cancer tissues. This

motivates us to develop new and efficient cancer detection technologies by using THz imaging

of freshly excised tissues, which can be performed in the operation room to assess the operation

results and avoid multiple surgeries days later.

The potential of THz imaging for breast cancer detection has been studied for both freshly ex-

cised tissue and formalin-fixed, paraffin-embedded (FFPE) tissue using time and frequency domain

techniques to distinguish between cancer and healthy regions within the tumor [2–6]. Some means

of observing contrast in THz imaging include the peak-to-peak ratio of the THz pulse [7], obtain-

ing a multispectral integration of the Fourier transform [2], or calculating optical properties from

the reflected signal [4]. Recently there has been growing interest in applying machine learning and

statistical learning methods for cancer tissue detection with THz imaging, such as support vec-

tor machine (SVM) [8–10], principal component analysis (PCA) [8], decision tree analysis [9, 10],

and neural network analysis (NNA) [9, 10]. The results in [8] demonstrated that the combination of

data reduction with PCA and classification with SVM can achieve accurate cancer detection. The

performance of SVM, decision trees, and NNA was compared for the detection of colon cancer [9]

and gastric cancer [10]. According to the experimental results in [9], the application of NNA and

PCA procedures for the THz classification achieved the best outcome to distinguish normal from

abnormal (pre-cancerous and cancer) tissue, while the decision tree technique achieved the best

classification for normal and pre-cancerous tissue. The results in [10] highlight that, when there

is sufficient amount of training data, NNA can effectively classify normal and abnormal tissues in

THz imaging of gastric cancer tumors.

All above works were based on supervised learning, where an extensive amount of training

is required before the detection. However, different tumors might have different mixtures of can-

cer, fat, muscle, fibrous tissue, etc; thus the training results obtained from one group of tissue

samples might not work well on other tissue samples. In addition, most existing works assume a

deterministic detection approach, which treats each pixel in the THz image as coming exclusively
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from either cancer or normal tissue, while in reality the signal on a THz image pixel might contain

contribution from a mixture of different types of tissues due to the heterogeneity of breast tumors.

We propose to address the above problems by developing an unsupervised Bayesian learning

framework with finite mixture models, which can identify, learn, and adapt to the properties of

different types of tissues without requiring a training phase. Finite mixture analysis is a robust

technique for statistical data modeling and has been widely applied on image processing routines

such as image segmentation [11] and image reconstruction [12]. This modeling tool assumes

that each element within the data follows a certain probability distribution from a set of possible

distributions, and it infers the parameters of these distributions to finally cluster the elements in

the data [13]. Mixture analysis has been previously applied in unsupervised spectral unmixing for

hyperspectral analysis to estimate the endmembers and their corresponding abundance [14, 15].

Both [14, 15] adopt a Bayesian framework in which the posterior distribution of their parameters is

computed through a Markov chain Monte Carlo [16] algorithm with Gibbs sampling. Alternative

applications of mixture analysis in THz imaging classification has been documented in [17] for

successful object identification (e.g. hazardous object scanning at airports) through temperature

estimation.

The objective of this chapter is to develop unsupervised Bayesian learning algorithms that can

detect different regions within a frehsly excised murine breast cancer tumor using its THz image,

without the need of a training phase. A finite mixture model is used to represent the statistical

distributions of the intensities of pixels, with each component in the mixture model corresponding

to one tissue type. The mixture model will be implemented here on the images of freshly excised

murine tumors [14, 15]. The proposed algorithms are probabilistic in nature, in that they will

calculate the probability that each pixel in the THz image belonging to different tissue types. Such

a probabilistic approach can quantify the uncertainty regarding the detection results that is not

available in the deterministic approaches.

Adopting a Bayesian framework, the proposed algorithms are developed by following the

MCMC scheme [16] with Gibbs sampling [18] and [19]. Two different mixture models, Gaus-
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sian mixture model and t-mixture model, are studied in this chapter. The results of both models

are evaluated in fresh and FFPE tissues of murine tumors using a pixel-by-pixel comparison with

their corresponding pathology images. Following some of the authors’ previous work in [3, 4],

where the accuracy of the tissue classification was assessed qualitatively, this chapter presents a

quantitative evaluation of the results similar to [2, 20]. Therefore, the results are presented in the

form of receiver operation characteristic (ROC) curves, which show the true positive ratio as the

function of false positive ratio. Experimental results indicate that the proposed algorithms can

achieve good accuracy in identifying different regions within a tumor.

The chapter is organized as follows. Section 2.3 presents the framework of the unsupervised

Bayesian learning algorithm. The detailed implementations of the algorithm with the Gaussian

and t-mixture models are developed in Sections 2.4 and 2.5, respectively. Section 2.6 presents the

experimental results, and Section 2.7 concludes the chapter.

2.3. Unsupervised Learning Through Bayesian Mixture Model

2.3.1. Bayesian Mixture Model

In this section, we present an unsupervised learning method of the THz image based on Bayesian

mixture models. The objective is to classify each pixel in the THz image into one of several

categories based on the statistical properties of the THz signal, without a training phase.

Define the pixel intensity vector x = [x1, · · · , xN ]
T ∈ RN×1

+ , where R+ is the set of non-

negative real numbers. The variable xi represents the summarized intensity (e.g. frequency domain

integration for fresh tissue and time domain peak for FFPE tissue) at the i-th pixel, and its value is

directly related to the physical properties of the tissue corresponding to that pixel.

In the proposed unsupervised Bayesian learning method, we assume that the summarized in-

tensity has a multi-modal probability distribution, with each mode corresponding to one possible

category. Given the summarized intensity of each pixel, the proposed algorithm calculates the

multi-modal probability distribution using Bayesian inference and computes the posterior proba-

bilities of each pixel belonging to different categories. During the development of the algorithm,
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it is assumed that the number of modes is known, and the intensities of pixels corresponding to

any particular tissue type follows an unimodal distribution. The final classification is performed

by selecting the category with the highest probability for each pixel in the THz image.

Assume each pixel can be classified into one of k categories. Define a sequence of independent

latent variable zi ∈ {1, 2, ..., k}, for i = 1, · · · , N , where zi = j means that the i-th pixel belongs

to the j-th category, for j = 1, · · · , k. The latent variable follows a multinomial distribution, with

the probability mass function (PMF) represented as

π(zi = j) = qj,

where qj represents the prior probability of any pixel belonging to the j-th category.

In Bayesian inference, the prior probability vector q = [q1, · · · , qk] ∈ Lk×1 with L = [0, 1]

is unknown and is usually assumed to be a random vector that follows the Dirichlet distribution,

i.e., π(q) = Dir(α), where α = [α1, · · · , αk]
T ∈ Rk×1 represents the parameter of the Dirichlet

distribution.

We employ a multi-modal mixture model for the probability density function (pdf) of xi, and

it can be represented as

f(xi|θ1,θ2, ...,θk,q) =
k
∑

j=1

qjf(xi|zi = j,θj) (2.1)

where f(xi|zi = j,θj) is the likelihood function of xi given pixel i is in the j-th category, and

θj = [θj1, · · · , θjp] ∈ Rp×1 is used to represent the p unknown parameters of f(xi|zi = j,θj).

In Bayesian inference, the parameters θj are assumed to be unknown random vectors with prior

distribution π(θj).

It is well known that the optimum classifier that can minimize the classification error is the

maximum a posterior probability (MAP) classifier, which maximizes the posterior probability of
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zi given the signal intensity as

ẑi = argmax
j∈{1,··· ,k}

Pr(zi = j|xi) (2.2)

where ẑi is the classification result, and the posteriori probability can be calculated as

Pr(zi = j|xi) =

∫

θj

∫

qj
f(xi|zi = j,θj)qjπ(θj)π(qj)dθjdqj

f(xi)
. (2.3)

The posterior probability defined in (2.3) requires the knowledge of the prior distributions π(θj)

and π(qj), whose parameters were assumed to be known. In addition, the calculation of the pos-

terior probability requires multi-level integrations with respect to the multi-dimensional parameter

vector θj and qj , which are usually difficult to carry out either analytically or numerically.

2.3.2. MCMC with Gibbs Sampling

We propose to solve the problem by employing MCMC, which can obtain a numerical approxima-

tion of Pr(zi = j|x) by iteratively taking samples from the joint distribution f(z, {θj}kj=1,q|x).

Assume that for a given x, we have T samples taken from the joint distribution and denote them as

{z(it)}Tit=1, {θ(it)
j }Tit=1, for j = 1, · · · , k, and {q(it)}Tit=1. Then based on the law of large numbers,

as T → ∞, we have

Pr(zi = j|x) = lim
T→∞

1

T

T
∑

it=1

I(z(it)i = j), (2.4)

where I(E) is an indicator function defined as I(E) = 1 if E is true and 0 otherwise.

The basic idea of MCMC with Gibbs sampling is to iteratively take samples based on the pos-

terior distributions of different variables conditioned on previously taken samples, thus effectively

tackle the “curse-of-dimensionality” problem that plagued high dimension sampling. Details of

Gibbs sampling under the Gaussian-mixture model and t-mixture model will be presented in the

next two sections, respectively.
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In order to initialize the iterative sampling process, the values of the unknown variables and

parameters need to be initialized. We propose to initialize the values by using results from K-

means clustering.

With the K-means algorithm, the vector x is classified into k categories. Consider the set of

pixels that correspond to the j-th component as S(0)
j = {i : zi = j} with cardinality n

(0)
j = |S(0)

j |.

Initialize z(0) by assigning z
(0)
i = j if i ∈ Sj . Then the vector q(0) can be initialized as

q
(0)
j =

n
(0)
j

N
, j = 1, · · · , k. (2.5)

Define a vector xj = [xi]i∈Sj
∈ Rnj×1

+ , which contains xi corresponding to all pixels labeled as

zi = j. The unknown parameters θj can then be estimated from xj by using maximum likelihood

estimation. In this chapter we will consider two different models: Gaussian mixture model and

t-mixture model, and both require the parameters of mean µj and variance σ2
j . The unbiased

estimation of µj and σ2
j can be written as

µ
(0)
j =

1

n
(0)
j

∑

i∈Sj

xi (2.6)

(σ2
j )

(0) =
1

n
(0)
j − 1

∑

i∈Sj

(

xi − µ
(0)
j

)2

(2.7)

The initialization of parameters other than mean or variance is model dependent and will be dis-

cussed for their specific models in the subsequent sections.

2.3.3. Unsupervised Bayesian Learning with MCMC

With the initial values of z(0), q(0), and θ
(0)
j , we summarize the outline of the unsupervised

Bayesian learning algorithm with MCMC in algorithm 1.

In Gibbs sampling, the generated samples at the beginning of the sampling process usually do

not represent the actual joint distribution, therefore we usually discard the first T0 − 1 samples

during the evaluation process as shown in (2.8).
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Algorithm 1 Unsupervised Bayesian Learning with MCMC

Input: Pixel intensity vector x.

Initialize: Obtain z(0), q(0), and {θ(0)
j }kj=1 by using results from K-means clustering of x.

Gibbs Sampling: Draw T samples z(it), q(it), and {θ(it)
j }kj=1, for it = 1, · · · , T , by using their

respective posterior distributions. (Details are in Sections 2.4 and 2.5.)

Evaluation: Calculate the posterior probability Pr(zi = j|x) as,

Pr(zi = j|x) = 1

T

T
∑

it=T0

I(z(it)i = j), (2.8)

for i = 1, · · · , N , and j = 1, · · · , k.

Output:

ẑi = argmax
j∈{1,··· ,k}

Pr(zi = j|x) (2.9)

It is important to highlight that since there is not a natural ordering between mixture compo-

nents, it is necessary to label them for their posterior identification (cancer, muscle, etc.). For our

algorithm, we labeled the components according to the increasing order of their means following

the labeling criterion described in [21], meaning that the components are ordered with the assump-

tion that fat tissue will have the lowest reflected signal, followed by fibrous or muscle tissue and

finally cancer tissue.

Details of Gibbs sampling for Gaussian-mixture model and t-mixture model are discussed in

the next two sections, respectively.

2.4. Gibbs Sampling with Gaussian Mixture Model

In this section, we adopt the Gaussian mixture model for the unsupervised Bayesian learning al-

gorithm, and develop the detailed procedures used by Gibbs sampling. In the Gaussian mixture

model, the likelihood function of xi conditioned on zi = j follows a Gaussian distribution as

f(xi|zi = j, µj, σ
2
j ) = N (µj, σ

2
j ), j = 1, · · · , k, (2.10)
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where µj and σ2
j represent the mean and the variance of the j-th component, respectively, and

they are treated as unknown random variables under the Bayesian setting. Thus for the Gaussian

mixture model, the unknown model parameters are θj = [µj, σ
2
j ]

T , for j = 1, · · · , k.

The priors for the mean and variance are represented as:

π(µj) = N (µ0j, c0j), π(σ2
j ) ∝

1

σ2
j

, (2.11)

where µ0j and c0j represent the hyper-parameters of the distributions of µj , and f(x) ∝ g(x)

means there exists a constant c such that f(x) = c · g(x). Even though there is not prior evidence

to establish the value of the hyper-parameters, we selected µ0j = 0 and a very large value for c0j to

avoid bias. The distributions of µj and σ2
j will be iteratively updated based on the previous samples

during the Gibbs sampling process.

2.4.1. Posterior Full Conditional Distributions

During the iterative Gibbs sampling process, the samples of different variables at each step are

drawn based on their respective posterior distributions, conditional on current states of all other

variables. Thus the implementation of Gibbs sampling requires the knowledge of the posterior full

conditional distributions of all parameters of interests, including q, {µj}kj=1, {σ2
j}kj=1, and z.

Given the current state of z, consider the set of pixels that correspond to the j-th component

as Sj = {i : zi = j} with cardinality nj = |Sj|. Define a vector xj = [xi]i∈Sj
∈ Rnj×1

+ , which

contains xi corresponding to all pixels labeled as zi = j. We can update the conditional densities

of θj and q by using z and xj as follows (See appendix 2.8.1 for the complete proof of the posterior

distributions).

1. Posterior Distribution of q

π(q|z) = Dir(α1 + n1, α2 + n2, ..., αk + nk) (2.12)
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2. Posterior Distribution of σ2
j

π(σ2
j |µj,xj) = Inverse-Gamma(aj, bj), (2.13)

where aj =
nj

2
and bj =

1
2

∑

i∈Sj
(xi − µj)

2

3. Posterior Distribution of µj

f(µj|σ2
j ,xj) = N (mj, v

2
j ), (2.14)

where mj = v2j

(

∑
i∈Sj

xi

σ2
j

+ µ0

c0j

)

and v−2
j =

nj

σ2
j

+ 1
c0j

4. Posterior Distribution of zi

Pr
(

zi = j|xi, {θj}kj=1,q
)

=
f(xi|µj, σ

2
j , zi = j)qj

∑k

p=1 f(xi|µp, σ2
p, zi = p)qp

(2.15)

where f(xi|µj, σ
2
j , zi = j) = N (µj, σ

2
j ).

2.4.2. Gibbs Sampling

In Gibbs sampling, we will iteratively draw samples from the posterior distributions derived in the

previous subsections. The Gibbs sampling algorithm with Gaussian mixture model is summarized

in Algorithm 2.
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Algorithm 2 Gibbs sampling for Gaussian mixture model

Input: Data: x; and hyper-parameters for prior distributions: [µ0j, c0j]
k
j=1, α.

Initialization: Obtain [µ
(0)
j , σ

(0)
j ]kj=1, z

(0) by using results from K-means clustering.

for it = 1, 2, · · · , T do

Formulate S(it)
j = {i : z(it−1)

i = j} and x
(it)
j = [xi]i∈S(it−1)

i

by using z(it−1)

Draw q(it) from (2.12) using z(it−1).

Draw (σ2
j )

(it) from (2.13) using µ
(it−1)
j and x

(it)
j , for j = 1, · · · , k.

Draw µ
(it)
j from (2.14) using (σ2

j )
(it) and x

(it)
j , for j = 1, · · · , k.

Draw z
(it)
i from (2.15) using [µ

(it)
j , (σ2

j )
(it)]kj=1, q(it), and xi, for i ∈ S(it)

j and j = 1, · · · , k.

end for

Output: z(it), for it = 1, · · · , T .

As the number of iterations grows large, the samples drawn through this process converge to

their joint distributions. With such a process, the values of all model parameters are learned from

the data without the need of a training process. The output of the Gibbs sampling algorithm is

then used to evaluate the posterior probability Pr(zi|x) and obtain an estimate on ẑi as described

in (2.8) and (2.9) in Algorithm 1.

2.5. Gibbs Sampling with t-Mixture Model

Gibbs sampling with t-mixture model is discussed in this section. With the t-mixture model, it is

assumed that the likelihood function of xi follows a t-distribution as follows,

f(xi|µj, σ
2
j , dj, zi = j) = tdj(µj, σ

2
j ), (2.16)

where dj represents the degree-of-freedom for the j-th component in the t-mixture model, and µj

and σ2
j are the corresponding mean and variance, respectively. Instead of selecting a fixed value of

dj , we estimate the possible values of dj from the data. The prior of dj is assumed to be uniformly

distributed with support dj ∈ {d01, d02, · · · , d0L} to produce both lighter and heavier tails. Since

the direct application of the Gibbs sampler on the t-mixture model is challenging, we can rewrite
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the model as [22]

f(xi|µj, σ
2
j , λi, zi = j) = N

(

µj,
σ2
j

λi

)

, (2.17)

where λi is a parameter determined by the choice of dj , for all i ∈ Sj . The prior distributions of

µj , σ
2
j , λi, and dj are assumed to be

π(µj) = N (µ0j, c0j), for j = 1, · · · , k, (2.18)

π(σ2
j ) ∝

1

σ2
j

, for j = 1, · · · , k, (2.19)

π(λi|dj) = Gamma

(

dj
2
,
dj
2

)

, for i ∈ Sj, j = 1, · · · , k, (2.20)

Pr(dj = d0l) =
1

L
, for j = 1, · · · , k, l = 1, · · · , L (2.21)

where µ0j and c0j represent the hyper-parameters of the distribution.

2.5.1. Posterior Full Conditional Distributions

With the model given before, the unknown model parameters are θ = [{µj}kj=1, {σ2
j}kj=1, {λi}Ni=1,

{dj}kj=1] and q. We will use Gibbs sampling to draw samples of θ, q, and z using their respective

posterior full conditional distributions as follows (See appendix 2.8.2 for the complete proof of the

posterior distributions).

1. Posterior Distribution of σ2
j

f(σ2
j |µj,λj,xj) = Inverse-Gamma(aj, bj), (2.22)

where aj =
nj

2
and bj =

1
2

∑

i∈Sj
λi(xi − µj)

2

2. Posterior Distribution of µj

f(µj|σ2
j ,λj,xj) = N (mj, v

2
j ), (2.23)
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where mj = v2j

(

∑
i∈Sj

λixi

σ2
j

+ µ0

c0j

)

and v−2
j =

∑
i∈Sj

λi

σ2
j

+ 1
c0j

3. Posterior Distribution of dj

Pr(dj = d0l|µj, σ
2
j ,λj,xj) =

1

C

∏

i∈Sj

(λi)
d0l
2

−1 exp

(

−d0l
2
λi

)

, (2.24)

where C is a normalization constant satisfying

C =
L
∑

l=1

∏

i∈Sj

(λi)
d0l
2

−1 exp

(

−d0l
2
λi

)

.

4. Posterior Distribution of λi

f(λi|µj, σ
2
j , dj, xi) = Gamma

(

1 + dj
2

,
1

2σ2
j

(xi − µj) +
dj
2

2
)

(2.25)

5. Posterior Distribution of zi

Pr (zi = j|xi,θ,q) =
f(xi|µj, σ

2
j , dj, zi = j)qj

∑k

p=1 f(xi|µp, σ2
p, dj, zi = p)qp

(2.26)

where f(xi|µj, σ
2
j , dp, zi = j) = tdj(µj, σ

2
j ).

Considering that the posterior distribution of q depends only on z, and it is independent of

the specific mixture model, we can use the same distribution f(q|z) as in (2.12) for the t-mixture

model.

2.5.2. Gibbs Sampling

The initialization of z(0), q(0), {µ(0)
j }kj=1, and {(σ2

j )
(0)}kj=1 can be obtained by using the results

from the K-means classification as described in Section 2.3.2. For the parameters {λ(0)
i }Ni=1 and

{d(0)j }, we can initizalize them by draw i.i.d. random samples from their priori distributions in

(2.20) and (2.21), respectively.
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Algorithm 3 Gibbs sampling for t-mixture model

Input: Data: x; and hyper-parameters for prior distributions: [µ0j, c0j]
k
j=1, α.

Initialization:

Obtain [µ
(0)
j , σ

(0)
j ]kj=1, z(0) by using results from K-means clustering.

Obtain {λ(0)
i }Ni=1 by randomly draw N i.i.d. samples with (2.20).

Obtain {d(0)j } by randomly draw k i.i.d. samples with (2.21).

for it = 1, 2, · · · , T do

Formulate S(it)
j = {i : z(it−1)

i = j} and x
(it)
j = [xi]i∈S(it−1)

i

by using z(it−1)

Draw q(it) from (2.12) using z(it−1).

Draw (σ2
j )

(it) from (2.22) using µ
(it−1)
j , λj

(it−1), and x
(it−1)
j , for j = 1, · · · , k.

Draw µ
(it)
j from (2.23) using (σ2

j )
(it) λj

(it−1), and x
(it−1)
j , for j = 1, · · · , k.

Draw d
(it)
j from (2.24) using λj

(it−1), for j = 1, · · · , k.

Draw λ
(it)
i from (2.25) using [µ

(it)
j , (σ2

j )
(it)] , d

(it)
j and x

(it−1)
j , for i ∈ S(it)

j , and j = 1, · · · , k.

Draw z
(it)
i from (2.26) using [µ

(it)
j , (σ2

j )
(it)]kj=1, {λ(it)

i }Ni=1, q
(it), and xi, for i ∈ S(it)

j and

j = 1, · · · , k.

end for

Output: z(it), for it = 1, · · · , T .

The Gibbs sampling algorithm with the t-mixture model is summarized in Algorithm 3. The

output of the Gibbs sampling algorithm is then used to evaluate the emperical posterior probability

Pr(zi|x) and obtain an estimate on ẑi as described in (2.8) and (2.9) in Algorithm 1.

2.6. Experimental Results

In this section, we describe the experimental results obtained from the implementation of the un-

supervised algorithm described in sections 2.3, 2.4, and 2.5. Thirteen samples from mice breast

cancer tumors were used to evaluate the performance of the proposed algorithm. Besides obtaining

their corresponding pathology results, both fresh and FFPE THz images were collected from each

of the samples. Some of the results were previously presented in [2] while for this chapter, we have

selected three samples with either two or three types of tissue each. The hyper-parameters used in

the analysis for all samples were: µ0j = 0 and σ2
0j = 100 for j = 1, · · · , k. α = [3, · · · , 3], where

k = 2 for samples 2 and 3, and k = 3 for samples 9B.

In order to evaluate the performance of the proposed algorithm, we compared the classification
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(a) (b) (c) (d) (e)

Figure 2.1: Sample 2 fresh. (a) THz image [2]. (b) Pathology image [2]. (c) Morphed Pathology.

(d) Gaussian mixture model. (e) t-mixture model.

results with digitized pathology data, which were obtained through histopathology processing on

the FFPE tissue block samples [2]. Since the pathology was performed on fixed tissue yet the THz

imaging was obtained from fresh tissue, the shape of the pathology and THz images were slightly

different and the pathology results presented a much higher resolution than the THz image. To

make a pixel-by-pixel comparison possible, we morphed the shape of the pathology image into

the contour of the THz image using mesh morphing [23]. For this purpose, the resolution of the

pathology image was reduced and its contour was aligned to the THz image using their maximum

correlation, similar to [2]. Once aligned, some key features in the contour of both images were

selected to create a triangular shaped mesh and morph each triangle using homography estimation.

It should be noted that during the morphing process, only the external contour and orientation of

the THz image were used, and no feature inside the THz image was used to avoid artificial bias.

2.6.1. Samples with Two Types of Regions

The results obtained from freshly exercised tissues for samples 2 and 3 are shown in Figs. 2.1 and

2.2, respectively.

Similarly, Fig. 2.1a shows the THz reflected spectral power image for sample 2. Figs. 2.1b and

2.1c show the aligned pathology image and the morphed pathology image, respectively. From Fig.

2.1a we can observe that the cancer region produces a higher reflection in the THz image while

30



(a) (b) (c)

(d) (e)

Figure 2.2: Sample 3 fresh. (a) THz image [2]. (b) Pathology image [2]. (c) Morphed Pathology.

(d) Gaussian mixture model. (e) t-mixture model.

the fat regions generate a lower reflection, producing a strong visual agreement with the pathology

image in Fig. 2.1c. The THz imaging classification results obtained by the proposed algorithm

with the Gaussian mixture model are shown in Fig. 2.1d and the results obtained by using the

t-mixture model are shown in Fig. 2.1e.

Fig. 2.2a shows the THz reflected spectral power image for sample 3. Fig. 2.2b shows the

aligned pathology image, which represent the reference location of the different types of tissues

within the tumor. Fig. 2.2c shows the morphed pathology image digitized to binary values based

on the pathology results, with blue representing cancer and red representing fat. From Fig. 2.2a

we can observe that the cancer region produces a higher reflection in the THz image while the fat

regions generate a lower reflection, producing a good visual agreement with the pathology image

in Fig. 2.2c. The THz imaging classification results obtained by the proposed algorithm with the

Gaussian mixture model are shown in Fig. 2.2d and the results obtained by using the t-mixture

model are shown in Fig. 2.2e.

To quantify the performance of the proposed algorithms, pixel-by-pixel comparisons were per-

formed between the classification results (Figs. 2.2d and 2.2e for sample 3, Figs. 2.1d and 2.1e for
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Figure 2.3: Samples 2 and 3 fresh. (a) ROC curves for sample 2 fresh. (b) ROC curves for sample

3 fresh. (c) Probability distribution for sample 2 fresh. (d) Probability distribution for sample 3

fresh.

sample 2) and their morphed pathology counterparts (Fig. 2.2c for sample 3, Fig. 2.1c for sample

2). The obtained receiver operating characteristic (ROC) curves are shown in Figs. 2.3a and 2.3b

for samples 2 and 3, respectively. For cancer detection in sample 3, the algorithm can achieve a

true positive ratio of 80% at a false positive ratio of 20%; for cancer detection in sample 2 the

algorithm can achieve a true positive ratio of 83% at a false positive ratio of 10%.

To better understand the performance difference between samples 2 and 3, we plotted the em-

pirical mixture distributions in Figs. 2.3c and 2.3d with the Gaussian mixture model. For sample

2, the distribution peaks of the two components in the mixture models are apart from each other;

on the other hand, for sample 3, the distribution peaks are very close to each other. This is due to

excess fluid accumulating between the tissue and polystyrene imaging plate. Since water (and by

extent blood and PBS) has very high absorption in the THz range, the distributed fluid across the
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Table 2.1: Area under the ROC curve for fresh samples 2 and 3.

Type of tissue: Model Sample 2 Sample 3

Cancer: Gaussian mixture model 0.8930 0.8492

Fat: Gaussian mixture model 0.8930 0.8492

Cancer: t-mixture model 0.8989 0.8462

Fat: t-mixture model 0.8989 0.8462

(a) (b) (c)

(d) (e)

Figure 2.4: Sample 3 block. (a) THz image. (b) Pathology image [2]. (c) Morphed Pathology. (d)

Gaussian mixture model. (e) t-mixture model.

fat regions of sample 3 creates a higher reflection similar to cancer. Therefore it is more difficult to

separate cancer from fat in sample 3, while the tissue regions in sample 2 were discrete with more

thorough clearing of excess fluids.

The normalized area underneath the ROC curves can be used to measure the classification

quality. An area of 100% corresponding to the perfect ROC curve of 100% true positive at 0%

false positive. The normalized areas of the ROC curves in Figs. 2.3a and 2.3b are given in Table

2.1. All areas are greater than 84%. For sample 2, the t-mixture model outperforms the Gaussian

mixture model, and the normalized area can reach 89.89% with the t-mixture model. For sample

3, the Gaussian-mixture model and t-mixture model have similar performances.

Next we study the classification performance obtained by analyzing the THz imaging of the
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Figure 2.5: Sample 3 FFPE. (a) ROC curves. (b) Probability distribution.

FFPE tissue of sample 3, which is shown in Fig. 2.4a. Fig. 2.4b presents the aligned pathology

image, and Fig. 2.4c shows the morphed digitized pathology image that was used to evaluate the

performance of the algorithms. While there is some change in the surface between the THz image

of the fresh tissue and the pathology image due to histopathology processing, the THz image of the

FFPE tissue is taken at the same surface as pathology and therefore shows very close agreement.

Figs. 2.4d and 2.4e represent the classification results with the Gaussian and t-mixture models,

respectively.

The ROC curves and empirical distributions of the classification results of FFPE sample 3 are

shown in Figs. 2.5a and 2.5b, respectively. The normalized ROC areas are 92.36% and 92.53% for

Gaussian and t-mixture models, respectively. It should be noted that for tissue with two compo-

nents, the normalized ROC areas are the same for both cancer and fat. As can be seen from Fig.

2.5b, the two components in the mixture model of the FFPE sample are better separated than their

counterparts on the fresh sample shown in Fig. 2.3d, thus the classification results of the FFPE
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(a)

(b)

(c) (d) (e)

Figure 2.6: Sample 9B fresh. (a) THz image [24]. (b) Pathology image [24]. (c) Morphed Pathol-

ogy [24]. (d) Gaussian mixture model [24]. (e) t-mixture model.

sample is better than the fresh sample. In addition, the t-mixture model slightly outperforms the

Gaussian mixture model.

2.6.2. Samples with Three Types of Regions

Next we study the performance of the algorithm with respect to sample 9B, which has cancer, fat,

and muscle. Fig. 2.6a shows the THz reflected spectral power image for sample 9B. Figs. 2.6b

and 2.6c present the aligned pathology image and the corresponding digitized morphed pathology

image. From Fig. 2.6a, we can observe that while the regions of cancer and fat are readily apparent

in a qualitative sense, the region of muscle is indistinct from cancer. Although there may be slightly

lower reflection where we assume the muscle is based on pathology (refer to Fig. 2.6c), this is not

conclusive. Figs. 2.6d and 2.6e represent the classification results using Gaussian and t-mixture

models, respectively. In this case, when the model is attempting to consider three different tissue

regions, there is a tendency to pick up the transition between high and low reflections as a third

tissue region which makes distinguishing between regions with close reflection properties like

muscle and cancer a challenge.

The ROC curves and empirical distributions of the classification results of fresh sample 9B
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Table 2.2: Area under the ROC curve for sample 9B.

Type of tissue Gaussian mixture model t-mixture model

Cancer 0.8630 0.8698

Muscle 0.7729 0.7534

Fat 0.7885 0.7885

are shown in Figs. 2.7a and 2.7b, respectively. The normalized ROC areas are given in Table

2.2. As can be seen from the distributions in Fig. 2.7b, the distributions of muscle and cancer

are close to each other, and the distribution of fat has two peaks, with one peak very close to that

from cancer. As a result, the ROC curves in Fig. 2.7a show that the detection performance of

muscle is challenging, and the performance with respect to fat is compromised due to the model

picking up the transition between cancer and fat regions. However, the algorithm can still obtain

reasonably good performance with respect to cancer with a normalized ROC area of 86.98% with

the t-mixture model.

Upon comparing the distributions of the mixture model seen in Figs. 2.3d, 2.3c, 2.5b, and 2.7b,

we can see that the distributions of different tissue regions are well separated, while they partially

overlap otherwise. The more challenging case is seen for sample 9B, where the THz reflections

from the muscle and cancer regions have insignificant difference. Therefore, we will investigate

models with higher degree-of-freedom in our future work to achieve better classifications of re-

gions with close reflection properties.

2.7. Conclusion

Unsupervised Bayesian learning algorithms have been developed for cancer detection in THz imag-

ing of freshly exercised murine tissues. Under a Bayesian framework, the algorithms were devel-

oped by using Gaussian mixture or t-mixture models, where each component in the mixture model

was used to represent one type of tissue. The model parameters and posterior distributions were

iteratively learned from the data by using MCMC with Gibbs sampling. Experimental results in-

dicated that the t-mixture model slightly outperforms the Gaussian mixture model, and both can
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Figure 2.7: Sample 9B fresh. (a) ROC curves. (b) Probability distribution.

identify different tissue types by using THz imaging with satisfactory accuracy. The primary chal-

lenges in the model-based classification have to do with regions where excess fluid may alter the

reflections from the tissue, as with the fat in sample 3, or when regions have very similar or over-

lapping reflections, as with the cancer and muscle in sample 9B.

In our future work, one of the challenges that we plan to address is to further improve the iden-

tification accuracy when there are 3 or more types of tissues, in particular when it includes muscle

or fibrous tissues. Given that the probability distribution for muscle and cancer are similar, it is

necessary to add more parameters or features to the model in order to achieve better distinction

between the two. Another important direction is to improve feature extraction such that we can

use multiple dimensional features instead of just intensity to summarize the properties of different

tissue types. Some promising signal features of pulsed THz imaging that can lead to better classi-

fication have been identified via principal component analysis in [8], so a similar investigation will

be conducted in the future.
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In summary, the current results of our algorithm are promising and they represent the first steps

to achieve an accurate approach for breast cancer detection through THz imaging.

2.8. Appendix

2.8.1. Posterior updates for Gaussian mixture model

This appendix presents the mathematical proofs of (2.12)-(2.15), which represent the posterior

distributions of the variables involved in the Gibbs sampling for the Gaussian mixture model.

Posterior Distribution of q

In Bayesian statistics, the parameter q of the latent variable z is usually assumed to follow Dirichlet

distribution with parameter α as π(q) = Dir(α). Based on the assumption of Dirichlet prior and

the Bayes’ rule, the posterior distribution of q can be written as

f(q|z) = f(z|q)π(q)
f(z)

∝
k
∏

j=1

q
nj

j

k
∏

j=1

q
αj−1
j =

k
∏

j=1

q
(αj+nj)−1
j

where nj is the number of pixels labeled in the j-th category by z. Therefore, the posterior distri-

bution of q still follows Dirichlet distribution as

π(q|z) = Dir(α1 + n1, α2 + n2, ..., αk + nk)

Posterior Distribution of µj

Based on Bayes’ rule, we have

f(µj|σ2
j ,xj) =

f(xj|µj, σ
2
j )π(µj)π(σ

2
j )

π(σ2
j ,xj)

∝ f(xj|µj, σ
2
j )π(µj)π(σ

2
j ) (2.27)
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Substituting (2.10) and (2.11) into (2.27) yields

f(µj|σ2
j ,xj) ∝

(

1√
2π

)nj

σ
−nj

j exp







− 1

2σ2
j

∑

i∈Sj

(xi − µj)
2







1
√

2πc0j
exp

{

−(µj − µ0j)
2

2c0j

}

1

σ2
j

(2.28)

If we only consider the terms that include µj , then

f(µj|σ2
j ,xj) ∝ exp







− 1

2σ2
j

∑

i∈Sj

(xi − µj)
2 − (µj − µ0j)

2

2c0j







,

which can be equivalently written as

f(µj|σ2
j ,xj) ∝ exp







−1

2

(

σ2
j + njc0j

σ2
j c0j

)

(

µj −
(

c0j
∑

i∈Sj
xi + σ2

jµ0j

σ2
j + njc0j

))2






Therefore, the posterior of µj can be represented as:

f(µj|σ2
j ,xj) = N (mj, v

2
j ),

where mj = v2j

(

∑
i∈Sj

xi

σ2
j

+ µ0

c0j

)

and v−2
j =

nj

σ2
j

+ 1
c0j

.

Posterior Distribution σ2
j

Similar to (2.27), based on Bayes’ rule, the posterior distribution of σ2
j can be calculated as

f(σ2
j |µj,xj) ∝ f(xj|µj, σ

2
j )π(µj)π(σ

2
j ),
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which is proportional to the right-hand-side (RHS) of (2.28). If we only consider the terms that

include σ2
j in (2.28), then

f(σ2
j |µj,xj) ∝

(

σ2
j

)−
nj

2
−1

exp

{

− 1

σ2
j

∑

i∈Sj
(xi − µj)

2

2

}

Therefore, the posterior distribution of σ2
j follows the inverse Gamma distribution as

π(σ2
j |µj,xj) = Inverse-Gamma(aj, bj),

where aj =
nj

2
and bj =

1
2

∑

i∈Sj
(xi − µj)

2
.

Posterior Distribution of zi

Consider the i-th pixel with i ∈ Sj . Given the values of the parameters θj = [µj, σ
2
j ], q, and the

pixel intensity xi, we can calculate the posterior probability mass function (PMF) of zi as

Pr
(

zi = j|xi, {θj}kj=1,q
)

=
f(xi|µj, σ

2
j , zi = j)qj

∑k

p=1 f(xi|µp, σ2
p, zi = p)qp

Therefore, the posterior distribution of zi follows multinomial distribution with the parameters

being

q′j =
f(xi|µj, σ

2
j , zi = j)qj

∑k

p=1 f(xi|µp, σ2
p, zi = p)qp

, j = 1, · · · , k,

where f(xi|µj, σ
2
j , zi = j) = N (µj, σ

2
j ).

2.8.2. Posterior updates for t-mixture model

This appendix presents the mathematical proofs of (2.22)-(2.26), which represent the posterior

distributions of the variables involved in the Gibbs sampling for the Gaussian mixture model.
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Distribution of µj

Define λj = [λi]i∈Sj
. Based on Bayes’ rule, the posterior distribution of µj can be written as

f(µj|σ2
j ,λj,xj) ∝ f(xj|µj, σ

2
j ,λj)π(µj)π(σ

2
j )π(λj)

Based on (2.17)-(2.20), the posterior distribution can be written as

f(µj|σ2
j ,λj,xj) ∝

∏

i∈Sj

{√

λi

2πσ2
j

exp

[

− λi

2σ2
j

(xi − µj)
2

]

π(λi)

}

1
√

2πc0j
exp

{

−(µj − µ0j)
2

2c0j

}

1

σ2
j

(2.29)

Considering only the terms that include µj yields

f(µj|σ2
j ,λj,xj) ∝ exp







− 1

2σ2
j

∑

i∈Sj

(xi − µj)
2λi −

(µj − µ0j)
2

2c0j







,

which can be alternatively written as

f(µj|σ2
j ,λj,xj) ∝ exp







−1

2

(

σ2
j + c0j

∑

i∈Sj
λi

σ2
j c0j

)(

µj −
(

c0j
∑

i∈Sj
xiλi + σ2

jµ0j

σ2
j + c0j

∑

i∈Sj
λi

))2






.

Therefore, the posterior distribution of µj can be represented as

f(µj|σ2
j ,λj,xj) = N (mj, v

2
j ),

where mj = v2j

(

∑
i∈Sj

λixi

σ2
j

+ µ0

c0j

)

and v−2
j =

∑
i∈Sj

λi

σ2
j

+ 1
c0j

.
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Posterior Distribution of σ2
j

Based on Bayes’ rule, the posterior distribution of σ2
j can be written as

f(σ2
j |µj,λj,xj) ∝ f(xj|µj, σ

2
j ,λj)π(µj)π(σ

2
j )π(λj)

where the RHS is the same as that of (2.29). Removing the terms that are irrelevant to σ2
j , we have

f(σ2
j |µj,λj,xj) ∝ (σ2

j )
−

nj

2
−1

exp







− 1

2σ2
j

∑

i∈Sj

(xi − µj)
2λi







Therefore, the posterior distribution can be described as,

f(σ2
j |µj,λj,xj) = Inverse-Gamma(aj, bj),

where aj =
nj

2
and bj =

1
2

∑

i∈Sj
λi(xi − µj)

2
.

Posterior Distribution of λi

Assume zi = j, that is, i ∈ Sj . The posterior distribution of λi can be expressed as

f(λi|µj, σ
2
j , dj, xi) ∝ f(xi|µj, σ

2
j , λi, dj)π(µj)π(σ

2
j )π(λi|dj)π(dj).

Considering only the terms that include λi yields

f(λi|µj, σ
2
j , dj, xi) ∝ (λi)

1
2 exp

{

−(xi − µj)
2λi

2σ2
j

}

(λi)
dj

2
−1 exp

(

−dj
2
λi

)

,

which can be alternatively expressed as

f(λi|µj, σ
2
j , dj, xi) ∝ (λi)

dj+1

2
−1 exp

{

−
(

(xi − µj)
2

2σ2
j

+
dj
2

)

λi

}
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Therefore, the posterior distribution of λi follows the Gamma distribution as

f(λi|µj, σ
2
j , dj, xi) = Gamma

(

1 + dj
2

,
1

2σ2
j

(xi − µj) +
dj
2

2
)

Posterior Distribution of dj

The posterior PMF of dj can be written as

Pr(dj = d0l|µj, σ
2
j ,λj,xj) ∝ f(xj|µj, σ

2
j ,λj)π(µj)π(σ

2
j )π(λj|dj = d0l)π(dj = d0l)

After removing the terms irrelevant to dj , we have

Pr(dj = d0l|µj, σ
2
j ,λj,xj) ∝

∏

i∈Sj

(λi)
d0l
2

−1 exp

(

−d0l
2
λi

)

.

Therefore, the posterior PMF of dj can be evaluated as

Pr(dj = d0l|µj, σ
2
j ,λj,xj) =

1

C

∏

i∈Sj

(λi)
d0l
2

−1 exp

(

−d0l
2
λi

)

,

where C is a normalization constant satisfying

C =
L
∑

l=1

∏

i∈Sj

(λi)
d0l
2

−1 exp

(

−d0l
2
λi

)

.

Posterior distribution of zi

Given the values of the parameters θ = [{µj}kj=1, {σ2
j}kj=1, {λi}Ni=1, {dj}kj=1], q, and the pixel

intensity xi, we can calculate the posterior distribution of zi as

Pr (zi = j|xi,θ,q) =
f(xi|µj, σ

2
j , dj, zi = j)qj

∑k

p=1 f(xi|µp, σ2
p, dj, zi = p)qp
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Therefore, the posterior distribution of zi follows multinomial distribution with the parameters

being

q′j =
f(xi|µj, σ

2
j , dj, zi = j)qj

∑k

p=1 f(xi|µp, σ2
p, dj, zi = p)qp

, j = 1, · · · , k.

where f(xi|µj, σ
2
j , dj, zi = j) = tdj(µj, σ

2
j ).
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3.1. Abstract

This chapter proposes a new dimension reduction algorithm based on low-dimension ordered or-

thogonal projection (LOOP), which is used for cancer detection with terahertz (THz) images of

freshly excised human breast cancer tissues. A THz image can be represented by a data cube with

each pixel containing a high dimension spectrum vector covering several THz frequencies, where

each frequency represents a different dimension in the vector. The proposed algorithm projects the

high-dimension spectrum vector of each pixel within the THz image into a low-dimension sub-

space that contains the majority of the unique features embedded in the image. The low-dimension

subspace is constructed by sequentially identifying its orthonormal basis vectors, such that each

newly chosen basis vector represents the most unique information not contained by existing basis

vectors. A multivariate Gaussian mixture model is used to represent the statistical distributions of

the low-dimension feature vectors obtained from the proposed dimension reduction algorithm. The
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model parameters are iteratively learned by using unsupervised learning methods such as Markov

chain Monte Carlo or expectation maximization, and the results are used to classify the various

regions within a tumor sample. Additionally, we explore the introduction of the spatial correla-

tion among neighboring pixels in THz images through a Markov random field (MRF) approach.

Experiment results demonstrate that the proposed method achieves apparent performance improve-

ment in human breast cancer tissue over existing approaches such as one- dimension Markov chain

Monte Carlo. The results confirm that the dimension reduction algorithm presented in this chapter

is a promising technique for breast cancer detection with THz images, and the classification results

present a good correlation with respect to the histopathology results of the analyzed samples.

3.2. Introduction

Breast cancer is one of the most common types of cancer among women with over two million

new cases in 2018 [1]. Breast conserving surgery, also known as lumpectomy, is a commonly sug-

gested treatment option when breast cancer is detected at an early-stage. The aim of lumpectomy

is to excise all the cancerous tissues surrounded by a small margin of healthy breast tissue [2].

Currently the success of lumpectomy is determined through histopathology analysis of the excised

tissue, which may take around ten days to process. As a result, one in five patients have to go

under a second surgery to extract remaining cancerous tissues [3]. This necessitates the design of

new technologies that can examine the margins of the freshly excised breast cancer tissue in the

operation room while the surgery is still ongoing. In this context, terahertz (THz) imaging has

shown promising results for tissue classification within freshly excised breast cancer tumors [4–8].

THz imaging has been used for various medical applications, such as the evaluation of brain

injuries [9], colon cancer inspection [10], diagnosis of oral lichen planus [11], liver cancer identifi-

cation [12, 13], breast cancer detection [4–8], etc. Different approaches are adopted by these works

to identify the regions of interests from the rest of the sample, and the classifications are achieved

by utilizing the distinguishing features of different regions embedded in THz signals. For instance,

the electromagnetic propagation parameters, such as absorption coefficient, complex permittivity,
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Figure 3.1: Sample preparation process. (a) The tissue immersed in DMEM solution, (b) removal

of excess water in tissue using filter paper, (c) the tissue positioned in a sandwich between two

polystyrene plates, and (d) positioning the tissue sandwich on scanner stage for imaging.

refractive index, and dielectric loss tangent of the cells, are used as features for the detector of

colon cancer [10]. Many studies employ statistical learning and machine learning techniques to

achieve THz image segmentation. An unsupervised k-means clustering method with ranked set

sampling is proposed in [14] for the segmentation of THz images. Supervised learning techniques

in THz imaging include support vector machines (SVM) [11–13, 15], probabilistic neural networks

(PNN) [12, 13], and deep neural networks (DNN) [16]. While machine learning techniques have

proven to achieve good correlation with respect to their pathology counterparts, the need for a large

amount of training samples make their applications complicated and occasionally inconsistent.

A THz image can be represented by a data cube with each pixel containing a high dimension

spectrum vector covering several THz frequencies, where each frequency represents a different

dimension in the vector. The high-dimension vector per pixel contains both common features that

are shared by all regions within a tissue sample, and unique features that can be used to distinguish

different regions. Thus it is desirable to extract the unique features embedded in the THz signals to

reduce complexity and improve accuracy. In [5, 8], the high-dimension THz waveform per pixel is

summarized into a scalar, such as the peak of the reflected time-domain signal or the energy over

a certain frequency band. The one-dimension (1D) feature extractions used in [5, 8] show good

performance for tumor samples with two regions, but its performance drops considerably when

there are three or more regions in the sample tissue. While some studies summarize the information

per pixel using a pre-established characteristic [10], the usage of dimension reduction algorithms
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has gained interest due to their systematic information extraction capabilities. Some commonly

used dimension reduction algorithms are principal component analysis (PCA) [11, 12, 15], Isomap

[12, 13], and linear preserving projections (LPP) [12].

In this chapter we propose a new low-dimension ordered orthogonal projection (LOOP) al-

gorithm, which is used to extract low-dimension features embedded in the high-dimension THz

waveform. The low-dimension feature extraction is achieved by projecting the original THz sig-

nal into a low-dimension subspace containing the majority of the salient information necessary

for classification. The low-dimension subspace is constructed by sequentially identifying its or-

thonormal basis vectors with a specific order, such that each new basis vector is chosen as the one

that contains the most amount of unique information not represented by all previous basis vec-

tors. Such an approach can ensure that all spectrum vectors within the dataset can be represented

by the basis vectors with minimum information loss, thus the majority of the useful information

in the original THz signal is captured by the constructed subspace. Unlike single-dimension fea-

ture extraction methods that are limited by the selection of one physical parameter of the THz

signal[5, 8], the LOOP algorithm extracts the most significant information from the waveform as

a low-dimensional vector, which represents a combination of all important features. The elements

in the low dimension vector do not correspond to a specific physical feature, and they are usually

combinations of several important physical features. While an early version of this dimension

reduction algorithm was briefly discussed in [17], the LOOP algorithm presented in this chapter

explores a new ordering technique that differs significantly from the projection method in [17]. In

addition, the work presented in [17] was focused on murine samples, while the results presented in

this chapter focuses on human breast tumor samples.

The low-dimension feature vector is analyzed and modeled by using a multivariate Gaussian

mixture model (GMM) [18], with each component in GMM corresponding to one possible tissue

type within the sample. The prevalence of different tissue types within a sample are modeled by

using the weight or prior probability for each component in GMM. Such a probabilistic approach

can capture the statistical nature of the THz signal, and provide important reliability information
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that is not available in deterministic approaches. Two unsupervised learning algorithms, Markov

chain Monte Carlo (MCMC) [19] and expectation maximization (EM) [20], are used to learn the

parameters of GMM with the low-dimension feature vectors. Given that the acquisition of breast

cancer samples is limited and laborious, in particular for fresh human samples, unsupervised learn-

ing algorithms are preferred due to the lack of a training phase. The results are used to classify

different regions within sample tissues. Unlike existing works that focus on the binary classifi-

cation of a tissue (cancerous vs. healthy tissue) [12], this chapter focuses on the identification

of different regions, such as collagen, fibro, and fat, within heterogeneous breast cancer samples.

The proposed LOOP algorithm with unsupervised learning is applied to THz imaging of freshly

excised human breast cancer tissue with three regions: cancer, collagen or fibro, and fat. Experi-

ment results demonstrated that the proposed LOOP algorithm is a promising technique for cancer

detection with THz images, and the classification results present a good correlation with respect to

results obtained from histopathology analysis.

In addition, considering that the pixels are collected by scanning the tumor with steps of

200µm, it is natural to assume that neighboring pixels have a higher probability of belonging

to the same region. Motivated by this fact, we propose a spatial image segmentation algorithm

that exploits the spatial correlation among pixels. The spatial correlation is modeled by applying

Markov random field (MRF) on GMM, and the EM algorithm is then applied to the statistical

models to classify the different regions in the THz image.

The rest of the chapter is organized as follows. Section 3.3 presents the experiment setup and

data collection process. Section 3.4 introduces the problem formulation and notations used in the

chapter. Details of the LOOP algorithm are explained in Section 3.5. Section 3.6 defines the GMM

and the unsupervised learning algorithms based on the low-dimension vector obtained by LOOP.

Section 3.8.3 describes the introduction of the spatial information per pixel. Section 3.8 shows the

experimental results, and section 3.9 concludes the chapter.
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3.3. Experiment Setup

The experimental set-up was established in Dr. El-Shenawee’s Terahertz Imaging and Spec-

troscopy Lab at the University of Arkansas. The raw experimental data was provided by Ms.

Nagma Vohra, PhD candidate in Dr. El-Shenawee’s group.

The tissue samples handled in this work follow the Environmental Health and Safety protocol

of the University of Arkansas. The experimental work done in this chapter makes use of human

breast cancer tissues # ND10898, ND15526, and ND15588 obtained from the National Disease

Research Interchange within 24h of excision. These samples were obtained via left breast ma-

sectomy from a 59-year-old patient diagnosed with stage III/III infiltrating dual carcinoma (IDC),

radical masectomy from a 90-year-old patient with stage III/III IDC, and masectomy from a 63-

year-old patient with stage II/III IDC, respectively. On receiving the tissue in the Terahertz lab,

it was removed from the Dulbecco’s Modified Eagle Medium (DMEM) solution, see Fig. 3.1a.

After removing excess water using filter paper (Fig. 3.1b), the tissue was positioned between two

polystyrene plates and pressed softly to make the imaging surface as flat as possible, while also

maintaining the original shape of the tissue, see Fig. 3.1c. This arrangement of the tissue was then

mounted on the scanner stage for the reflection imaging procedure as shown in Fig. 3.1d.

The reflection measurements were taken by using a TPS Spectra 3000 pulsed THz imaging and

spectroscopy system (from TeraView Ltd., UK). The diagram of the system is shown in Fig. 3.2a.

The system uses a Ti:Sapphire laser that produces a 800 nm pulse to excite the THz emitter and

THz receiver. Upon excitation, the THz emitter generates a time domain THz pulse as shown in

Fig. 3.2b. The Fourier transform of the pulse, as shown in Fig. 3.2c, demonstrates a power spectra

of pulse ranging from 0.1 THz to 4 THz. This emitted pulse is made incident on the sample through

a set of mirrors and the reflected pulse from the sample is directed towards the THz receiver [8]. In

the reflection mode measurements, both the THz emitter and detector are offset 30◦ with respect to

the normal direction on the sample. To obtain the THz reflected signal at each pixel on the tissue

to produce an image, the scanning stage was set to move in increments of 200 µm step size using
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Figure 3.2: THz system description. (a) THz system diagram for reflection imaging, (b) incident

time domain THz pulse, and (c) frequency spectrum of terahertz pulse in (b).

a stepper motor. The total time span of the imaging process was ∼30-40 minutes. During this

time, the samples could get slightly dried on the surface; however, the pathologist did not report

any damage at the cellular level. For imaging, we focus the THz beam on the tissue surface and

conduct two scans; the first one is a quick line scan using 400 µm to assure the flat level of the

tissue based on the B-scan (cross section), and the second scan is for the final image in the x-y

plane taken at 200 µm step size. Upon finishing the scanning process, the tissue was immersed in

formalin solution and shipped to the Oklahoma Animal Disease Diagnostic Laboratory (OADDL)

for the pathology process. The histopathology process involves fixing the tissue in formalin and

embedding it in paraffin blocks. Further, from the formalin fixed paraffin embedded (FFPE) tissue

blocks, two ∼ 3-4 µm thick slices were cut, stained with hematoxylin and eosin (H&E), and fixed

on the glass slides to produce pathology images using low power microscope. For assessing the

images of the freshly excised tumor and the FFPE tissue block, the THz images are compared with

the pathology images as will be discussed in Section 3.8.

3.4. Problem formulation

The problem formulation and notations are described in this section. Let the tensor W ∈

RN1×N2×T represent the THz image of size N1 × N2. Each pixel Wn1,n2,∗ corresponds to the
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reflected time-domain signal, which contains T time samples at the output of the THz system. The

subscripts n1 ∈ {1, . . . , N1} and n2 ∈ {1, . . . , N2} represent the coordinates of the pixel along the

x and y axis, respectively.

For simplicity, the tensor W is unfolded into a matrix W = [w1, . . . ,wN ] ∈ RT×N with

N = N1×N2, such that each column of W represents the T time samples of one pixel of the THz

image. Once unfolded, the algorithm computes the complex spectrum of the signal per pixel in the

frequency domain by using fast Fourier transform (FFT). The frequency domain representation of

the i-th pixel is yi = F(wi), where F(·) is the FFT operator. Since wi is real, the FFT of wi is

even-symmetric. Thus the size of yi is F = T
2

. Define the frequency-domain THz image matrix as

D = [d1, . . . ,dN ] ∈ CF×N .

In our experiment setup, each pixel contains N = 1024 time samples with a sampling period

T0 = 0.026 ps. Correspondingly, the frequency-domain representation of each pixel has 512

frequency samples. Theoretically, the frequency span of each pixel is 1
2T0

= 18.97 THz, with the

frequency domain resolution being F0 =
1

NT0
= 37.05 GHz. Considering the physical limitations

of the THz system, the frequency-domain signal of each pixel is limited to [0.1, 4] THz, which

corresponds to the system’s operation range. Therefore, the number of frequency samples per

pixel is reduced to F = 106.

Either the original complex THz spectrum or its amplitude can be used to classify the various

regions inside a tissue sample. The subsequent analysis is applicable to both the complex spectrum

or amplitude spectrum. To unify notations, define a new spectrum matrix Y = [y1, . . . ,yN ] to

represent both the complex and amplitude spectrum. For analysis of the complex spectrum, we

have Y = D; for analysis of the amplitude spectrum, Y is obtained by replacing all elements in

D with their respective amplitudes.

We will perform cancer detection by utilizing the frequency-domain THz matrix Y, such that

each pixel can be classified into one category from a finite set of tissue types, such as cancer, fat,

muscle, etc. The information of the i-th pixel is represented by the frequency-domain vector yi,

which has a relatively large dimension of F = 106. The frequency domain vector yi contains
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both common features that are shared by multiple tissue types, and unique features that can be

used to distinguish different types of tissues. Performing classification directly over yi means the

algorithm needs to process both common features and unique features. This will incur unnecessar-

ily high computation complexity, and the overall performance of the classifier will be negatively

affected by the Hughes phenomenon [21].

It is thus desirable to perform low-dimension feature extraction before classification. With

low-dimension feature extraction, the high dimension vector yi can be mapped to a low dimension

feature domain that contains the majority of the salient information of the unique features. Such

an approach can significantly improve the classification accuracy and efficiency.

3.5. Low-Dimension Ordered Orthogonal Projection

In this section, we propose a LOOP algorithm to achieve low-dimension feature extraction from

the frequency-domain THz matrix Y.

The main objective of the algorithm is to identify a low-dimension subspace of the space

spanned by the columns of Y, and the subspace should contain the majority of the salient informa-

tion of the unique features embedded in Y. Once the subspace is identified, the frequency-domain

vector of each pixel can then be projected into the subspace to achieve low-dimension feature

extraction.

The subspace can be described by an orthonormal basis BL = {b1, . . . , bL}, where L < F

is the dimension of the subspace. The LOOP algorithm identifies B by using a modified Gram-

Schmidt (GS) process [22]. Conventional GS process sequentially identifies a set of orthonormal

vectors that form the basis of the space spanned by a set of vectors. The sequential procedure of

conventional GS is performed in an arbitrary order without considering the features embedded in

the vectors. The LOOP algorithm improves the GS process by ordering the sequentially identified

orthonormal basis vectors, such that most of the unique features embedded in Y are contained in

the subspace spanned by the first L orthonormal basis vectors.

To achieve this goal, the LOOP algorithm calculates each new orthonormal basis vector by us-
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ing the pixel that is least represented by all previous basis vectors. That is, each new orthonormal

basis vector is chosen as the one that contains the most amount of unique information not repre-

sented by all previous basis vectors. Following such an ordered sequential process, most of the

unique information embedded in Y is captured by the first few basis vectors. Details of the LOOP

algorithm are described as follows.

In the LOOP algorithm, the first orthonormal basis vector is calculated by normalizing the

average vector of all pixels as

b1 =
ȳ

‖ȳ‖ (3.1)

where ȳ = 1
N

∑N

i=1 yi, and ‖ȳ‖ =
√

ȳH ȳ is the norm of ȳ with ȳH being the vector conjugate

transpose operator.

The subsequent orthonormal basis vectors are calculated in a sequential manner. Assume the

first l orthonormal basis vectors have been identified, and they are represented as Bl = [b1, · · · ,bl].

The (l + 1)-th basis vector will be calculated by using the pixel that is least represented by Bl.

How well a vector is represented in a subspace can be measured by using the angle between the

vector and its projection in the subspace. A right angle means the subspace does not contain any

information of the vector, and a 0-degree angle means the vector can be fully represented by the

subspace.

The projection of the vector yi onto a subspace spanned by Bl can be calculated as

P
Bl
(yi) =

l
∑

j=1

〈yi, bj〉bj (3.2)

and 〈yi, bj〉 = yH
i bj is the inner product between vectors yi and bj .

Denote the angle between the two vectors yi and P
Bl
(yi) as θi,l = ∠(yi, PBl

(yi)), then

cos(θi,l) =

〈

yi, PBl
(yi)

〉

‖yi‖ · ‖PBl
(yi)‖

, (3.3)
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Based on the above notations, we can identify the pixel that is least represented by the subspace

Bl as

ul+1 = argmin
yi∈Yl

| cos(θi,l)|. (3.4)

where Yl contains all the yi vectors that are not in the subspace spanned by Bl.

Once the vector ul+1 is identified, the (l + 1)-th basis vector, bl+1, can then be calculated by

following the GS procedure as

vl+1 = ul+1 − P
Bl
(ul+1), (3.5)

bl+1 =
vl+1

‖vl+1‖
. (3.6)

The procedure is repeated until |mini cos(θi,l)| is less than a predefined threshold or a prede-

fined dimension L is reached. Once the orthonormal basis BL is identified, we can project each

pixel into the subspace spanned by BL to achieve a low dimension representation of the THz image.

Define BL = [b1, · · · ,bL] ∈ CF×L, then the low dimension representation of yi can be expressed

as

yi = BL × zi, for i = 1, · · · , N. (3.7)

The output of the LOOP algorithm is the low-dimension representation of the THz image in the

feature subspace as Z = [z1, · · · , zN ] ∈ CL×N , and it can also be represented in a compact form as

Y = BL × Z, (3.8)

where Z can be determined using a least-squares approach.
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3.6. Unsupervised Learning with Gaussian Mixture Model

In this section, we present two unsupervised learning methods to classify the pixels based on the

low dimension feature matrix Z. Both methods are developed by using GMMs.

In the complex spectrum analysis, the elements in Z are complex numbers. To simplify nota-

tion, define a real-valued matrix by separating the real and imaginary part of Z as [23]

X = [ℜ(ZT ),ℑ(ZT )]T ∈ R2L×N (3.9)

On the other hand, for the amplitude spectrum analysis, all elements in Z are real numbers and we

define X = Z ∈ RL×N .

The i-th column of X is denoted by xi. In the GMM, it is assumed that the low-dimension

feature vector xi follows a multi-modal Gaussian distribution, with each mode corresponding to a

specific region within the sample tissue. The GMM can be represented as

f
(

xi|[µk,Σk, qk]
K
k=1

)

=
K
∑

k=1

qkg(xi|µk,Σk) (3.10)

where K is the number of categories in the sample tissue, qk is the prior probability of a pixel in the

k-th category, and g(xi|µk,Σk) ∼ N (µk,Σk) is the Gaussian probability density function (pdf)

with mean µk and covariance matrix Σk.

Define a set of latent variables, ζi ∈ {1, . . . , K}, which are used to indicate the classification

result of the i-th pixel, for i = 1, · · · , N . That is, ζi = k indicates that the i-th pixel belongs to the

k-th category. It is assumed that the latent variable ζi follows a multinomial distribution with prior

probability π(ζi = k) = qk, for k = 1, · · · , K.

The optimum classifier is the maximum a posteriori probability (MAP) detector, which can

then be represented as

ζ̂i = argmax
k∈{1,...,K}

Pr(ζi = k|X) (3.11)

The direct calculation of the posterior probability is numerically challenging due to the high
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dimension of the variables and parameters. Two unsupervised learning methods, MCMC and EM,

are adopted by this chapter to obtain the classification results.

3.6.1. Markov Chain Monte Carlo

The posterior probability Pr(ζi = k|X) can be numerically estimated by using MCMC with Gibbs

sampling. Gibbs sampling iteratively takes Monte Carlo samples based on the full conditional

distributions of all variables in the mixture model [24]. The samples can be used to obtain an

estimate of the posterior probability.

Before starting the iterative process of Gibbs sampling, we need to initialize all the variables

within the model, including q, µk, Σk, and ζ = [ζ1, . . . , ζN ]. All variables are first initialized

by applying K-means classification on the data. Denote the results of K-means classification as

ζ
(0)
i = k. Define S(0)

k = {i : ζ(0)i = k} as the set of pixels classified into the k-th category, and

n
(0)
k =

∣

∣

∣
S(0)
k

∣

∣

∣
is the cardinality of S(0)

k . The initial values of the variables can then be calculated as

q
(0)
k =

n
(0)
k

N
, k = 1, · · · , K,

µ
(0)
k =

1

n
(0)
k

∑

i∈S
(0)
k

xi, k = 1, · · · , K,

Σ
(0)
k =

1

n
(0)
k − 1

∑

i∈S
(0)
k

(

xi − µ
(0)
k

)(

xi − µ
(0)
k

)T

, k = 1, · · · , K.

Under the Bayesian setting, the unknown parameters are random with prior distributions

π(qk) = Dir(αk),
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π(µk) = N (µ0k,Σ0k),

π(Σk) = InvWishp(Ψ, ν),

where Dir and InvWish represent the Direchlet and Inverse-Wishart distributions, respectively, αk,

µ0k, Σ0k, Ψ, and ν are the hyper-parameters of the distributions. Since there is no prior knowledge

about these distributions, we assume that µ0k = 0L′ , Σ0k = IL′ , Ψ = IL′ , and ν = L′ + 1 [25],

where L′ corresponds to L and 2L for the amplitude and complex spectrum analysis, respectively.

Given these priors, the posterior full conditional distributions of these variables can be calcu-

lated as follows [19]:

• Posterior distribution of q

qk ∼ Dir(αk + nk) (3.12)

where nk is the number of pixels classified into the k-th category in the previous iteration.

• Posterior distribution of Σk

Σk ∼ InvWishp(S +Ψ, nk + ν) (3.13)

where S =
∑

i∈Sk
(xi − µk)(xi − µk)

T
, and Sk is the set of pixels classified into the k-th

category in the previous iteration.

• Posterior distribution of µk

µk ∼ N (µp,Σp) (3.14)

Where Σp =
(

Σ−1
0k + nkΣ

−1
k

)−1

and µp =
(

Σ−1
0k + nkΣ

−1
k

)−1(

Σ−1
0k µ0k +Σ−1

k

∑

i∈Sk
xi

)

.
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• Posterior distribution of ζi

Pr
(

ζi = k
∣

∣xi, [µk,Σk, qk]
K
k=1

)

=
qkg(xi|µk,Σk, ζi = k)

∑K

p=1 qpg(xi|µp,Σp, ζi = p)
(3.15)

The Monte Carlo samples of all variables can be iteratively drawn from the above full condi-

tional distributions. The samples are used to numerically approximate the posterior distribution of

ζi as,

Pr(ζi = k|X) = lim
M→∞

1

M

M
∑

it=1

I(ζ(it)i = k), (3.16)

where I(a) = 1 if a = TRUE and 0 otherwise. MAP detection can then be applied with (3.16)

to perform classification. It should be noted that, before applying the MCMC algorithm, the data

vector X might need to be scaled up to avoid numerical underflow during the iteration process. The

scaling factor depends on the data values and the precision of the floating number representation

used in the computer. In this chapter, the vectors X are scaled by a factor of 15 before applying

the amplitude MCMC algorithm to fresh samples.

3.6.2. Expectation Maximization

The posterior distribution of the latent variable ζ can be alternatively estimated with the EM ap-

proach. In this method, we iteratively determine the estimators of the parameters involved in the

GMM, θ = [µk,Σk, qk]
K
k=1, that maximize its log-likelihood function, ℓ(θ) = log p(X|θ), as

ℓ(θ) =
N
∑

i=1

log

(

K
∑

k=1

qkg(xi|ζi = k,θ)

)

(3.17)

It is difficult to directly maximize the log-likelihood function ℓ(θ) due to the logarithm of

summation. The EM algorithm iteratively maximizes the log-likelihood function by employing an

expectation step (E-step) and maximization step (M-step) [26].
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E-step

In the E-step of the m-th iteration, the algorithm first calculates the posterior probability of ζi by

using (3.15), and the result is denoted as

γ
(m)
ik = Pr

(

ζi = k
∣

∣xi,θ
(m)
)

(3.18)

where θ(m) = [µ
(m)
k ,Σ

(m)
k , q

(m)
k ]Kk=1 are the model parameters from the m-th iteration.

M-step

In the M-step, the algorithm maximizes the conditional expectation of the joint log-likelihood

function of y and ζi, which can be expressed as

Q(θ|θ(m)) =
N
∑

i=1

Eζi|θ(m)

[

log p
(

xi, ζi
∣

∣θ
)]

(3.19)

where the expectation is performed with respect to the posterior distribution of Pr(ζi = k|θ(m)).

Calculating the conditional expectation in (3.19) yields

Q(θ|θ(m)) =
K
∑

k=1

η
(m)
k

[

logqk−
1

2
log|2πΣk|

]

− 1

2

n
∑

i=1

K
∑

k=1

γ
(m)
ik (xi − µk)

T
Σ−1

k (xi−µk), (3.20)

where

η
(m)
k =

N
∑

i=1

γ
(m)
ik . (3.21)

Maximizing Q(θ|θ(m)) with respect to θ yields the following parameter estimators.

• Estimator of qk

q
(m+1)
k =

η
(m)
k

N
(3.22)

• Estimator of µk

µ
(m+1)
k =

1

η
(m)
k

N
∑

i=1

γ
(m)
ik xi (3.23)
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• Estimator of Σk

Σ
(m+1)
k =

1

ηk

∑

i=1

γ
(m)
ik

(

xi − µ
(m+1)
k

)(

xi − µ
(m+1)
k

)T
(3.24)

The convergence of the algorithm is guaranteed because the M-step will always increase the

log-likelihood function ℓ(θ) [26].

3.7. Spatial Prior with Markov Random Field

Unlike the previous sections that assumed statistical independence among pixels in the spatial do-

main, this section proposes a novel spatial image segmentation approach that considers the spatial

correlation among pixels. Specifically, it is assumed that pixels within a certain neighborhood,

that is, a cluster of pixels that are close to each other, are correlated with each other by following

certain prior distributions.

Let Y = [y1, . . . , yN ] denote the classification labels for the N pixels in the THz image, where

yi ∈ {1, 2, . . . , K}, and K represent the number of regions (e.g. cancer, fat, collagen, etc.). The

spatial correlation among the pixels can be represented by a Gibbs prior to the labels as [27]

P (Y) =
1

Z
exp

(

−
∑

c∈C

Vc(Y)

)

, (3.25)

where Z is a normalization constant, C corresponds to the clique within the defined neighborhood,

Vc(yi, yj) = β(1 − Iyi,yj), and Iyi,yj = 1 if yi = yj or 0 otherwise. For this purpose, we consider

neighborhoods of sizes 4, 8, and 24 directly surrounding each pixel of interest. Finally, this new

objective function is solved by using EM and GMM, similarly to the previous sections.

3.8. Experimental Results

The performance of the newly proposed LOOP algorithm with unsupervised learning is quantita-

tively evaluated in this section with THz images of freshly excised breast cancer tissue. All the
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(a)

(b) (c) (d)

(e) (f) (g) (h)

Figure 3.3: Sample ND10898 fresh. (a) THz image. (b) Pathology image. (c) Morphed Pathology.

(d) 1D MCMC model. (e) 2D amplitude MCMC model. (f) 2D amplitude EM model. (g) 4D

complex MCMC model. (h) 4D complex EM model.

source codes used for this analysis are available in [28].

The classification results from THz images of freshly excised tissues are compared to

histopathology results from the corresponding FFPE tissues. Since the FFPE samples are ob-

tained by fixing fresh tissue samples in paraffin, there is usually a significant mismatch between

the shapes of the FFPE and fresh tissues. Thus a direct pixel-by-pixel comparison between the

results from the THz image and the histopathology results is not possible.

To enable quantitative evaluations of the results, we employ the image morphing algorithm[5]

on the pathology results to create a reference image with the same size and resolution as the THz

image. The morphed pathology image is used to represent the real classification of each pixel

according to the pathology report. Such a morphing method enables the quantitative evaluation

of the detection results through pixel-by-pixel comparisons between the detection results and the

morphed pathology results. This comparison is summarized in a receiver operating characteristic

(ROC) curve, which is a plot showing the true detection rate as a function of the false detection
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Figure 3.4: ROC curves for sample ND10898 fresh.

rate. Since the results of the statistical analysis are represented as the probability of each pixel

belonging to different regions, we can adjust the probability threshold for the detection of a certain

region to obtain different points on the ROC curve.

In the proposed LOOP algorithm, each pixel is summarized as a low dimension vector ex-

tracted from the THz spectrum. During the analysis, the LOOP algorithm was applied to both

the amplitude spectrum and the complex spectrum of the THz image, respectively. For each tissue

sample, results from various sizes of the low dimension vectors obtained from the LOOP algorithm

are compared, and the one that yields the best performance is presented. In addition, we will com-

pare the performance of the LOOP algorithm with several existing algorithms, including the 1D

MCMC algorithm that summarizes each pixel into a 1D scalar[5, 8], and the PCA algorithm[29].

It is important to mention that the 1D MCMC algorithm classifies the regions according to the

spectral power of the frequency domain signal per pixel for fresh tissue, and the peak reflection

of the time domain signal for block tissue, respectively[8]. All detection algorithms are applied to

three different human breast tumor samples, and the corresponding results are given in this section.

3.8.1. Results from Freshly Excised Samples

We first present the results obtained by analyzing three human breast cancer tissue samples:

ND10898, ND15526, and ND15588, with dimensions 15×15mm, 8.7×13mm, and 8×15.3mm,

respectively. We receive fresh tissue of thickness ranging from 3 to 4mm. As reported in[7], the
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(a)

(b) (c) (d)

(e) (f) (g) (h)

Figure 3.5: Sample ND15526 fresh. (a) THz image. (b) Pathology image. (c) Morphed Pathology.

(d) 1D MCMC model. (e) 2D amplitude MCMC model. (f) 2D amplitude EM model. (g) 3D

complex MCMC model. (h) 6D complex EM model.

tissue have high absorption coefficient ranging from ∼100 to 700cm−1 in the frequency range

0.1 to 3.5 THz. Thus the multiple reflection interference inside the tissue becomes insignificant.

For example, at 0.5 THz the signal penetration depth is ∼276µm in cancer[30], therefore the re-

flected signal from tissue of less than ∼2mm thickness could be adversely affected by the multiple

reflection. These samples contain three regions: cancer, collagen or fibro, and fat.

Fig. 3.3a shows the THz image collected from sample ND10898 while it was still fresh,

where each pixel represents the power spectra of its THz waveform[8]. Fig. 3.3b represents the

histopathology results obtained by analyzing the FFPE tissue sample fixed in paraffin, which cor-

responds to the gold standard within cancer detection. Fig. 3.3c shows the morphed pathology

mask obtained by employing the morphing algorithm[5]. The morphed pathology mask is used

as a benchmark for the THz image classification results. The white spots within all the images in

Fig. 3.3 represent air bubbles (artifact from the data collection process) that were removed before

further processing to avoid data contamination.

67



0 0.2 0.4 0.6 0.8 1

False Detection Rate Cancer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 D

e
te

c
ti
o
n
 R

a
te

 C
a
n
c
e
r

CANCER

1D MCMC

2D AMPLITUDE MCMC

3D COMPLEX MCMC

2D AMPLITUDE EM

6D COMPLEX EM

0 0.2 0.4 0.6 0.8 1

False Detection Rate Collagen

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 D

e
te

c
ti
o
n
 R

a
te

 C
o
lla

g
e
n

COLLAGEN

1D MCMC

2D AMPLITUDE MCMC

3D COMPLEX MCMC

2D AMPLITUDE EM

6D COMPLEX EM

0 0.2 0.4 0.6 0.8 1

False Detection Rate Fat

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 D

e
te

c
ti
o
n
 R

a
te

 F
a
t

FAT

1D MCMC

2D AMPLITUDE MCMC

3D COMPLEX MCMC

2D AMPLITUDE EM

6D COMPLEX EM

Figure 3.6: ROC curves for sample ND15526 fresh.

The classification results of the THz image obtained by using the 1D MCMC approach[5, 8],

4D MCMC with amplitude spectrum, 2D EM with amplitude spectrum, 4D MCMC with complex

spectrum, and 4D EM with complex spectrum are presented in Figs. 3.3d-3.3h, respectively. The

2D and 4D results are obtained by using the proposed LOOP algorithm. By visually inspecting the

classification models results side-by-side, we can observe that the fibro detection in the 1D MCMC

approach is the best among all the models at the cost of a large misclassification of cancer. On the

other hand, the correlation among the cancer and fat regions is improved in the 2D and 4D models

presented in Figs. 3.3e-3.3h when compared to the morphed pathology results in Fig. 3.3c.

To quantify the performance of each model, the corresponding ROC curves of the classification

results of sample ND10898 fresh are presented in Fig. 3.4. The ROC curves are obtained by

performing pixel-by-pixel comparisons between the detection results and the morphed pathlogy

results. The areas underneath the ROC curves are listed in Table 4.1. All results obtained with the

proposed LOOP algorithm perform significantly better than the 1D MCMC approach[8] for both

cancer and fat, while the detection of fibro is better in 1D MCMC. The results from 2D feature

vectors achieve larger cancer ROC areas (∼ 60%) than those from the 1D approach (∼ 50%).

Hence, we can state that the analysis of higher dimensional feature vectors significantly improves

the detection accuracy. In terms of areas underneath the ROC curves, 2D amplitude EM achieves

the best performance for cancer and fat detection.

Similarly, Fig. 3.5a represents the THz image collected from sample ND15526 fresh. Figs.
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(a)

(b) (c) (d)

(e) (f) (g) (h)

Figure 3.7: Sample ND15588 fresh. (a) THz image. (b) Pathology image. (c) Morphed Pathology.

(d) 1D MCMC model. (e) 2D amplitude MCMC model. (f) 2D amplitude EM model. (g) 3D

complex MCMC model. (h) 4D complex EM model.

3.5b and 3.5c correspond to the original and morphed histopathology results. Figs. 3.5d-3.5h show

the classification results for 1D MCMC, 2D amplitude MCMC, 2D amplitude EM, 3D complex

MCMC, and 6D complex EM, respectively. Visually, 1D MCMC, 2D amplitude MCMC, and

3D complex MCMC present similar classification areas with good cancer correlation, but with

poor collagen detection. On the contrary, 2D amplitude EM and 6D complex EM present a better

collagen detection at the cost of large cancer regions misclassification.

Fig. 3.6 presents the ROC curves for sample ND15526 fresh and their areas under the ROC

curves are presented in Table 4.1. We can observe that the detection of cancer and fat is comparable

among the 1D MCMC approach and most of the higher dimensional models, with 1D MCMC

being slightly better. Overall the best classification results are obtained by the 6D complex EM

approach. This method achieved areas under the ROC of 77% or above for all the regions presented

in this sample.

Fig. 3.7a shows the THz image collected from sample ND15588 while it was still fresh. Fig.
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Figure 3.8: ROC curves for sample ND15588 fresh.

3.7b represents the histopathology results obtained by analyzing the corresponding FFPE tissue

sample fixed in paraffin. Fig. 3.7c shows the morphed pathology mask obtained by employing

the morphing algorithm[5]. The classification results obtained by using the 1D MCMC approach,

4D MCMC with amplitude spectrum, 2D EM with amplitude spectrum, 4D MCMC with complex

spectrum, and 4D EM with complex spectrum are presented in Figs. 3.7d-3.7h, respectively. For

the 1D MCMC approach, large portions of the cancer regions are misclassified as collagen. For the

2D and 4D results obtained with amplitude spectrum, there is a slight improvement in the detection

of the cancer region for both MCMC and EM algorithms. For the high-dimension results obtained

from the complex spectrum, the detection of cancer and fat slightly improves when compared

to their amplitude counterparts, but at the cost of a higher misclassification of collagen. It is

important to mention that the surrounding cancer zones in Figs. 3.7e-3.7h that do not correlate

with the histopathology results correspond to the misclassification of the detection algorithms.

The corresponding ROC curves of the classification results of sample ND15588 fresh are pre-

sented in Fig. 3.8. The areas underneath the ROC curves are listed in Table 4.1. All results obtained

with the proposed LOOP algorithm perform considerably better than the 1D MCMC approach[8].

The results from 2D, 3D and 4D feature vectors achieve larger ROC areas (∼ 70%) than those from

the 1D approach (∼ 60%). Thus we can conclude that increasing the dimension of the feature vec-

tor by just one dimension over the 1D approach can achieve apparent performance improvement.

In terms of areas underneath the ROC curves, 2D amplitude EM achieves the best performance for
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(a)
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(e) (f) (g) (h)

Figure 3.9: Sample ND15588 block. (a) THz image. (b) Pathology image. (c) Morphed Pathology.

(d) 1D MCMC model. (e) 6D amplitude MCMC model. (f) 6D amplitude EM model. (g) 2D

complex MCMC model. (h) 2D complex EM model.

all the regions.

3.8.2. Results from FFPE Block Sample

We also analyze the classification results obtained by using the THz image of FFPE block sample,

where the image is obtained by scanning the paraffin embedded block sample. The THz image of

sample ND15588 block is shown in Fig. 3.9a, where each pixel is represented by using the peak

reflection of the THz waveform [8]. The dimensions of this block sample are 7.5×14.9mm and its

thickness is ∼3-4mm. As explained in [8], the block tissue is sensitive to multiple reflections in the

frequency domain due to its low absorbance, hence the power spectra is not utilized for this type

of samples in the 1D case. For imaging the dehydrated tissue block (FFPE), the time domain peak

reflection from each pixel on the surface is measured. These peaks are not affected by the multiple

reflections due to the difference in arrival times. Even though this set of results corresponds to the

same sample as presented in Fig. 3.7a, this image was collected from scanning the paraffin block
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Figure 3.10: ROC curves for sample ND15588 block.

tissue obtained after the pathology process. As a result, the THz image of FFPE block tissue is

different from that of its fresh counterpart shown in Fig. 3.7a. It is important to mention that we

include the results obtained from block tumor samples to illustrate the behavior of the algorithms

within this sample type. Since the region detection among block samples is of limited clinical

interests, we present one sample only for this purpose.

The corresponding histopathology results and morphed histopathology mask are shown in

Figs. 3.9b and 3.9c, respectively. The classification results obtained by using the 1D MCMC

approach[5, 8], 6D MCMC with amplitude spectrum, 6D EM with amplitude spectrum, 2D

MCMC with complex spectrum, and 2D EM with complex spectrum are presented in Figs. 3.9d-

3.9h, respectively. The corresponding ROC curves are given in Fig. 3.10. The areas underneath

the ROC curves are listed in Table 4.1.

Visually the results obtained from the 6D amplitude MCMC and 6D amplitude EM models

have the best overall correlation with the histopathology results. This is corroborated by the ROC

curves for the cancer region. The cancer ROC areas of the 6D amplitude MCMC and EM ap-

proaches are 79.97% and 79.77%, which are significantly higher than other methods with ROC

areas ranging from 67.35% to 73.05%. It should be noted that the relatively large cancer ROC area

of the 1D MCMC model is achieved at the cost of extremely poor performance of collagen, where

the majority of the collagen pixels are misclassified as cancer as shown in Fig. 3.9d. In terms of

the collagen ROC area, the 6D amplitude MCMC and 2D complex EM models achieve the best
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Table 3.1: Areas under the ROC curves.

ND10898 Fresh (15× 15 mm)

Region 1D MCMC
2D amplitude

MCMC

2D amplitude

EM

4D complex

MCMC

4D complex

EM

Cancer 0.5676 0.6130 0.6101 0.5631 0.5934

Fibro 0.6682 0.5370 0.5663 0.4723 0.5528

Fat 0.6530 0.7885 0.7963 0.7571 0.7971

ND15526 Fresh (8.7× 14 mm)

Region 1D MCMC
2D amplitude

MCMC

2D amplitude

EM

3D complex

MCMC

6D complex

EM

Cancer 0.7468 0.7122 0.7353 0.7011 0.7750

Collagen 0.6458 0.5576 0.6027 0.6008 0.7705

Fat 0.8390 0.8215 0.8247 0.8256 0.8327

ND15588 Fresh (8× 15.3 mm)

Region 1D MCMC
2D amplitude

MCMC

2D amplitude

EM

3D complex

MCMC

4D complex

EM

Cancer 0.6338 0.7435 0.7469 0.7481 0.7083

Collagen 0.6521 0.7338 0.7412 0.7286 0.7451

Fat 0.7372 0.7619 0.7685 0.7941 0.7759

ND15588 Block (7.5× 14.9 mm)

Region 1D MCMC
6D amplitude

MCMC

6D amplitude

EM

2D complex

MCMC

2D complex

EM

Cancer 0.7305 0.7997 0.7977 0.6735 0.6752

Collagen 0.4843 0.6366 0.6280 0.6052 0.6668

Fat 0.8743 0.7999 0.7674 0.7109 0.7588

performance among all cases, with that of 2D complex EM being better. However, the 2D complex

EM model has a large misclassification of cancer. For the fat region, the 1D MCMC and 6D am-

plitude MCMC models have the best performance, followed by the 6D amplitude EM model. The

6D amplitude MCMC model has the best overall performance in terms of visual correlation and

ROC areas, which are comparable to the results obtained from the 6D amplitude EM model. The

ROC areas of the 6D amplitude MCMC model are 79.97%, 63.66%, and 79.99%, respectively.

It is to be noted that, heterogeneous human tissues have an uneven surface. This necessitates

some “facing in” of the paraffin block in order to obtain a full/intact tissue section. In general,

“facing in” the block will result in the loss of approximately 100 µm off the uneven surface.

Therefore, THz imaging of dehydrated samples, such as FFPE, has shown better correlation with
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(a) (b) (c)

Figure 3.11: Fresh sample ND15588. (a) Morphed pathology. (b) Segmentation results from 1D

MCMC. (c) Segmentation results from 2D EM with 8-nearest neighbors.
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Figure 3.12: ROC curves for fresh sample ND15588.

pathology because both images were taken from the same surface. On the other hand, the THz

imaging of fresh samples were taken from different surfaces. Furthermore, the contrast between

cancer and healthy non-fatty tissue is affected by the water content in both.

Overall the amplitude-based models perform better than the complex spectrum models for

block tissues. Visually the results obtained with complex spectrum do not correlate well with the

morphed pathology results. Hence utilizing both amplitude and phase information of the THz

spectrum might negatively impact the overall classification results with FFPE tissue samples.
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Table 3.2: Areas under the ROC curves for sample ND15588 fresh.

Method Cancer Collagen Fat

1D MCMC 0.6338 0.6521 0.7372

Spatial EM - 4 neighbors 0.7092 0.7400 0.7721

Spatial EM - 8 neighbors 0.7099 0.7401 0.7726

Spatial EM - 24 neighbors 0.7126 0.7408 0.7750

Table 3.3: Areas under the ROC curves for sample ND15588 fresh: LOOP vs. PCA.

Region

2D amplitude

MCMC with

LOOP

2D amplitude

MCMC with PCA

3D complex

MCMC with

LOOP

3D complex

MCMC with PCA

Cancer 0.7435 0.6871 0.7481 0.6307

Collagen 0.7338 0.7067 0.7286 0.6418

Fat 0.7619 0.7387 0.7941 0.7327

3.8.3. Results with Spatial Prior

The results in this section are obtained by applying the newly proposed spatial image segmentation

algorithm to sample ND15588. Fig. 3.11a shows the morphed pathology obtained through mesh

morphing [5], which represents our ground truth. Fig. 3.11b presents the classification results

obtained through a 1D GMM with MCMC as described in [8]. Fig. 3.11c shows the classification

results using the 2D spatial EM approach proposed in this chapter. In these figures, we can observe

that the spatial model presents better region correlation with the morphed pathology than the 1D

MCMC model.

Fig. 3.12 shows the ROC curves of the classification models, which provide the quantitative

evaluation of these models in the form of true vs. false detection rate for each region within the

tissue. As shown in Fig. 3.12, the spatial model performs better than the 1D MCMC approach for

all regions. This can be further confirmed in Table 3.2, which presents the areas under the ROC

curves. As shown in Table 3.2, we can observe that the area under these curves slightly increases

as the number of neighbors increases.
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(a) (b) (c) (d) (e)

(f) (g)

Figure 3.13: Sample ND15588 fresh with different classification methods. (a) Morphed

histopathology mask.(b) 2D amplitude MCMC with LOOP. (c) 2D amplitude MCMC with PCA.

(d) 3D complex MCMC with LOOP. (e) 3D complex MCMC with PCA. (f) K-means clustering

with full spectrum. (g) SVM clustering with full spectrum.

Table 3.4: Detection rates for sample ND15588 fresh: K-Means and SVM.

Region
K-Means SVM

True Detection

Rate

False Detection

Rate

True Detection

Rate

False Detection

Rate

Cancer 0.3525 0.2179 0.1559 0.1127

Collagen 0.7998 0.4774 0.8217 0.7353

Fat 0.2848 0.0331 0.2748 0.0455

3.8.4. Comparison with Other Methods

The performance of the proposed LOOP algorithm with unsupervised statistical learning is

compared to several other commonly used algorithms in the literature, including PCA[29], K-

means[31], and support vector machine (SVM)[32]. PCA is a widely used dimension reduction

algorithm. K-means and SVM are commonly used unsupervised and supervised machine learn-

ing algorithms, respectively. The comparison is performed by using sample ND15588 fresh. For

fairness of comparison, the same dimension is used by both PCA and LOOP. The low dimension

vectors obtained from PCA or LOOP are further processed by using amplitude or complex MCMC.
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Figure 3.14: ROC curves for sample ND15588 fresh with different classification methods.

No dimension reduction is applied to either K-means or SVM. Since SVM is a supervised algo-

rithm, it is first trained with sample ND15526, and the trained model was then applied to sample

ND15588. The morphed histopathology results are presented in Fig. 3.13a. The classification re-

sults of 2D amplitude MCMC with LOOP, 2D amplitude MCMC with PCA, 3D complex MCMC

with LOOP, 3D complex MCMC with PCA, K-means, and SVM are shown in Figs. 3.13b-3.13g,

respectively. The corresponding ROC curves of the cancer, collagen, and fat regions are shown in

Fig. 3.14. The areas underneath the ROC curves are listed in Table 3.3. It should be noted that

K-means and SVM are hard-clustering techniques, therefore the results of K-means or SVM are

fixed and they cannot be tuned based on the tradeoff between the true positive and false positive

probabilities. Consequently, the results from K-means and SVM are represented as single dots on

the ROC curves in Fig. 3.14. The true and false detection rates of K-Means and SVM for all the

regions within this sample are shown in Table 3.4.

Overall the 2D amplitude MCMC and the 3D complex MCMC models with LOOP achieves

the best performance among all the different methods. K-means achieves comparable results with

respect to 2D amplitude MCMC for both collagen and fat, but its detection of cancer is much worse

than MCMC. The SVM method shows poor detection of cancer and a large missclassification of

collagen. The LOOP algorithm outperforms the PCA algorithm in all three regions within the

tumor sample. The areas under the ROC curves for the PCA approaches achieve values of 63.07-

73.87% for all regions, while the LOOP counterparts achieve areas of 72.86-79.41%. Thus the
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proposed LOOP algorithm can achieve better performance than the well established algorithms

such as PCA, K-means, and SVM.

3.9. Conclusion

A new dimension reduction algorithm has been proposed to extract the salient information embed-

ded in THz images of cancer tissues. The LOOP algorithm summarizes the wide spectrum of each

pixel in the THz image as a low dimension feature vector, which is then modeled by using multi-

variate GMMs. The low dimension feature vectors were utilized by MCMC or EM algorithms to

classify the different regions within a sample tissue. The newly proposed algorithm was applied to

human breast cancer tissue samples with three regions. Experiment results have demonstrated that

the LOOP method achieves apparent performance improvement over existing approaches, such as

the 1D MCMC approach [5, 8]. For example, the areas under the cancer ROC curves have been

improved from 63.38% to 74.69% by simply replacing the 1D features in the 1D MCMC algorithm

with 2D feature vectors extracted from the LOOP algorithm in sample ND15588 fresh.

In general, the EM algorithm with the LOOP method achieves the best overall performance, for

both freshly excised tissues and FFPE block tissues. In particular, the algorithms present promising

results for freshly excised human tissues with at least 60-70% of areas underneath the ROC curves.

This represents an important milestone in the region classification of human breast cancer tissues,

which are significantly more heterogeneous and complex than the xenograft mice tissues used in

[8] and [5]. The classification of tumor tissues with 3 or more regions still remains as a significant

challenge for future works.

Additionally, the addition of a spatial prior moderately improves the performance of breast

cancer detection by exploiting the spatial correlation among neighboring pixels in THz images.

Experimental results on freshly excised human tissue have demonstrated that the spatial GMM

model achieves better detection rates when compared to 1D MCMC.
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Chapter 4

Supervised Bayesian Learning for Breast Cancer Detection in Terahertz Imaging

Tanny Chavez, Nagma Vohra, Keith Bailey, Magda El-Shenawee, and Jingxian Wu

T. Chavez, N. Vohra, K. Bailey, M. El-Shenawee, and J. Wu, “Supervised Bayesian Learning for

Breast Cancer Detection in Terahertz Imaging”, submitted for publication to Biomedical Signal

Processing and Control and in review.

4.1. Abstract

This paper proposes a supervised multinomial Bayesian learning algorithm for breast cancer detec-

tion by using terahertz (THz) images of freshly excised murine tumors. The proposed algorithm

utilizes a multinomial Bayesian probit regression approach, which establishes the link between

THz data and classification results by using two different models, a polynomial regression model

and a kernel regression model. Such a model-based learning approach employs only a small num-

ber of model parameters, thus it require much less training data when compared to alternative deep

learning methods. The training phase of the algorithm is performed by using the histopathology

results of formalin-fixed, paraffin embedded (FFPE) samples as ground truth. There is usually a

considerable shape mismatch between the freshly excised sample and its FFPE counterpart due to

sample dehydration, and such mismatch will negatively impact the quality of the training data. We

propose to address this challenge by using an innovative reliability-based training data selection

method, where the reliability of the training data is quantified and estimated by using an unsu-

pervised expectation maximization (EM) classification algorithm with soft probabilistic output.

Experiment results demonstrate that the proposed multinomial Bayesian probit regression models

with reliability-based training data selection achieve better performance than existing methods.

Overall, these results demonstrate that the proposed supervised segmentation models represent a

promising technique for the region detection within THz images of freshly excised breast cancer

samples.
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4.2. Introduction

Breast cancer is one of the most common forms of cancer in women across the U.S., with ap-

proximately 1 in 8 women estimated to be diagnosed with breast cancer during their lifetime [1].

Among feasible treatment options for early detected breast cancer, mastectomies and breast con-

serving surgery (BCS) correspond to the customary care approaches. For instance, BCS removes

the cancerous tumor surrounded by a small margin of healthy breast tissue. The evaluation of

the margins in the excised sample is performed by a pathologist, who analyzes its formalin-fixed,

paraffin-embedded (FFPE) representation. Since the histopathology process takes around 10-15

days, the re-excision rates of BCS oscillates between 20-30% [2]. Therefore, it is necessary to

develop an imaging benchmark for the detection of breast cancer within freshly excised BCS sam-

ples such that the surgeon can evaluate the margins of the tissue in the operating room and reduce

its overall re-excision rates.

Terahertz (THz) imaging has shown great potentials for material characterization in a vast vari-

ety of applications, such as integrated circuit inspection [3], security screening [4], food inspection

[5], and biomedical imaging [6–11]. The common objective across these studies is the classifica-

tion of the reflected THz pulse into a fixed number of categories, but with different segmentation

technique based on unsupervised or supervised learning methods. In general, unsupervised learn-

ing algorithms, such as mixture models [6, 12], and Fuzzy C-means [11], make inferences on

patterns among the input observations without utilizing a training stage. These techniques are

useful for initial data exploration, but could be limited by their model definition and the lack

of prior information. On the other hand, supervised learning algorithms utilize a fraction of the

ground truth information to capture intrinsic links among the predictors and responses, which can

be exploited during the segmentation process. Some commonly used supervised segmentation

techniques in medical image segmentation include support vector machine (SVM) [8, 9, 13], par-

tial least squares-discriminant analysis (PLS-DA) [9], K-nearest neighbors [8, 13], random forest

[8, 14], and convolutional neural networks (CNN) [3, 4, 15]. Although supervised learning al-
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gorithms have achieved favorable results in segmentation tasks for biomedical applications, the

requirement of a large amount of training observations represents one of the main challenges for

their implementations.

The requirement of large amount of training data is mainly due to high model complexity in

most supervised learning methods. In THz imaging, each pixel corresponds to a high-dimensional

THz pulse, which contains valuable information about the characterization of the material in its

corresponding location. Direct processing of the high-dimensional THz pulse will result in a high

model complexity. Hence, it is essential to identify the most relevant features embedded in the

THz waveforms to achieve good segmentation performance while maintaining lower model com-

plexity to reduce the amount of training data. To tackle this problem, the absorption coefficient and

refractive index spectra per pixel are used by [10] as their most significant features for the region

segmentation within human gastric tissues. As an alternative to pre-defined characteristics, it is

possible to automatically identify the critical information-bearing features through dimension re-

duction approaches, such as principal component analysis (PCA) [9, 16], and the low-dimensional

ordered orthogonal projection (LOOP) [6, 7] algorithm. Once the most relevant features have

been identified, the segmentation algorithm utilizes these attributes to perform inferences on the

parameters of their discriminating models.

This chapter introduces a novel supervised image segmentation algorithm for the detection of

breast cancer in THz images of BCS samples. The proposed method is developed by using a

multinomial Bayesian ordinal probit regression model with a reliability-based training data selec-

tion method. This proposed method differs from conventional probit regression algorithms with

linear regression models [7, 17] or binary classifications [18]. Two non-linear regression models,

polynomial regression and kernel regression with random Fourier features (RFF) [19], are em-

ployed in the proposed method to establish the link between THz data and classification latent

variables. Since the Bayesian regression algorithm relies on the estimation of a small number of

model parameters, the size of the training set required for this task is considerably smaller than

alternative machine learning approaches, such as CNN and random forest. This fact is particularly
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important for our analysis because the procurement of biomedical samples corresponds to a labo-

rious process that involves clinical protocols, and multi-disciplinary collaborations. As a result,

this type of research usually presents a limited number of specimens, which should be strategically

employed to validate the study’s findings. Hence, one of the main advantages of the proposed

algorithm is the reduced number of training observations required for its model estimation, which

is much less than deep learning approaches.

Unlike alternative studies that use FFPE homogeneous breast cancer samples [8, 20], this chap-

ter employs freshly excised murine-derived heterogeneous samples, i.e. tumors that contain dif-

ferent regions, such as cancer, fibro, fat, etc. For training purposes, the ground truth information

is collected from the histopathology analysis of the sample, which represents the gold standard of

cancer detection and is obtained after the FFPE process of the tissue. Due to dehydration during

the FFPE process, there is a significant shape mismatch between the fresh sample and its FFPE

counterpart. The proposed method tackles this problem by utilizing a mesh morphing algorithm

that reshapes the contour of the pathology results into the shape of the fresh sample [21]. To ac-

count for possible errors during the morphing process, we propose a new reliability-based training

data selection method, which measures the reliability of training data by using the probabilistic

output of an unsupervised expectation maximization (EM) method with Gaussian mixture models

(GMM). Only data with reliability exceeding a certain threshold will be included in the training

data set to ensure the quality of model training.

The rest of the chapter is organized as follows. Section 4.3 introduces the THz system and

the procedure to collect the images. Section 4.4 presents the proposed regression model, and its

training and testing procedures. Section 4.5 shows the experimental results. Section 4.6 concludes

this study.

4.3. Materials and Methods

The experimental set-up was established in Dr. El-Shenawee’s Terahertz Imaging and Spec-

troscopy Lab at the University of Arkansas. The raw experimental data was provided by Ms.
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Nagma Vohra, PhD candidate in Dr. El-Shenawee’s group.

4.4. Theory and Algorithm

4.4.1. Data Pre-Processing

This section describes the data pre-processing step, which is applied to the data prior to the training

and testing procedures. The THz image can be represented by a third order tensor V ∈ RN1×N2×F ,

with the first two dimensions representing the location of the pixel along the x and y axes with size

N1 and N2, respectively, and the third dimension representing the frequency domain with size F .

After unfolding, the THz information can be arranged in terms of a matrix V = [v1, . . . ,vNs
],

where vn ∈ RF represents the amplitude of the frequency domain spectrum of the reflected wave-

form in the n-th pixel, and n = {1, . . . , Ns} with Ns = N1N2 corresponding to the total number of

pixels in the THz image. The frequency domain response per pixel is a high-dimensional waveform

of length F = 106 samples, which covers the system’s operation range from 0.1 to 4 THz.

Before performing the image segmentation algorithm, we apply the LOOP algorithm [6] to the

data to achieve dimension reduction.This method projects the F -dimension signal per pixel into a

lower-dimensional subspace of size L < F , which contains the most relevant features embedded

in THz imaging waveforms.

The lower dimensional data at the output of the LOOP algorithm are then normalized, such

that the features are scaled to zero mean and unit standard deviation. This procedure is repeated

for all the samples in the data set. The normalized lower dimension data vector is represented

by a row vector xn ∈ R1×L, where n = {1, . . . , N} and N corresponds to the total number of

training observations. It is important to highlight that the training stage selects an equal number of

observations per region to avoid bias in the trained model. Details about how the training samples

are selected within the training data set are given in Section 4.4.3.
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4.4.2. Multinomial Bayesian learning with probit regression

This section develops multinomial Bayesian ordinal probit regression models of the data, which

are used to classify each pixel in the THz image to a certain region. Conventional probit regression

models are commonly used in binary classification problems. We introduce a multi-class extension

of this method that employs a continuous latent variable, z ∈ RN , for non-binary partitions of the

dataset [17].

Given the estimated value of the latent variable, and a set of estimated thresholds, α =

{α0, α1, . . . , αK}, the region label per pixel is determined based on the range where the latent

variable is located within α, e.g. the n-th pixel corresponds to the k-th region if αk−1 < zn < αk.

Two non-linear regression models are employed for the multinomial probit regression modeling

of the data, and they are polynomial regression and kernel regression. We will introduce both

models in this section, and compare the performance between the two different models in the

section of experiment results.

Polynomial regression

In the polynomial regression model, the latent variables, {zn}Nn=1, are modeled as independent but

non-identically distributed Gaussian random variables with variance σ2. The mean of zn is mod-

eled as a Q-order polynomial regression of the L-dimensional data xn. The polynomial regression

model can be represented as

zn
ind∼ N

(

wnβ, σ
2
)

, (4.1)

where wn = [1,xn,x
(2)
n , . . . ,x

(Q)
n ] ∈ R1×(QL+1), with x

(k)
n representing the element-wise k-th

exponent of xn, β = [β0, β1, . . . , βQL]
T is the regression parameter vector, and L is the dimension

of the row vector xn. In this chapter, we consider a fixed variance σ2 = 1 in the polynomial

regression model. The regression parameters β can be obtained through training, with details

described in the next section.
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Kernel regression

In the kernel regression model, the data vector of each pixel is mapped onto a higher, or even

infinite, dimensional space as h(xn), where h : xn ∈ RL → h(xn) ∈ RU represents the feature

mapping, and U > L. With the kernel trick in the dual problem definition of the kernel regression

model, it is not necessary to explicitly define the mapping function h(xn) or the high-dimensional

mapping space. Instead, the information per pixel is implicitly mapped by using a kernel function

that represents the inner product between the two mapped vectors as

K(xm,xn) = h(xm)h(xn)
T .

In this chapter, the squared exponential kernel is used to model the inner product in the higher-

dimensional mapping space as

K(xm,xn) = e−ν||xm−xn||2 (4.2)

where ν is the kernel parameter.

The complexity of the kernel regression model increases with the size of the training dataset.

The number of training samples used in this study is in general much smaller compared to other

supervised learning algorithms such as deep learning. However, there is still a large number of

pixels within each case that can negatively impact the model complexity. We propose to further

reduce model complexity by using a random Fourier features (RFF) approximation [19], which

can reduce the number of parameters that need to be estimated during the training process. The

RFF method explicitly projects the vectors per pixel into a lower dimensional approximation of

the kernel’s feature space as hRFF(xn), where hRFF : xn ∈ RL → h(xn) ∈ RV with V < U and

K(xm,xn) ≈ hRFF(xm)hRFF(xn)
T . (4.3)

In order to obtain hRFF, we can express the shift-invariant kernel functions by following Bochner’s
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theorem as

K(xm − xn) =

∫

RL

eiω
T (xm−xn)P (ω)dω (4.4)

where P (ω) corresponds to the Fourier transform of the kernel, and ω ∈ RL×1 is the vector cor-

responding to the frequency domain variable. Since it is not possible to directly compute (4.4), we

employ a Monte Carlo approach by assuming that P (ω) takes the form of a probability distribu-

tion, with ω following a multivariate Gaussian distribution of the form P (ω) = N (0L, 2νIL). By

following the Monte Carlo approach, the kernel function in (4.4) can be approximated by

K(xm − xn) ≈
1

Q

Q
∑

q=1







cos(ωT
q xm)

sin(ωT
q xm)







T 





cos(ωT
q xn)

sin(ωT
q xn)






,

where ωq
iid∼ P (ω), and Q is the total number of Monte Carlo iterations [19]. Through this expres-

sion, the feature space defined by RFF can then be expressed as

hRFF(x) =
1√
Q







cos(ΩTx)

sin(ΩTx)






∈ R2Q×1 (4.5)

where Ω = [ω1, · · · ,ωQ] ∈ RL×Q. In (4.5), the L-dimension data vector x is projected onto a

feature space of dimension V = 2Q. The number of Monte Carlo iterations can be set according

to a fixed error per entry, ±ζ , where Q = log(N)/ζ2, or in general as, Q =
√
N log(N) [19].

The latent variable for the n-th pixel can be modeled as

zn
ind∼ N

(

wnβ, σ
2
)

, (4.6)

where wn = hRFF(xn)
T ∈ R1×2Q, σ2 = 1, and the vector β ∈ R2Q×1 contains the regression

coefficients to be estimated through the training process.
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4.4.3. Training process

This section describes the newly proposed reliability-based training data selection method, and the

training process of the model parameters, α and β, with an Markov chain Monte Carlo (MCMC)

method.

Reliability-based Training Data Selection

The training step utilizes 6 murine fresh samples with the same number of regions, including can-

cer, fibro or muscle, and fat. The regions in the THz images are labeled by using pathology results.

Since the fresh tissue goes through a dehydration process during the pathologist’s analysis, there

is a considerable mismatch between the region allocations of fresh tissues and the corresponding

pathology image. To correct this mismatch, we utilize a mesh morphing algorithm to reshape the

contour of the pathology results into the shape of the THz image taken from the freshly excised

sample [21]. The mesh morphing algorithm matches the pathology and THz images by using con-

trol points on the contour of the tissue, thus it is possible that there are still internal mismatch

between the two images after morphing. As a result, some of the pixels in the training THz images

might be erroneously labeled due to the mismatch with the pathology image. Therefore, it is im-

portant to quantify the reliability of the ground truth information to avoid the usage of erroneously

labeled pixels as training observations.

We propose to measure the reliability of the ground truth information for each pixel by using

the results obtained through an unsupervised Bayesian learning approach with GMM and EM [6].

The output of the unsupervised EM algorithm contains the probability that each pixel belongs to

a certain region. A pixel will be selected for the training dataset only if the probability exceeds

a certain threshold, and the corresponding region matches the pathology results. In this chapter,

the probability threshold selected for this procedure was 60%. Thus the unsupervised results serve

as a reliability indicator for the morphed pathology image, which reduces error in the training

procedure.
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Parameter initialization

Before the iterative MCMC training process, we need to obtain initial values of the model param-

eters α and β.

To ensure that the α parameter covers the entire latent variable domain, R, certain elements

within this parameter are manually fixed as α0 = −∞, α1 = 0, and, αK = ∞ [17]. Thus the

probability that the n-th pixel belongs to the first region is as follows,

Pr(yn = 1) = Φ(α1 −wnβ)− Φ(α0 −wnβ) = Φ(−wnβ),

or equivalently

−wnβ = Φ−1[P (yn = 1)],

where Φ−1 corresponds to the inverse of the cumulative standard Gaussian distribution, and

Pr(yn = 1) is from the pathology results. It is possible to further rewrite this expression by

utilizing its vector representation,

q = −Wβ, (4.7)

where W = [wT
1 ,w

T
2 , · · · ,wT

N ]
T , q = [q1, · · · , qN ]T ∈ RN×1 with qn = Φ−1(Pr(yn = 1)).

The parameter β can then be initialized by using the least squares (LS) estimate as

β = −(WTW)−1WTq. (4.8)

In the ground truth data from the pathology results, Pr(yn = 1) can take two values 0 or 1

based on the pathology label. However, we cannot directly use the exact results in (4.8) because

Φ−1(0) = −∞ and Φ−1(1) = ∞. To address this problem we assign Pr(yn = 1) = 1 − ǫ if the

n-th pixel belongs to the first class in the pathology results, and Pr(yn = 1) = ǫ otherwise, with ǫ

being a small number. In this chapter we choose ǫ = 0.0013.

Similarly to the initialization process of the β parameter, we utilize the fixed elements within
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the α parameter to estimate the remaining unknown elements within this vector, {α2, . . . , αK−1}.

For this purpose, consider the following expression:

Pr(yn = K) = Φ(αK −wnβ)− Φ(αK−1 −wnβ)

= 1− Φ(αK−1 −wnβ).

Thus

αK−1 = wnβ + Φ−1[1− Pr(yn = K)].

The value of αK−1 can then be estimated by using the N training observations as,

αK−1 =
1

N

N
∑

n=1

{

wnβ + Φ−1[1− Pr(yn = K)]
}

. (4.9)

Since this chapter explores the implementation of the probit regression approach for the segmenta-

tion of THz images with K = 3 regions, it was only necessary to find the element α2 within these

models. Alternatively, if K > 3, this process can be repeated to estimate the remaining unknown

elements within the α parameter by utilizing αK−1.

Training with MCMC

Once the training set is selected and the parameters are initialized, we proceed to estimate the

regression parameters, α and β, through a MCMC process. The prior distributions of the model

parameters α, and β are defined as:

π(α) =
K
∏

k=1

1(αk > αk−1),

π(β) =N (β0,Σ0),

with β0 and Σ0 representing the hyper-parameters of this approach. In this chapter, we consider

β0 = 0, and Σ0 = 104 × I.
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The estimation stage utilizes an MCMC process with the following posterior distributions [17]:

• Posterior distribution of z,

zn|β,α, yn = k ∼



























0 ; zn ≤ αk−1

φ (wnβ, σ
2; zn)

Φ
(

αk−wnβ

σ

)

− Φ
(

αk−1−wnβ

σ

) ;αk−1 < zn < αk

0 ; zn ≥ αk

(4.10)

where φ(µ, σ2; x) represents the Gaussian probability density function (pdf) with mean µ

and variance σ2 evaluated in x; and Φ(x) is the cumulative distribution function (CDF) of a

standard Gaussian variable with 0 mean and unit variance.

• Posterior distribution of β,

β|z ∼ N (µβ,Σβ), (4.11)

where Σβ =
[(

WTW + σ2Σ−1
0

)

/σ2
]−1

, and µβ = Σβ

[(

WTz+ σ2Σ−1
0 β0

)

/σ2
]

.

• Posterior distribution of α,

αk|z,y, αj 6=k ∼ U(a, b), (4.12)

where U represents a uniform distribution with parameters a =

max (max{zn : yn = k}, αk−1), and b = min (min{zn : yn = k + 1}, αk+l).

Overall, the training procedure is summarized in Algorithm 4, where mod represents the mod-

ulo operator and M corresponds to the total number of MCMC iterations to be considered in the

testing process. It is important to mention that the MCMC algorithm runs for a total of 10M iter-

ations, where the first half are discarded during the burn-in period, and the regression parameters

are stored every 5 iterations after this period. This operation leaves a total of M samples from the

posterior distributions of the regression parameters, which are used during the testing procedure.
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Algorithm 4 Training procedure.

Input: Data W, labels y, hyperparameters β0,Σ0, σ
2

Initialization: Estimate β and the unknown elements within α using (4.8) and (4.9), respec-

tively

for j = 1, . . . , 10M do

Draw Z(j) from (4.10) using β(j−1), α(j−1), and y.

Draw β(j) from (4.11) using Z(j).

Draw the unknown elements within α(j) from (4.12) using Z(j), and y.

if j > 5M and j mod 5 = 0 then

Store β(j) and α(j).

end if

end for

Output: Regression parameters [β(i),α(i)]Mi=1.

4.4.4. Testing process

This section presents the testing procedure of the proposed multinomial probit regression algo-

rithm. The algorithm is tested by using the THz images from samples not used during the training

process. Similar to the training data, the data used for testing go under the same pre-processing

procedures, which include obtaining the frequency response of the pulse and dimension reduction.

Once the corresponding model parameters are obtained during the training phase, as described

in section 4.4.3, the region assignment is performed by using a soft clustering scheme. Denote the

parameters obtained through training in the i-th MCMC iteration as {α(i)
k }Kk=0 and β(i). With the

multi-class probit regression algorithm, the latent variable of the n-th pixel in the testing data can

be modeled by applying the model parameters from the i-th iteration of the MCMC training as

z(i)n ∼ N (wnβ
(i), σ2), for i = 1, · · · ,M (4.13)

Thus

Pr(α
(i)
k−1 < z(i)n ≤ α

(i)
k−1) = Φ

(

α
(i)
k −wnβ

(i)

σ

)

− Φ

(

α
(i)
k−1 −wnβ

(i)

σ

)

(4.14)

where Φ(·) is the standard Gaussian cumulative distribution function.
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Table 4.1: Areas under the ROC curves.

Mouse 9B Fresh

Region 1D MCMC
2D unsupervised

EM

3D supervised

polynomial

regression

3D supervised

kernel regression

Cancer 0.8647 0.9068 0.9271 0.9263

Muscle 0.7707 0.7135 0.8618 0.8680

Fat 0.7874 0.9066 0.9144 0.9158

Mouse 13A Fresh

Region 1D MCMC
2D unsupervised

EM

2D supervised

linear regression

2D supervised

kernel regression

Cancer 0.8587 0.8638 0.9323 0.8909

Fibro 0.6637 0.7263 0.7810 0.7503

Fat 0.8626 0.9159 0.9288 0.8840

Mouse 10B Fresh

Region 1D MCMC
2D unsupervised

EM

2D supervised

linear regression

3D supervised

kernel regression

Cancer 0.7340 0.7894 0.8167 0.7732

Fibro 0.5539 0.6970 0.7525 0.7000

Fat 0.8970 0.9363 0.9468 0.9096

The probability that the n-th pixel belongs to the k-th category can then be calculated as

Pr(yn = k) =
1

M

M
∑

i=1

[

Pr(α
(i)
k−1 < z(i)n ≤ α

(i)
k−1)

]

(4.15)

where M is the total number of stored MCMC iterations. With (4.15), we evaluate the likelihood

of each pixel from the testing data with respect to every region in the tissue.

4.5. Experimental results

The experiment results are obtained by applying the proposed multinomial probit regression algo-

rithm on the testing data. The training and testing data are from freshly excised xenograft murine

samples with 3 regions each, such as cancer, muscle or fibro, and fat. These samples correspond

to mice 6B, 8B, 9A, 9B, 10A, 10B, and 13A. Samples 9B, 10B, and 13A are used for testing, and

all remaining samples (6B, 8B, 9A, and 10A) are used for training. The results from the proposed

algorithms are compared to two previously published unsupervised learning approaches based on
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 4.1: Sample Mouse 9B Fresh. (a) THz image [24]. (b) Pathology image [24]. (c) Morphed

Pathology [24]. (d) 1D MCMC model [24]. (e) 2D unsupervised EM model. (f) 3D supervised

polynomial regression model (this work). (g) 3D supervised RFF kernel model (this work).
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Figure 4.2: ROC curves for sample Mouse 9B Fresh.

GMM, which are 1-dimensional (1D) MCMC [22] and 2-dimensional (2D) EM [6]. Source codes

for the multinomial probit regression algorithm can be found in [23]. The quantitative analysis

of the segmentation model is summarized through ROC curves, which identify the true vs. false

positive detection rates per region. Since the proposed algorithms utilize a soft-clustering segmen-

tation approach, the ROC curves represent the potential detection results that can be obtained by

the selection of a suitable classification threshold. Details on the generation of the ROC curves can

be found in Appendix 4.7.1.
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4.5.1. Mouse 9B Fresh

The first sample is mouse 9B fresh, which contains 3 regions: cancer, muscle, and fat. The THz

image of this sample is shown in Fig. 4.1a, which was procured while the tissue was still fresh.

This figure utilizes the power spectra of the reflected THz waveform as the summarization feature

per pixel. It can be observed here, that the cancer region (red color) in the sample shows higher

reflection than the surrounding fat tissue (blue color). However, the differentiation between the

muscle and cancer region is not so obvious. This could be because the electrical properties of

muscle and cancer are identical in the THz range [22]. Fig. 4.1b represents the pathology analysis

of this sample, which clearly indicates the location and the extent of the regions within the tissue.

Fig. 4.1c shows the morphed pathology results obtained from the mesh morphing algorithm [21].

Figs. 4.1d and 4.1e correspond to the 1D MCMC [22] and 2D EM [6] segmentation results,

respectively. Finally, Figs. 4.1f and 4.1g represent the multinomial probit segmentation results

obtained by using the 3D polynomial and kernel regression models introduced in this chapter,

respectively. It is important to mention that these models’ results were obtained by utilizing the

optimal segmentation thresholds of each ROC curve, which prioritized the detection of cancer

among all regions followed by muscle or fibro. For the supervised regression models, the algorithm

utilizes 6 murine fresh samples within its training information, which correspond to mice 6B,

8B, 9A, 10A, 10B, and, 13A. In addition, the polynomial regression model employs a fifth order

polynomial definition, and the kernel regression model uses ν = 0.3 and RFFs with Q = 20.

By visually inspecting the images, we can observe that there is a good correlation between the

detection results and the morphed pathology results regarding the regions of cancer and fat. There

is misclassification in the muscle area for all three algorithms, and the 1D MCMC model presents

the largest misclassification of this region.

To quantitatively evaluate these results, we introduce the ROC curves of all the segmentation

models in Fig. 4.2. The ROC curves show the true detection rate as a function of false detection

rate. Regarding cancer and fat, all multivariate detection approaches, that is, 2D EM (unsuper-

vised), 3D polynomial regression (supervised), and 3D kernel regression (supervised), achieve
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similar performance, regardless whether they are supervised or unsupervised approaches. The

performance of the 1D MCMC algorithm is worse than its multivariate counterparts for both the

cancer and fat regions. The advantage of the supervised approach is demonstrated in the ROC

curve for the muscle region, where it is observed that the two proposed probit algorithms (3D

polynomial regression and 3D kernel regression) achieve significant performance gains over the

two unsupervised algorithms.

This performance gain can be quantified by analyzing the areas under the ROC curves, and

the results are in Table 4.1. An ideal classifier with 0 false detection rate and 100% sensitivity

(true detection rate) achieves a 100% area under its ROC curve. In this table, we can observe

that the supervised regression models proposed in this chapter obtain the largest areas under the

ROC curves for all regions, with muscle representing the highest performance gain from 71.35%

to 86.80%.

4.5.2. Mouse 13A Fresh

The second sample is mouse 13A fresh, which contains 4 regions: cancer, fibro, fat, and a lymph

node. Since the lymph node in this sample shows signs of metastasis, we consider its area as

part of the cancer region in the morphed pathology image. Therefore, the total number of regions

considered for the segmentation task of this sample is 3: cancer, fibro, and fat. Fig. 4.3a represents

the THz image that was collected while the tissue was fresh. Similar to the previous sample, we

observe that cancer (red color) shows higher reflection than fat (blue color). Figs. 4.3b and 4.3c

correspond to the histopathology analysis of the tissue and its corresponding morphed mask. Figs.

4.3d and 4.3e represent the results obtained through the unsupervised Gaussian mixture models.

The linear and kernel regression models are represented in Figs. 4.3f and 4.3g, respectively. For

the analysis of this sample, the supervised learning techniques utilize 6 murine fresh samples for its

training step, which correspond to: 6B, 8B, 9A, 9B, 10A, and 10B. Furthermore, the polynomial

regression utilizes a first order polynomial representation, and the kernel regression model uses

ν = 0.1 and RFFs with Q = 20.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 4.3: Sample Mouse 13A Fresh. (a) THz image [21]. (b) Pathology image [21]. (c) Morphed

Pathology [21]. (d) 1D MCMC model [21]. (e) 2D unsupervised EM model. (f) 2D supervised

linear regression model (this work). (g) 2D supervised RFF kernel model (this work).
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Figure 4.4: ROC curves for sample Mouse 13A Fresh.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 4.5: Sample Mouse 10B Fresh. (a) THz image. (b) Pathology image. (c) Morphed Pathol-

ogy. (d) 1D MCMC model. (e) 2D unsupervised EM model. (f) 2D supervised linear regression

model (this work). (g) 3D supervised RFF kernel model (this work).

The ROC curves of the classifiers are shown in Fig. 4.4, where we can observe that the cancer

and muscle detection performance improves by using the 2D supervised linear regression model.

This can be further confirmed in Table 4.1, where we can observe that the area under the cancer

ROC curve improves from 86.38% to 93.23% by using the supervised linear regression algorithm.

Similarly, the area under the fibro ROC curve increases from 72.63% to 78.10%.

4.5.3. Mouse 10B Fresh

Finally, the third sample is mouse 10B fresh, which contains 3 regions: cancer, muscle, and fat.

Fig. 4.5a represents the THz image of this sample. Figs. 4.5b and 4.5c correspond to the pathology

analysis and its morphed representation, respectively. A wide gap between the cancer region as

seen in the pathology image is due to the lumens in the cancer. When fresh, these lumens were filled

with fluid secretions. Hence, it can be observed that the lumens in cancer show higher reflection

than the rest of the region, which are presented in dark red within Fig. 4.5a. Figs. 4.5d and

4.5e represent the unsupervised classification results obtained through the 1D MCMC and 2D EM

approaches, respectively. Figs. 4.5f and 4.5g illustrate the segmentation results obtained through
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Figure 4.6: ROC curves for sample Mouse 10B Fresh.

the supervised linear and kernel regression models, respectively. For the supervised regression

models, the algorithm utilizes 6 murine fresh samples for its training step, which correspond to

mice 6B, 8B, 9A, 9B, 10A, and, 13A. Additionally, the polynomial regression approach employs

a first order polynomial definition, and the kernel regression model uses ν = 0.64 and RFFs with

Q = N log(N) = 442.

The quantitative evaluation of the results are shown in Fig. 4.6 in the form of ROC curves.

Similar to the previous samples, the ROC curves of the supervised models achieve better classi-

fication results. In particular, the 2D supervised linear regression model presents the best overall

classification results among the tested classifiers. This can be further confirmed in Table 4.1, where

we can observe that the areas under the cancer and muscle ROC curves increases from 78.94% to

81.67%, and 69.70% to 75.25%, respectively, when employing the proposed supervised segmenta-

tion model.

4.6. Conclusions

We have proposed a supervised multinomial Bayesian learning method for cancer detection by

using THz images of freshly excised BCS samples. This algorithm utilizes multinomial Bayesian

ordinal probit regression models to perform region classifications in THz images. Two probit re-

gression models, a polynomial regression model and a kernel regression model, have been adopted
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to represent the link between the THz features and their corresponding classification results. The

proposed supervised learning approach requires considerably less amount of training data than

other supervised learning approaches, such as CNN. During the training phase, in order to account

for the mismatch between THz image and pathology results caused by deformation of the tissue

during its histopathology analysis, we have proposed a reliability-based training data selection

method, and only data that exceed a certain reliability threshold are used for training. Experi-

mental results demonstrated that the proposed supervised regression models outperform existing

algorithms, such as 1D MCMC and 2D EM, for all regions of interests. For instance, the areas un-

der the cancer and muscle ROC curves in Mouse 9B fresh increases from 90.68% to 92.71%, and

71.35% to 86.18%, respectively, when utilizing the supervised polynomial regression approach.

In general, the supervised polynomial regression model obtained the highest areas under the

ROC curves among all the presented classifiers, followed by the kernel regression model. In terms

of the muscle and fibro region, we can highlight that the proposed supervised segmentation mod-

els achieve a considerable area increase when compared to their unsupervised counterparts, from

69.70%−72.63% to 75.25%−86.18%. These results represent a step forward towards the optimal

differentiation between cancer vs. non-cancerous tissue within freshly excised BCS samples. In

the mean time, it is recognized that achieving the areas under ROC curves to at least 90% for all

regions still remains a challenge, and we plan to further improve the performance by developing

higher dimensional latent variables in our future work.

4.7. Appendix

4.7.1. ROC generation

An ROC curve illustrates the performance of a binary classifier. In a multi-class context, the

classifier’s performance is represented by multiple ROC curves with each of them corresponding

to the detection of a given class against all the other classes, i.e. cancer vs. noncancer pixels in the

THz image.

Let P (yn = k) denote the probability that the n-th pixel belongs to the k-th region. For a
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given threshold δ, the n-th pixel is classified as belonging to the k-th category if P (yn = k) ≥ δ.

Once δ is fixed, we can calculate the true detection rate and false detection rate by comparing the

classification results with the morphed pathology, and this corresponds to one point on the ROC

curve. A complete ROC curve can be obtained by varying the threshold value δ. In this paper, the

ROC curve is generated by using the MATLAB function perfcurve, which utilizes the morphed

pathology results as the ground truth information.
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[10] F. Wahaia, I. Kašalynas, L. Minkevičius, C. C. Silva, A. Urbanowicz, and G. Valušis,
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Chapter 5

Conclusions

This chapter outlines the contributions of this study and presents a list of tentative guidelines for

future directions of this research topic.

5.1. Contributions

This dissertation focuses on the design and implementation of image segmentation approaches

for the detection of breast cancer in THz imaging. These algorithms employ a wide array of

statistical and machine learning techniques that address the challenges in THz signals analysis,

such as the curse of dimensionality, ground truth reliability, and the presence of mixed pixels. The

contributions of this dissertation are listed as follows.

First, this study analyzed the importance of the feature selection processes to lessen the impact

of the curse of dimensionality. In chapter 2, we introduced the use of 2 physical characteristics, the

time-domain peak and the power spectra per pixel, as discriminating features in the classification

process [1]. Alternatively, chapter 3 studied the utilization of dimension reduction techniques to

systematically identify the most relevant features in the THz waveforms while minimizing the loss

of information [2]. Most importantly, this chapter introduced the implementation of a novel dimen-

sion reduction technique, LOOP, which employs a modified Gram-Schmidt process to estimate the

ordered orthonormal basis of the fundamental features. Experimental results demonstrated that

LOOP achieved the best region detection performance when compared to PCA and physical char-

acteristics in human fresh cancer samples [2].

Second, this dissertation evaluated the performance of 3 data representation models: mixture

model, MRF, and probit regression. Among the first, chapter 2 studied the implementation of

Gaussian and t-distribution mixture models under an unsupervised learning perspective [1]. Fur-

thermore, we explored an alternative definition of the GMM model by incorporating multivariate

analysis and spatial probability priors, respectively [2, 3]. In chapter 4, the performance of poly-
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nomial and kernel probit regression models was analyzed under a supervised learning regimen

[4]. The model parameters across these studies were estimated through unsupervised and super-

vised MCMC and EM approaches. Experimental results in chapter 4 show that the supervised

polynomial regression technique achieved the best region detection performance, followed by un-

supervised multivariate GMM with EM within freshly excised xenograft mice tissue.

Third, the proposed approaches employed a soft-clustering technique, which defines a proba-

bility driven label assignment procedure. Unlike hard-clustering algorithms, such as K-means and

SVM [5, 6], the results obtained through soft-clustering classifiers are not fixed to a single value

and can be further tuned to achieve certain detection rates. As shown in chapter 3, GMM ob-

tained higher detection rates when compared to K-means and SVM in THz images of fresh human

samples [2].

Fourth, this work introduced a novel reliability based training dataset selection approach to

tackle the ground truth reliability challenge in THz imaging [4]. Although the morphing algorithm

corrects the tissue deformation discrepancy due to the dehydration of the sample, it is necessary to

quantify the accuracy of the ground truth label assignment per pixel before it’s usage in the train-

ing procedure. Hence, chapter 4 proposes the implementation of an unsupervised EM classifier

to measure the ground truth reliability of the training observations prior the parameters estimation

procedure. Results on freshly excised murine samples demonstrate that the proposed approach effi-

ciently identifies the most suitable training pixels for the optimal performance of the segmentation

procedure.

Finally, the segmentation algorithms were evaluated by using fresh and FFPE heterogeneous

samples with 2 or more regions [1–3]. This approach differs from alternative studies that employ

homogeneous cancer vs. non-cancer samples for their evaluation procedures [7]. Even though

increasing the number of regions could potentially increase the model complexity, chapter 4 im-

plements an RFF approximation technique to reduce the overall computational complexity while

maintaining the non-linear data model definition.
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5.2. Future Work

This section introduces tentative guidelines for the future direction of this research topic.

Considering the performance gain obtained through the implementation of supervised learning

algorithms in chapter 4, alternative supervised algorithms with deep learning could potentially

further increase the region detection rates in freshly excised human samples. In particular, CNN

has achieved promising results for THz image segmentation in [8–10] due to the integration of

the spatial information per pixel in its model definition. Among different CNN techniques, U-

Net represents a suitable approach for our application since there is a limited amount of samples

for both training and testing procedures. To efficiently utilize the breast cancer samples we have

currently available, U-Net proposes the implementation of data augmentation techniques to reduce

the size of the training dataset without impacting the overall detection accuracy rate [11]. It is

important to consider that the data we have available at the moment may still not be enough for the

correct training stage of this procedure, but it would be interesting to consider the usage of multiple

tissue models together as a single dataset for training purposes. For instance, the combination of

rat and human tissue are likely compatible due to the similarity among the breast cancer tissue that

has been collected from these 2 models [12].

To further improve the accuracy of the ground truth definition, it can be beneficial to incorporate

x-rays analysis for the definition of the region label per pixel. Even though the pathology analysis

of the sample is considered the gold standard of cancer detection, it introduces uncertainty for the

ground truth definition of the fresh samples due to the dehydration of the tissue. Considering that

x-rays are collected while the tissue is fresh, the information collected from this analysis could

be directly compared with the THz image due to the absence of tissue deformation. However, the

reliability of x-rays techniques for the detection of cancer is still a topic of research and cannot be

considered as ground truth information by itself [13]. Hence, future evaluation procedures within

THz imaging of fresh samples should consider the combination of the information collected from

both x-rays and histopathology. Similarly to the image morphing procedure introduced in [14],
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the control points employed in the algorithm could be determined by analyzing the location of the

regions in the x-rays results. Overall, this approach could reduce the manual labor of the selection

of the points and increase the reliability of the label assignment by considering points inside the

contour of the sample while minimizing the introduction of bias.
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