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ABSTRACT

Individuals and organizations rely on the Internet as an essential environment for

personal or business transactions. However, individuals and organizations have been pri-

mary targets for attacks that steal sensitive data. Adversaries can use different approaches

to hide their activities inside the compromised network and communicate covertly between

the malicious servers and the victims. The domain name system (DNS) protocol is one of

these approaches that adversaries use to transfer stolen data outside the organization’s net-

work using various forms of DNS tunneling attacks. The main reason for targeting the DNS

protocol is because DNS is available in almost every network, ignored, and rarely monitored.

In this work, the primary aim is to design a reliable and robust network-based solution as

a detection system against DNS-based attacks using various techniques, including visual-

ization, machine learning techniques, and statistical analysis. The network-based solution

acts as a DNS proxy server that provides DNS services as well as detection and prevention

against DNS-based attacks, which are either embedded in malware or used as stand-alone

attacking tools. The detection system works in two modes: real-time and offline modes.

The real-time mode relies on the developed Payload Analysis (PA) module. In contrast, the

offline mode operates based on two of the contributed modules in this dissertation, including

the visualization and Traffic Analysis (TA) modules. We conducted various experiments in

order to test and evaluate the detection system against simulated real-world attacks. Over-

all, the detection system achieved high accuracy of 99.8% with no false-negative rate. To

validate the method, we compared the developed detection system against the open-source

detection system, Snort intrusion detection system (IDS). We evaluated the two detection

systems using a confusion matrix, including the recall, false-negatives rate, accuracy, and

others. The detection system detects all case scenarios of the attacks while Snort missed

50% of the performed attacks. Based on the results, we can conclude that the detection

system is significant and original improvement of the present methods used for detecting

and preventing DNS-based attacks.
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1 Introduction

The Internet has become a significant part of people’s daily life and an essential

method for communications today. Individuals and companies rely on the Internet and use

it as a primary tool for doing their personal or private business. Thus, personal computers

and computer networks have been a primary target of data theft, malware software, and

other types of attacks such as accessing, changing, or destroying sensitive information that

interrupt normal business processes. This requires cybersecurity practices to protect systems,

networks, and applications from various cyber attacks. Cybersecurity provides multiple

layers of protection deployed among different components of network infrastructures to block

the Internet-based attacks and includes firewalls and intrusion detection systems (IDSs).

However, sometimes adversaries can bypass these defensive mechanisms by using different

techniques. For example, the Domain Name System (DNS) is the critical backbone of the

Internet providing the mapping of human-readable names to Internet Protocol (IP) addresses

used for communication. Therefore, restricting the DNS protocol in a firewall or security

appliances is challenging, and it may raise usability issues since almost every communication

session on the Internet relies on the DNS protocol. Thus, the DNS protocol is one of

the most laborious protocols that must be maintained for reliable communication inside a

network environment.

1.1 Background

In this section, background information for this work is presented. The background

includes a description of the DNS protocol, its usage, and DNS attacks. In addition, data

exfiltration techniques and DNS tunneling attacks are introduced.

1.1.1 DNS Protocol

Network infrastructures are often the primary target of adversaries. If any of these

services go down or are not working probably, such as DNS, it can cause severe damage

to an organization’s business. DNS plays an essential role in the Internet architecture and

most of the Internet and internal network communications rely on the DNS protocol. It

is defined as a client-server protocol for exchanging names and IP addresses. The DNS
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protocol is a distributed hierarchical database which stores information about a group of

registered computers on the Internet. There are different types of information that the DNS

protocol can store such as IP addresses including IP version 4 (IPv4) and IP version 6 (IPv6),

hostnames, and mail routing information.

1.1.2 DNS Namespace Hierarchy

The DNS has a hierarchical tree structure called the DNS namespace. Each dot in

a domain name indicates the separation between levels in the tree structure. The top layer

of the DNS tree structure represents the root level which starts with a dot. Under the root

level, there are top-level domains (TLD) which are children domains of the root such as .com,

.net, .edu and others. Next, TLD also has children domains that reference the second level

of domains or authoritative domain name servers. Finally, the fully qualified domain name

(FQDN) locates the hostnames or subdomains within the DNS hierarchy [1]. For example,

the process of looking up the following domain name csce.uark.edu. is always started with

the dot which is the root server in the DNS tree structure. Then, the root server(s) forwards

the query to the correspondence TLD which in this case is .edu. Next, the TLD sends the

query to the secondary level domains. As soon the query is received by the authoritative

domain name server, it looks up the subdomain equivalent and returns its IP address. Figure

1.1 illustrates the DNS hierarchy.

Figure 1.1: The Domain Name System Hierarchy
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DNS translates and locates easy-to-remember domain names into corresponding IP

addresses and vice-versa. As seen in Figure 1.2, it is assumed that a user types a domain name

example.org in a browser on a computer. First, the browser attempts to resolve the IP address

of the domain name by checking the local cache of the computer. If there is no information

related to that domain name and depending on the network configuration, it often forwards

a query as a question seeking to match the domain name with its corresponding IP address

to the local DNS server or the Internet Service Provider’s (ISP) DNS server. Next, if the

information is still not found, the request is forwarded to root nameservers. The root servers

are located all over the world that point to the appropriate downstream name servers. Then,

it gets forwarded to the relevant TLD server which stores the address information for second

level domains example.org within the top-level domain .org. As soon as the information is

gathered from authoritative DNS servers, it resolves the domain name and responds to the

initial sender. Finally, the computer communicates with a web server to display the content

of the website.

Figure 1.2: How DNS works

3



1.1.3 Data Exchange over DNS

The DNS is a stateless protocol, meant to receive and answer requests from clients.

The DNS protocol was not designed for data transfer. It was designed to exchange very

short and specific types of information [2]. According to [3], the length of any label of the

domain name is limited to between 1 and 63 bytes, and a full domain name is limited to 255

bytes if letters, digits, hyphens, and separators are included. However, the DNS protocol

is considered an excellent covert channel from a security perspective. A covert channel is

a channel used to transfer information between processes in a secretive manner, bypassing

the security policy of a system. Thus, adversaries may abuse and leverage the DNS protocol

to transfer data to their authoritative name server. Instead of sending legitimate subdo-

mains, adversaries take advantage of the limitation of the domain length and encode some

data in the domain name. For example, if the passw0rd.example.org domain is queried, the

authoritative name servers of example.org receives the passw0rd as a string and interpret

it as incoming data instead. Also, adversaries may use some other encoding techniques in

order to transfer text or binary data to their servers. For example, they can use Base32,

Base64, and Based128 to encode their data. In this case, the query will be as the follow-

ing:YWRtaW5AOnBhc3N3MHJkCg.example.org where YWRtaW5AOnBhc3N3MHJkCg is

a base64 form of the sensitive text file and this is called a DNS data exfiltration technique.

Note that if the required data exceeds the 255 bytes, then it has to be split into more than

one DNS query in order to be transferred via the DNS protocol. Data exchange over the

DNS protocol is shown in Figure 1.3

Although DNS is not intended to exchange data over its protocol, there is a limited

number of legitimate data exchange uses over the DNS protocol. Antivirus software compa-

nies were leveraging this technique to operate their services to clients. In 2007, Trend-Micro

Inc. leveraged the DNS protocol to distribute malicious code signatures for updating anti-

virus client software as an alternative communication channel. The signatures are exchanged

using DNS protocol TXT resource records and encoding the data with Base64 [4]. Similarly,

McAfee global threat intelligence (GTI) serves its file reputation service through the DNS

protocol. It enables clients to post a suspicious file through DNS queries to be scanned. GTI

File Reputation technology expands McAfee product security capacities by offering access

to an Internet cloud database that contains information on file classification to determine

if a file is malicious [5]. In 2009, Devicescape Software Inc. introduced an impressive pub-

4



Figure 1.3: Data exchange over the DNS protocol

lic hotspot authentication system for mobile devices that leveraged the DNS protocol for

their communications where mobile devices exchange information and media access control

(MAC) addresses through the DNS protocol to communicate with a credential server [4]. In

addition, the malicious use of data exfiltration over the DNS occurs from other software and

malware, which are discussed later in this chapter.

1.1.4 DNS Attacks

The DNS protocol is vulnerable to several attacks such as cache poisoning and DNS

hijacking attacks that lead to compromising a user’s online account [6]. The DNS amplifi-

cation attack is a type of Distributed Denial of Service (DDoS) attack based on the DNS

protocol that may prevent visitors from reaching the organizations services [7]. There are

also other DNS attacks including DNS tunneling, name collisions, leaked queries, and DNS

response modification [8]. Most organizations pay more attention to filtering and securing

common protocols such as HTTP or FTP from malicious activities instead of the DNS pro-

tocol. Since the DNS protocol is not designed for data transfer, monitoring DNS has not

received much attention. Over the years, adversaries found different ways to leverage DNS

systems for malicious purposes. For example, suppose an organization blocks all outbound
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traffic except the DNS protocol and DNS activities are not monitored. Adversaries can still

transfer stolen or sensitive information through a firewall using DNS. They take advantage

of this open avenue and manipulate the use of the DNS service to establish undetected covert

channels.

1.1.5 DNS Tunneling Attack

The DNS tunneling attack is a method that encodes and encapsulates the data of

other applications or protocols in DNS queries and responses and is shown in Figure 1.4.

The original concept of DNS tunneling attack was designed to bypass the captive portals for

paid Wi-Fi service, especially at hotels and cafes. However, a data payload can be added

to attack internal networks that are used to control remote servers and applications, or to

perform DNS data exfiltration which is a technique being used to transfer unauthorized data

between two computers through the DNS protocol [9]. To successfully execute this attack,

an adversary requires a compromised machine within the internal organization network that

has access to the internal DNS server which has external access via the DNS protocol. In

this way, the adversary can use the compromised machine to establish a connection to an

outside computer using the DNS protocol. Adversaries must also register a domain name

and set up a remote server that can run as a DNS authoritative server.

Figure 1.4: The DNS tunneling attack

1.1.6 Communication Patterns

DNS tunneling and data exfiltration communication patterns are significantly dif-

ferent from the normal DNS patterns and from each other. The communication channel
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of DNS tunneling attack, which can be performed using software such as Iodine, DNScat,

DNS2TCP, and others, is more reliable than the DNS data exfiltration techniques. The

DNS tunneling attack communication has many keep-alive messages with bi-directional and

interactive patterns. Due to the DNS limitation of 255-byte messages, a high volume of DNS

queries is required. Therefore, a system administrator could quickly notice the attack if the

DNS protocol is monitored. The common usage of DNS tunneling attack is web browsing

over the DNS and remote desktop protocols. On the other hand, DNS data exfiltration is

less aggressive than DNS tunneling. The communication channel of DNS data exfiltration

is built on uni-directional patterns which does not require DNS replies from an authorita-

tive DNS server. DNS data exfiltration is usually performed by malware and command and

control (C&C) channels to transfer sensitive data, such as stolen credit cards, outside the

network through the firewall. In this technique, adversaries use common DNS records such

as A and AAAA, which makes the detection more difficult than the others.

1.1.7 Visualization

Visualization is not a new concept for monitoring network traffic. There are several

papers that used the parallel coordinates technique to monitor and visualize network traffic

[10, 11]. There are various benefits of using a parallel coordinates technique. First, it

is scalable. It helps to represent a considerable amount of data in an efficient manner

which makes analyzing big data more simple and powerful. Second, there is no limit on

the number of values for representing an attack using the parallel coordinates technique

that converts multidimensional data into two dimensions. Therefore, using the parallel

coordinates technique gives the ability to represent more than three different values within

a two-dimensional space. In this way, the relationship between the results can be reviewed

quickly showing prominent trends, correlations, and divergence from the raw data. Finally,

the visualized data using the parallel coordinates technique does not include any bias for

any column within the space [12, 13]. In other words, every visualized feature has the same

weight.

1.1.8 Machine Learning Techniques

Machine Learning is a part of Artificial Intelligence (AI) applications, and it is a

data analytics technique that provides the capability of systems for automatically learning
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and improving from experience without human interaction. Machine learning algorithms

use computational approaches to learn information directly from data without relying on a

predetermined equation as a model.

Machine learning consists of three primary classifications: supervised learning, unsu-

pervised learning, and semi-supervised learning. Supervised learning includes labeling infor-

mation on training data using classification algorithms to predict new data labels. On the

other hand, unsupervised machine learning uses unlabeled information and builds a classifier

based on learning and information characteristics analysis. It tends to automatically cluster

data. Finally, semi-supervised learning is a classifier using both labeled and unlabeled data

to train the algorithm [14]. Nowadays, machine learning is actively being used for various

topics, including detection systems against malicious activity. In Chapter 2, we list several

proposed systems that use machine learning for detecting abnormal activities including DNS

tunneling, data exfiltration, and botnets that use DNS protocol for communications.

1.2 Statement of Problem

Detecting and preventing DNS-based attacks is a challenging task. Adversaries use

DNS-based attacks to transfer sensitive data, such as stolen private organization data, or

establish covert communication channels to hide their malicious activities. DNS-based at-

tacks happen often and can result in a loss of revenue. The 2020 Global DNS Threat

Report revealed that 79% of organizations had experienced DNS-based attacks, including

DNS phishing, DNS-based malware, and DNS tunneling attacks [15]. Moreover, DNS-based

attacks were the main cause for 82% of application downtime in 2020, which caused ap-

proximately more than 1 million dollars of damage to these organizations. This work could

mitigate these attacks.

Adversaries can take advantage of DNS protocol and establish a covert channel since it

is allowed in almost every network, ignored, or rarely monitored. Many research groups have

proposed solutions for monitoring and detecting against DNS attacks without focusing on

the DNS tunneling attack. The data exfiltration over the DNS protocol and DNS tunneling

attack have not received much attention since it was proposed in 2008. As mentioned in

Farnham and Atlasis (2013), using the DNS tunneling attack, people are able to bypass

most of the firewall rules, restrictions and captive portals for paid Wi-Fi service and also can

transfer stolen or sensitive data to outside of the organization’s network [9]. Nowadays, most
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of the modern firewalls and IDS appliances do not block a DNS tunneling attack or raise the

alarm by default. For that reason, the DNS tunneling attack is attractive to adversaries or

people who design malicious applications.

The data exfiltration over the DNS protocol and DNS tunneling attacks are being

used in many real-world scenarios such as malware, botnets, trojans, and others. According

to [2], there are various types of well-known malware software that targets victims using the

DNS protocol for creating covert communication channels. Table 1.1 shows more information

about malware software from 2011 to 2017 which were explicitly designed to avoid detection

systems.

Year Malware Targets

2011 Morto RDP/RAT

2011 FeederBot Botnet

2014 Plugx RDP/RAT

2014 FrameworkROS POS

2015 Wekby Targeted

2015 BernhardPOS POS

2015 JAKU Botnet

2016 MULTIGRAIN POS

2017 DNSMessenger Targeted

Table 1.1: Well-known malware that uses DNS protocol for their communications

1.3 Goals of this work

The objectives of this work are listed below:

1. The DNS protocol is vulnerable to various categories of attacks, including DNS protocol

attacks, DNS server attacks, and DNS abuse. In this work, the main goal is to detect

and prevent DNS-based attacks based on the DNS abuse category. DNS-based attacks

include DNS tunneling, DNS exfiltration, and command-and-control communication

channels.

2. Design and implement a real-time detection mode that identifies the DNS-based attacks
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based on the Payload Analysis module. This module parses, extracts, and analysis cap-

tured fully qualified domain name (FQDN) queries from clients to determine whether

malicious or not.

3. Design and implement an offline detection mode to distinguish abnormal activity within

the DNS traffic. This module works based on two modules: the visualization and the

machine learning-based detection modules. The offline detection mode feeds the system

with DNS traffic based on a specific window period, every x minutes, to determine

whether the DNS traffic contains an attack.

4. Implement and design a network-based solution, DNS proxy server, that combines the

two detection modes in order to detect and prevent DNS-based attacks. The network-

based solution in this work aims to provide DNS services as well as the detection and

prevention in high accuracy, scalability, and efficient manner.

5. Compare and evaluate a set of performance metrics with different detection systems

or previous research work.

1.4 Contributions

The contributions of this work include a visualization system, a machine learning-

based detection system, and a comprehensive detection system that acts as a DNS proxy

server for identifying DNS-based attacks. The contributions of this work include: (1) A fast

and scalable visualization system for recognizing DNS tunneling attacks using the parallel

coordinates technique. This module is able to distinguish between normal and malicious DNS

traffic. (2) Identifying four different graphical patterns of real-world DNS tunneling attacks

by analyzing the DNS tunneling traffic based on different scenarios. (3) Designing a module

that employs a machine learning classification to predict DNS-based attacks that trained

and tested by comparing the graphical representation signatures of the measured network

traffic features with the previously developed DNS tunneling attack graphical patterns. (4)

Designing a real-time detection module based on the payload analysis to detect DNS-based

attacks in real-time. This module works based on malicious DNS-based characteristics. This

module achieved high accuracy and no false-negatives values with low false-positives rate.

(5) Implementing detection and prevention mechanisms against DNS-based attacks by using

the concept of DNS proxy that includes and combines the presented modules in this work.
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(6) Designing a system to detect DNS tunneling attacks that achieves a high accuracy of

99.8% and no false negatives with a low false-positives rate of less than 0.02%. The system

performs better than the commonly used Snort Intrusion Detection System (IDS), and the

detection system in this work to determine which system obtained better performance and

results against various DNS-based attacks.

1.5 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 discusses the related

work to the visualization and detection systems of DNS tunneling attacks. Chapter 3 de-

scribes the methodology of the visualization and detection module and the evaluation of the

visualization and detection module, which is discussed. The machine learning-based detec-

tion module is presented in Chapter 4 and its evaluation and results. Chapter 5 includes the

DNS proxy detection system, which combines all detection modules as well as the real-time

analyzer module. The evaluation and the results of the DNS proxy detection system are

discussed in Chapter 6. Finally, the conclusions and planned future work are presented in

Chapter 7.
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2 Related Work

Sensitive data theft is now one of the most severe risks for organizations and service

providers involving man-in-the-middle attacks [16] or malware that leaks data overt a cover

channel [17]. Although many organizations have deployed traditional security systems such

as firewalls, intrusion detection systems, and proxies, there are still high-profile data breaches

that occur. Marriott International announced on November 2018 that it had been the victim

of a data breach in which the information for approximately 500 million clients had been

stolen [18]. The breach occurred on Starwood brand support systems starting in 2014. The

breach was not discovered until September 2018 [18]. In 2016, Yahoo announced that it was

the victim of the greatest data breach in history. The attack compromised approximately

one billion user accounts, real names, email addresses, birth dates, passwords, and telephone

numbers [19].

The SANS data protection survey revealed in 2017 that 12% of business organizations

surveyed recorded a security breach and 43% of these breaches involved data exfiltration that

was executed over the DNS [20]. DNS is one of the essential elements of the Internet archi-

tecture, and the primary purpose of it is to provide a lookup mechanism to resolve domain

names to IP addresses and vice-versa. Given that DNS is not intended for arbitrary data ex-

change via the protocol, individuals and organizations do not pay attention to security issues

in DNS which makes malware masters of abusing the DNS to cover their activities within

the networks. Previously, botmasters and hackers were using IRC as communication chan-

nels for their bots to avoid various network defense borders [21]. However, nowadays, DNS

protocol is being used instead for several reasons: DNS is allowed in almost every network,

rarely monitored, and network administrators do not pay attention to secure it. In 2017,

Cisco Security revealed that 91% of malware used the DNS protocol for communications,

and 68% of organizations did not to monitor DNS traffic [22]. According to SonicWall’s

Internet security report, in the first half of 2019, there was an increase in the number of

malware attacks by 4.8 billion [23]. Based on these Internet security reports, the current

real-time detection and prevention systems of malware attacks are not sufficiently capable.

Thus, there is still a need in building a robust real-time detection and prevention system in

order to decrease the risk against such attacks.
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2.1 Detection of DNS attacks

Compared to other protocols, the monitoring of the DNS protocol does not get much

attention in the literature. However, there is research on monitoring and the analysis of

DNS service without focusing on the DNS tunneling attack as done in this work. The

authors in [24] gathered DNS responses data including squatter domains, fast flux domains,

and domains being abused by a spammer of the University of Auckland and stored the

data into an SQL database for analyzing and detecting unusual behavior. Their research

focuses on analyzing DNS traffic to detect spam attacks using statistical analysis instead of

visualization. They used the Microsoft Strider URL Tracer, which helps users to investigate

third-party domains to crawl data. In this way, they detect that the client has already

visited a malicious domain name and has already been compromised. In [25], the efficient

detection method of suspicious DNS traffic by resolver separation per application program is

proposed. Their approach is based on making further investigation easy by a separate DNS

resolver based on the application program. The DNS requests that are sent from Internet

Explorer or any registered application are forwarded to a regular DNS resolver while all other

unregistered applications’ requests are forwarded to a more secure DNS resolver that inspects

DNS traffic. The authors point out that this approach helps system to filter out and monitor

the suspicious DNS traffic from unknown resources. The proposed system is implemented

and tested on the Windows operating system, and it requires installing a Perl module on each

endpoint computer to forward DNS redirect traffic to a DNS proxy. As a result, the proposed

system was able to forward the DNS queries based on application correctly, and it was able

to register the client by mapping the DNS queries with the respective application program.

However, this work has some limitations. The user must manually register the applications

to be well-known in their system. They also define the suspicious DNS traffic as queries that

are sent from not registered official applications in the DNS proxy. The proposed method

only supports Windows operating system only. It also hard to register an application that

uses multiple processes. In addition, attackers or malware creators can bypass this method

by using code injection techniques or DLL injection to insert malicious code into any of the

well-known processes. This work is evaluated based on forwarding the DNS requests only

as they mentioned in future work. They are planning to evaluate their system against real

malware. In [26], the authors described and evaluated a proposed solution for detecting DDoS

attack amplifiers attacks, which is mainly designed to efficiently protect the local DNS servers
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against rogue DNS servers. Further experimental results showed that it is efficient and can

be easily fit correctly into any network domain. The proposed system in [4] works as passive

DNS that monitors all DNS requests, including queries and responses, and detects payload

distribution channels that are established within DNS messages using a DNS zone analysis

profile module. Their detection module works based on all TXT records that have been

captured, divided and aggregated based on one day period. In parallel, their system stores a

copy of the captured data using the passive DNS channel in a database for future use. Three

datasets have been used to evaluate their work: one month of passive DNS traffic, a passive

DNS database, and a one-year malware database. Their experimental results show that the

proposed system was able to find different malware that leverage DNS for their data transfer.

However, the proposed system has several limitations. For example, the author decided to

captured only DNS traffic that has TXT recoded to detect the payload distribution channels.

In [27], the authors presented a comparative performance evaluation of DNS tunneling tools,

and they showed that different tools are able to use not only TXT but also different types

of DNS records in order to perform the DNS tunneling attacks. Botmasters or malware

creators can bypass the proposed system by using their name servers or other open DNS

resolvers which are not captured by the passive DNS sensors. As they mentioned in the

paper, the proposed system could be configured to run in real-time. However, the system

captured and aggregated DNS traffic in a time-based window, of one-day. Therefore, by that

time, malware can completely transfer sensitive data outside the organization.

2.2 Detection DNS Tunneling attacks

The DNS tunneling attack introduced in this work is a significant concern in cy-

bersecurity. As mention in [28], the attack can be divided into three subcategories where

attackers can abuse the DNS protocol: Data exfiltration, DNS tunneling, and command &

control. Data exfiltration is the simplest type of the attack where each DNS packet encap-

sulates information and then reconstructs this information on the attacker’s authoritative

DNS server. The main difference between data exfiltration and the other subcategories is

that the communication channel is uni-directional. This type of attack is difficult to detect

because there is no need to reply to the initial request as this attack transfers sensitive data

outside the organization’s network. Data exfiltration is often referred to as low throughput

exfiltration [2]. Next, the DNS tunneling attack is intended to encapsulate other protocols
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such as HTTP or FTP within the DNS requests. Compared to data exfiltration, this attack

requires a high frequency and volume of DNS traffic that produces easily identifiable traffic

pattern. The DNS tunneling attack is often referred to as high throughput tunneling [2].

Finally, the command & control, C&C, communication channel provides the attacker the

ability to take full control of a victim computer by sending commands and receiving the cor-

responding result over the DNS protocol. C&C channels provide an attacker with the means

to communicate with their malware after it has infected a victim [28]. Many open-source

DNS tunneling tools were designed to perform the attack such as iodine, dns2tcp, DeNiSe,

dnscapy, heyoka, fraud-bridge, dnscat, and dnscat2 [9]. Moreover, several types of malware

were discovered that use DNS tunneling for establishing difficult to detect C&C channels for

bot communications over the DNS protocol. The malware described in [29] and [30] uses

DNS queries and responses to execute commands and control compromised machines over

the DNS protocol. Therefore, securing them is essential.

2.3 Detection IDS/IPS systems

Intrusion Detection System and Intrusion Prevention System (IDS/IPS) appliances

detect and/or mitigate Internet attacks including DNS tunneling attacks using signatures

or by packet inspection. Farnham & Atlasis, 2013 described detection methods including

attributes payload analysis and traffic analysis [9]. They also provided Snort custom rules

based on entropy and statistical analysis. Like viruses which can be designed to avoid

anti-viruses products by manipulating the virus behaviors and signatures, attackers also

can deploy DNS tunneling attacks with previously unseen signatures to bypass IDS/IPS

appliances. Packet inspection devices such as IPS’s also have the ability to detect DNS

tunneling attacks, but those products require high-speed computing machines to process the

analysis which is expensive. Previous research proposed various approaches for detecting

botnet and malware that uses the DNS protocol in their communications. The work in [31]

conducted a classification of botnet detection techniques based on DNS traffic characteristics,

including the honeynet-based and the IDS-based approaches. The first is usually deployed

to collect information and analyzed it in order to understand the behavior and the attributes

of botnets. The proposed system in [32] is an example of honeypot which is designed for

tracking amplification DDoS attacks. They deployed 21 honeypots in different locations so

that they can get more information about such an attack. Most of the attacks are short-
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lived, with most of the victims being attacked once. They also show that 96% of the attacks

had the same source. In [33], Ramachandran et al. proposed a DNS-based blackhole list

(DNSBL), which is an example of a botnet detection system based on a signature. In their

paper, the authors developed techniques and heuristics that detects DNSBL reconnaissance

activity whereby botmasters perform for looking up against the DNSBL to check whether

their spamming bots have been blacklisted or not. Interestingly, as a result, they discovered

bots were performing reconnaissance on IP addresses for bots in other botnets. In [34],

Antonakakis et al. proposed the Notos system, which is a dynamic DNS reputation system.

This system assumes that the activities of malicious DNS have different features and can be

easily distinguished from benign DNS requests. The reputation score for a new domain is

calculated based on building models of known legitimate domains and malicious domains,

and they achieve this by collecting passive DNS query data and analyze the network and

zone features of domains. The system has been tested and evaluated using a large ISP’s

network with DNS traffic from 1.4 million users. The Notos system has been highly accurate

and achieves low false-positive rates. It has the ability to identify the new domain(s) before

they even get released to the public blacklist. However, signature-based IDS systems have

limitations. The proposed systems in [33, 34] and similar other systems are designed based

on blacklists. Moreover, maintaining the blacklist update of known malicious addresses is

not a simple task. Malware masters and hackers can easily avoid this kind of system by

registering a new domain to perform their activities [31]. In [28], the authors introduced

an issue of the data exfiltration over the DNS protocol. DNSxD is proposed to detect and

mitigate against DNS attacks, including data exfiltration, tunneling, C&C communication,

within the software-defined network (SDN) environment. Their approach to detecting the

low-throughput data exfiltration consists of two techniques. Traffic analysis (TA) is based on

volume and frequency of DNS requests within one-hour monitor windows. The deep packet

inspection (DPI) technique relies on inspection of uncommon record types, query length,

and query entropy based on threshold values. To evaluate DNSxD, the authors analyzed

the popular DNS data exfiltration attacks and current exfiltration detection mechanisms

within the Mininet network virtualization framework. The evaluation result demonstrated

that the proposed application was able to detect exfiltration based on different attacking

techniques. The big concern of this work is that DNSxD application was deployed within

the SDN environment, which is vulnerable to various attacks such as DDoS attack that makes

the network unavailable [22]. Next, the evaluation was performed using the Mininet network
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virtualization framework, which is a network emulator that creates a network of virtual hosts,

switches, controllers, and links [35]. The authors in [36] demonstrated a method to deploy

Splunk, which is a commercial software that is used to index a large dataset and provides

keyword searching capabilities, dashboarding, reporting, and statistical analysis, within the

network and walked through steps to install external modules for enabling the detection of

DNS tunneling attacks.

2.4 Detection using Machine Learning

Machine learning is a method of data analysis that automates analytical model build-

ing. It is an important element of artificial intelligence that builds modules based on self-

study from input data, and make decisions with minimal human intervention to solve a

specific problem. There are three main categories of machine learning: supervised learning,

unsupervised learning, and semi-supervised learning. Supervised learning uses labeled train-

ing data and algorithms for building a classifier to predict labels on new data. On the other

hand, unsupervised machine learning uses unlabeled training data and constructs a classifier

based on learning and analyzing the data attributes. Lastly, semi-supervised learning is a

classifier that uses both labled and unlabled data to train the algorithm [14]. In [14, 37],

detection approaches based on DNS traffic are introduced using supervised machine learn-

ing. Hoang and Nguyen, 2018 evaluate the effectiveness of supervised learning techniques

in botnet detection based on DNS traffic, including k-nearest neighbor (KNN), decision

tree, random forest, naive Bayes. The evaluation result shows that the machine learning

algorithms produced a high detection accuracy of 90%, and they can be used effectively in

implementing a botnet detection system. Machine learning is being used for detecting var-

ious security threats including DNS tunneling, data exfiltration attacks and others. In [6],

the authors proposed an anomaly-based intrusion detection system using behavior analysis

approach to protect against cyber attacks. Using supervised machine learning, the proposed

method can distinguish abnormal behavior and detects the known and unknown DNS at-

tacks with a low false-positive rate. In their experimental results, however, the authors did

not provide enough information about the attack’s data set. Liu et al., 2017 proposed a pro-

totype system that detects a DNS tunneling attack using binary-classification based on four

behavior features including time-interval, request packet size, record type, and subdomain

entropy features [38]. Their results show that their system achieved a high rate of detection
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accuracy of 99.9%. However, the system was trained to detect only well-known tools which

are based on expected behavior, and an attacker can bypass the system by manipulating

these features. The authors in [39] developed a machine learning method of detecting DNS

tunneling attacks including information exfiltration from compromised machines and DNS

tunneling that was used to establish C&C servers. Their detection method relied on detect-

ing DNS tunneling attacks that use TXT records only. However, adversaries can bypass

the detection of this method by performing the attack using different techniques and DNS

records [27]. In [9], the authors discussed DNS tunneling attacks and its tools that use

common and uncommon types of DNS records such as A, AAAA, CNAME, NS, TXT, MX,

SRV and NULL [27]. Nadler et al., 2019 proposed a novel approach for detecting and deny-

ing both DNS tunneling attacks and low throughput data exfiltration over the DNS using

machine learning techniques [2]. There are three main phases for performing their approach.

The initial phase starts by collecting and grouping the DNS data log per domain name for

an extended period of time. The next phase is extracting features based on querying be-

havior of each domain name. Finally, a classification phase, which is conducted using the

isolation forest algorithm, is used to determine whether the domain name was used for data

exfiltration. Based on the classification model results, DNS queries and responses from or to

these malicious domains will be blocked. They performed the approach on large-scale DNS

traffic, DNS tunneling tools traffic, well-known malware traffic, and sensitive data that was

injected into the dataset to evaluate their work. As a result, the system detects the attacks

with a false positive rate of less than 0.002% [2]. However, the proposed method does not

work in real-time, requiring time for collecting data to detect the low throughput malware

traffic. During the collection phases, an attacker can use the DNS exfiltration technique and

transfer sensitive data over the DNS.

2.5 Detection using Visualization

(Choi, Lee, & Kim, 2009) developed a comprehensive and useful tool for visualizing

and detecting network attacks using the parallel coordinates technique [13]. Nine signatures

were defined, one for each attack [13]. The types of attack included portscan, hostscan, worm,

source-spoofed denial-of-service (DoS), backscatter, and network and signal DoS attacks. In

addition, they developed a detection mechanism based on a hash algorithm. However, the

authors did not include DNS tunneling as one of the Internet attacks. In [10], the authors
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focused on visualizing network attacks such as botnets that cause various types of attacks

such as DDoS, spam, and others. The visualization system was developed to provide visual

information which helps in detecting botnet attacks using DNS traffic. The parallel coor-

dinates technique, a common way of visualizing high-dimensional geometry and analyzing

big and multi-dimensional data, was used to represent three different DNS parameters in

real-time. Four graphical patterns were defined in that visualization system [10, 11]. In

[40], a fast and scalable visualization system for detecting and identifying DNS tunneling

attacks is proposed based on the parallel coordinates technique. The visualization system

was developed to provide visual information which helps in detecting botnet attacks using

DNS traffic. One week of data was analyzed to study the normal behavior of DNS, and

it was compared to the behavior during a tunneling attack. Six DNS parameters for the

parallel coordinates technique were identified and used to visualize the DNS traffic using

the parallel coordinates technique in order to distinguish between regular DNS traffic and

malicious traffic containing DNS tunneling attacks. Four different DNS tunneling patterns

were identified, each representing different types of DNS tunneling attacks using the parallel

coordinates technique [40]. In [41], Born and Gustafson (2010) introduced the NgViz tool

that combines a visualization technique with N-gram analysis to examine and show DNS

traffic from any suspicious activities. N-gram is used in text mining and natural language

for processing tasks such as predicting the next item in a sequence. Their method compared

a given input file of domain names with fingerprints of legitimate traffic. It is important to

note that in this research, the authors supplied the comparison input of domain names and

fingerprint of legitimate files manually.

2.6 DNSSec

To overcome some of the security issues related to the DNS protocol, DNS has had

many improvements over the years, and there are significant changes in the protocol were

made, such as the randomization of the source port and transaction ID to prevent the

DNS cache poisoning attack, which redirects network clients to malicious servers. Moreover,

Eastlake and Kaufman (1997) implemented DNSSec by the Internet Engineering Task Force

[42]. DNSSec is an additional security layer added to the existing DNS protocol. The

primary concept of designing it was based on the chain of trust that applies the concept of

public key cryptography for achieving origin authentication and data integrity on the replied
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DNS requests and verifying the non-existence of a domain, which makes DNSSEC effective

against types of cache-poisoning attacks [43]. However, some of its limitations have been

discussed in [44]. This solution is not sufficient for every network because DNSSec increases

the amount of network traffic. It also comes with other issues such as broken validations

which may cause a denial of service.

Even though some research has been conducted regarding approaches for detecting

and identifying the DNS tunneling attack, some issues still deserve further attention. IDS

and IPS detection techniques are based on pre-defined signatures by observing events and

identifying patterns which can be applied on the signatures of known tools and attacks. One

of the presumptions of the machine learning methods used for detecting malicious activities

in traffic is to compare the characteristics of traffic with DNS tunneling with the normal

DNS traffic even though some of the well-known tools are generating tunneled traffic similar

as possible to the regular DNS queries [38].

The next chapter describes the methodology and evaluation of the work. It includes

a description of the visualization module and how graphical representations of different DNS

tunneling attacks are generated, a description of the detection module, and a description of

how the system will be evaluated and metrics to measure the performance of the system.

Finally, it provides initial results of the visualization module.
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3 Visualization of DNS Tunneling Attacks

The Domain Name System (DNS) is considered one of the most critical protocols

on the Internet. The DNS translates readable domain names into Internet Protocol (IP)

addresses and vice-versa. The DNS tunneling attack uses DNS to create a covert channel for

bypassing the firewall and performing command and control functions from within a com-

promised network or to transfer data to and from the network. There is work for detecting

attacks that use DNS but little work focusing on the DNS tunneling attack. In this chapter,

we introduce a fast and scalable approach, using the parallel coordinates technique, visualiz-

ing a malicious DNS tunneling attack within the large amount of network traffic. The DNS

tunneling attack was performed in order to study the differences between the normal and

the malicious traffic. Based on different scenarios, four different DNS tunneling graphical

patterns were defined for distinguishing between normal DNS traffic and malicious traffic

containing DNS tunneling attacks. Finally, the visualization system was able to visualize

the DNS tunneling attack efficiently for the future work of creating an efficient detection

system.

3.1 Introduction

Visualization is not a new concept for monitoring network traffic. There are several

papers that used the parallel coordinates technique to monitor and visualize network traffic.

There are various benefits of using a parallel coordinates technique. First, it is scalable. It

helps to represent a considerable amount of data in an efficient manner which makes analyz-

ing big data more simple and powerful. Second, there is no limit on the number of values for

representing an attack using the parallel coordinates technique that converts multidimen-

sional data into two dimensions. Therefore, using the parallel coordinates technique gives

the ability to represent more than three different values within a two-dimensional space. In

this way, the relationship between the results can be reviewed quickly showing prominent

trends, correlations, and divergence from the raw data. Finally, the visualized data using

the parallel coordinates technique does not include any bias for any column within the space

[12, 13]. In other words, every visualized feature has the same weight.

The contributions of this chapter are: (1) A fast and scalable visualization system
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is proposed for recognizing DNS tunneling attacks using the parallel coordinates technique.

The proposed system is able to distinguish between normal and malicious DNS traffic. (2)

A real-world DNS tunneling attack is conducted within our network to study the behavior

of the attack traffic. Four different graphical patterns are defined in this work by analyzing

the DNS tunneling traffic based on different scenarios.

3.2 Visualization System Design

In this section, we describe the system architecture design of a visualization system for

visualizing and identifying the Domain Name System (DNS) tunneling attacks using attack

patterns as shown in Figure 3.1. The visualization system consists of three main components:

Parser, Analyzer, and Visualizer. DNS data can be passively captured at the network edge or

it could be read from existing PCAP files. The Parsing was coded in the Go programming

language that interfaces with the TCPDUMP library for collecting the data quickly and

efficiently. The captured packets are filtered to provide all User Datagram Protocol (UDP)

packets on port 53. Note that DNS can also use TCP port 53 for things such as zone

transfers but it was decided to only capture the more common DNS traffic that uses UDP.

Performance is one of the essential factors necessary for this system. Therefore, the focus is

on the DNS response data sent by the DNS server that confirms the communications between

the local computer and the local or global DNS servers. Another reason why DNS response

packets were considered, is that it decreases the number of captured packets, resulting in

faster computations. The DNS response packets have a significant amount of information.

Therefore, it was found that a subset of information could be used to visualize and identify

DNS tunneling attacks and the parameters include the ID, domain and subdomain names,

TTL (Time To Live), source and destination IP, date and time. This DNS data is stored in

a database or file as input into the Analyzer.

Next, the Analyzer retrieves the captured DNS data from the database. First, it

checks that the captured data is a proper DNS packet to avoid further issues. Then, the

Analyzer filters the data to eliminate duplicate records based on the ID number and it applies

analytical and mathematical functions on the captured data. For instance, it gets the number

of requests for each domain name based on date and hours and sorts them by decreasing

values. It selects the top five domain names that have the most frequent requests, and it

compares them to the value of the threshold. If any of these values exceed the threshold,
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Figure 3.1: System Architecture Design

then it considers it as a thread. The Analyzer module sends the suspicious domain names

to the Visualizer.

Finally, the Visualizer displays the analyzed data using the parallel coordinates tech-

nique. This technique uses each coordinate to represent the six different parameters: source

and destination IP address, domain and subdomain names, TTL, and the time. For ex-

ample, assume that a workstation with 192.168.0.1 IP address sends a DNS request to the

global google DNS server that has 8.8.8.8 IP address to resolve the following domain name

www.attacker.com. Then, the Visualizer module represents the source coordinate with the

local workstation IP address 192.168.0.1, the destination coordinate as 8.8.8.8, attacker as

the domain name value, and www as a subdomain name value. If we have thousands of

requests, the visualization system displays a funnel-like pattern.

3.3 Graphical patterns for DNS tunneling attacks

In this section, the parallel coordinates technique is introduced that uses the captured

data to represent the DNS tunneling as graphical patterns. Four DNS tunneling attack pat-

terns are identified using the parallel coordinates technique, which can be used to both

identify and understand DNS tunneling attacks. Several tunneling tools were found that

implement the DNS tunneling attack, such as iodine, dns2tcp, DeNiSe, dnscapy, heyoka,

fraud-bridge, dnscat, and dnscat2. Each DNS tunneling tool uses a slightly different imple-

mentation of the attack. For example, dnscat2 uses a NULL for a particular request type,

while heyoka uses different encoding techniques to pass the data over the DNS communi-

cation channel [45]. However, all of these tools are using the same concept. Note that the

DNS protocol is not able to transfer large amounts data, only small to average amounts.
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Therefore, the DNS tunneling attack requires sending a considerable number of queries in

order to transfer the data and this leads to the ability to identify these types of attacks.

In the parallel coordinates technique, each coordinate represents a particular value.

The first coordinate is the source IP address which has the value of the computer that receives

the DNS query while the second coordinate is the destination IP address that forwards the

DNS request. The third coordinate represents the domain names, and the fourth coordinate

contains subdomain names. Then, the fifth coordinate is the TTL value that is set by the

Authority server which allows a DNS client to cache the answer for a particular time, while

the time is the last coordinate. With these values, our visualization system shows a graphical

pattern that can be matched to a template of the predefined graphical patterns of unusual

DNS traffic.

Suppose that an attacker compromised a computer within a network and he needs to

send stolen data out secretly without being detected by the firewall. The attacker can use

a DNS tunneling attack to hide his movements or to transfer data outside the network. In

this case, the attacker requires a pre-configured fake DNS server outside the network. From

inside the compromised network, he can connect to his fake server via the DNS protocol

that is allowed by the firewall in most networks. During the DNS tunneling attack, it sends

a tremendous number of requests to the DNS server within a short amount of time actually

transferring data instead of just sending DNS requests. In this work, we ran the DNS

tunneling attack inside our network and we transferred a 12 MB text file. During one DNS

tunneling attack, it generated a considerable number of DNS requests (52 thousand queries),

which is significantly more than normal. This kind of attack splits the file into small pieces

and encodes each piece with a specific encoding technique [9]. Then, it encapsulates the

pieces into the DNS packets to transfer it to the preconfigured fake DNS server that has

multiple preconfigured subdomain names.

The parallel coordinates visualization technique captures this unusual activity by

generating attack signatures using the number of requests for each parameter. For example,

Figure 3.2.A exhibits the previous scenario of the traditional DNS tunneling attack during

one hour where the source coordinate represents the value of the attacker’s computer which

is 192.168.0.1. On the destination coordinate, we can see that it has the value of global DNS

server and one domain name in the domain coordinate. However, we observe more than

52 thousand subdomain names, which shows an unusual number of DNS requests within a

short time. One of DNS tunneling features is that the fake DNS server sends thousands of
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DNS requests within a short time where it has a constant TTL value. The previous example

shows all 52 thousand requests have a TTL value of zero. Figure 3.2.B or malware scenarios

using the traditional DNS attack tunneling technique to hide their C&C communications

inside the network. It shows that we have many internal computers sending and receiving

many DNS requests within a short time. In [45], they presented the Heyoka tool which is one

Figure 3.2: Graphical Patterns for Traditional DNS Tunneling Attack.

of the DNS tunneling tools that not only performs the attack but it also has some unique

features that are not implemented in other DNS tunneling tools. Using Heyoka, an attacker

can deploy a master DNS server with multiple slave DNS servers. One could use a different

subdomain for each slave, crafting requests like the following: encoded-data.n.attacker.com,

where n is the slave identifier number. Therefore, Figure 3.3.C shows this case when the

attacker uses a multiple slave DNS server while Figure 3.3.D shows the case of using the

25



Figure 3.3: Graphical Patterns for Heyoka DNS Tunneling Attack.

Heyoka tool when it has been used by botnet clients or malware situations from multiple

computers.

3.4 Evaluation

3.4.1 Experimental setup

In this section, we show our experimental results of the experiments we performed

to evaluate the visualization system. The evaluation method consists of two main parts.

The first part is performing the DNS tunneling attack. The second part is importing the

captured DNS traffic data to the visualization system.

In order to perform DNS tunneling attack, we register a domain name and set up an
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Figure 3.4: Top Five Domain Name for an Entire Week without the Attack.

external server with a static IP address. Debian Linux server was installed and set up in

the cloud for this purpose. The DNS tunneling attack was performed using Kali Linux in

our internal network to encapsulate and upload a 12 MB text file to an external FTP server

during a weekday. Moreover, we also sniffed and monitored normal DNS traffic during regular

daily use for an entire week. There are two significant reasons for sniffing and capturing a

regular DNS traffic in our experiment. The first reason is to compare and study the normal

behavior of DNS traffic against the DNS traffic that has the DNS tunneling attack while

the second reason is to determine and set the value of threshold based on the normal DNS

traffic level.

3.4.2 Results

After performing the attack, the PCAP file was stored for the later analysis. Next,

using the Analyzer module, the captured data was analyzed excluding the DNS tunneling

attack as shown in Figure 3.4. We found that Microsoft.com is the value that occurs most

frequently in the data set, having 8836 DNS requests for an entire week and 170 requests

per an hour as a maximum value.

As shown in Figure 3.5, when implementing the DNS tunneling attack, the malicious

domain name has the most frequently occurring value with more than 50000 DNS requests
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and 40993 requests per an hour as a maximum value. It is imperative to note that the

attack has run for only two hours. This experiment was used to empirically determine the

threshold. In this environment, the sum of the number of requests of all domain names was

489 per hour. Therefore, the value of the threshold has been set to 500 DNS requests in our

experiment. It is important to note that the threshold has to be set appropriately for each

network depending upon the typical traffic levels.

Figure 3.5: Top Five Domain Names during the Attack over a Two-hour Period.

Next, the malicious domain name is sent to the Visualizer module to represent a

possible attack using the parallel coordinates technique. Figure 3.7 shows the visualization

of the entire captured network traffic that contains a DNS tunneling attack without the

thresholding technique turned on while Figure 3.6 shows the visualization of the network

traffic with the DNS tunneling attack with the thresholding technique enabled. As seen in

the figures, there is an obvious funnel-like pattern that appears during the attack with the

proposed technique. As shown in Figure 3.7, there are four values on the source IP address

coordinate which represent the internal computers where they requested too many domains

and subdomain names during the day. On the other hand, Figure 3.6 shows that only one

computer in the internal network sent too many DNS requests to resolve a considerable

number of subdomain names of an attacker domain name within two hours.
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Figure 3.6: Visualizer Module Shows only the Attack.

Figure 3.7: Visualize the Entire DNS Captured Data.

3.4.3 Issues

Several issues occurred during the initial design of the visualization system. First, the

entire visualization system had been coded using Python and Pandas which is the Python

Data Analysis Library [46]. Results were satisfying with a small number of data records
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but not a large number. As soon as our data set became larger, the system was not able to

process the data as efficiently resulting in slower turnaround times. The Parser module was

not able to process big PCAP files and a large number of DNS packets, and the Visualizer

module was taking more than 16 hours of processing time to analyze and display the data

on the parallel coordinates. Therefore, the system was rewritten in the Go Programming

Language [47] and the R Language [48]. After rewriting the code, 5GB PCAP files with

more than 52000 DNS packets are parsed in less than 12 seconds, while R processes and

presents the parsed data in approximately 5 seconds.

3.5 Conclusion

In this chapter, a fast and scalable visualization system for detecting and identifying

DNS tunneling attacks is introduced based on the parallel coordinates technique. To the best

of our knowledge, this is the first time that the DNS tunneling attack has been visualized.

Data was collected and visualized from an internal network during a DNS tunneling attack.

One week of data was analyzed to study the normal behavior of DNS and it was compared to

the behavior during a tunneling attack. In addition, based on our analysis, a method is pro-

vided to set the threshold value. Six DNS parameters for the parallel coordinates technique

were identified and used to visualize the DNS traffic using the parallel coordinates technique

in order to distinguish between normal DNS traffic and malicious traffic containing DNS

tunneling attacks. Four different DNS tunneling patterns were identified each representing

different types of DNS tunneling attacks using the parallel coordinates technique. Visual-

izations were created that are obviously very different so that they can be used in the future

for detecting DNS tunneling attacks.
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4 DNS Tunneling Attack Detection using Machine Learning

Individuals and organizations rely on the Internet as an essential environment for

personal or business transactions. However, individuals and organizations have been primary

targets for cyber-security attacks that steal sensitive data. Adversaries can use different

approaches to hide their activities inside the compromised network and communicate covertly

between the malicious servers and the victims. The domain name system (DNS) protocol is

one of these approaches that adversaries use to transfer stolen data outside the organization’s

network using various forms of DNS tunneling attacks. DNS protocol is considered one of the

most important internet protocol because it is available in almost every network, ignored, and

rarely monitored. In this work, our research focuses on implementing a reliable and robust

detection system against DNS tunneling attacks using visualization and machine learning

techniques. The detection system is able to detect DNS tunneling attacks, which are either

embedded in malware or be used as stand-alone attacking tools. The system consists of three

main modules: the Parser, the Analyzer, and the Detector. The visualization module’s

output will be input for the developed detection module that will use machine learning

algorithms to decide whether a DNS tunneling attack occurs. The system is trained, tested,

and evaluated using metrics derived from a confusion matrix that is commonly used to

measure intrusion detection systems’ performance. It is shown that the system is capable

of detecting the DNS tunneling attack with a low false rate and high accuracy. The results

show that all of the machine learning algorithms tested, including Decision Tree, Logistic

Regression, Näıve Bayes, K-Nearest Neighbors, Random Forest, and Support Vector Machine

classifiers, used in the experiment achieved 99% accuracy to identify the attack.

4.1 Methodology

4.1.1 System Design

The proposed detection system extends the work done in [40]. This work uses the

parallel coordinates technique to confirm the hypothesis that the visualization of DNS net-

work traffic using the parallel coordinates technique with an active DNS tunneling attack is

visually different from DNS network traffic that does not contain the attack. The visualiza-
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tion system was developed to provide visual information for detecting botnet attacks using

DNS traffic for communication. Six DNS features are used as parameters for the parallel

coordinates technique to identify and visualize the DNS traffic to distinguish between regu-

lar DNS traffic and malicious traffic containing DNS tunneling attacks. Four different DNS

tunneling patterns were identified, each representing various types of DNS tunneling attacks

[40]. The DNS tunneling attack signatures were derived from the work in [40] to implement

the detection system to label and prepare the machine language algorithms’ dataset. Also,

we evaluate the detection system on a dataset that was generated within the lab. The evalu-

ation method consists of two main parts. The first part performs the DNS tunneling attack

to create a dataset, and the second part imports the captured DNS traffic dataset to the

detection system. We employ the four types of attacks in our detection system and generate

relationship signatures for each one to detect and flag the attacks. Figure 1.4 shows the

original visualizations and Table 5.1 shows the attack relationship signatures. During the

analysis process, we used these signatures to label the data for training the machine learning

algorithms to detect the DNS tunneling attack.

Figure 4.1: The DNS Tunneling Attack Patterns

The visualization of the traditional DNS tunneling attack shown in Figure 1.4, plots

the quantity of source IP addresses, destination IP addresses, domain names, subdomain
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names, time-to-live (TTL) values, and time values. There is an easily identifiable pattern

that is converted to a signature represented as the tuple (1, 1, 1, m, 1, 1), which means

there is 1 source IP address, 1 destination IP address, 1 domain name, multiple (m) subdo-

mains, a single TTL, and a single or small window of time. The traditional DNS tunneling

attack, Botnet DNS tunneling attack, Heyoka DNS tunneling attack, and Heyoka/Botnet

DNS tunneling attack all have unique visualizations that were converted to attack relation-

ship signatures.

Table 4.1: DNS Tunneling Visualization Signatures

Attack Signature Representation Normal\Malicious

Traditional D. T. 1,1,1,m,1,1 Attack Type1 True

Botnet D. T. m,1,1,m,1,1 Attack Type2 True

Heyoka D. T. 1,m,1,m,1,1 Attack Type3 True

Heyoka /Botnet D. T. m,m,1,m,1,1 Attack Type4 True

No Attack Not Above 0 False

4.1.2 The Detection System

In this section, we discuss the design of the detection system. The detection system

consists of three main modules: The Parser, the Analyzer, and the Detector. DNS data

can be passively captured at the network edge or it could be read from existing PCAP files

via the Parser. The main goal of the Parser is to capture and collect a subset of DNS

information on the network edge and store it in the database. The Parsing module is coded

in the Go programming language that interfaces with the TCPDUMP library for collecting

the data quickly and efficiently. The raw captured packets are filtered to provide all User

Datagram Protocol (UDP) packets on port 53. Note that DNS can also use TCP port 53

for things such as zone transfers but it was decided to only capture the more common DNS

traffic that uses UDP. Performance is one of the essential factors necessary for this system.

Therefore, the focus is on the DNS response data sent by the DNS server to the local

computer. Another reason why DNS response packets were considered, is that it decreases

the number of captured packets, resulting in faster computations. The DNS response packets

have a significant amount of information. It was found that a subset of information could

be used in identifying DNS tunneling attacks and the DNS features include the ID, domain
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and subdomain names, DNS record type, TTL (Time-to-Live), source and destination IP,

SRV’s IP (Service IP), data length, and finally the date and time. These DNS features are

stored in a database or file as input for the next module which is the Analyzer module.

The next module is the Analyzer module, which cleans and prepares the DNS captured

data and then passes it to the next module. The Analyzer retrieves the captured DNS data

from the database, and it validates the data by checking the captured data to verify that

it is a proper DNS packet to avoid further issues. Then, the Analyzer module filters the

data to eliminate duplicate records based on the ID number and it applies analytical and

mathematical functions on the captured data. Examples of analytical and mathematical

function are calculating the number of requests for each domain and its unique subdomain

names, the number of source IPs per domain, the number of destinations of IP per domain,

the number of SRV of IPs per domain, the average number of subdomain lengths per domain,

the average number of data lengths of each DNS request per domain, and the average number

of TTLs per domain. The Analyzer module also generates the attack signature for each

domain and compares it with the malicious attack signatures to label the domain name as

malicious or not. Finally, the Analyzer module prepares the analyzed data and stores this

information into a file to pass to the machine learning algorithms to determine if there any

malicious domain names. Also, the Alexa and umbrella top 1000 domains [49] are used to

identify and label the captured domain name as legitimate.

Finally, the Detector module retrieves the prepared data and applies the machine

learning algorithms on the data to determine whether the DNS tunneling attack is occurring

or not. After retrieving the data, the process of this module is to prepare and split the DNS

data into two datasets: the first dataset is for training while the other one is for testing the

machine learning algorithms. Then, we train the machine learning algorithms on the dataset,

which has the labels, and finally, we examine the machine learning algorithms on the dataset.

The machine learning algorithms used in this work are the decision tree classifier, näıve Bayes

classifier, K-nearest-Neighbors classifier, Logistic Regression classifiers, and Random Forest

classifier.
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4.2 Results and Discussion

4.2.1 Evaluation

In this section, we discuss the evaluation method for the DNS tunneling detection

system. To evaluate the performance of the methodology, we created the normal DNS

dataset. Three months of DNS traffic were captured within the network. The network

environment is a home-based lab, consisting of more than 20 devices, including IoTs, servers,

mobiles, PCs, and laptops. There are two significant reasons for capturing regular DNS traffic

in the experiment. The first reason is to compare and study the normal behavior of DNS

traffic against the DNS traffic that has the DNS tunneling attack while the second reason is

to determine and set the value of the threshold based on the normal DNS traffic level.

Due to the importance of the DNS protocol, DNS tunneling tools were used to simu-

late the tunneling attacks using various methods. For example, the dns2tcp DNS tunneling

tool uses the TXT record types to perform the tunneling, whereas Iodine DNS tunneling

tool uses NULL records [50]. However, due to the lack of available DNS tunneling datasets,

we implemented and created a DNS dataset that has malicious DNS traffic. The DNS tun-

neling dataset includes various DNS traffic generated from DNS tunneling tools, including

Iodine, DNScat2, dns2tcp, and fraud-bridge. Finally, normal and malicious DNS datasets are

combined and then imported to the detection system and evaluated.

4.2.2 Experimental Setup

This work is a network-based solution which has the ability to distinguish and identify

between normal and malicious DNS traffic. In order to detect the malicious DNS traffic, we

require that the system intercepts the network DNS traffic. To guarantee that the system

captures all transmission DNS traffic, the plan is to place the system on the network edge

or to run it as a DNS proxy, which looks up DNS queries from a local cache. A DNS proxy

makes the process of resolving the domain name more efficient by performing the lookup

on behalf of the client and caching common queries. In addition, the detection system will

have the ability to read DNS traffic from an existing PCAP file, which helps to identify and

detect the attack offline from previously captured network traffic.

The DNS tunneling attacks signatures rely on the work that is done in [40], which uses

the parallel coordinates visualization technique to detect and visualize the DNS tunneling

attacks. The visualization system was developed to provide visual information that helps
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in detecting botnet attacks that are using DNS traffic for communication. The evaluation

process relies on two parts including: create the dataset that has the DNS tunneling attacks

and import the generated dataset into the detection system.

To perform a DNS tunneling attack, we register a domain name and set up an external

server with a static IP address. A Debian Linux server is deployed in the cloud for this

purpose. The DNS tunneling attack is performed using the Kali Linux distribution that

has many DNS tunneling attack tools built-in on the internal network to encapsulate and

upload a 12 MB text file to an external FTP server. Also, we configured a couple of local

domain nameservers to perform other DNS tunneling attacks to generate more data for

our evaluation. During the attacks, we captured DNS traffic as PCAP files. As previously

mentioned, we captured the normal DNS traffic on a three-month window to generate our

dataset for the evaluation process.

Figure 4.2: DNS Tunneling Tools

As shown in Fig 4.2, the five DNS tunneling attack tools that implement seven dif-

ferent types of tunneling attacks that were used in our research to generate and simulate

the malicious DNS traffic. Each DNS tunneling attack tool is performed for a specific time.

Figure 4.2 shows that the iodine-attack3.io domain name has the most frequency of DNS

requests among all the attacks, and that is because it was executed twice during the three-
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month window period. On the other hand, the number of requests to the dns4phd.me domain

name is performed a couple of hours during the attack to upload a text file via an FTP server

over the Internet while the other tools performed within a short time so that they generated

fewer DNS requests within the home-lab environment.

Figure 4.3: Top 25 Domain Names including DNS Tunneling Attack Tools

Figure 4.3 shows the top 25 domain names for the three-month window period, in-

cluding the DNS tunneling attacks. Note that the malicious domain names, which are

iodine-attack3.io ,dns4phd.me, iodine-attack.io, and iodine-attack2.io, are including the list

of the top 25 domain names of the most frequency DNS request for the three-month win-

dow period of capturing the DNS traffic. There are two methods that the detection system

feeds the machine learning algorithms with data include, capturing live network traffic and

importing PCAP files. During the evaluation, we used the PCAP file, which was generated

before, to import the data to the detection system. As previously mentioned, the PCAP file

has been captured data for a three-month window period. Note that we imported the com-

plete PCAP file at once to the detection system. However, our detection system is intended

to capture and import DNS requests for a shorter time in the future, making detecting the

DNS tunneling attack easier. For example, the detection system captures data every five

minutes and analyzes it to identify any malicious DNS traffic, which makes it a more efficient
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method.

4.2.3 The Dataset

After performing the attacks, the PCAP files were stored for the later analysis. Next,

using the Analyzer module, the captured data was analyzed, excluding the DNS tunneling

attack. The frequency of the top 10 domain names is shown in Table 6.1. We found that

encipher.io domain name is the value that occurs most frequently in the data set, having

344776 DNS requests for the three-month window period while the youtube.com domain

name has the lowest frequency number in that list, having 68956 DNS requests.

Table 4.2: Frequency of Top 10 Domain Names

Frequency Domain Name

344776 encipher.io

339618 antsle.com

168649 us-east-1.amazonaws.com

148326 google.com

143410 wd2go.com

132706 app-measurement.com

85932 googleapis.com

80354 Microsoft.com

76220 facebook.com

68956 youtube.com

We also analyzed the complete dataset to determine some dataset relationships be-

tween normal and malicious DNS requests. The Analyzer module marks the dataset with

two types of labels: No attack and DNS ATTACK, which helps the machine learning algo-

rithms train on this dataset with the labels and then tests them while excluding the labels.

Fig 4.4 represents the malicious DNS requests against the normal one. Our dataset has 3646

regular DNS requests; on the other hand, the dataset has 33 DNS malicious requests that

been generated using various DNS tunneling tools, as we mentioned earlier.

Even though we have only 33 DNS malicious requests, some of them were found in the

top 25 list, and that is because these tools generate a large number of requests per minute.
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Figure 4.4: The Normal and the Malicious DNS requests in the dataset

Thus, the number of DNS requests for two hours of performing DNS tunneling attack will

be higher than the three-month window period of capturing DNS requests.

The DNS Tunneling attack encapsulates the TCP protocol packets and sends them

over the domain name system. Due to the DNS protocol limitations, the TCP packets need

to be split into pieces to be sent with the DNS protocol. As a result, a successful attack

sends many DNS requests per minute in order to perform a certain task. Thus, to confirm

that we examine and study the DNS features of the normal and the malicious DNS requests

within our lab. Fig 4.5 shows the distribution of the overall total requests for the normal

and the malicious DNS requests for the dataset. This shows that the total number of DNS

requests with the DNS ATTACK label is much larger compared to DNS requests labeled

No attack and also have very different distributions. The different distributions demonstrate

graphically why the machine learning algorithms are able to distinguish between normal DNS

requests and malicious DNS requests.

We also observed the total number of the TTL average and the data length features

in both the normal and the malicious DNS requests. Fig 4.6-A shows the average number of

TTL in the DNS requests labeled as DNS ATTACK compared to the normal DNS requests.

We observed that the average number of the TTL in the malicious DNS requests is consistent

because the DNS tunneling tools use a fixed number of TTL values to send and receive DNS

requests. The average total number of TTL in DNS requests that labeled as No attack vary.

Similarly, we examined the average data length number between both the normal and the

malicious DNS requests. Fig 4.6-B shows that the average numbers in data length in both

are varied, and the main reason is that some of the DNS tunneling tools using the DNS data

feature to send and receive data during the attack. The distributions of normal DNS traffic
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Figure 4.5: The Total Number of the Normal and the Malicious DNS requests in the dataset

versus the DNS are very different.

4.2.4 Evaluation Metrics

In this section, the evaluation metrics for evaluating the detection system are defined.

Accuracy and effectiveness are essential factors in the evaluation process, which describes the

ability of the detection system to differentiate between intrusive and non-intrusive activities.

Confusion Matrix

The confusion matrix is a tool for determining the performance of the detection system

module. It contains information about actual and predicted classifications. Most researchers

primarily focus on evaluating and measuring the intrusion detection systems (IDSs) based on

the accuracy and effectiveness in terms of false alarm rate and the percentage of attacks that

are successfully detected [51]. Similarly, this work will evaluate and measure the proposed

system using the confusion matrix as defined below:

1. True positives (TP) - the number of intrusive activities that are correctly detected by

the detection system.

2. False positives (FP) - the number of normal or non-intrusive activities that are incor-

rectly identified as an attack by the detection system.
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Figure 4.6: The Total Number of the TTL and Data Length in the Normal and the Mali-

cious DNS requests in the dataset

3. True negatives (TN) - the number of normal or non-intrusive activities that are cor-

rectly identified as normal by the detection system.

4. False negatives (FN) - the number of intrusive activities that are incorrectly marked

as normal or non-intrusive by the detection system.

Figure 4.7 provides information about the confusion matrix of TP, TN, FP, and FN,

which represents true and false classification results.

Figure 4.7: The Confusion Matrix
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Metrics from confusion matrix

In this section, different classification measures that are derived from the confusion

matrix values are described. The confusion matrix metrics produce numeric values that are

simple to compute and compare [51], including true-positive rate (TPR), false-positive rate

(FPR), precision (PR), and accuracy, using the following formulas [14]:

1. True-positive rate (TPR) is a ratio between the number of true positives and the sum

of the true positives and false negatives. It is used to measure the proportion of actual

positives cases that are correctly identified as a DNS tunneling attack. Also, recall and

sensitivity are other machine learning terms that refer to a true-positive rate.

TPR =
TP

TP + FN
(4.1)

2. False-positive rate (FPR) defines as the proportion of negative cases that are incorrectly

identified as positive cases in the DNS traffic.

FPR =
FP

FP + TN
(4.2)

3. Precision (PR) is the ratio of correctly predicted positive attacks to the total predicted

positive attacks. For example, consider an email spam detection system. A false

positive means that a non-spam email (actual negative) has been identified as spam

(predicted spam). The email user might lose important emails if the precision is not

high for the spam detection model.

PR =
TP

TP + FP
(4.3)

4. Accuracy is the ratio of correctly predicted attacks, true positives plus true negatives,

to the sum of true positives, false positives, true negative, and false negatives. If the

system performance has a high accuracy value, then the system is considered as better

than a system with lower accuracy.

Accuracy =
TP + TN

TP + +FP + TN + FN
(4.4)

5. F1-Score defines as the harmonic mean of precision and recall models, and it is a

method of combining and weighted average of both precision and recall.

F1 = 2× Recall × Precision

Recall + Precision
(4.5)
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4.2.5 Results

In this section, the results of the work are discussed. The aim of this research designs

a detection method that identifies and detects the DNS tunneling attacks from network

traffic. Our method starts by capturing the DNS traffic of the home-base network for a three-

month window period using the Parser module. The dataset has more than 3,500,000 DNS

requests before sending it to the Analyzer module. Then, the Analyzer module processed

the DNS requests and preprocessed the requests to filter the dataset to be ready for the

machine learning algorithms. The dataset is being used during the experiment. It contains

normal DNS requests and malicious DNS requests, with 3646 normal DNS requests and 33

malicious DNS requests that were generated using various DNS tunneling tools. Finally, the

Detector module splits the dataset into the training and testing dataset and then applies

machine learning algorithms to identify and detect any malicious activities within the DNS

traffic. The results shows that all of the machine learning algorithms that were used in the

experiment achieve 99% accuracy to identify the attack. Table 4.4 compares the machine

learning classifiers, including Decision Tree, Logistic Regression, Näıve Bayes, K-Nearest

Neighbors, Random Forest, and Support Vector Machine classifiers based on the precision,

recall, F1-score, and accuracy.

Table 4.3 shows the confusion matrix. The machine learning classifiers were trained

on 50% of the dataset, while the other part, 50% of the dataset, was used to test result

on these classifiers. During the testing phase, the dataset included a subset of the dataset,

which was selected by the classifier. The subset of the dataset was 1840 domain names,

including 1823 non-malicious domain names and 17 malicious domain names. Four of the

machine learning classifiers, Decision Tree, Logistic Regression, K-Nearest Neighbors, and

Random Forest classifiers, achieved identical results on the dataset in terms of the values

of precision, recall, and the F1-score. The results show that the true-positive value of these

classifiers was able to identify the 17 cases of the malicious domain names as a DNS attack.

At the same time, there were no cases identified as false-negative value, and 1820 cases

identified as normal domain names and labeled them as No Attack. On the other hand,

the result shows that we have three miss cases, false-positives, where the classifiers labeled

the malicious domain name as No Attack. Even though Näıve Bayes classifier achieved a

high accuracy which 99%, the confusion matrix result shows that there are missed cases

in identifying the DNS attacks. Näıve Bayes classifier was able to identify 16 malicious
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Table 4.3: The confusion matrix values for the machine learning classifiers.

ML. Classifier (TP) (FN) (FP) (TN)

NDecision Tree 17 0 3 1820

Logistic Regression 17 0 3 1820

K-Nearest Neighbors 17 0 3 1820

Random Forest 17 0 3 1820

Näıve Bayes 16 1 5 1818

Support Vector Machine 14 3 0 1823

cases out 17. In addition, the results show that the classifier incorrectly labeled one case as

DNS Attack. In the case of false-positive, the classifier was incorrectly labeled five cases as a

No Attack. Finally, the Support Vector Machine classifier was able to identify 14 cases of the

DNS attacks out 17, which means it three two cases. The Support Vector Machine classifier

had false-negatives, incorrectly labeling three cases as DNS Attack. It had no false positive

cases, and the true-negative values of shows the classifier identify 1823 cases as normal.

In addition, we performed other experiments of splitting the data into various ratios

and obtained slightly different but similar results. We trained the machine learning classifiers

on 30% of the dataset while the machine learning classifiers were tested by 70% of the dataset,

and we also obtained a 99% accuracy on all machine learning classifiers. The dataset that

been used for the experience had 1104 of Normal DNS requests and 11 of DNS attacks.

Most of the machine learning classifiers were able to identify all the malicious DNS requests

except the Support Vector Machine classifier was unable to identify all the DNS malicious

cases where it missed three cases out of 11 malicious DNS requests. In general, using such

a split of dataset ratio, the classifiers labeled one case as normal, but it was a malicious

request. In contrast, the Naive Bayes and Support Vector Machine Classifiers marked three

cases and labeled them as normal while was malicious requests. Next, we also split the

dataset into 70% for training purposes and 30% of the dataset for testing purposes, and the

dataset had 2552 cases of normal DNS requests and 24 cases of malicious DNS requests. We

obtained 99% accuracy as an average of all machine learning classifiers. Most of the machine

learning classifiers were able to identify all the malicious DNS requests except the Support

Vector Machine classifier was unable to identify all the DNS malicious cases where it missed

three cases out of 11 malicious DNS requests. Most of the classifiers missed three cases of
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malicious DNS requests, while the Naive Bayes missed five cases of malicious DNS requests.

The Support Vector Machine classifier did not miss any malicious cases, but instead, it

marked 9 cases as malicious DNS requests where were not malicious.

Table 4.4: Compared Results Among Machine Learning Classifiers

ML. Classifier Precision Recall F1-score Overall Accuracy

Decision Tree 0.85/1.00 1.00/1.00 0.92/1.00 99.836

Logistic Regression 0.85/1.00 1.00/1.00 0.92/1.00 99.782

Näıve Bayes 0.76/1.00 0.94/1.00 0.84/1.00 99.728

K-Nearest Neighbors 0.85/1.00 1.00/1.00 0.92/1.00 99.673

Random Forest 0.85/1.00 1.00/1.00 0.92/1.00 99.836

Support Vector Machine 1.00/1.00 0.82/1.00 0.90/1.00 99.836

Conclusion

To summarize, the machine learning-based detection system is a network-based solu-

tion that either passively captures all DNS traffic or reads DNS packets from existing PCAP

files to detect the DNS tunneling attack. It is based on the previous work done in [40] which

generates a graphical signature text representation that labels the dataset. The detection

system consists of three main modules: the Parser, the Analyzer, and the Detector, where

the Parser captures and feeds the system with DNS data. The Analyzer module prepares and

analyzes the data for the next module which is the Detector. The Detector module works

as a decision-maker built based on supervised learning and pre-trained objects, determining

whether or not the DNS tunneling attack occurs. During the experiment, we captured and

collected three months of DNS traffic within a private network and performed real DNS

tunneling attacks within a controlled private network to simulate the attacks. Then we used

these captured data and simulated attacks data to train, test, and evaluate our detection

system. As a result, the system achieves 99% accuracy to detect all simulated cases of the

attacks with a low false rate. In future work, we intend to implement a DNS proxy server

that aims to detect such attacks in real-time using the proposed system in this work.
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5 System Methodology

In this chapter, the detection system is introduced and discussed the system architec-

ture design and its main components. Our approach is a network-based detection system that

can identify and detect malicious DNS requests, including DNS tunneling, data exfiltration,

and command and control channels communications over the DNS protocol.

5.1 Background

The Domain Name System (DNS) considers as one of the most significant elements in

the Internet infrastructure. Many protocols and applications such as HTTP, email, and FTP

applications rely on DNS to resolve human-readable domain names to the corresponding IP

address. Due to the DNS’s importance, adversaries misuse and exploit the DNS protocol

in many various ways to achieve their malicious goals. Also, DNS-based attacks are one

of the most serious cyber-threats used to steal an online identity. According to a global

2019 DNS Security survey, 91% of malware uses DNS services to establish their cyberat-

tacks, and a DNS attack had targeted 82% of survey respondents in 2018 [15]. The 2020

global DNS threat report shows that the number of victimized and attacked organizations

via DNS-based attacks increased by 82%. Moreover, the report exhibits the top DNS-based

attacks, including DNS phishing, DNS-based malware, DNS amplification, and DNS tun-

neling attacks. DNS attacks and business consequences are explicitly interlinked, and there

are direct strong measurable business impacts. The report shows that such attacks targeted

various sectors such as healthcare, education, government, transportation, and utilities and

cost more than one million dollars as impacts on their businesses. This section introduces

the detection system, which is a network-based solution against malicious DNS requests.

5.2 DNS Proxy

The system detection approach is a network-based detection system that works as a

DNS proxy server between clients and public DNS servers. A DNS proxy server acts as a

regular DNS server that takes DNS queries from network clients and forwards them outside

the network into a private or public Internet Domain Name Server. One of DNS proxy’s
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advantages is that it has full control over the incoming and outcoming requests using either

whitelist or blacklist domain names for blocking certain domain names. It may also have the

ability to cache DNS records for speeding up the domain name lookup process. DNS Proxy

server features are available in almost every enterprise firewall appliance devices. In this

work, we used the DNS proxy concept to fully control the DNS queries and requests as well

as block the attacks as soon as identified and detected. The current state of the detection

system is to identify, detect, and block DNS attacks.

5.2.1 DNS Proxy as a Detection System

In this work, we used the term “DNS proxy” to implement the detection system.

Our Golang code is hosted on a dedicated server within the network to run as a DNS proxy

server to have a full control over the DNS traffic, including the incoming and outcoming DNS

queries. Therefore, in order to implement our methodology, there is a particular setup that

needs to be set. First, the network router needs to configure the DNS IP address section

to point to our DNS proxy server. The DNS proxy is placed within the home network

to intercept clients’ DNS queries. As soon as the DNS proxy receives the DNS queries,

it applies several analytical functions and then forwards it to the actual DNS server, the

Internet provider DNS server, or a public DNS server. After the internet provider DNS

server receives an answer, it replays it to the DNS proxy to send it back to the client, as

shown in 5.1.

Figure 5.1: DNS Proxy
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5.3 System Design

The detection system’s main purpose is to distinguish the DNS traffic’s abnormal

behavior and block malicious domain name requests. The detection system needs to be

built with multiple modules using different approaches and communication patterns in order

to detect both the DNS tunneling attacks and the DNS exfiltration technique, including

malicious software and Malware Bots. For example, in some cases, the DNS exfiltration

attack is used as the low-throughput DNS technique. The attacker sends a DNS request every

x minutes to exfiltrate sensitive data outside the organization’s network through security

appliances without been detected. In contrast, the DNS tunneling attacks method must use

the high-throughput DNS technique due to the communication patterns. For example, it

has to send and receive an enormous amount of data over the DNS protocol to establish a

VPN connection.

This section describes the network-based detection system’s system architecture de-

sign, consisting of two main analysis modules: The Payload Analysis (PA) and the Traffic

Analysis (TA) modules. As soon as the DNS proxy receives a DNS query from a client, the

first module, the payload analysis, intercepts and operates in real-time. The second mod-

ule, the traffic analysis, works every x minutes to parse, analyze, and detect the incoming

DNS requests, where x is configured based on the daily incoming traffic in the network. We

implemented two main analysis modules to detect most malicious DNS requests, including

low and high throughput DNS tunneling and exfiltration techniques, whereas identifying

and detecting low throughput techniques via payload analysis module in real-time and high

throughput techniques via traffic analysis module every x minutes. Fig 5.2 shows the DNS

proxy detection system’s architecture design, including the payload and traffic analysis mod-

ules.

5.3.1 Parsing DNS Data

The detection system works as a DNS proxy, which means it intercepts incoming and

outcoming clients’ DNS traffic. There are two methods for collecting DNS data to analyze.

The detection system feeds the modules with DNS data by either passively captured DNS

traffic at the network edge, via DNS proxy server, or read from existing PCAP files via the

Parser on the analysis module. When the DNS proxy runs, it analyzes the received DNS

queries via the payload analysis module for any malicious activities within the DNS requests
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Figure 5.2: The Architecture Design of DNS Proxy Detection System.

and then sends it back to the client. Meanwhile, it also passively captures the DNS requests

and stores them into a PCAP file to supply the traffic analysis module with DNS data for

further and more extensive analysis.

5.3.2 Feature Extraction

The DNS protocol’s nature design is to exchange specific information related to do-

main names [2]. It was not designed to transfer data over the DNS protocol. The DNS

protocol has various limitations, such as the length of any label of the domain name is re-

stricted to between 1 and 63 bytes as well as a full domain name is limited to 255 bytes of

letters, digits, hyphens, and separators are included [3]. Even though these limitations exist,

adversaries may abuse and leverage the DNS protocol to transfer data to their authoritative

name server and establish a covert channel for their activities. The attacker can include

as much information in the DNS queries to pass the data. Instead of sending legitimate

subdomains, adversaries take advantage of the domain length limitation and encode some

data in the domain name.

After parsing the DNS data for the system, the features are extracted to analyze.

Note that each module intercepts and examines the DNS traffic based on various features

and characteristics. Thus, in this work, it is required to parse and extract features for each

module individually. The payload analysis module monitors and analyzes based on features

such as length of DNS queries and responses, information entropy, uncommon record types,

blacklisted domain names, and statistical analysis. While the traffic analysis monitors the
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DNS traffic for other features such as the volume of DNS traffic per IP address, the frequency

of DNS traffic per domain, visualization of the traffic, the number of hostname per domain,

and other analysis features. Therefore, a set of features needs to be considered.

5.3.3 The Payload Analysis Module

The Payload Analysis (PA) technique focuses on identifying and analyzing critical

features of the DNS queries. It intends to focus on monitoring and observing the DNS

traffic that uses the particular patterns and indicators. Previous research and studies show

that malicious domain names can be found and represented in different forms and encoded

characters. This section describes the method of the payload analysis module approach.

Implementing the payload analysis module is to identify and detect the low-throughput data

exfiltration or DNS tunneling. One technique to bypass the firewall and in-place security

appliances is to use low-throughput techniques. The adversary sends a malicious request

every minute to avoid being detected. Adversaries use various data encoding techniques and

communication patterns in the DNS protocol to carries binary files, sensitive or stolen data

outside the organization’s network. Examples of data encoding techniques include MD4,

MD5, Base32, Base64, hex, and others. Thus, this section exhibits the approach used to

analyze and identify the DNS protocol for these techniques.

The Payload analysis module relies on DNS features, focusing on collecting and ana-

lyzing DNS query details, including statistical analysis and the information entropy. Thus,

we need to perform DNS feature extraction and examine them to detect if any DNS malicious

occurs. In the payload analysis module, the feature extraction phase works in real-time on

the network edge side, using a DNS proxy. Every time the DNS proxy server receives a DNS

request from a client, it extracts the DNS features for the analysis process. It then passes it

to the analysis module, which applies statistical and analytical functions to captured DNS

requests for analyzing to determine malicious activities. DNS features extraction includes the

Fully Qualified Domain Name (FQDN), query record type, a subdomain of FQDN, and the

subdomain’s query length, encoding the query data’s subdomain, blacklisted and whitelisted

domain names, and information entropy.

1. Uncommon record types: DNS Tunneling tools rely on certain types of DNS queries

due to the limitation of the DNS protocol [3]. As we mentioned before, the DNS pro-

tocol is not designed for transferring data but instead is used to exchange information
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about the domain name. Thus, the domain name system is limited to a certain number

of bytes of letters and symbols. However, that depends on the type of DNS query that

is being used. The DNS text (TXT) type record lets system administrators describe

the service of the domain name by entering human-readable notes. Therefore, many

DNS tunneling tools leverage the DNS TXT type record to transfer as much data as

possible. In this work, the detection system monitor uncommonly used record types

such as TXT and NULL.

2. Data Encoding: Adversaries take advantage of the domain name system to pass bi-

nary files, sensitive information, or stolen data over the DNS protocol. They most likely

include encoded or encrypted data in the domain name before passing it to make it look

like a part of the domain name request. For example, if the thepassw0rd.example.org

domain is queried, the adversary’s authoritative name server, for example.org, receives

the passw0rd as a string of hostname but interpret it as incoming data instead. Also,

adversaries may use some other encoding techniques to transfer text or binary data

to their servers. Another section that may have encoded or encrypted data is the

description section in the TXT requests. Therefore, the detection system monitors

the domain name system and looks for encoded or encrypted data, including Base32,

Base64, Based128, hex, md5, md4, and other Non-English characters.

3. Length of DNS query: The DNS tunneling tools utilize the domain names to transfer

as much data as possible over the DNS protocol. Therefore, the domain names’ and

hostnames’ lengths are considered abnormal behavior if they exceed a certain length

value, DNS requests’ lengths, including the length of characters and labels, the number

of dots. In a 2012 presentation at the RSA conference, Ed Skoudis identified a new

DNS-based Command and Control of malware that uses the DNS exfiltration technique

to transfer data over the DNS protocol [52, 53]. Based on that finding, they recommend

most of the Fully Qualified Domain Names (FQDN) longer than 52 characters and most

hostnames that are longer than 27 unique characters should be considered suspicious

[52, 53].

4. Blacklisted and Whitelisted domain names: These lists are used to improve the

detection system’s results over time. We are filtering the capture DNS data using

blacklisted domain names to detect the malicious domain name before processing it
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for faster performance. Using the whitelisted domain names is to reduce the false-

positives rate of the results over time. As we show in the results chapter, we found

many use cases of legitimate domain names are using the DNS exfiltration to establish a

connecting channel between clients and servers to transfer data over the DNS protocol.

5. Entropy of hostnames: According to the DNS protocol RFC in [54], the valid DNS

requests must consist of English letters, digits, and hyphens. Therefore, the legitimate

domain name requests most probably could be found in the English word dictionary

while the DNS requests that have encoded names could have higher entropy than the

English words due to extensive characters [9]. In the article found in [55], the author

recommended using name entropy as one factor in detecting the DNS tunneling attacks

as the legitimate domain name and hostnames are using the English language that has

redundancy. In contrast, the encoded data of hostnames are long and have higher

entropy.

6. Statistical analysis: Another approach to detecting the DNS tunneling attacks is

by applying statistical functions on the captured DNS data. DNS tunneling technique

queries unique requests every time sending data to avoid getting cached by the browser

or the DNS server. Therefore, we applied statistical functions on DNS data to observe

the frequency of the specific characters’ occurrence. In this work, we also applied

statistical functions for both the payload and the traffic analysis modules, such as the

total length of FQDN and hostnames, the total number of labels in the FQDN, the

volume of DNS traffic per IP address, and the number of hostnames per domain. Also,

we find the frequency of DNS traffic per domain, hostname, source, and destination IP

addresses, TTL.

Figure 5.3 provides an overview of how the process of the payload module works, if

a client tries to browse xyz.example.com website. As soon as the DNS proxy receives the

DNS request, it extracts the feature of the DNS request for real-time analysis. It gathers

and analyzes some features, including query record type, query’s length, subdomain name.

Then, it passes it to the analysis module, which looks for abnormal behaviors such as infor-

mation entropy, blacklisted domain name, malicious query record type and length, abnormal

characters, or encoding data types within the subdomain name. Finally, it tags the DNS

requests as malicious and returns the result status of the DNS request to the DNS proxy to

process it.
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Figure 5.3: The Real-time Payload Analysis Module.

5.3.4 The Traffic Analysis Module

The traffic analysis module distinguishes and detects DNS-based malicious activities

on gathered DNS traffic. In this module, the detection system parses DNS traffic every

x minutes and analyzes it based on a visualization technique and machine learning. The

detection system works based on the DNS proxy concept, which controls the network’s DNS

queries and responses. In this module, we utilized the detection system module in [40] that

applies the parallel coordinates technique to identify and detect the DNS tunneling attacks.

The DNS proxy captures and stores the DNS traffic every x minutes. Then, it passes the

captured PCAP file to the traffic analysis module to process for further analysis.

This module detects the DNS-based abnormal behaviors where the DNS tunneling

tools are used to establish covert communication channels or VPN over the DNS protocol.

This technique sends a large number of DNS requests per second to achieve establishment,
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called the high-throughput DNS tunneling. In addition, this module has the ability to

identify modern attacks and tools. In some cases, adversaries use modern methods to bypass

the internal system’s security. For example, the PacketWhisper tool uses legit domain names

in the attack, making it more difficult to detect and exfiltrate sensitive data [56]. We show

more details about the results against PacketWhisper in the Results chapter.

Figure 5.4: The Overview of Traffic Analysis Module.

Figure 5.4 highlights the overview of the traffic analysis module phases. At the

moment the PCAP file ready, the traffic analysis module starts the process of analyzing.

First, the Parser is parsing the PCAP file and gathering the DNS required information for

the next stage. The DNS packet has much information; however, the traffic analysis module

parses and collects the following information: ID, source and destination of IP address,

domain name, subdomain name, Service IP (SRV) address, DNS record, data length, TTL,

date, and time. Figure 5.5 shows an example of captured DNS data during the parsing phase

in the traffic analysis module.

Figure 5.5: Example of Parsed DNS Data

Next, the analysis phase applies statistical functions on the captured DNS data for

each domain name individually, such as the average number of data length, TTL, subdo-
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Table 5.1: DNS Tunneling Visualization Signatures

Attack Signature Representation Normal\Malicious

Traditional D. T. 1,1,1,m,1,1 Attack Type1 True

Botnet D. T. m,1,1,m,1,1 Attack Type2 True

Heyoka D. T. 1,m,1,m,1,1 Attack Type3 True

Heyoka /Botnet D. T. m,m,1,m,1,1 Attack Type4 True

No Attack Not Above 0 False

main’s length, the total number of domain requests, source and destination IP address,

service IP address, and unique hostname requests per domain name. We also used the vir-

tualization module using the parallel coordinates technique in section x to generate relation

signatures that determine the DNS tunneling attack occurs or not. Table 5.1 show more

details about all kinds of attacks and their signatures. In the preparation phase, these signa-

tures were used to label the analyzed DNS data for a machine learning classifier for training

purposes and test and evaluate the machine learning classifier results. Also, the Alexa and

Cisco Umbrella top one million domains [49] are used to identify and label the captured

domain name as legitimate.

The visualization of the traditional DNS tunneling attack shown in Figure 1.4, plots

the quantity of source IP addresses, destination IP addresses, domain names, subdomain

names, time-to-live (TTL) values, and time values. An easily identifiable pattern is converted

to a signature represented as the tuple (1, 1, 1, m, 1, 1). That means there is one source IP

address, one destination IP address, one domain name, multiple (m) subdomains, a single

TTL, and a single or small window of time. The traditional DNS tunneling attack, Botnet

DNS tunneling attack, Heyoka DNS tunneling attack, and Heyoka/Botnet DNS tunneling

attack all have unique visualizations converted to attack relationship signatures. Finally, the

machine learning phase reads the prepared data to process it and provides detection results

for each domain name. In Chapter 4, we provide more further details about the machine

learning classifier results where we experimented with testing and evaluating this module

separately.
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5.3.5 System Features

In this section, we discuss some of the detection system features. The detection

system is a network-based solution that identifies, detects, and blocks DNS-based attacks,

including DNS tunneling attacks and DNS exfiltration. This work aims to determine the

DNS-based attacks as soon as it happens in different forms, including the low-throughput

and high-throughput DNS tunneling attacks. We implemented the detection system to work

in two main modes: real-time and offline modes for better performance. The detection

system is coded using Golang programming language for fast and stable performance. The

detection system runs based on the Linux operating system and acts as a DNS proxy within

the network to fully control the DNS queries and responses. Thus, some traditional DNS

servers utilize blacklisted, and whitelisted domain names for blocking advertisements popup

windows, such as Pi-hole [57]. In this work, the detection system can also use the concept of

using blacklisted and whitelisted to improve the overall performance. The detection system

also has the ability to perform other services that the traditional DNS proxy provides, such

as caching domain names, which can cache DNS records for speeding up the domain name

lookup process.

Also, in this work, the detection system blocks malicious DNS requests after being

detected in real-time by caching and pointing the malicious domain name’s IP address to

0.0.0.0. in the DNS proxy. Thus, every time the malicious domain name is requested it

replies with the loopback address. We also implemented an API web interface for the de-

tection system that provides manual operations such as creating, removing, and modifying

domain name records within the cache system. This feature also will be used to design a

front-end web interface for future work.

In this chapter’s conclusion, we discussed the system architecture of the detection

system against DNS-based attacks. The detection system is a network-based solution, as a

DNS proxy, that targeting DNS tunneling attacks and DNS exfiltration techniques. Even

though the adversary uses the low-throughput DNS tunneling technique, the detection sys-

tem is able to detect and identify the attack. The detection system consists of two main

modules, including the Payload and traffic analysis modules. Thus, the detection system

monitors and examines the DNS traffic in real-time employing the payload analysis module.

It also performs offline analysis every x minute(s) using the traffic analysis module. We show
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more details about the detection system results and evaluation in the next chapter.
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6 Results and Discussion

In this chapter, we show and discuss the detection system results. The detection

system aims to detect and block malicious DNS-based attacks within the network. We em-

ploy two detection modes in implementing the detection system that targets DNS tunneling

attacks and DNS exfiltration. The real-time mode detects and analyzes the DNS queries

from clients, while the offline mode captures and analyzes DNS data for a certain window

period. Also, we compared the detection system results with Snort, the baseline intrusion

detection system. Snort is a real-time intrusion detection system, and it is capable of not

only monitoring and analyzing the DNS protocol but also other protocols against various

Internet attacks. The approach that is used in this work is a network-based solution against

DNS-based attacks, including the high and low throughput DNS tunneling attacks.

The network-based solution, which runs as a DNS proxy, consists of three main mod-

els: visualization, detection using machine learning classifiers, and real-time modules. Thus,

we performed three evaluation experiments individually for each module. DNS tunneling

attacks are widely used by either adversaries or malware applications. This type of attack

takes advantage of the DNS protocol, which is rarely monitored and accessible by most

networks, to bypass firewall and modern security in-line appliances. For example, during

our testing and evaluating experiment, a Firewalla was employed within the network. A

Firewalla is a modern security router to detect and block various Internet attacks. While

we were performing the actual attacks against the detection system, Firewalla could not

identify any of these attacks because it does not have the capability of monitoring the DNS

protocol.

The proposed detection system is implemented by using visualization techniques and

machine learning classifiers to distinguish the DNS-based attacks. Designing a detection

system using visualization and machine learning is not new. There are several studies on

visualizing network traffic. In addition, there are numerous studies on detecting most Inter-

net attacks. However, there are far fewer studies on DNS tunneling attacks and none of the

known techniques perform as well as the technique that is proposed in this work. Thus, this

section shows the experimental results for the detection system that we implemented and

compares it with others.
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6.1 Evaluation

The main focus is on building a network-based detection system for DNS tunneling

attacks and DNS exfiltration techniques. To build a robust detection system, we created

a local testbed environment to evaluate the system. To benchmark the performance of the

detection system, we tested both well-known and custom DNS tunneling tools against the

detection system. There are five main tools we used in this work. The five DNS tunneling

tools that were selected and used to simulate the attacks include iodine, dns2tcp, Pack-

etWhisper, DNSExfiltrator, data exfiltration toolkit (DET ), and Cobalt Strike. The idoine

and dns2tcp tools were used in the experiments to simulate the DNS tunneling attack where

the adversaries establish a covert channel over the DNS protocol, such as VPN connection.

Cobalt Strike is a stealthy advanced persistent threat (APT ) cyberattack that allows an

adversary to gain unauthorized access to a network and remain undetected for an extended

period of time. It is also defined as software for adversary simulations and red team opera-

tions for performing security assessments, while the DNSExfiltrator and DET are tools for

generating custom DNS exfiltration traffic that simulates malware scenarios. PacketWhisper

is a modern attack that uses the DNS protocol. PacketWhisper is a special case scenario

where the attacker is internal and performs the attack from in-site.

This work’s main benefit is to recognize and predict new threats with a low false-

positive rate and low latency. We calculate the performance evaluation based on three

metrics factors: Detection Rate (True-Positive rate), Precision (PR), and Accuracy (ACC).

Then, we compared the evaluation results with Snort, the open-source detection system. We

consider a system that has less false-negatives rate with high accuracy as better.

6.1.1 Experimental Setup

This section discusses the experimental setup for the DNS tunneling detection system.

To evaluate the performance of the methodology, we employ the detection system within a

local private network. The network environment is a home-based lab consisting of more

than 20 devices, including IoTs, servers, mobiles, PCs, and laptops. The detection system

is a network-based solution that runs as a DNS proxy to control and intercept the network

traffic. The detection system acts as a primary DNS server for all clients in the network to

guarantee that we intercept overall clients’ requests. The DNS proxy is capable of caching

DNS requests for faster query lookup. For this experiment, we run the detection system for
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four weeks to gather as much data for evaluating the system as well as we performed the

DNS attacks using the tools to simulate the attacks.

A Debian Linux server is deployed and hosted in the cloud to act as a public DNS

server, and all network clients are using the IP address of the DNS proxy as the primary

DNS server. The detection system uses blacklisted domain name lists which protects clients

from Internet attacks, including Phishing and spear phishing attacks. As we show in the

results section, we blocked many advertisement websites based on blacklisted lists which

been created by people.

Figure 6.1: An Overview of the DNS proxy Setup.

Figure 6.1 exhibits an overview of the experimental setup of the DNS proxy in the

cloud where clients use the DNS proxy as their primary DNS server to resolve DNS queries.

Then, as soon as the DNS proxy receives the DNS queries, it checks for exists cached domain

names to respond back to the client. If it does not exist, then it forwards the query to Google

public DNS servers to resolve the request. Finally, Google public DNS sends back the results

to the DNS proxy server, which sends the result to clients.

6.1.2 The Collected DNS Data

In this section, we discuss and describe the captured DNS data gathered during this

work. The network environment is a home-based lab that has more than 20 clients. The

monthly average network data usage is approximately 25 GB of Internet traffic, an active

and busy network. Figure 6.2 gives a clear insight into the network connectivity and data

transfer during the evaluation and testing of the DNS proxy server. This work focuses
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on monitoring and analyzing the DNS traffic and identify malicious DNS-based attacks,

including DNS tunneling attacks and DNS exfiltration. Thus, the DNS proxy server was

successfully deployed without any issue during the testing and evaluating period.
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Figure 6.2: Internet Data Transfer during the Four Weeks.

In this work, we used the DNS proxy server and targeted not only the DNS tunneling

attacks but also the advertisement websites that gather visitor information and may harm

clients. Once the DNS proxy server receives a DNS request, it looks up the domain name in

the blacklist. If it exists, then the DNS proxy server blocks the DNS requests. In addition,

the DNS proxy applies statistical analysis on captured DNS data for a certain date including

information such as total queries, total queries blocked, top ten domain names, top ten

blocked domain names, and top clients.

Figure 6.3 focuses and provides information about DNS queries for the four weeks

of the experiment’s detection system. Note that the number of DNS queries varies between

5000 to 60000 requests, where the total DNS queries is 1,148,018 for the four weeks of the

evaluation. The detection system was capable of blocking approximately 20% of the total

number of DNS requests based on using the blacklists. These statistics exclude the DNS

tunneling attack requests that we performed to simulate the attacks against the detection

system. In addition, Figure 6.4.B shows 10% of DNS requests that have been cached in

the detection system while the DNS proxy forwards and replies to 70% of the total DNS

requests.
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Table 6.1: Frequency of Top 10 Domain Names

Frequency Domain Name

344776 encipher.io

339618 antsle.com

168649 us-east-1.amazonaws.com

148326 google.com

143410 wd2go.com

132706 app-measurement.com

85932 googleapis.com

80354 Microsoft.com

76220 facebook.com

68956 youtube.com

We also analyzed the DNS query types received by the DNS proxy server for the month

of testing and evaluation. Figure 6.4.A shows the top five DNS query types including: A,

AAAA, PTR, TXT, and CNAME where the majority of the DNS type is A (IPv4), while

the TXT received by less than 1% of the total DNS query types.

The captured data was analyzed, excluding the DNS tunneling attack. The frequency

of the top ten domain names is shown in Table 6.1. It showed that the encipher.io domain

name is the value that occurs most frequently, having 344776 DNS requests for the four weeks

of testing and evalulation while the youtube.com domain name has the lowest frequency

number in that list, having 68956 DNS requests.

Figure 6.3: DNS Queries over Monthly Time Period.
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Figure 6.4: Statistics of Queries Types and Answered by.

6.2 Threshold Value

The detection system consists of two detection modules: the payload and traffic

analysis modules. Each module uses a threshold value to determine the abnormal activity.

For example, we set the hostname’s threshold value of the full qualified domain name’s length

to be 30 characters long in the payload analysis module. This value is selected based on the

recommendations in previous work [1,2].

However, it is unclear what threshold value for the number of DNS requests to use

within a time frame window to identify malicious domain names for the traffic analysis mod-

ule. A threshold value is used in the traffic analysis module for machine learning training

purposes. After capturing the DNS data, we generate text representation signatures from

the visualization. If it is a malicious signature for a domain, we compare the number of DNS

requests of the domain name to the threshold value and then label the training dataset as

either malicious or not malicious base on the threshold. Thus, there is a need to conduct

hands-on experiments for selecting the most beneficial values for numbers of DNS requests

within the set period. The traffic analysis module aims specifically to identify and detect

high-throughput DNS tunneling attacks over time using visualization signatures and a ma-

chine learning classifier. This experiment is significant for the traffic analysis module and its

threshold value because it processes and analysis DNS data every x minutes.

This section presents an evaluation experiment to determine the best threshold value

for the detection system module, the traffic analysis module. Based on what we observed in
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the experimental results, there is an obvious way to select an accurate value for the detection

system’s threshold based on the binary file size and time. It is selected based on an empirical

experiment using DNS tunneling attack tools.

The DNS tunneling attack such as TCP over the DNS protocol is usually noisy and

sends a large number of DNS requests to establish communication channels. Therefore, for

these types of attacks the threshold can be set to be when the amount of DNS traffic is one or

two standard deviations above a moving average. Instead, we focused on the more difficult

problem of determining the threshold value for the DNS exfiltration technique scenarios.

The main reason is this type of technique is to send a specific number of requests depending

on the file size.

The tool DNSExfiltrator is used to simulate the exfiltration attack that transfers

files outside of a compromised network for empirically determining the threshold. Multiple

files varying in size from 1KB to 1MB were transferred outside of the network using the

DNSExfiltrator tool and the number of chunks representing DNS requests were measured.

The maximum full domain of 255 bytes and maximum label length of 63 bytes [3] were used

in this experiment. If the DNS request and label sizes were reduced to lower values, it would

cause even more DNS requests to be sent for a specific file size.

The threshold value is set based on the file size and number of DNS chunks in Table

6.2. We consider the time and the size as significant factors in this evaluation since the

training phase of traffic analysis module relies on capturing DNS data every x minutes where

setting x is based on the daily network traffic. For example, let’s assume that the adversary

wants to export a 100KB text file of stolen credit card information outside the organization’s

network using the DNS exfiltration technique. Table 6.2 shows that the 100KB file needs

600 DNS requests within 25 seconds to successfully exfiltrate it outside the organization

network. Then, our detection system needs to capture DNS data every minute, and the

value of the threshold needs to be set to less than 600 to detect the attack. In our detection

system experiment, we selected that the traffic analysis captures DNS traffic every 30 seconds

and set 100 as a threshold value assuming the attacker needs to exfiltrate a 50KB file at

least, resulting in approximately 300 DNS requests in 20 seconds. Note that sometimes the

adversary could use the delay technique between each DNS request to reduce the noise, but

the payload analysis module in this work is designed for these situations.
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Table 6.2: Exfiltrating Various Binary files Over the DNS

File Size Number of chunks Time Request size Label size

1KB 7 1 Sec 255 chars 63 chars

10KB 61 4 sec 255 chars 63 chars

100KB 600 25 sec 255 chars 63 chars

200KB 1199 43 sec 255 chars 63 chars

500KB 2996 1:53 mins 255 chars 63 chars

1MB 6135 4:00 mins 255 chars 63 chars

6.3 Results

This section shows the results of the testing and evaluation process of the detec-

tion system. The detection system is a network-based solution to detect and block various

DNS-based attacks, including DNS tunneling attacks and DNS exfiltration techniques. In

addition, the detection system blocks domain names based on blacklists that are related

to advertisement purposes. Most advertisement websites collect sensitive information from

visitors, and they also may harm visitors by injecting malicious codes into visitor browsers to

execute abnormal activities or redirecting them to malicious websites. The detection system

acts as a DNS proxy server capable of fully intercepting DNS traffic within the network to

control DNS clients’ requests.

In previous chapters, we showed the various modules’ results individually, including

the Visualization module and the detection based on machine learning. However, this section

presents the detection system results as one system where the Payload Analysis module runs

in real-time monitoring DNS requests. Simultaneously, the Traffic Analysis module works

in offline mode every x minutes based on the statistical functions. By the end of the results

section, we also show Snort IDS’ results, the open-source intrusion detection system, to

detect DNS-based attacks and finally compare our detection system’s results against Snort

to determine which detection system is better. The detection system aims to distinguish and

prevent DNS tunneling attacks and DNS exfiltration techniques. In order to test and evaluate

the detection system against malicious DNS-based requests, we simulate and perform real-

world attacks within a private and controlled network environment. In this work, we focus on

detecting various DNS-based attack scenarios, including TCP over DNS, DNS exfiltration,

and Command and Control (C&C) communication channels.
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Table 6.3: Tools to Simulate DNS-Based Attacks

Tool Simulate Scenario of Purpose

iodine TCP over DNS Establish VPN connection

dns2tcp TCP over DNS Establish VPN connection

DNSExfiltrator DNS exfilitration technique Exflitrate sensitve data

DET DNS exfilitration technique Exflitrate sensitve data

Cobalt Strike Command and Control Execute Commands

Cobalt Strike Command and Control Upload File

dnscat2 Command and Control Execute Commands

dnscat2 Command and Control Upload File

PacketWhisper Custom DNS attack Exflitrate sensitve data

Table 6.3 lists the tool, simulated scenario, and the main purpose of the attack. We

simulated all of these scenarios against the detection system in the testing and evaluating

stage. Note that in the TCP over DNS scenario, the adversary requires sending considerable

numbers of DNS queries which makes it noisy. While in the custom DNS exfiltration and

command and control scenarios, the adversary sends a limited number of DNS requests,

making it less noisy and harder for the detection system to detect it. The PacketWhisper

tool considers as a modern DNS-based attack that uses legit domain names in the attack,

making it more difficult to detect and exfiltrate sensitive data [56].

In the first section to the results, we show the blocking domain names based on ad-

vertisement blacklists. During the four weeks of using the detection system, we notice that

many companies, such as Google and Microsoft, collect data about visitors. Some of these

domain names that are part of gathering data are already in blacklists available publicly.

Thus, the detection system was capable of blocking these domain names successfully. In-

terestingly, Table 6.4 shows the top ten blocked domain names during the experiment and

evaluation period. We observed that Android TVs within the private network send requests

to secure-dcr.imrworldwide.com which is a tracking consumer habit. This Android TV sent

34254 requests which were all blocked.

Next, we performed that attacks where the detection system was in place. The

detection system acted as a DNS proxy server so that it could intercept all DNS requests

within the private network. We performed various scenarios of DNS-based attacks where
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Table 6.4: Frequency of Top 10 Blocked Domain Names

Frequency Domain Name

34254 secure-dcr.imrworldwide.com

220 mobile-collector.newrelic.com

210 www.googleadservices.com

132 2ecd5.v.fwmrm.net

132 g13v.prd.ads.aws.fwmrm.net

105 cdn.optimizely.com

101 device-api.urbanairship.com

97 device-api.urbanairship.com

94 googleads.g.doubleclick.net

93 sb.scorecardresearch.com

all of the attacks were detected by the detection system successfully. The detection system

has two modules: the Payload Analysis (PA) module and the Traffic Analysis (TA) module.

In some attack cases, the detection system detected the attack using both the TA and PA,

while in other cases it detected the attack using either the TA or the PA.

6.3.1 Results of Experiment 1

This section shows the detection system evaluation results based on the confusion

matrix, including the accuracy, missing rates, and other measurements. We installed the

detection system in place of the active network during the evaluation, and the total average

DNS requests were approximately 1000 per hour. At the same time, we performed 12

actual cases of DNS-based attacks during this experiment, including TCP over DNS, DNS

exfiltration, and command and control. The detection system was able to detect all 12 cases

successfully with no false negatives value. The detection system identified the attack as soon

as received by the DNS proxy server by either the payload analysis or the traffic analysis

modules. Still, there are cases where the payload analysis module was not able to detect

the attack. The traffic analysis module distinguished the attacks based on the visualization

module discussed in Chapter 3.

There is a case, PacketWhisper tool, where the detection system has not detected the

attack using the payload analysis module but detected it with the traffic analysis module.
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Table 6.5: Top 5 Domain Names of False Positives

Domain Name Company

netgear-07a2d5b3-49d4-9038-f3e9ce19f9ce.2d7dd.cdn.bitdefender.net BitDefender

e0d67c509fb203858ebcb2fe3f88c2aa.baas.nintendo.com Nintendo

473fba5a7a73d459537c41fec606664a.fp.measure.office.com Microsoft

d4d857082fe8f0ff5cc718ae110de2e8.safeframe.googlesyndication.com Google

4aux00fznmxhbcjiuzyj7hjdjh9jg1614225234.uaid.imrworldwide.com Nielsen

ic.48ce0c00.0fbf9e.gs2.sonycoment.loris-e.llnwd.net Sony

PacketWhisper is a combination of DNS queries with text-based steganography. It converts

the binary payload file into a list of FQDN. In this attack, there is no need for the adversary

to control a DNS server in order to receive the data; instead, the adversary sends the list of

FQDN strings as DNS queries within the network. This attack leverages the common website

domain names, which most of them found in whitelist domain names such as encoded-

data.cloudfront.net. Then, within the same network, the attacker captures the DNS requests

into the PCAP file and extracts the encoded payload from packet capture into the regular

file using PacketWhisper. Note that there is not a need to complete successful lookup. The

attack’s DNS requests look like non-malicious requests since the lengths are short and using

a whitelisted domain name. However, it requires sending numerous amounts of DNS requests

depending on the file’s size. Thus, the traffic analysis module can detect the attack.

Even though the detection system detected all attack scenarios, it identifies 20 cases

as a false positive, where the system recognizes them as malicious, but they are not malicious.

Interestingly, many big companies leverage the DNS exfiltration to communicate with clients

and servers. Thus, based on DNS exfiltration characteristics, the detection system finds

these DNS requests as attacks. Table 6.5 shows the most interesting top five false positives.

Nintendo sends DNS requests shown in the Table 6.5 every 30 minutes to communicate with

Nintendo’s servers. Similarly, BitDefender, the Internet security company, uses the DNS

exfiltration technique to send file signatures or scan results to update their databases. Other

companies such as Google, Sony, Amazon, and others are using this technique for either

statistical analysis about the client or send data to their servers.
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6.3.2 Results of Experiment 2

The first experimental results show that there are a false-positives in 20 cases. How-

ever, most of the cases do have the malicious characteristics of our detection system module,

the payload analysis module. Nowadays, companies use the DNS protocol to build com-

munication channels for clients and servers. Thus, we conducted another evaluation of the

detection system to resolve this issue. The purpose of the second experiment is to enhance

and improve the false-positives rate over time. We solve this by maintaining and updat-

ing the whitelists of common domain names found in the network. Thus, this solution

requires monitoring the false-positives value of the detection system over time, every week,

to whitelist the domain names that are not malicious. The long-term goal is to have few or

no false-positives values by keeping update the whitelist of the detection system.

As a result, the evaluation results of the second experiment show that we improved

and reduced the false-positives quality, but we may have a new false positive, which means

we regularly need to maintain the whitelist domain name. During the second experiment,

the detection system identified all attack cases with no false-negative values, but still, there

are two new false-positives values.

6.4 Results

This section compares the proposed detection system with Snort, the open-source

intrusion detection system, to determine which detection system is the better against DNS-

based attacks.

6.4.1 Snort

Snort is an open-source intrusion detection and prevention system (IDS/IPS). Thou-

sands of professionals over the world maintain it to provide a secure network for free. Snort

is a deep packet inspection that uses various rules and signatures to identify and detect

malicious network activity, including DNS-based attacks [58].

6.4.2 Snort Setup

We conducted the identical attack scenarios performed against the developed DNS

proxy. By default, Snort IDS is not configured to monitor DNS protocol and to detect DNS
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tunneling attacks. We used signatures that publicly available to monitor and identify the

DNS tunneling attacks. Then, we compare the results based on confusion matrices values,

including the accuracy and missing rate.

We set up Snort using SPAN (Switched Port Analyzer) technique, which is also known

as port mirroring. SPAN is a monitoring network traffic method that enabled the switch

to send a copy of all network packets seen on one port to another port, where the packet

can be analyzed. Figure 6.5 shows the exact setup for the experiment. Snort is an intrusion

detection system that detects malicious network activities based on rules and signatures.

These signatures are generated by professionals from what they see in their daily work and

experience.

Figure 6.5: Environmental Setup of Snort.

Table 6.6 shows an example of Snort signature for TXT DNS type for detecting DNS

tunneling attacks. Snort monitors a specific UDP packet and header on port 53. Snort

tracks the sender source IP address by setting a threshold value for TXT DNS type requests

and counts 10 DNS requests within 5 seconds. Thus, this can easily bypass the rule if the

attacker is aware of it.
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Figure 6.6: Snort TXT Signature type for DNS Tunnelling.

Table 6.6: Compared Results between DNS Proxy and Snort

Attack DNS Proxy Snort

iodine Yes Yes

dns2tcp Yes Yes

DET Yes No

DNS EX. 1KB Yes No

DNS EX. 10KB Yes No

DNS EX. 50KB Yes Yes

Cobalt Strike Yes No

Cobalt Strike-Upload Yes Yes

DNSCat2 Yes No

DNSCat2-Upload Yes Yes

PacketWhisper Yes No

6.4.3 Snort Results

We conducted different scenarios of DNS-based attacks using Snort to detect the same

type of attacks within a private network. We configured Snort with varying rules that targe

TXT, NULL DNS query types. Snort detected only six out of 12 cases of attacks. Thus,

Snort misses 6 cases of DNS-based attacks that do not validate the rule specifications. Snort

is capable of detecting DNS-based attacks based on TCP over DNS scenarios and uploading

encoded files over the DNS protocol. However, it failed to identify DNS-based attacks based

on the DNS exfiltration technique and command-and-control technique, while not having

any false-positive cases.

6.4.4 DNS Proxy vs Snort

Table 6.6 shows the attacks detected by the DNS proxy using the techniques described

in this work versus Snort. There are six attack scenarios that Snort is not able to detect.

At the same time, the DNS proxy is able to identify and detect all attack scenarios. Snort
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was not able to detect most of the DNS exfiltration attacks with small files as well as the

command and control attacks.

Next, Table 6.7 shows three experiments’ evaluation results, including true-positives

rate, false-positives rate, precision, F1-score, and accuracy. DNS Proxy - EXP1 is the

first experiment as a detection system that does not employ the whitelisted domain names

in detecting DNS-based attacks. The DNS Proxy - EXP2 is the second experiment, the

improved version of the detection system that uses the whitelisted domain names to reduce

the false-positives rate. Snort IDS is the final experiment where Snort IDS is in place for

monitoring the DNS traffic within the network. We consider the system has higher accuracy

with fewer false negatives is a better detection system. The detection system scores 99%

accuracy, but it has few false-positive values in the two tries of experiments, DNS Proxy

EXPR1 and DNS Proxy EXPR2. Using the whitelisted domain names in DNS EXPR2, we

significantly improved the results in the second experiment and decreased the false-positive

values from 2% to 0.2%. The Snort IDS scores 99% accuracy with no false-positive values.

However, Snort IDS misses 50% of the attacks results in TPR of 50% and FNR of 50%.

Finally, Table 6.8 summarizes the comparison between the detection system and

Snort IDS. The table shows the significate difference between the two systems. First, the

detection system identified all cases of performed attacks, including the high-throughput and

low-throughput techniques. Snort IDS was able to detect only 6 cases of the attacks out

of 12, mostly the high-throughput. The detection system identified the attacks as soon as

it received. While the Snort IDS requires 10 to 15 seconds to detect the attack due to the

rules’ implementation. The detection system works as a DNS proxy that does not require a

special configuration or client action. In contrast, Snort IDS requires special configuration

such as a port mirror. Finally, the detection system provides DNS services, detection, and

prevention, while Snort IDS provides detection only.

Table 6.7: Comparison of Three Experiments Results

Experment TPR FPR FNR PRC F1 Accurancy

DNS Proxy - EXP1 1.00 0.020 0.00 0.375 0.54 97.9%

DNS Proxy - EXP2 1.00 0.002 0.00 0.85 0.92 99.8%

Snort IDS 0.50 0.00 0.50 1.00 0.66 99.4%
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Table 6.8: The Major Difference between the Detection System and Snort IDS

The Detection System SnortIDS

Attacks 12/12 6/12

Time Nearly realtime 10-15 seconds

Configuration No configuration is needed Need a Special Configuration

Services DNS, Protection, Prevention Detection Only

This section highlights the detection features of the work in this dissertation com-

pared to prior research based on features used to determine the DNS tunneling and DNS

exfiltration. After evaluating the proposed detection system performance and validate the

method, we compare the proposed method to methods proposed in other published works

as shown in Table 6.9. We observed that most of the proposed methods focus on statistical

analysis methods, including query length, DNS record types, and volume of DNS requests

for detecting the DNS tunneling attacks. On the other hand, a limited number of works have

Table 6.9: Features Used in Detection DNS Tunneling and DNS Exfiltration

Features [9] [36] [38] [2] [58] [28] Our work

Statistical Analysis x x x x x

Query Length x x x x

Record Types x x x x x

Volume of Requests x x x x

Freq. per domain x x x

Host per domain x x

Machine Learning x x

Visualization x

Blacklist server x x x

Time interval x x x

DNS Signatures x

High-throughput x x x x x x x

Low-throughput x x

Real-time x x

DNS proxy x
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focused on detecting both DNS tunneling and DNS exfiltration using various techniques such

as machine learning. Note that none of the previous research works in real-time for detecting

against DNS-based attacks. In this work, we combined multiple methods, payload analysis

and traffic analysis, to detect both DNS tunneling and DNS exfiltration using visualization

and machine learning. We implemented DNS proxy to fully control clients’ DNS requests to

operate the proposed detection system to work in real-time.

To sum up, we built a detection system that acts as a DNS proxy server to have

full control over the DNS requests within the network. At the same time, we conducted

various DNS-based attacks using tools to simulate real-world scenarios such as TCP over

DNS, DNS exfiltration, command and control channels. The detection system obtains high

accuracy with no false-negative rate and fewer false-positive rates. Finally, we compared

the detection system results with Snort IDS results which also conducted similar previous

attacks. Snort IDS also scores high accuracy by 99%; however, it could not detect 50% of

the attacks. The results indicate that the detection system in this work, the DNS proxy, is

better detection against DNS-based attacks.
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7 Conclusion and Future Work

This chapter summarizes the work, including the system architecture design, eval-

uation, and results. It also identifies the limitations of the proposed system. Finally, it

describes future work.

7.1 Conclusion

In this dissertation, an original detection system is a network-based solution that de-

tects and prevents DNS-based attacks, including DNS tunneling, DNS exfiltration technique,

and command-and-control was developed. The detection system’s primary goal is to detect

not only high-throughput DNS tunneling techniques but also low-throughput DNS-based

attacks. The detection system acts as a DNS proxy server that receives and resolves DNS

requests from clients in real-time, as well as analyzing the data offline. The detection sys-

tem can be broken down into three main components: visualization, machine learning-based

detection, and the real-time analyzer modules.

First, we introduced a fast and scalable visualization module to detect and iden-

tify DNS tunneling attacks based on the parallel coordinates technique in the visualization

module. To the best of our knowledge, this is the first time the DNS tunneling attack has

been visualized using parallel coordinates. Network traffic was collected for one week to

create a dataset to study the normal behavior of DNS. Six DNS parameters for the parallel

coordinates technique were chosen and used to visualize the DNS traffic using the paral-

lel coordinates technique in order to distinguish between normal DNS traffic and malicious

traffic containing DNS tunneling attacks. Based on this module, four unique DNS tunnel-

ing patterns were identified, each representing various scenarios of DNS tunneling attacks

using the parallel coordinates technique. Visualizations were created that are visually very

different so that they can be used in the future for detecting DNS tunneling attacks.

Next, the machine learning-based detection module uses real-time passively captured

DNS traffic from a network or offline previously captured traffic that is stored in PCAP files

to detect DNS tunneling attacks. This module is based on the work is done in Chapter 3,

the visualization module. It generates a graphical signature text representation that labels

the dataset for machine learning training and testing purposes. The machine learning-based
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detection module consists of three main components: the Parser, the Analyzer, and the

Detector, where the Parser captures and feeds the system with DNS data. The analyzer

prepares and analyzes the data for the next step, which is the Detector. The Detector works

as a decision-maker built based on supervised learning and pre-trained objects, determining

whether the DNS tunneling attack occurs. During the experiment, three months of DNS

traffic were captured and collected within a controlled network. In addition, we simulated

the DNS tunneling attack by performing the attack within the network. Then we used these

captured data and simulated attacks data to train, test, and evaluate our detection module.

As a result of this module, the system achieves 99% accuracy to detect all simulated cases

of the attacks with no false negatives and a low false-positive rate. Finally, the real-time

detection analyzer is a payload analysis module that applies various statistical and analytical

functions to the captured data in real-time. Once the DNS request is received, the payload

analysis module extracts domain name features to check various malicious characteristics to

determine if it is malicious.

The detection system is implemented as a network-based solution of a DNS proxy to

have complete control over clients’ DNS requests. The detection system targets DNS-based

attacks, including TCP over DNS, DNS exfiltration technique, and the command-and-control

communication channel. Even if the adversary uses the low-throughput DNS tunneling

technique, the detection system can detect and identify the attack using the payload analysis

module that uses real-time capture looking for malicious features. The detection system,

DNS proxy, combines the three modules discussed before to detect the DNS-based attacks.

Furthermore, the DNS proxy consists of two main modes, including the real-time and offline

detection modes.

As an overall result, the detection system presented in this work achieves sufficient

and satisfying results by obtaining a high accuracy detection rate with no false-negative rate

and fewer false-positive rates. During the experiment, we demonstrated that the detection

system is capable of providing efficient and scalable services by providing DNS services as

well as detection and prevention to clients within the active and busy network.

Finally, we validated the detection system results by comparing the detection system

and Snort IDS results with the same environment setup and attacks. Even though Snort

IDS scores high accuracy, it could not detect all the attack scenarios. It identified only 50%

of the performed attacks, of which 6 out 12 total attacks. The results show that the attacker

can bypass the Snort IDS by performing the low-throughput DNS exfiltration technique. In
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contrast, our detection system, DNS proxy, attained and scored more reliable and better

accuracy, precision, and F1-score performances. F1-score is the harmonic mean of precision

and recall models, and it is a method of combining and weighted average of both precision

and recall. It provides a better measurement of incorrect cases of detection than the overall

accuracy rate. The detection system in this work obtained a F1-score rate of 0.92, while

Snort IDS scored 0.66. The detection system, DNS proxy, identified and blocked all 12 cases,

including the high-throughput and low-throughput DNS exfiltration techniques. The DNS

proxy applies various methods to determine the attacks in real-time and offline detection

modes using visualization, machine learning classifiers, and statistical analysis. The results

indicate that the detection system in this work, the DNS proxy, is a better network-based

solution that monitors and detects the network environment for DNS-based suspicious or

unusual activity as well as provides a prevention mechanism.

Based on this work’s experimental results, we have designed an original, reliable, and

robust detection system that detects DNS-based attacks better than the commonly used

open-source Snort. Thus, the results indicate that the detection system is applicable and can

be employed and integrated into any network infrastructure for individuals or business levels

for providing DNS services and protection. System administrators can acquire great benefit

from this work by not only DNS services but also protection. The detection system obtained

high accuracy and precision rates to identify the DNS-based attacks and no false negatives.

The evaluation experiments in this work confirm that the detection system efficiently handled

and supplied DNS services to active and busy network DNS requests as well as protected

against DNS-based attacks, which helps in blocking the DNS communication channel as soon

as it detected.

7.2 Discussion and Limitations

The objective of this work is to detect and block DNS-based attacks. The detection

system consists of two main modes: the real-time and offline modes to detects two types of

DNS-based attacks, including low-throughput and high-throughput techniques. The reason

for designing two methods is to ensure identifying attacks using either one of them or both.

In the results chapter, we exhibited a case where the real-time detection missed the attack,

WhisperPacket. However, the offline mode was still able to detect the attack—having two

detection modes makes it more difficult for the adversary to bypass the system’s security
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measures.

We showed that the detection system works efficiently within an active and busy

home-lab network. However, it still has some limitations. The DNS proxy, the detection

system, is vulnerable to DNS server attacks, including DoS and DDoS, Server hijacking,

DNS spoofing, and cache poisoning attacks. Additional work is needed to secure the server.

Another limitation is within the caching functionality. The DNS proxy server caches the

received DNS query to fast lookup for the next time. The way that we execute the caching

is by generating a file that has clients’ DNS requests. Therefore, the file size may increase

and become large and causing some storage issues that need to be addressed in the future.

7.3 Future Work

The detection system has some limitations that need to be resolved. As we discussed

previously, the DNS proxy server is vulnerable to various DNS protocols and server attacks,

including DoS and DDoS, Server hijacking, DNS spoofing, and cache poisoning attacks.

Solving these issues is planned to be a part of future work to build a comprehensive detection

system—for example, the randomization of the source port and transactionID to prevent the

DNS cache poisoning attack. Moreover, we need to implement DNSSec, an extra security

layer to the existing DNS protocol, to prove the chain of trust using public-key cryptography

for authentication and data integrity as well as increase the overall security level of the

detection system.

This section highlights future work that can be done to extend this work. First,

more machine learning classifiers for the traffic analysis module could be evaluated for both

accuracy and speed. In addition, the techniques could be implemented and integrated into

home routers or commercial applications starting by designing a module for Snort. Finally,

the detection system could be deployed into the cloud and provide free cloud-based DNS

services and protection to clients.
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