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ABSTRACT

In this dissertation, we have investigated quantum dynamics via three case studies. First, we stud-

ied a system of two coupled waveguides respectively carrying optical damping and optical gain in

addition to squeezing elements in one or both waveguides. Such a system is expected to generate

highly entangled light fields in the two waveguides. We, however, show that the degree of the cre-

ated entanglement is significantly affected by the quantum noises associated with the amplification

and dissipation. Because of the noise effect, one can only have nonzero entanglement for a limited

time interval. Second, we generalized the first project by considering the gain saturation effect.

The nonclassical properties of light are highly relevant to the gain saturation that influences the

quantum noise. We explained the impact of gain saturation on a quantum light field dynamically

evolving in the coupled system. In contrast to the ideal situation without gain saturation, one can

achieve a steady state under the gain saturation. Moreover, gain saturation reduces the influence

of amplification noise and thereby better preserves such quantum features as entanglement. We

illustrate the effects of gain saturation by examining the time evolution of the Wigner function, the

entanglement of the light fields, and the cross-correlation function between the two output modes.

Significant differences exist between unsaturated and saturated situations, especially for low pho-

ton numbers. Finally, we studied a magnomechanical phonon laser beyond the steady-state that

includes a microwave cavity with a ferromagnetic sphere installed in it. The system is simultane-

ously driven by a microwave field and a constant magnetic field. Using the decomposition of the

time evolution operator, we linearize the equations of motion and solve them numerically. Our re-

sults show there is an oscillatory population inversion between the optical supermodes. However,

it is possible to obtain stimulated phonons with relatively high numbers provided the system is

operating in the resonant condition and the power of the drive field is higher than its threshold.
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1 Introduction

Quantum dynamics describes the evolution of quantum operators over time. In particular, it deals

with the motion, energy, and momentum exchanges of systems. Therefore, if a system interacts

with its environment, the quantum dynamics provides information about the future of the system.

Notably, if a system interacts with a thermal reservoir that introduces noise to the system, it is of

interest to know how the system operators are impacted by this external unfavorable source.

Because of their mathematical complexities, quantum dynamical phenomena are neglected

in many studies dealing with quantum systems. These systems are usually investigated under

the assumption that the system does not evolve with time. In other words, it is assumed there

is a steady-state for the system. However, this assumption is too optimistic for some particular

systems, and they indeed evolve to a state much different from its initial state. The mathematical

complexity mentioned above is mostly due to two distinct factors: (1) The noise that appears as a

random drive force has a stochastic effect on the system. To avoid the stochastic effect, it is mostly

assumed there is a steady-state for the system and the noise effects are ignored. (2) If one deals

with a nonlinear interaction, the coupled equations of motion are nonlinear as well, and it is hard to

solve such a system. In many nonlinear systems, to simplify the equations, it is assumed the system

has a steady-state. Under this assumption, the nonlinear differential equations are converted to a

system of algebraic equations whose solution is much more straightforward. These two cases are

realistic in many circumstances. However, when one deals with the quantum features of light like

the entanglement, one cannot ignore the noise effect, and the only way of including the noise is a

dynamical approach. Also, there are situations at which the noise does not play an important role,

but still there is no steady state for the system.
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In this dissertation, we investigate three case studies that need a quantum dynamical de-

scription:

‚ The first is a coupled waveguide system, one of which carries optical gain and the other

has an optical loss. This is a particular case of the so-called PT -symmetric systems [1],

a relatively new field of study that started in the late 1990s. If we are interested in the pure

quantum features of light like entanglement, it is important to know if the noise impacts it.

To answer this question, we should consider the system as a quantum dynamical case.

‚ The second case is the extension of the first system to a regime that the optical gain is

saturated. The saturation effect itself is a dynamical phenomenon.

‚ The third is a “magnomechanical phonon laser” [2], which is a nonlinear system including a

microwave cavity and a ferromagnetic element inside it. The system is simultaneously driven

by a time-dependent microwave field and a constant magnetic field. Until recently, most

schemes of phonon lasers are studied under the steady-state approximation (for example,

see [3]), because this assumption allows one to linearize the relevant differential equations

by converting each quantum operator to a classical steady-state value plus a small quantum

fluctuation term. However, more explorations have shown such a description yields incorrect

results [4]. In this thesis, we use a method called “decomposition of the evolution operator”

that linearizes the relevant equations without the need for a steady-state assumption.

This chapter provides the necessary information needed for studying the systems men-

tioned above. In section 1.1, we introduce the notion of PT -symmetric needed for chapter 2.

Next, we illustrate the classical as well as quantum noise in section 1.2. Section 1.3 describes

the method of the decomposition of the evolution operator that we use in chapter 4. As we will
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study a magnomechanical phonon laser in chapter 4, in section 1.4, we provide a summary of the

magnomechanical systems.

1.1 Parity-time symmetry formalism

1.1.1 Background

According to the axioms of quantum mechanics, the corresponding operators of physical observ-

ables should be Hermitian [5]. The Hermiticity of operators guarantees that the spectrum of energy

to be real and the time evolution to be unitary. The energy of such systems is conservative. The

conservation of energy is a fundamental concept for each closed system. However, in some situ-

ations, one is interested in a subspace of the closed system. The subsystem (we call it the open

system) can exchange energy with its environment, which is the rest of the original system [6].

In the early decades of the twentieth century, George Gamow applied a phenomenological

approach to the study of such an open system, say alpha decay of the nucleus [7]. Later, Lindblad

proposed a more formal basis for describing the dynamics of open quantum systems [8]. According

to the more rigorous approaches developed later, if a quantum system is coupled to its environment,

the dynamics of the system becomes non-Hermitian [9]. Moreover, the dynamics features quantum

jumps that introduce noise to the system. Without considering the noise, all commutation relations

of the quantum operators would be invalid [6].

Intuitively, for studying “microscopic systems” one should consider the noise. However,

for “macroscopic systems”, a mean-field approach is widely used in which the quantum dissipation

is encapsulated in a “non-Hermitian effective Hamiltonian” [10, 6]. The mean-field approach

simplifies the analysis and reduces the number of degrees of freedom needed for describing the

system. As we will see in this section, one can use the non-Hermitian effective Hamiltonian
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for macroscopic optical systems like coupled gain-loss waveguides and resonators as long as the

classical features of light are concerned [11]. Nonetheless, as we will see in chapters 2 and 3, the

effective Hamiltonian approach fails to yield correct results when we investigate the non-classical

features of light, such as entanglement. Although we deal with a macroscopic system in this case,

we should apply a formalism that takes the noise into account.

1.1.2 Parity-time symmetry in quantum mechanics

In 1998, Bender and his colleagues showed a wide range of non-Hermitian Hamiltonian demon-

strate an entirely real spectrum of energy provided the Hamiltonian, Ĥ “ p̂2{2m` V̂ pxq, respects

the parity-time (PT ) symmetry [1, 12]. In the mathematical language, rĤ,P̂T̂ s “ 0. The parity

operator reverses the coordinate position by mirror reflection (x̂Ñ´x̂ and p̂Ñ´ p̂), whereas the

time-reversal operator flips the direction of time evolution (i Ñ´i) [13]. If V̂ pxq “ V̂ ˚p´xq, the

aforementioned commutation relation is satisfied [14]. This means the real (imaginary) part of the

potential should be an even (odd) function. One should notice that the mentioned commutation

relation is a necessary (but not sufficient) condition for the realness of the eigenvalues. To ensure

an entirely real spectrum, not only the commutation relation must be satisfied, but also parameters

of the non-Hermitian Hamiltonian must be restricted within certain threshold values [6, 10, 13, 15].

We clarify this extra constraint by investigating a couple of examples. Suppose we have

a toy model for which Ĥ “ p̂2 ´ pixqN , where N is a real number [1]. The potential satisfies

V̂ ˚p´xq “ ´
`

´ ip´xq
˘N
“´pixqN “ V̂ pxq, and hence rĤ,P̂T̂ s “ 0 for all values of N. However,

as Figure 1(a) shows, the spectrum undergoes a PT -symmetry phase transition as N varies. For

N ą 2, the Hamiltonian possesses unbroken PT -symmetry with a pure real-valued spectrum. If

N ă 2, the spectrum becomes partially complex with finite (or, none if N ă 1) real values and
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Figure 1.1: PT -symmetry phase transitions for Ĥ “ p̂2´pixqN . (a) For N ą 2, the spectrum
of energy is pure real and the system is in the PT -symmetry phase. If N ă 2, the spectrum is
partially complex with finite (or, when N ă 1, none) real eigenvalues and infinite pairs of complex
conjugate ones. This the range at which the system is in the PT -broken phase. At N “ 2, the
system changes its phase. (b) Real and imaginary parts of the potential [15].

infinite “pairs” of complex conjugate values. The threshold value N “ 2 is a phase transition point

across which the system switches from a PT -symmetry to PT -broken [15]. This point is called

“exceptional point” and possesses unique features specially in optics [16].

At the exceptional point, the eigenvalues as well as the eigenvectors coalesce [6, 10, 15].

This is in contrast to the common degeneracy in quantum mechanics for which two or more dif-

ferent measurable states of a quantum system share the same eigenvalue [5]. We explain the co-

alescence by considering the following Hamiltonian of a two-component system (i.g., a gain-loss

coupled system):

Ĥ “

¨

˚

˚

˝

´ig J

J ig

˛

‹

‹

‚

(1.1)

where J is the coupling parameter and g (´g) is the gain (loss). Let g{J ă 1. We define θ “
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sin´1pg{Jq so the following equations look nicer. Then, the eigenvalues of the Hamiltonian are

E1,2 “ ˘J cospθ q and the bi-orthogonal eigenvectors are |ϕ1,2y “
`

1,˘e˘iθ
˘T . This regime is

called the exact PT -symmetry phase for which the two eigenmodes are distributed over the gain

and loss sites. In this case, neither of the eigenmodes experiences a net gain or loss.

At the exceptional point where J “ g, we have E1 “ E2 “ 0 and |ϕ1y “ |ϕ2y “
`

1, i
˘T , i.e.,

we have only one eigenvalue and one eigenvector.

For g{J ą 1, if we redefine θ “ cosh´1pg{Jq, then the eigenvalues and eigenvectors are

E1,2“˘iJ sinhpθ q and |ϕ1,2y“
`

1, ie˘θ
˘T , respectively. This regime is called PT -broken regime

at which one mode enjoys amplification and the other undergoes dissipation [6, 15].

1.1.3 PT -symmetry in optics

The realization of PT -symmetry in quantum mechanics is challenging because of the fundamen-

tal difficulties arising from the operators [17]. On the other hand, if we compare the Schrödinger

equation with the paraxial wave equation in optics, we notice they are mathematically isomorphic,

and hence the PT -symmetric formalism can be generalized to optics (let h̄“ 1) [11]:

i
BΨpx, tq
Bt

“

”

´
1

2m
d2

dx2 `V pxq
ı

Ψpx, tq, (1.2)

i
BEpx,zq
Bz

“

”

´
1

2k0n0

d2

dx2 ` k0
`

nRpxq` inIpxq
˘

ı

Epx,zq. (1.3)

In equation 1.3, the propagation distance z along the optical axis replaces time, Epx,zq is the

transverse electric field, k0 is the free space wave vector, n0 is the background index, and npxq “

k0
`

nRpxq` inIpxq
˘

is the complex refractive index that plays the role of potential. If the paraxial

wave satisfies the condition npxq “ n˚p´xq, the optical system is PT -symmetric . If the sign of
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Im[npxq] is negative (positive), it represents optical gain (loss). The manipulation of refractive in-

dex (and therefore gain and loss) is much easier in optics than engineering the potential in quantum

mechanics [13].

For the first time, El-Ghanainy and his colleagues proposed the idea of PT -symmetry in

optics [11]. They applied this formalism to a coupled gain-loss waveguide system with equal rates

of gain and loss, whose result is a coupled of differential equations similar to equation (1.3), one

with a positive imaginary part of the refractive index and the other with a negative imaginary part.

After more theoretical works [18, 19, 20, 21], PT -symmetry was verified in a coupled gain-loss

waveguide system with complex optical potentials [22, 14]. In these pioneering experimental stud-

ies of PT -symmetry , spontaneous PT -symmetry breaking and power oscillations violating

left–right symmetry were observed. It is notable that these two experimental cases are “passive”

PT -symmetric systems [23] for which there is no optical gain, but one waveguide is passive and

the other is neutral. In [22] it is shown the imposed complex refractive index distribution satisfies

the PT -symmetry requirement.

In addition to two coupled waveguides, PT -symmetry has also been demonstrated in

other systems such as coupled silica microtoroids [24, 25], microring resonators [26], and pho-

tonic crystal cavities [27, 28, 29]. The subsequent theoretical and experimental studies on this field

have shown interesting features that are difficult to implement with non-PT -symmetric optical

systems. To mention a few, we should refer to loss-induced transparency [22], power oscillations

[18, 14], unidirectional invisibility [30, 31, 32], and PT -symmetric lasers [33]. The study of

PT -symmetric formalism is not restricted to optics; similar research activities have been ex-

tended to other physical settings such as electronics [34], microwaves [35], mechanics [36], acous-

tics [37], and atomic systems [38, 39, 40, 41].
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These studies are based on the paraxial wave equation for which light is a classical field.

But in 2012 Agarwal used a second quantization formalism to investigate the spontaneous gener-

ation of photons in the transmission of quantum fields in a coupled gain-loss waveguide system

[42]. This approach treats light as a quantum field and takes the noise into account. We will follow

this approach in chapters 2 and 3.

1.2 Noise in Open Quantum Systems

1.2.1 Classical versus Quantum Noise

A physical system with a few degrees of freedom coupled to an environment or bath with many

(possibly, infinite) degrees of freedom is called open. The coupling of the system to the bath

inevitably changes the time evolution of the system operators compared to the same ideal isolated

system. This change in the time evolution happens in classical as well as in quantum systems [43].

In general, there are two types of interactions between the system and the bath: (1) external

control fields that drive the evolution of the system, (2) Uncontrolled interactions such as the

thermal motion of the bath elements, or the background magnetic field of the environment. The

latter interactions lead to deviations between the targetted and the actual time evolutions and a loss

of coherence [44]. We call the uncontrolled interactions noise as they cause unfavorable results.

The origin of the classical noise is the fluctuations in the motion of particles and the vari-

ation of the number of particles within a given volume. A well-known example is a Brownian

motion of particles (say, the pollen grains) in a fluid. The particles not only experience damping

due to the viscous fluid, but they also undergo a zigzag motion around the average path. Langevin

introduced a random drive force (noise) that explains the zigzag motion [45, 46]. Quantum noise,

on the other hand, is due to the Heisenberg uncertainty relations between two non-commuting

8



operators. As an example, consider an electron in a potential well. Although there is no classi-

cal fluctuation and hence no classical noise, the uncertainty relation does not allow the confined

electron to remain motionless. The operator

ĵ “
e
m

p̂, (1.4)

is proportional to the current. Knowing the Fourier transform of x ĵp0q ĵptqy, one can find the

frequency spectrum of the quantum fluctuation. If |ψp0qy is the wavefunction in the Heisenberg

picture, the expectation value of an arbitrary operator Ô is defined as

xÔptqy “ xψp0q|expriĤtsÔp0qexpr´iĤts|ψp0qy. (1.5)

where we assumed h̄ “ 1. Then we can write x ĵptq ĵp0qy as a sum over a complete set of states,

which can be chosen as energy eigenstates:

x ĵptq ĵp0qy “
´ e

m

¯2ÿ

n
exp

“

´ ip
`

En´E0qt
˘‰

|xψn|p̂|ψ0y|
2. (1.6)

This spectrum has only positive frequencies, i.e., frequencies corresponding to transitions from

ground states to excited states. If excited states are occupied too, positive as well as negative fre-

quencies will appear in the spectrum. If ĵptq and ĵp0q are interchanged, the correlation function

with the electron in the ground state would have negative frequencies instead of positive frequen-

cies. Therefore,

x ĵp0q ĵptqy ‰ x ĵptq ĵp0qy. (1.7)

The electron is a charged particle. Thus the momentum fluctuation is a source of electromagnetic

radiation and hence a source of quantum noise [45].
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1.2.2 Quantum Heisenberg-Langevin Equation

We need a generic model for describing the quantum noise. Therefore, we should introduce a

model for the system and the bath. In addition, we need to make some assumptions. We assume

that the bath is an assembly of harmonic oscillators. This is a reasonable assumption specially

for the quantum optical systems, because in this case the bath is the electromagnetic field, which

is truly an assembly of harmonic oscillators [47]. The oscillators of the bath must satisfy the

following conditions in order to make a solid model for the quantum noise:

‚ There should be a smooth, dense spectrum of oscillator frequencies (for the electromagnetic

field, naturally the normal modes in a large volume demonstrate a smooth, dense frequency

spectrum);

‚ The coupling of the system to the bath operators should be linear in the bath harmonic

oscillator operators;

‚ The coupling coefficients of the system to the bath operators must be a smooth function of

the frequencies.

Let the total Hamiltonian is

Ĥ “ Ĥsys` ĤB` Ĥint , (1.8)

where

ĤB “

ż 8

´8

dω ω f̂ :pωq f̂ pωq (1.9)

is the bath Hamiltonian and

Ĥint “ i
ż 8

0
dω κpωq

“

ĉ´ ĉ:
‰“

f̂ :pωq` f̂ pωq
‰

(1.10)
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is the interaction Hamiltonian. f̂ pωq is a boson annihilation operator of the bath satisfying
“

f̂ pωq, f̂ :pω 1q
‰

“

δ pω´ω 1q and ĉ is a system operator. We assume that for the bare system we have ĉptqÑ ĉptqe´iω0t

where ω0 is the resonance frequency of the system and f̂ pωq Ñ f̂ pωqe´iωt . The system with this

resonance frequency is coupled to a band of frequencies of the bath centered around ω0. So,

virtually one can redefine the limits of the integral as

ż

ω0`ϑ

ω0´ϑ

dω ... (1.11)

with cutoff ϑ ! ω0. There are several time scales that should be separated. One is the optical

frequency ω0 which is much larger than the cutoff. The cutoff itself is much larger than the typical

frequencies of the system dynamics. It is also much larger than the frequency scale induced by

the system-bath coupling, i.e., the decay rates. Moreover, we assume a smooth system-bath cou-

pling κpωq in the frequency interval. So, we set κpωq Ñ
a

γ{2π , which is a constant within the

interval. This is called Markov approximation. Physically, a quantum Markovian description is an

approximation where the environment is modeled as a heat bath with a short correlation time and

weakly coupled to the system [48].

Now we can apply the rotating wave approximation and ignore fast oscillating terms e˘ipω`ω0qt .

In addition, we assume that the time scales of the system are much smaller than 1{ϑ in the weak

coupling limit where γ is rather small. This means we can set the limits of integral from ´8 to8.

Putting all these approximations together, we can rewrite the interaction Hamiltonian as

Ĥint “
i

?
2π

ż 8

´8

dω
?

γ
“

f̂ :pωqĉ´ ĉ: f̂ pωq
‰

(1.12)

If we apply the Heisenberg equations of motion for the bath operators and an arbitrary

11



system operator â, we obtain

d f̂ pωq
dt

“´iω f̂ pωq`

c

γ

2π
ĉ, (1.13)

whose solution is

f̂ pωq “ e´iωpt´t0q`

c

γ

2π

ż t

t0
e´iωpt´t1qĉpt 1qdt 1 (1.14)

and

dâ
dt
“´i

“

â, Ĥsys
‰

`

c

γ

2π

ż 8

´8

dω

!

f̂ :pωqrâ, ĉs´ râ, ĉ:s f̂ pωq
)

(1.15)

We define

f̂inptq “
1
?

2π

ż

dω e´iωpt´t0q f̂0pωq. (1.16)

Noting that
ż 8

´8

dω e´iωpt´t1q
“ 2πδ pt´ t 1q (1.17)

we conclude that

“

f̂inptq, f̂ :inpt
1
q
‰

“ δ pt´ t 1q. (1.18)

Inserting (1.14) in (1.15) and using (1.18), we obtain the following equation called quantum

Langevin equation [47]:

dâ
dt
“´i

“

â, Ĥsys
‰

´
“

â, ĉ:
‰

´

γ

2
ĉ`
?

γ f̂inptq
¯

`

´

γ

2
ĉ:`

?
γ f̂ :inptq

¯

“

â, ĉ
‰

. (1.19)

1.2.3 The Stochastic Schrödinger Equation

There is also an alternative formulation in terms of a master equation for a reduced system density

operator together with the quantum fluctuation regression theorem, but we don’t use it in this

thesis. The mathematical basis for these two methods is quantum stochastic calculus, which is a

non-commutative analog of Ito’s stochastic calculus [47]. Gardiner and Collett demonstrated the
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connection between the more physically motivated Heisenberg-Langevin equations and the more

mathematically precise “quantum stochastic differential equations” [49]. In particular, Gardiner

developed a formulation called “quantum stochastic Schrödinger equation” for the time evoultion

operator Ûptq “ exp
`

´ i
“

ĤB` Ĥsys
‰

t
˘

of the system interacting with Bose fields f̂ ptq and f̂ :ptq.

These operators satisfy the following commuatation relations (with respect to the vacuumm state

|0y) [46]:

x f̂ ptq f̂ :pt 1qy “ δ pt´ t 1q, (1.20)

x f̂ :ptq f̂ pt 1qy “ x f̂ ptq f̂ pt 1qy “ x f̂ :ptq f̂ :pt 1qy “ 0. (1.21)

We define

B̂ptq “
ż t

0
f̂ psqds. (1.22)

A quantum stochastic calculus is based on the following increment:

dB̂ptq “ B̂pt`dtq´ B̂ptq. (1.23)

The corresponding Ito’s rules for for these increment are

“

dB̂ptq
‰2
“
“

dB̂:ptq
‰2
“ 0,

dB̂ptqdB̂:ptq “ dt,

dB̂:ptqdB̂ptq “ 0.

(1.24)

Putting all this information together, we obtain the Ito form of the quantum stochastic Schrödinger

equation [46]:

dÛptq “
!´

´ iĤ´
1
2

γ ĉ:ĉ
¯

dt`
?

γ dB̂:ptq ĉ´
?

γ dB̂ptq ĉ:
)

, (1.25)

whose formal solution is

Ûptq “ T̂ exp
ż t

0

´

´ iĤ ds`
?

γ dB̂:psq ĉ´
?

γ dB̂psq ĉ:
¯

, (1.26)
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where T̂ is the time ordering operator. For a system operator â, we define a Heisenberg operator

as âptq “ Û:ptqâÛptq. Then,

dâptq ” âpt`dtq´ âptq

“ Û:
pt`dt, tqâptqÛpt`dt, tq´ âptq

“ ´i
“

â, Ĥ´ i
?

γ dB̂ptq ĉ:` i
?

γ dB̂:ptq ĉ
‰

dt

`
γ

2

´

2ĉ:âĉ´ âĉ:ĉ´ ĉ:ĉâ
¯

dt

(1.27)

This equation is an alternative to the Langeving equation, and we will use it in the next chapters to

investigate the time evolution of the operators of the system coupled to a bath.

1.3 The Time Decomposition Method in Nonlinear Systems

1.3.1 Background and motivation

In quantum optics, sometimes we deal with a cavity system biased by an electromagnetic wave

(classical or quantum), and meanwhile, it is coupled to a heat bath that introduces noise to the

system. Also, there might be an element inside the cavity that generates nonlinear effects such

as Kerr nonlinearity [50], optomechanical interaction [51], or magnomechanical interaction [52].

The equation of motion of such a system has nonlinear terms, and generally it is hard to solve it.

In many practical cases, the external drive field is strong and can be treated classically.

Therefore, if â is an operator of the system, it is possible to convert it to a classical steady-state plus

a quantum fluctuation term: âÑ αs`δ â. This is the common approach to linearize the nonlinear

differential equations, and it is applied to many cases (see, for example, [53] and the review article

[51]). However, if the external field is weak (for example, a single photon field [54]), one cannot

use a steady-state approximation. There is another method, called time-evolution decomposition,
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developed by B. He, that applies to strong as well as weak bias fields [54, 55, 56, 57]. This method

linearizes the differential equations without breaking an operator to a steady-state and a fluctuation

term. Also, it simplifies the calculation of the expectation value of an arbitrary function of the

field operators without need of solving the master equation. These merits make this method a

good alternative to the conventional method of linearizing, especially when we are interested in

the dynamical behavior of the system such as the dynamical phonon laser in a magnomechanical

system (chapter 4).

1.3.2 The decomposition of the time evolution operator

Suppose the total Hamiltonian of a system is composed of two “time-dependent” parts that in

general do not commute with each other:

Ĥ “ Ĥ1ptq` Ĥ2ptq, rĤ1ptq, Ĥ2ptqs ‰ 0. (1.28)

The time evolution operator is

Ûptq “ T̂ exp
´

´ i
ż t

0
dτ

“

Ĥ1pτq` Ĥ2pτq
‰

¯

. (1.29)

Also, one can decompose the evolution operator as follows:

T̂ exp
´

´ i
ż t

0
dτ

“

Ĥ1pτq` Ĥ2pτq
‰

¯

“

T̂ exp
´

´ i
ż t

0
dτ V̂2pt,τqĤ1pτqV̂

:

2 pt,τq
¯

T̂ exp
´

´ i
ż t

0
dτ Ĥ2pτq

¯

, (1.30)

where V̂2pt,τq “ T̂ exp
´

´ i
şt

τ
dτ 1Ĥ2pτ

1q

¯

, and

15



T̂ exp
´

´ i
ż t

0
dτ

“

Ĥ1pτq` Ĥ2pτq
‰

¯

“

T̂ exp
´

´ i
ż t

0
dτ Ĥ1pτq

¯

T̂ exp
´

´ i
ż t

0
dτ V̂ :1 pτ,0qĤ2pτqV̂1pτ,0q

¯

, (1.31)

where V̂1pτ,0q “ T̂ exp
´

´ i
ş

τ

0 dτ 1Ĥ1pτ
1q

¯

.

Typically, it is straightforward to simplify V̂ :1 pτ,0qĤ2pτqV̂1pτ,0q. Thereby, the total evolu-

tion operator can be decomposed to a product like Û1Û2.

The proof of the decomposition method is as follows. We prove equations (1.30) and (1.31)

using two different methods [54]:

‚ The unitary operator T̂ exp
´

´ i
şt

0 dτ
`

Ĥ1pτq` Ĥ2pτq
˘

¯

is the product of the infinitely small

elements

Ûptiq “ exp
“

´ iĤ1ptiqδ t´ iĤ2ptiqδ t
‰

,

where δ t “ limNÑ8 t{N and 0 ď ti ď t. Within the small period δ t, one can decompose the

small element Ûptiq into Û2ptiqÛ1ptiq “ Û1ptiqÛ2ptiq, where Ûiptkq “ exp
“

´ iĤiptkqδ t
‰

, for

any pairs of Ĥ1ptq and Ĥ2ptq as the cross terms due to their non-commutativity are negligible.
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Then,

T̂ exp
´

´ i
ż t

0
dτ

“

Ĥ1pτq` Ĥ2pτq
‰

¯

“ Û2ptN´1qÛ1ptN´1qÛ2ptN´2qÛ1ptN´2q ¨ ¨ ¨Û2pt2qÛ1pt2qÛ2pt1qÛ1pt1qÛ2pt0qÛ1pt0q

“ Û2ptN´1qÛ1ptN´1qÛ
:

2 ptN´1q

ˆ Û2ptN´1qÛ2ptN´2q
looooooooomooooooooon

V̂2pt,tN´2q

Û1ptN´2qÛ
:

2 ptN´2qÛ
:

2 ptN´1q
looooooooomooooooooon

V̂ :2 pt,tN´2q

ˆ Û2ptN´1qÛ2ptN´2qÛ2ptN´3q
looooooooooooooomooooooooooooooon

V̂2pt,tN´3q

Û1ptN´3qÛ
:

2 ptN´3qÛ
:

2 ptN´2qÛ
:

2 ptN´1q
loooooooooooooooomoooooooooooooooon

V̂ :2 pt,tN´3q

ˆ ¨¨ ¨

ˆ Û2ptN´1qÛ2ptN´2q ¨ ¨ ¨Û2pt1qÛ2pt0q
loooooooooooooooooooomoooooooooooooooooooon

V̂2pt,0q

Û1pt0qÛ
:

2 pt0qÛ
:

2 pt1q ¨ ¨ ¨Û
:

2 ptN´2qÛ
:

2 ptN´1q
loooooooooooooooooooomoooooooooooooooooooon

V̂ :2 pt,0q
looooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooon

exp
“

´iV̂2pt,0qĤ1pt0qV̂
:
2 pt,0qδ t

‰

ˆ Û2ptN´1qÛ2ptN´2q ¨ ¨ ¨Û2pt1qÛ2pt0q
loooooooooooooooooooomoooooooooooooooooooon

V̂2pt,0q

. (1.32)

Except for the bottom row, each row after the last equals sign in equation (1.32) is the small

element exp
“

´ iV̂2pt, tkqĤ1ptkqV̂
:

2 pt, tkqδ t
‰

.

‚ The exponentials T̂ exp
“

´ i
şt

0 dτ
`

Ĥ1pτq ` Ĥ2pτq
˘‰

and T̂ exp
“

´ i
şt

0 dτ Ĥ1pτq
‰

are the solu-

tions to the follwoing differential equations:

dÛ
dt
“´i

`

Ĥ1ptq` Ĥ2ptq
˘

Ûptq (1.33)

and

dV̂1

dt
“´iĤ1ptqV̂1ptq, (1.34)

respectively. The initial condition for the differential equations is Ûp0q “ V̂1p0q “ I, the

identity operator. The solution of equation (1.34) is

V̂1ptq “ T̂ exp
”

´ i
ż t

0
dτ Ĥ1pτq

ı

. (1.35)
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We define Ŵ ptq “ V̂ :1 ptqÛptq, whose differential with respect to t is

dŴ
dt
“´V̂ :1

dV̂1

dt
V̂ :1 Û `V̂ :1

dÛ
dt
“

iV̂ :1 Ĥ1V̂1V̂ :1 Û ´ iV̂ :1 pĤ1` Ĥ2qÛ “´iV̂ :1 Ĥ2V̂1V̂ :1 Û “´iV̂ :1 Ĥ2V̂1Ŵ . (1.36)

Its solution is

Ŵ ptq “ T̂ exp
”

´ i
ż t

0
dτV̂ :1 pτqĤ2pτqV1pτq

ı

, (1.37)

where we have used the abbreviations V̂ipt,0q ” V̂iptq and Ŵ pt,0q ” Ŵ ptq.

Evidently, equations (1.30) and (1.31) can be generalized to any number of Hamiltonian.

For example, if we have a Hamiltonian like Ĥ “ Ĥ0` Ĥs` Ĥint ` ĤB that includes the free os-

cillation, the system Hamiltonian, the interaction Hamiltonian, and the bath Hamiltonian, the de-

composition of the evolution operator Ûptq converts it to a product of separated time evolutions:

Û0ptqÛsptqÛintptqÛBptq. Therefore, if there is a nonlinear Hamiltonian in the total time evolution

operator, we can easily separate it out of the total. Then, we can use a Taylor expansion for the

nonlinear time evolution operator and only keep the smallest term. Thereby, we can linearize

the equations of motion obtained using equation (1.27) without converting a system operator to a

steady-state term plus a fluctuation term. In chapter 4, we will see a practical example.

In addition to the above merit, to calculate the expectation values of the system operators,

we do not need to solve the master equation and find the total density matrix ρptq, as a function of

time [54]. Suppose the total density matrix ρ̂ptq for the combination of the system and reservoir

at t “ 0 is ρ̂p0q “ ρ̂sp0qb ρ̂R, where ρ̂sp0q is the initial density matrix of the system and ρ̂R is the

density matrix of the bath or reservoir. We assume that the bath does not evolve with time because

the bath is not affected by the system due to its large size. We can write the expectation value of a
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system operator using Ûpt,0q as

xÔSy “ TrSrÔSρ̂ptqs

“ TrSrÔSÛ0pt,0qTrR
`

Ûpt,0qρ̂p0qb ρ̂RÛ:
pt,0q

˘

Û:

0 pt,0qs

“ TrS,RrÛ:
pt,0qÛ:

0 pt,0qÔSÛ0pt,0qÛpt,0qρ̂p0qb ρ̂Rs.

(1.38)

In many practical cases, the Hamiltonian has a free part whose time evolution operator can be

factor out, so that Û0pt,0q “ expt´ipωcâ:â`ωmb̂:b̂qtu. In such cases, for any operator ÔS “

f̂ pĉi, ĉ
:

i q, the transformation by Û0pt,0q only adds a phase e´iωit (eiωit), where i “ c or m, to ĉi

(ĉ:i ). Then we can find the expectation value using the transformation Û:pt,0q f̂ pĉi, ĉ
:

i qÛpt,0q “

f̂
`

Û:pt,0qĉiÛpt,0q,Û:pt,0qĉ:i Ûpt,0q
˘

over the total initial state of system plus reservoir, with the

phase absorbed in ĉi (ĉ:i ). The reduction of calculating the system observables to finding the

transformed basic system operators Û:pt,0qĉiÛpt,0q is the main advantage of the decompositon

of the time evolution. We can similarly determine the more complicated averages such as xÔ1pt`

τqÔ2pτqy, which is generally calculated using the quantum regression formula [54].

1.4 Magnomechanical Systems

In chapter 4, we will investigate a magnomechanical phonon laser, which is a hybrid quantum sys-

tem. Here we introduce a summary about the magnomechanical systems. More technical details,

including the Hamiltonian of the system, remain for chapter 4.

A cavity magnomechanical system consists of a microwave cavity and a ferromagnetic ma-

terial (usually a yttrium iron garnet (YIG) sphere) installed in it [58]. The system, which can be

biased by an external magnetic or/and electromagnetic field, works based on the collective spin

excitations in the ferromagnetic sample, called magnons [59]. Upon the bias, the magnons co-

herently couple to the microwave photons through the magnetic dipole interaction and couple to
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Figure 1.2: (a) The device consists of a copper cavity and a YIG sphere. A microwave magnetic
field along the y-direction) is applied. Another uniform external magnetic field is applied along
the z-direction to bias the YIG sphere for magnon-photon coupling. (b) The image of the highly
polished 250-mm-diameter YIG sphere that is glued to a 125-mm-diameter supporting silica fiber.
(c) Simulated mechanical displacement of the S1,2,2 phonon mode in the YIG sphere that has the
strongest magnomechanical interaction with the uniform magnon mode. (d) The top panel shows
the uniform magnon excitation in the YIG sphere. The bottom panel illustrates how the dynamic
magnetization of magnon (vertical black arrows) deforms (compresses along the y-direction) the
YIG sphere (and vice versa), which rotates at the magnon frequency. The color scale represents
the corresponding volumetric strain fields that the dynamic magnetization of magnon induces [52].

the phonons generated due to the eformation of the YIG via the magnetostrictive interaction (the

change of the dimension of a substance that is exposed to a magnetic field) [60]. The magnetostric-

tion occurs in all pure substances. However, even in strongly magnetic materials, the change of

dimension is about 10´5 [61]. One can attribute the magnetostriction to three types of interactions
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depending on the distance between the constituent ions: exchange intercation, dipole-dipole inter-

action, and spin-orbit interaction [52]. The magnetostriction force, thus, deforms the YIG sphere

in strong magnetic fileds, converting it to a mechanical oscillator. Since the magnon frequency can

be easily adjusted by the external field and the YIG sphere has a long coherence time, a low decay

rate, and a high spin density (4.2ˆ1021cm´3), one can control the oscillations of the YIG sphere

with high tunability. Figure 1.2 demonstrates a typical magnomechanical system. The device con-

sists of a three-dimensional copper cavity and a YIG sphere. The YIG sphere is placed near the

maximum microwave magnetic field (along the y-direction) of the cavity TE011 mode. A uniform

external magnetic field is applied along the z-direction to bias the YIG sphere for magnon-photon

coupling. In Figure 1.4(d), the top panel shows the uniform magnon excitation in the YIG sphere.

The bottom panel illustrates how the dynamic magnetization of magnon (vertical black arrows)

deforms the YIG sphere, which rotates at the magnon frequency [52].

Highly tunable magnomechanical systems are good alternatives for electro- and optome-

chanical systems [51] for which to couple the phonon to optical or microwave photons, mecha-

nisms such as radiation force [62], electrostatic force [63], and piezoelectric force [64] have been

applied. Such interaction mechanisms intrinsically lack fine tunability [52].

Due to their high tunability and long coherence, the cavity magnomechanical system has

become a promising platform for implementing various novel phenomena, such as the bistability

of cavity-magnon polaritons [65], magnon gradient memory [66], cavity spintronics [67], mag-

nomechanical phonon laser [2], and cooperative polariton dynamics [68]. Furthermore, it was

experimentally shown that the magnons in the small YIG sphere can couple to the optical photons

[69], phonons [52], and superconducting qubits [70].

In this thesis, we will investigate the magnomchanical phonon laser in the dynamical
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regime. Previously, it is studied in the steady-state approximation [2], but as we will see, its

behavior in the dynamic case is totally different.
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2 Continuous-variable entanglement generation in a system of coupled gain-loss

waveguides

2.1 Introduction

Quantum information is a branch of science in which the quantum states are used as a tool to store

or convey information. In particular, the quantum states of light are a fertile field for quantum

information processing because light is an excellent carrier of information and also with today’s

technology it is possible to prepare such quantum states of light [71, 72]. The most advanced

experimental demonstrations of quantum information systems at this time include trapped ions

[73], linear optics [74], superconductors [75, 76], and quantum dots in semiconductors [77, 78, 79].

The basic idea behind quantum information processing is to use the laws of quantum mechanics to

enhance the capabilities of transferring or manipulating data. The subject has three branches [80]:

‚ Quantum cryptography: the use of quantum mechanics to allow the presence of an eaves-

dropper to be detected when confidential information is being transferred between two par-

ties.

‚ Quantum computing: the use of quantum mechanics to boost the computational power of

a computer.

‚ Quantum teleportation: the use of quantum mechanics to transfer the quantum state of one

particle to another.

Quantum teleportation relies profoundly on the properties of entangled states. In this chap-

ter, we focus on generating the entangled states of light using a system of two coupled gain-loss
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waveguide. As we will see in the next section, this is a special case of entanglement called “con-

tinuous variable”.

In section 2.2, we start with the definition of the entangled states. We will introduce the

discrete and continuous variable entanglement and will discuss the pros and cons of each one.

Since the Gaussian states are the most well-known state of light proper for the continuous variable

entanglement, we will explain these states and also how it is possible to quantify the degree of

entanglement for such states. As quantum dynamics plays the main role in this thesis, we will

consider the quantum noise effect in all subsequent sections because it may radically change the

dynamics of the system. In section 2.3, we will explain why we have chosen a coupled gain-loss

waveguide system as a potential device for generating entangled states, and in particular, what is

the role of PT -symmetry . Then, in section 2.4 we introduce the Hamiltonian and the equations

of motion. In section 2.5, we explain how the photon number and the waveguide mode correlation

evolve with and without quantum noise effect. Finally, in section 2.6, we analyze the entanglement

as a function of time if we add a squeezing element to either of the waveguides or to both of them.

2.2 Quantum information processing with continuous variables

2.2.1 The notion of quantum entanglement

Entanglement is one of the most counter-intuitive aspects of the quantum world that has no clas-

sical counterpart. In simple words, a multi-partite system is said to be in an entangled state if its

wave function (or, more generally, its state vector) cannot be factorized into a product of the wave

functions of the individual parts [80]. A well-known entangled state is the singlet (triplet) spin
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state [5]:

|ψy “
1
?

2

`

| ÒÓy˘ | ÓÒy
˘

. (2.1)

This state cannot be written as products of | Òy b | Óy. To study the entanglement rigorously,

consider a multi-partite system consisting of N subsystems. In the classical mechanics, we apply a

phase space formalism to describe such a system. Then, the total (pure) state space of the system

is the Cartesian product of the N subsystem spaces. This means the total state is the product space

of N “separate” systems. In quantum mechanics, on the other hand, the total Hilbert space H is a

tensor product of the subsystem spaces:

H “H1bH2b¨¨ ¨bHN . (2.2)

Using the superposition principle, we can write the total state of the whole system as

|ψy “
ÿ

i1,...,iN

Ci1,...,iN |i1yb |i2yb ¨ ¨ ¨b |iNy. (2.3)

In general, we cannot write the total state as a product of states of the individual subsystem:

|ψy ‰ |ψ1yb |ψ2yb ¨ ¨ ¨b |ψNy. (2.4)

In other words, we cannot generally assign a single state vector to each individual subsystem. In

such a case, we say that the (pure) state is entangled [81, 82].

In practical cases, we deal with mixed states instead of pure states. The definition of en-

tanglement for such states differs from that of the pure state. A mixed state of N subsystems is

entangled if we cannot write its density matrix as a convex combination of product states:

ρ ‰
ÿ

i

pi ρ
i
1b¨¨ ¨bρ

i
N . (2.5)

Those pure and mixed systems whose states do not satisfy equations (2.4) and (2.5), respectively,

are called “separable” [82].
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2.2.2 Continuous versus discrete variables

Nowadays, there are two main approaches to quantum information processing [83]:

1. The “digital” approach, in which the information is encoded in quantum systems with dis-

crete degrees of freedom (qubits (quantum bits) or qudits). The qubits are quantum systems

with two distinguishable states (we can call them 0 and 1). Examples of qubits are the two

polarization states of a single photon, spin-1/2 electrons or nuclei, and two lowest energy

levels of quantum dots or quantized superconducting circuits (see Table (2.1)). The qbits

can not only represent pure 0 and 1 states, but they can also take on superposition states,

in which the system is in both the 0 and 1 state at the same time. This “entanglement” is a

consequence of the superposition principle of quantum mechanics.

2. The “analog” approach, in which the quantum correlations are encoded in continuous vari-

able (CV) degrees of freedom like the quadrature amplitudes of a quantized harmonic oscil-

lator that play the role of position and momentum. The quantized modes of bosonic systems

such as the electromagnetic field, vibrational modes of solids, atomic ensembles, nuclear

spins in a quantum dot, Josephson junctions, and Bose-Einstein condensates are some ex-

amples of continuous variables.

The first real success in the quantum information processing with continuous variables

came with the experimental realization of quantum teleportation for optical fields. The next break-

through was the successful definition of the notion of universal quantum computation using the

continuous variables, suggesting that such variables are as capable as conventional qubits [84].

The main merit of the continuous-variable quantum information is that it is more practi-

cal. The preparing, unitarily shaping, and measuring entangled quantum states are achievable in
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Table 2.1: Some physical realizations of qubits [80]

.

Quantum system Physical property |0y |1y

Photon linear polarization Horizontal Vertical

Phonon Circular polarization Left Right

Nucleus Spin Up Down

Electron Spin Up Down

Two-level atom Excitation state Ground state Excited state

Josephson junction Electric charge N Cooper pairs N`1 Cooper pairs

Superconducting loop Magnetic flux Up Down

quantum optics using continuous quadrature amplitudes of the quantized electromagnetic field.

For example, by homodyne detection and feedforward techniques, we provide the tools for mea-

suring a quadrature with near-unit efficiency or for displacing an optical mode in phase space,

respectively. Moreover, the quantum optical implementations based on the continuous variables

are highly efficient because of their unconditionalness. The entangled states typically generated

from the nonlinear optical interaction processes in an unconditional fashion. This unconditional-

ness is hard to obtain in discrete-variable qubit-based setups using single-photon states. In such a

case, preparing the desired state by the nonlinear optical interaction depends on a particular (co-

incidence) measurement results that forbid the unwanted (in particular, vacuum) contributions in

the outgoing state vector. The disadvantage of the unconditionalness is that the low quality of

the entanglement of the prepared states. We know that one should use the squeezed light to gen-

erate continuous-variable entangled states. However, high quality and performance require large

squeezing, which is technologically demanding [84].
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To summarize, the continuous-variable implementations always work efficiently and un-

conditionally, but they are never perfect. On the other hand, the discrete-variable counterparts

entangled states are generated only under special circumstances (conditioned upon rare success-

ful events) but in principle, they are perfect. Also, when we send optical quantum states through

noisy channels (optical fibers, for example), the continuous-variable states accumulate noise and

emerge at the receiver as contaminated versions of the input states. But one can reliably send the

discrete-variable quantum information encoded in single-photon states if they are not absorbed

during transmission [84].

2.2.3 Gaussian states

The primary tool for analyzing continuous-variable quantum information processing is Gaussian

states, which are continuous-variable states represented in terms of Gaussian functions [85]. The

Gaussian states not only are practically easier to generate, but they are also easy to describe. The

ground state and thermal states of bosonic systems are examples of Gaussian states that are created

in linear amplification and loss processes. Generally, nonlinear operations can be approximated to

a high degree of accuracy by Gaussian transformations. For instance, squeezing is a process that

decreases the variance of one continuous variable (say, position, or electric field) while increas-

ing the variance of the conjugate variable (momentum, or magnetic field). Linear squeezing is

Gaussian, and nonlinear squeezing can mostly be approximated to first order by a linear Gaussian

process [83].

Here we introduce a list of well-known Gaussian states [83, 86]:

‚ The vacuum state. The vacuum state |0y is a ubiquitous Gaussian state with zero photon.

It is the eigenstate of the annihilation operator with zero eigenvalue: â|0y “ 0. The wave-
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function of the harmonic oscillator in the ground state is proportional to expr´αx2s, which

is Gaussian.

‚ The thermal state. Every Gaussian state can be decomposed into thermal states. Therefore,

the thermal state is the most fundamental (mixed) Gaussian state. The density matrix of the

thermal state in the basis of Fock state is (h̄“ 1)

ρT “
ÿ

n
pn |nyxn|, pn “

xnyn
`

1`xny
˘n`1 , xny “

1
“

exppβωq´1
‰ , (2.6)

where ω is the angular frequency of the thermal field and β “ 1{pkBT q. The quadrature

distribution of the theramal state is

xX |ρT |Xy “
1

b

π
`

1`2 xny
˘

exp

˜

´
X2

1`2 xny

¸

, (2.7)

which is Gaussian.

‚ The coherent state. The coherent state, generated by the displacement operator Dpαq “

exp
`

α â:´α˚â
˘

, is Gaussian:

|αy “ exp
´

´
1
2
|α |

2
¯

8
ÿ

n

αn
?

n!
|ny. (2.8)

‚ The squeezed state. The squeezed vacuum state is defined as |εy “ Ŝpεq|0y where ε “ reiθ

and Ŝpεq “ exp
`1

2ε â:
2
´ 1

2ε˚â2
˘

. Here, r is the squeezing parameter and θ is its phase. The

representation of the squeezed state is the quadrature space is

ψεpXq “ xX |εy “ ψ0 exp

˜

´
1
2

X2 coshr´ eiθ sinhr
coshr` eiθ sinhr

¸

, (2.9)

which is Gaussian. There is another type of squeezed state called “displaced” or coherent

squeezed state. That one is also Gaussian.

There are more examples of Gaussian states, but we suffice to the above cases, which are the most

important ones.
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2.2.4 Entanglement of a Gaussian state

Knowing that entanglement is the key resource in quantum information processing protocols, it is

of interest to quantify the degree of entanglement. In particular, we are interested in quantifying

the degree of entanglement for the CV Gaussian sates [87]. Several proposals have been offered

for this purpose [88, 89, 90], but in this thesis we will apply the logarithmic negativity [91, 86],

which is specially useful for two-mode Gaussian states. To introduce the idea, we start with the

mathematical description of Gaussian states in the Hilbert space.

A well-known bosonic CV system is the quantized electromagnetic field. The quantiza-

tion procedure of the field shows we can model it as a collection of noninteracting quantum har-

monic oscillators with different frequencies. We refer to each oscillator as a “mode” of the system.

We investigate the discrete number of modes to avoid the difficulties of the quantum field the-

ory. Mathematically, we describe a CV system of N canonical bosonic modes by a Hilbert space

H “
ÂN

k“1 Hk resulting from the tensor product structure of infinite-dimensional Hilbert spaces

Hk’s, each of them associated to a single-mode. The Hamiltonian of the complete system of the

electromagnetic field is [85]

Ĥ “
N
ÿ

k“1

Ĥk “

N
ÿ

k“1

ωk

´

â:kâk`
1
2

¯

, (2.10)

in which the creation and annihilation operators satisfy the bosonic commutation relations:

“

âk, â
:

l

‰

“ δk,l. (2.11)

The quadratures of the electromagnetic field (corresponding to the position and momentum) are

defined as

q̂k “

`

âk` â:k
˘

?
2

, p̂k “

`

âk´ â:k
˘

i
?

2
. (2.12)
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Let define a compact notation for q̂k’s and p̂k’s:

X̂“
`

q̂1, p̂1, q̂2, p̂2, . . . , q̂N , p̂N
˘T

, (2.13)

where T stands for transpose. Then, for example, X̂3 refers to q̂2. We define the covariance matrix

(CM) elements as

Vi, j “
1
2
xX̂iX̂ j` X̂ jX̂iy´xX̂iyxX̂ jy. (2.14)

For a two-mode system, the covariance matrix takes the form

V “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

¨

˚

˚

˝

a11 a12

a21 a22

˛

‹

‹

‚

¨

˚

˚

˝

c11 c12

c21 c22

˛

‹

‹

‚

¨

˚

˚

˝

c111 c121

c112 c122

˛

‹

‹

‚

¨

˚

˚

˝

b11 b12

b21 b22

˛

‹

‹

‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

”

¨

˚

˚

˝

A C

CT B

˛

‹

‹

‚

. (2.15)

Let define new variables ∆ and η as follows:

∆“ det A`det B´2det C (2.16)

and

η “

d

∆´
?

∆2´4 det V
2

, (2.17)

where “det” stands for determinant. Then, the necessary and sufficient conditions for entanglement

of the concerned Gaussian state is

η ă
1
2
. (2.18)

We can use a more elegant definition for the entanglement called logarithmic negativity [85, 86,

91, 92]:

EN “maxr0,´ ln2ηs (2.19)

Therefore, if ´ ln2η ą 0, the Guassian state is entangled. In section 2.6 we apply this measure to

quantify the degree of entanglement.
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2.3 Macroscopic entanglement with a hybrid PT -symmetric gain-loss waveguide system

As indicated in the previous section, light is an excellent carrier of quantum information as it

interacts weakly with the environment. On the other hand, preparing, manipulating, and measuring

the CV states of light is more accessible than the discrete photonic qubits. Also, the CV quantum

states are often Gaussian states, the manipulation of which is available in current experimental

technology. Besides, quantitative description of all properties of the Gaussian states is possible.

These benefits motivate one to explore the ways of generating entangled Gaussian states.

Entanglement involving light fields with high intensities is an example of the so-called

“macroscopic entanglement”. In addition to their possible applications [84, 83], macroscopic en-

tangled light fields are essential to fundamental physics; see, e.g., the experimental [93, 94] and

theoretical studies [95, 96, 97, 98].

In this thesis, we deal with such light fields in a coupled optical waveguides alternately

carrying gain and loss media. Recently, a wide range of experimental [22, 14, 31, 99, 25, 24] and

theoretical [11, 20, 100, 101, 30, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111] researches

have been accomplished on these non-Hermitian systems. One advantage of these systems is

that one can change the light transmission patterns by simply adjusting the intensity of coupling

between their components. For example, the light field amplitudes under the balanced gain and

loss, where the system can manifest a PT -symmetry , will be quickly amplified once the coupling

intensity is tuned below the gain-loss rate. Intuitively, one can apply this mechanism to realize

entangled output light fields with high intensities by adding a squeezing element into one of the

coupled components. One can also see the interest in the entanglement following the relevant

non-Hermitian dynamics in many-body systems [112].
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In most previous studies, the light fields in PT -symmetric systems are treated as classical

electromagnetic fields. When dealing with the entanglement of the light fields, one will encounter

an indispensable factor accompanying their amplification and dissipation—the quantum noises act-

ing as the random drives from the associated reservoirs. The quantum noises must exist as they

preserve the proper commutation relations for the evolved light field operators [47]. So far, only

a few recent studies have considered the effects of the quantum noise in optical PT -symmetric

systems [42, 113, 114], including the hybrid ones with other physical elements such as Kerr non-

linearity added into the systems [50, 4, 115].

As is well known, quantum entanglement is fragile under the influence of the noises from

the environment [116, 117]. However, how they affect the entanglement generated by PT -

symmetric systems remains an open question. In this thesis, we will clarify such effects of quantum

noises by quantitatively examining their influence on the entanglement. The comparison between

the generated macroscopic entanglement in the absence and presence of quantum noise due to the

amplification and/or dissipation enables one to understand their effects in PT -symmetric systems

more deeply.

2.4 Hamiltonian and the dynamics of the system

Because of inevitable interactions with their environments, most physical systems are open and

their dynamics is non-Hermitian . The system of two coupled waveguides carrying optical gain

and loss respectively as in Figure 2.1 is an example of such open systems. Waveguide ApBq carries

a gain (loss) medium, in which the single-mode field âpb̂q propagates. We do not care about

the mechanisms of gain and loss, and hence we have not shown the relevant pumping needed

for a gain medium. Here we only consider the propagation of the light fields at a normal group
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velocity vg, neglecting the possible superluminal propagation of the evanescent wave as described

in [118, 119].

Figure 2.1: Setup of the hybrid PT -symmetric system: the coupled gain-loss waveguide system
with an added squeezing element into the loss channel without showing the pumping fields used
for the amplification. The input light fields are in coherent states.

The two light fields couple from one to another waveguide via the evanescent wave, and

one can adjust the effective coupling intensity, J, by the gap distance. The magnitudes of the gain

rate g and loss rate γ are decided by the media used, and the optical gain can be realized by doping

erbium ions into various materials [120]. Moreover, in the current model we neglect the gain

saturation by assuming a high saturation intensity for the gain medium. When the gain and loss

are balanced pg “ ´γq, as mentioned in chapter 1, the necessary condition for PT -symmetry is

satisfied. In this case, we can either use an effective non-Hermitian Hamiltonian that does not take
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the noise into account or a Hermitian Hamiltonian that includes the stochastic terms describing

the noise. First we introduce the effective non-Hermitian Hamiltonian which explicitly shows the

PT -symmetry :

ĤPT “ igâ:â´ igb̂:b̂` J
`

â:b̂` âb̂:
˘

, (2.20)

which can be diagonalized as

ˆ

â:b̂:
˙

¨

˚

˚

˝

ig J

J ´ig

˛

‹

‹

‚

¨

˚

˚

˝

â

b̂

˛

‹

‹

‚

“

ˆ

q̂: p̂:
˙

¨

˚

˚

˝

´ig`
?

J2´g2

J
´ig´

?
J2´g2

J

1 1

˛

‹

‹

‚

´1

ˆ

¨

˚

˚

˝

ig J

J ´ig

˛

‹

‹

‚

¨

˚

˚

˝

´ig`
?

J2´g2

J
´ig´

?
J2´g2

J

1 1

˛

‹

‹

‚

¨

˚

˚

˝

q̂

p̂

˛

‹

‹

‚

“

ˆ

q̂: p̂:
˙

¨

˚

˚

˝

´
a

J2´g2 0

0
a

J2´g2

˛

‹

‹

‚

¨

˚

˚

˝

q̂

p̂

˛

‹

‹

‚

“
`

´
a

J2´g2
˘

q̂:q̂`
`

a

J2´g2
˘

p̂: p̂

(2.21)

This Hamiltonian is invariant under the simultaneous parity transformation â Ø b̂ and time in-

version transformation i Ø ´i, hence the term PT -symmetry . The Hamiltonian comes from

the dynamical equations in the previous studies of classical PT -symmetric systems, where the

system modes â and b̂ are replaced by the corresponding classical fields. When g ă J (PT -

symmetric regime), this Hamiltonian’s eigenvalues are real and the transmitting light intensities

(proportional to xâ:âptqy and xb̂:b̂ptqy) in both waveguides demonstrate periodic oscillations in

time. When g ą J (PT -symmetry broken regime), the eigenvalues become imaginary, and the

intensities of the transmitting light fields change from oscillatory to exponentially growing. The
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transition takes place at g“ J, the exceptional point.

As indicated before, the non-Hermitian Hamiltonian in equation (2.20) does not possess

the quantum noise elements, so one cannot apply it to study the noise-sensitive phenomena such

as quantum entanglement. One approach for overcoming the shortcoming is to adopt a stochastic

Hamiltonian. We suppose that the reservoir is modeled as an ensemble of oscillators with the

positive energy. But for the light amplification we consider an ensemble of oscillators with the

negative energy as discussed in [47]. The reservoirs are in the vacuum states at zero temperature.

With respect to the self oscillation Hamiltonian (we assume the angular frequency for the light

propagating in both waveguides is ω0)

Ĥ0 “ ω0 â:â`ω0 b̂:b̂ (2.22)

of the waveguide modes and that of the reservoirs

ĤR “´

ż

dω ω f̂ :a pωq f̂apωq`

ż

dω ω f̂ :b pωq f̂bpωq, (2.23)

the general coupling Hamiltonian between the system and reservoirs takes the following:

Ĥint “ i
ż 8

´8

dω
a

2g{p2πq
`

f̂apωqeiωt
` f̂ :a pωqe

´iωt˘

ˆ
`

â:eiω0t
´ âe´iω0t˘

` i
ż 8

´8

dω
a

2γ{p2πq
`

f̂bpωqe´iωt
` f̂ :b pωqe

iωt˘

ˆ
`

b̂:eiω0t
´ b̂e´iω0t˘. (2.24)

Applying the rotation wave approximation (RWA) that neglects the fast oscillating terms in the

equation (2.24), the coupling Hamiltonian becomes

Ĥint “ i
a

2gtâ: f̂ :a ptq´ â f̂aptqu

` i
a

2γtb̂: f̂bptq´ b̂ f̂ :b ptqu, (2.25)
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where

f̂aptq “
1
?

2π

ż 8

´8

dω f̂apωqeipω´ω0qt ,

f̂bptq “
1
?

2π

ż 8

´8

dω f̂bpωqe´ipω´ω0qt . (2.26)

The noise operators satisfy

x f̂cptq f̂ :c pt
1
qy “ δ pt´ t 1q (2.27)

for c“ a,b. The other commutation relations become zero. The coupling between the waveguides

is described by

Ĥc “ J
`

â:b̂` âb̂:
˘

. (2.28)

To entangle the light fields, one needs to add a squeezing element into the waveguide system.

The action of the squeezing element with parameter ε “ r exppiθ q is described by the following

Hamiltonian (when it is added into waveguide B):

i
2

”

ε e´iωpt
pb̂:q2´ ε

˚eiωpt
pb̂q2

ı

(2.29)

This Hamiltonian is based on the undepleted pump approximation for a process of second har-

monic generation in a nonlinear crystal with certain symmetry (for example, LiNbO3) [121]. A

similar use of squeezing element was also proposed for engineering the quantum properties of

other systems (see, e.g., [122]). Noting that in the interaction picture

eiĤ0t b̂2e´iĤ0t
“ b̂2e´2iω0t , (2.30)

if we set ωp “ 2ω0, then the total Hamiltonian reads

Ĥ “ J
`

â:b̂` âb̂:
˘

`
i
2

”

εpb̂:q2´ ε
˚
pb̂q2

ı

` i
a

2g
”

â: f̂ :a ptq´ â f̂aptq
ı

` i
a

2γ

”

b̂: f̂bptq´ b̂ f̂ :b ptq
ı

. (2.31)
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The dynamical evolution due to the total Hamiltonian determines all properties of the light fields

propagating in the concerned system. Let define

B̂cptq “
ż t

0
f̂cpτq dτ (2.32)

Then, if we use equation (1.27), i.e.,

dĉptq “ Û:
pt`dtqĉptqÛpt`dtq´ ĉptq

“ i
”

J
`

â:b̂` âb̂:
˘

`
i
2

´

ε pb̂:q2´ ε
˚
pb̂q2

¯

, ĉ
ı

dt

“´
a

2g
”

â:dB̂:a´ âdB̂a, ĉ
ı

´
a

2γ

”

b̂:dB̂b´ b̂dB̂:b, ĉ
ı

`g
`

2âĉâ:´ ĉââ:´ ââ:ĉ
˘

dt` γ
`

2b̂:ĉb̂´ ĉb̂:b̂´ b̂:b̂ĉ
˘

dt,

(2.33)

we obtain a system of linear differential equations for the operators â and b̂ and their Hermitian

conjugates:

d
dt

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

â

â:

b̂

b̂:

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

g 0 ´iJ 0

0 g 0 iJ

´iJ 0 ´γ ε

0 iJ ε˚ ´γ

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

â

â:

b̂

b̂:

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

`

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

?
2g f̂ :a

?
2g f̂a

?
2γ f̂b

?
2γ f̂ :b

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(2.34)

To solve the dynamical equations more efficiently and avoid complex entries in the matrix, it

is convenient to work with the quadratures of the light fields (for c “ a,b) and quantum noises

defined as

q̂c “
1
?

2

`

ĉ` ĉ:
˘

,

p̂c “´
i
?

2

`

ĉ´ ĉ:
˘

,

Q̂c “
1
?

2

´

f̂cptq` f̂ :c ptq
¯

,

P̂c “´
i
?

2

´

f̂cptq´ f̂ :c ptq
¯

.

(2.35)
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Then, we obtain

d
dt

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

q̂a

p̂a

q̂b

p̂b

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

g 0 0 J

0 g ´J 0

0 J ´γ` 1
2

`

ε` ε˚
˘

´ i
2

`

ε´ ε˚
˘

´J 0 ´ i
2

`

ε´ ε˚
˘

´γ´ 1
2

`

ε` ε˚
˘

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

q̂a

p̂a

q̂b

p̂b

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

`

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

?
2g Q̂a

´
?

2g P̂a

?
2γ Q̂b

?
2γ P̂b

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (2.36)

which can be written in a compact form:

d
dt

X̂ptq “MX̂ptq` F̂ptq, (2.37)

where

X̂ptq “
´

q̂aptq, p̂aptq, q̂bptq, p̂bptq
¯T

, (2.38)

F̂ptq “
´

a

2g Q̂aptq,´
a

2g P̂aptq,
a

2γ Q̂bptq,
a

2γ P̂bptq
¯T

, (2.39)

and, for ε “ r exppiθ q,

M “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

g 0 0 J

0 g ´J 0

0 J ´γ` r cosθ ´r sinθ

´J 0 ´r sinθ ´γ´ r cosθ

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(2.40)

is called the dynamic matrix. If we can find X̂ptq, we can quantify the degree of entanglement.

The general form of the solution is

X̂ptq “ eMtX̂p0q`
ż t

0
eMpt´t1qF̂pt 1q dt 1. (2.41)

The eigenvalues of the dynamic matrix do not depend on the phase of the squeezing pa-
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rameter:

λ1 “
1
2

´

g` r´ γ´

b

´4J2`pg´ r` γq2
¯

,

λ2 “
1
2

´

g` r´ γ`

b

´4J2`pg´ r` γq2
¯

,

λ3 “
1
2

´

g´ r´ γ´

b

´4J2`pg` r` γq2
¯

,

λ4 “
1
2

´

g´ r´ γ`

b

´4J2`pg` r` γq2
¯

.

(2.42)

Therefore, we expect the solution is independent of the phase of the squeezing parameter, too.

Since the dynamic matrix is time-independent, we can easily convert the matrix exponential in

equation (2.41) to a matrix and write the general form of the solution as

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

q̂aptq

p̂aptq

q̂bptq

p̂bptq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

q̂ap0q

p̂ap0q

q̂bp0q

p̂bp0q

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

`

ż

t

0

dτ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

s11 s12 s13 s14

s21 s22 s23 s24

s31 s32 s33 s34

s41 s42 s43 s44

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Q̂apτq

P̂apτq

Q̂bpτq

P̂bpτq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.43)

Here ri j is a function of t only, while si j is a function of t and τ . To find ri j and si j, first we

diagonalize the matrix M and then use the fact that if M “UDU´1, then eM “UeDU´1 [123].

We cannot perform the integration in the second line of equation (2.43), because here we

deal with operators, not functions. In other words, it does not make sense to assign a particular

value, say, to Q̂a at t “ 0 or at any other time. What has a physical meaning is the expectation values

of the operators with respect to the proper states. In the current problem, we suppose that the light
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fields are coherent states: |α,β y “ |αyb |β y. The reservoir is in the vacuum state |0,0y. Then,

we can find the expectation values of the operators of equation (2.14). The expectation values of

the homogeneous part are calculated with respect to the input coherent states, while those of the

inhomogeneous part are found with respect to the total reservoir state. As examples, here we have

found

@

α,β
ˇ

ˇq̂ap0q
ˇ

ˇα,β
D

“
1
?

2

`

α`α
˚
˘

,

@

α,β
ˇ

ˇt p̂bp0q, q̂ap0qu
ˇ

ˇα,β
D

“´i
`

α`α
˚
˘`

β ´β
˚
˘

,

@

α,β
ˇ

ˇp̂bp0q2
ˇ

ˇα,β
D

“
1
2

´

1´β
2
`2ββ

˚
´β

˚2
¯

.

(2.44)

where tu stands for anti-commutation. The noise operators satisfy the following relations:

@

0,0
ˇ

ˇQ̂apτqQ̂apτ
1
q
ˇ

ˇ0,0
D

“
1
2

δ pτ´ τ
1
q,

@

0,0
ˇ

ˇP̂apτqP̂apτ
1
q
ˇ

ˇ0,0
D

“
1
2

δ pτ´ τ
1
q,

@

0,0
ˇ

ˇQ̂bpτqQ̂bpτ
1
q
ˇ

ˇ0,0
D

“
1
2

δ pτ´ τ
1
q,

@

0,0
ˇ

ˇP̂bpτqP̂bpτ
1
q
ˇ

ˇ0,0
D

“
1
2

δ pτ´ τ
1
q.

(2.45)

The other commutation relations become zero.

Interestingly, after simplification, we notice that all matrix elements are independent of the

input field intensities, i.e., they are independent of α and β . As examples, here we have found the

general form of two elements of the covariant matrix (CM) defined in equation (2.15):

a11 “ r2
11` r2

12` r2
13` r2

14`

ż t

0

”

s2
11` s2

12` s2
13` s2

14

ı

dτ,

a12 “ r11r21` r12r22` r13r23` r14r24`

ż t

0

”

s11s21` s12s22` s13s23` s14s24

ı

dτ

(2.46)

Thereby, we can find all elements of the covariant matrix. These CM elements can be experimen-

tally measured [124].
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2.5 Evolution of the photon number and the waveguide mode correlation

A main purpose of this chapter is to find out how the quantum noises will affect the entanglement

generated with the setup in Figure 2.1. To see this, one could compare the values of the entan-

glement found as the results of the evolutions according to the Hamiltonian in equations (2.20)

and in (2.31), respectively. As indicated before, the only difference between these two is an extra

quantum noise drive term, F̂ptq, which consists of the components of pure random variables. By

intuition, such random drives from the environment could only modify the dynamics of the system

without changing the evolution patterns of the measurable quantities so much, as it has been found

from the photon number evolutions in a PT -symmetric system without squeezing [42].

A relevant question is whether the added squeezing will make a considerable difference.

To answer the question, we examine how the output light fields’ intensities evolve according to the

full dynamical equation, i.e., (2.41). Previously, the evolved light intensities in a PT -symmetric

system without squeezing have been studied for single photon and vacuum state as inputs [42].

Due to the noise associated with the amplification, the output field intensity is found not to be zero

even when the input field is in a vacuum state. After adding a squeezing element, we find that the

photon numbers can be enhanced further, in addition to the effect of the gain medium at the rate g.

Figure 2.2 shows the photon numbers plotted for a setup with the squeezing element in

the damping waveguide, indicating that the photon numbers will be intensified by increasing the

squeezing parameter r. The phase factor θ in the squeezing parameter has no effect as mentioned

before. The contribution from the homogeneous part in equation (2.41) will become much more

significant with the increase of r. Therefore, the relative difference between the light intensities

obtained by using the Hamiltonians (2.20) and (2.31), respectively, becomes smaller than that in
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Figure 2.2: The light intensity Ia and Ib (proportional to the respective photon numbers) out of the
gain and loss waveguide, represented by red and blue curves, respectively, as compared with the
corresponding quantities Ia,h, and Ib,h calculated without the noise drives (the dashed red and blue
curves). Here the dimensionless time gt is used to indicate how long the light fields evolve in the
waveguides. We set the parameters as θ “ 0, J “ 1.9g, and g“´γ . The squeezing parameter: (a)
r “ 0, (b) r “ 0.5g, (c) r “ g, and (d) r “ 1.5g. The input coherent states are given as α “ β “ 0.6.

the previously studied situation without the squeezing; compare Figure 2.2(a) with Figure 2.2(d).

However, at small values of r, there is a significant difference between the intensities with and

without considering the quantum noise effects. As is seen from Figures 2.2(a)–2.2(d), the corre-

sponding photon numbers are indeed enhanced by the amplification noise. Similar to the situation

of a simple PT -symmetric system without squeezing [42], one sees that the quantum noises sim-

ply modify the output light intensity quantitatively, but their evolution patterns remain unchanged.
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Figure 2.3: The correlation function |xâ:b̂y´ xâ:yxb̂y| calculated with J “ 1.9g. We set g “ ´γ

and θ “ 0. Three different values of squeezing, r “ 0 (blue), r “ g (green), and r “ 1.5g (red),
are considered for the squeezing element in the damping waveguide. The input coherent states
are given as α “ β “ 0.6. Panel (a) shows the mode correlation without considering the quantum
noise effect, and panel (b) demonstrates the mode correlation under the full dynamics.

As another example, we look at a nonlocal quantity, the correlation function defined as

|xâ:b̂y´ xâ:yxb̂y|, assuming that the squeezing element is inside the damping waveguide. Appar-

ently, such a correlation function, which evolves with time, might be similar to the entanglement of

the light fields. Figure 2.3 illustrates the evolution of such a correlation function for three different

values of the squeezing parameter. Panel (a) shows the mode correlation without considering the

quantum noise effect, and panel (b) demonstrates the mode correlation under the full dynamics.

As expected, the correlation becomes stronger with a larger squeezing parameter r. One also sees

that the inclusion of quantum noise drive only slightly modifies the amplitude of the correlation

without changing the time evolution pattern. In particular, it is interesting that by including the

noise drives sometimes one can have a stronger correlation. Then it is natural for one to consider

whether this phenomenon reflects a similar pattern for the corresponding entanglement between

the output light fields.
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2.6 Entanglement of output fields

By the elements used in Figure 2.1, it seems that highly entangled intense light fields is possi-

ble as the light fields keep amplified in the PT -symmetric broken regime. The degrees of the

entanglement of Gaussian states can be measured by the logarithmic negativity, equation (2.19):

EN “maxr0,´ ln2ηs

Assuming the input light fields as coherent states, one finds an important property of such entan-

glement measured by equation (2.19). Referring to equation (2.14), one sees that the first term

depends on the mode operators as well as the noise drives, whereas the second term only depends

on the mode operators (the expectation values of the noise operators in it are zero). After sub-

tracting the latter from the former, the CM elements become irrelevant to the intensity of the input

fields. Consequently, the intensity of the input coherent states will be irrelevant to the generated

entanglement, the degree of which is mainly influenced by the noise drives leading to the inhomo-

geneous part in equation (2.41).

In what follows, we will examine the output entanglement with three different configura-

tions: the squeezing element in the damping waveguide, in the amplification waveguide, and in

both waveguides.

2.6.1 Squeezing element in the damping waveguide

The first configuration we study is a coupled gain-loss waveguide system with an added squeezing

element to the damping waveguide as shown in Figure 2.1. In our calculations, we fix the phase

factor θ because its variation does not affect the results. The output fields will become strongly

entangled without adding the noise drive term F̂ptq that gives the inhomogeneous part in equa-
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Figure 2.4: Distribution of the entanglement (in terms of EN) without (with) involving the quantum
noises when a squeezing element is added into the damping waveguide is shown in panels (a) and
(c) [(b) and (d)]. We set θ “ 0 and compare the entanglement at Jt “ 1. For panels (a) and (b) we
take γ{J “ 0.6 and for panels (c) and (d) we choose γ{J “ 0.1.

tion (2.41). Figures 2.4(a) and 2.4(c) show that the degree of entanglement simply increases as

r{J . Highly entangled fields with huge photon number are thus seemingly possible by choosing

the proper system parameters. One should notice that the distributions of entanglement in Fig-

ures 2.4(a) and 2.4(c) are qualitatively the same for different damping rates, but the degrees of

entanglement differ quantitatively.
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The inclusion of the quantum noises associated with the amplification and dissipation will

totally change the aforementioned scenario. Now one will find that the entanglement vanishes

throughout the time except when g{J is very small. Without loss of generality, we demonstrate the

realistic entanglement distribution at a particular time as in Figures 2.4(b) and 2.4(d) (two different

values of the damping rate γ{J are also considered). The interplay of the quantum noises with the

squeezing element under the full dynamics causes such distinct entanglement distributions from

the corresponding ones without considering the noises. In contrast to the previous situation, here

the distribution of the nonzero entanglement changes qualitatively with the damping rates γ{J and

the degree of entanglement changes quantitatively as well, so that the lower loss rate yields the

higher entanglement.

To illustrate the effects of the quantum noises more clearly, we extend the range of g{J to

the negative values in Figure 2.5, so that the obtained entanglement distributions also cover the

situation when both waveguides contain dissipation medium. In Figure 2.5(a), where the quantum

noises are not included, the values of EN distribute continuously from the positive to the neg-

ative range of g{J . The corresponding entanglement is shown to grow with the damping rate

γ{J “ ´g{J, but that is impossible to occur. Such an unphysical result constitutes an evidence

that quantum noises are indispensable in the study of entanglement. On the contrary, the realistic

entanglement obtained under the noise effects in Figure 2.5(b) takes a discontinuous transition on

the boundary g{J “ 0 because the dynamics of system changes across the boundary. In this situ-

ation, the higher loss rate in the range of negative g{J results in the lower entanglement that is a

physically reasonable result.

The noises associated with the amplification and dissipation act simultaneously with the

squeezing that entangles the light fields, and their effects dominate over the latter when g{J and
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Figure 2.5: Distribution of the entanglement (in terms of EN) for the setup of Figure 2.1. The neg-
ative values of g{J represent a situation where both waveguides are filled with damping medium.
The quantum noises are neglected in panel (a) but are included in panel (b). The system parameters
are the same as those in Figure 2.4. In panel (b), the value of EN is discontinuous at g{J “ 0 be-
cause for g{J ą 0 the amplification and dissipation noises act, but for g{J ă 0 only the dissipation
noise acts in both waveguides.

γ{J become large. The different components in the noise drive vector contribute to the evolved

modes via the respective elements in the dynamic matrix M. If the gain and loss are balanced, the

impact of the amplification noise and the dissipation noise will be equal provided no squeezing

element is added to the system (one can see that from the relevant elements of the dynamic matrix

M). However, a squeezing element can interplay with the relevant noises, and if it is placed in the

damping waveguide, the influence of the dissipation noise will be enhanced. Mathematically, such

interplay has more contribution from the dissipation noise operator f̂bptq, which is inside the drive

terms in equation (2.41), to the CM elements. This also explains the fact that the entanglement is

less influenced under the lower loss rate γ{J since the intensity of the dissipation noise [decided

by
?

γ in equation (2.31)] becomes lower. On the other hand, regardless of how small the damping
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rate is, the entanglement will vanish quickly at a high gain rate even if the squeezing is large

because the high gain rate leads to a significant effect of amplification noise, which can erase the

entanglement.

Meanwhile, by comparing Figures 2.3 with 2.4, one concludes that the existence of cor-

relations between the two system modes does not guarantee their entanglement. The correlation

under the full dynamics can be even stronger than the corresponding one without considering the

noises, but the noises weaken the entanglement and, under some circumstances, they will erase

the entanglement completely. The entanglement has to be determined by the relations between the

CM elements involving the light field correlations, and hence its existence is much more restricted.

2.6.2 Squeezing element in the amplifying waveguide

If the squeezing element is inserted into the amplifying waveguide, the dynamic matrix will change

to

M “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

g` r cosθ r sinθ 0 J

r sinθ g´ r cosθ ´J 0

0 J ´γ 0

´J 0 0 ´γ

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.47)

The dynamical evolutions of thewaveguide modes, as given by equation (2.41), will be changed

accordingly. In what follows, we will examine how the entanglement between the two waveg-

uide modes will change as the location of the squeezing element is swapped to the amplifying

waveguide.

In Figure 2.6(a), we illustrate the numerically simulated entanglement evolutions in the

absence of the quantum noise effects. One sees that the entanglement will monotonically grow

to high degrees with time. This is, however, not true in reality since the quantum noise must be
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Figure 2.6: Time evolution of the entanglement due to a squeezing element in the amplifying
waveguide. Here g{J “ 0.6, γ{J “ 0.6, and θ “ 0. The red (upper), green (middle), and blue
(lower) curves are associated with r{J “ 2, r{J “ 1.7, and r{J “ 1.4, respectively. Panel (a)
shows the entanglement evolutions found with the non-Hermitian Hamiltonian in equation (2.20)
(i.e.,without involving the quantum noise effects), together with the squeezing action. Panel (b)
demonstrates the entaglement under the full dynamics. The entanglement grow in the absence of
quantum noise, but it decays to zero by involving the noise effects.

considered in a real process. Figure 2.6(b), including the quantum noise effects, shows that the

entanglement will be finally erased, so there is an optimum evolution time to obtain maximum

entanglement (or, an optimum length for the waveguide). The degrees of the achieved entangle-

ment is nonetheless higher than the situation of placing the squeezing into the damping waveguide,

those illustrated in Figures 2.4(b) and 2.4(d). Moreover, the nonzero entanglement can exist in the

broader range of the parameter space; compare Figure 2.7(b) with Figure 2.4(b).

In this configuration, the squeezing enhances the effect of the amplification noise, but the

effect of the noise accompanying the light field dissipation is kept almost invariant. One can

confirm this fact from Figures 2.7(b) and 2.7(d). In Figure 2.7(d), the loss rate is reduced by 6 times

to have the dissipation noise weakened accordingly. However, neither the degree of entanglement

nor the range of nonzero EN is obviously changed. This is in contrast to a considerable change
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from Figure 2.4(b) to 2.4(d). Such difference also implies that, given a gain rate g{J that is not

very large, the dissipation noise is more detrimental to the concerned entanglement.

An important feature that should be illustrated with the time evolutions is that the entangle-

ment evolved under the full dynamics undergoes the entanglement sudden death (ESD) [117]; see

Figure 2.6(b). Beyond the moments of ESD when it disappears, the entanglement will stay zero

forever (for bipartite entanglement of Gaussian states, the logarithmic negativity is a well-defined

quantity). By the scenario in Figure 2.6, one concludes that the quantum noises control the actual

time evolution pattern of the entanglement.

2.6.3 Squeezing elements in both waveguides

Next, we consider the setup with the squeezing elements added into both waveguides. In this

situation, the dynamic matrix of the system becomes

M “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

g` r cosθ r sinθ 0 J

r sinθ g´ r cosθ ´J 0

0 J ´γ` r cosθ r sinθ

´J 0 r sinθ ´γ´ r cosθ

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.48)

Under the condition g“´γ , the system exhibits a PT symmetry like the Hamiltonian in equation

(2.20). In this configuration, the degree of entanglement will be even higher than those of the two

previous configurations if the quantum noises are absent; see Figures 2.8(a) and 2.8(c). It is within

the expectation since the squeezing elements act in both waveguides. Also, in the presence of the

quantum noises, the degree of the entanglement is higher than those in the two other configurations

as demonstrated in Figures 2.8(b) and 2.8(d). Moreover, the range of nonzero EN becomes broader

as compared to Figures 2.4(b) and 2.4(d). Now both the amplification noise and the dissipation
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Figure 2.7: Panels (a) and (c): the entanglement distribution (in terms of EN) from a squeezing
element in the amplifying waveguide without involving the noise effects. Panels (b) and (d): the
corresponding entanglement distribution including the quantum noise effects. Here we choose
θ “ 0 and Jt “ 1. In panels (a) and (b) we set γ{J “ 0.6, and in panels (c) and (d) we have
γ{J “ 0.1.

noise are relevant to the evolved entanglement as their effects are enhanced by the squeezing ele-

ments in both waveguides. A consequence is that the generated entanglement is dependent on the

loss rate γ{J as well as on the gain rate g{J . In spite of such enhanced noise effects, the stronger

squeezing effect from doubled elements can overcome their influence to create a higher entangle-
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Figure 2.8: Distribution of entanglement (in terms of EN) generated by placing identical squeezing
elements into both waveguides. We set θ “ 0, and Jt “ 1. In panels (a) and (c), the entanglement
values are calculated without considering quantum noises, and in panels (b) and (d), the entangle-
ment values are found under the full dynamics. In panels (a) and (b), we set γ{J “ 0.6, and in
panels (c) and (d), we set γ{J “ 0.1.

ment of the light fields. The time evolutions of the entanglement are similar to those in Figure 6

and will not be explicitly shown again.
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2.6.4 Summary and conclusion

We have studied how quantum noises influence the CV entanglement generated by a hybrid PT -

symmetric setup. By intuition, the existing quantum noises associated with amplification and dis-

sipation would only modify the entanglement generated by the system slightly. Then, according

to the prediction by the non-Hermitian Hamiltonian in equation (2.20), highly entangled, high-

intensity light fields can be readily created by such a setup, especially by the system operating in

the PT -symmetry broken regime (g{J ą 1) where the light fields can simultaneously be ampli-

fied and entangled. However, the quantum noises can completely erase the entanglement, rendering

its evolution totally different from those of photon numbers and field-mode correlations. The re-

sults obtained by the full dynamics indicate that certain amounts of the entanglement can still be

achieved, though they are weaker than those predicted without considering the quantum noises. In

particular, placing the squeezing element inside the waveguide amplifying the propagating light

field enables one to realize light fields with considerable CV entanglement, given the gain rate g{J

that is not too large. The possible experimental realization of such systems relies on finding a ma-

terial or a method to purely amplify and squeeze the input light simultaneously. The importance of

studying this model setup is to clarify that quantum noises must be considered in PT -symmetric

optical systems for engineering the quantum properties of light fields. Also, we should emphasize

that in this setup we assumed that the gain rate in constant. In the next chapter, we will see if we

consider the nonlinear gain saturation effect, the time evolution pattern of entanglement radically

changes.
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3 Effects of gain saturation on the quantum properties of light in the non-Hermitian

gain-loss coupler

3.1 Introduction

As we discussed in the previous chapters, non-Hermitian optical systems have unique properties

and many applications in communication, computing, biochemistry, and environmental sensing.

The most influential parameters of these systems are the gain and loss rates. Peculiar features that

are either difficult or impossible to be implemented by Hermitian optical systems exist in the non-

Hermitian entities given various combinations of their gains and losses. For the ideal models, the

gain and loss coefficients do not depend on the intensity of the light propagating in the systems.

However, in almost all amplifying media, optical gain is a function of the field intensity, so that the

intensity of the propagating beam does not increase forever. When the intensity of light reaches

a steady state, the gain reduces to its “saturated” value. Although the saturation effect has been

examined in some classical non-Hermitian optical systems [25, 125, 126, 127, 128, 129, 130, 131],

the dynamical nature of gain saturation in the quantum regimes has remained mostly unexplored

[132]. Notably, since the variation of gain coefficient affects the quantum noise associated with

the amplification, one expects that the saturation of gain can significantly influences the quantum-

noise-sensitive properties of light such as entanglement.

So far, the majority of non-Hermitian optical systems are studied under the assumption

that the light is a classical electromagnetic field, and the gain and loss coefficients are intensity-

independent (non-saturable), and the quantum noises due to amplification and dissipation are neg-

ligible. In this chapter, we dispense with these assumptions by adopting a full quantum dynamical
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Figure 3.1: The light intensity Ia and Ib (proportional to the respective photon numbers) out of the
gain and loss waveguide, represented by red and blue curves, respectively, as compared with the
corresponding quantities Ia,h, and Ib,h calculated without the noise drives (the dashed red and blue
curves). Here the dimensionless time gt is used to indicate how long the light fields evolve in the
waveguides. We set the parameters as θ “ 0, J “ 1.9g, and g“´γ . The squeezing parameter: (a)
r “ 0, (b) r “ 0.5g, (c) r “ g, and (d) r “ 1.5g. The input coherent states are given as α “ β “ 0.6.

picture, examining the gain saturation effect in the coupled gain-loss waveguide system discussed

in the previous chapter, and considering the inevitable quantum noise effect (see Figure 3.1). We

suppose that the gain medium is saturable, but the loss medium is with a constant damping rate.

Moreover, this time there is no squeezing element inside the waveguides, but the input light fields

can be in squeezed states. As examples, we show that the gain saturation effect alters the time

evolution pattern of the Wigner function and the entanglement of the output fields. In contrast to
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a constant gain coefficient that often leads to a non-steady state situation, gain saturation generally

prompts a “quasi-steady” state of the Wigner function and the entanglement of the light fields. No-

tably, in some circumstances, an ideal constant gain rate leads to “entanglement sudden death”, but

the gain saturation introduces a steady entangled state of the light field by reducing the detrimental

quantum noise effect.

3.2 Theoretical Model

The non-Hermitian system of coupled, single-mode waveguides is depicted in Figure 3.1. Waveg-

uide A carries a saturable gain medium with a gain coefficient gptq, and waveguide B is a non-

saturable loss medium with a coefficient γ . Like the previous chapter, we denote the light field

operator propagating in waveguide ApBq by âpb̂q, which shares the same frequency ω0. The waveg-

uides are coupled via evanescent waves so that the coupling strength J can be adjusted by the gap

between them.

The non-Hermitian “effective Hamiltonian” (h̄“ 1) for this system reads:

Ĥeff “ igptqâ:â´ iγ b̂:b̂` Jpâb̂:` â:b̂q, (3.1)

which is similar to equation (2.20), except that here gptq is a function of time. The first two

terms describe the amplification and dissipation of light in waveguides A and B, and the third

term characterizes the coupling between the waveguides. Since equation (3.1) does not explicitly

include the quantum noise effect, the quantum correlation functions obtained by this mean-field

approach deviate from the real correlation functions.

As our purpose is to examine the dynamical behavior of quantum features of light, again

we adopt the stochastic Schrödinger equation that takes the noise terms into account [47]. The
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total Hamiltonian includes the system, the reservoir, and the system-reservoir interaction. Similar

to chapter 2, using the rotating-wave approximation with smooth system-reservoir coupling and

after applying the Markovian approximation, the total Hamiltonian in the interaction picture is

Ĥ “ J
`

â:b̂` âb̂:
˘

` i
a

2gptq
”

f̂ :a ptqâ
:
´ f̂aptqâ

ı

` i
a

2γ

”

f̂bptqb̂:´ f̂ :b ptqb̂
ı

. (3.2)

Note that the relevant terms to the amplification and dissipation noises are defined such that

r f̂cptq, f̂c
:
pt 1qs “ δ pt´ t 1q. The corresponding equations of motion are

dâ
dt
“ gptqâ´ iJb̂`

a

2g f̂ :a ptq,

db̂
dt
“´iJâ´ γ b̂`

a

2γ f̂bptq,

(3.3)

where gptq depends on the intensity of the light field propagating in waveguide A.

An example of the gain medium is an erbium-doped amplifier [120], as an ensemble of

two-level atoms. If a pump laser excites the erbium ions into the higher level so that the popula-

tion difference between the upper and lower level is positive, an optical signal propagating in this

medium will be amplified exponentially. The amplification is due to the stimulated emission of

photons from dopant ions. The excited ions can also decay via spontaneous emission or nonradia-

tive processes that reduce the efficiency of light amplification [133].

If the length of the medium is long enough or the doping level is high enough, the light

eventually reaches an intensity at a certain specific length such that the energy stored in the upper

level is not sufficient to satisfy the exponential growth condition. In other words, when the signal

intensity increases to a certain value Isat, the population difference between the upper and lower

levels and hence the gain coefficient decreases. This phenomenon is called gain saturation, with

Isat being the saturation intensity at the center frequency of the optical beam. The gain coefficient
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as a function of time (or, as a function of saturation intensity) is

gptq “ g0{p1` Iaptq{Isatq, (3.4)

where g0 and Iaptq are the small-signal gain and the intensity of light in waveguide A at time t,

respectively. In equation (3.4), the saturation intensity is defined such that the stimulated rate

downward equals the normal radiative decay of the upper level. For simplicity, we will use the

dimensionless saturation intensity as defined in [25]. Physically, the energy difference between the

upper and lower levels, the stimulated cross-section, and the lifetime of the upper level determine

the saturation intensity [133].

We will study the effect of such gain saturation on quantum properties of light fields through

the examples of the Wigner function of light fields in the gain-loss coupler and the time evolution

of the entanglement of the fields. In both cases, we assume that the input to the waveguides is a

single-mode squeezed vacuum state, |zy “ Spzq|0y, where Spzq “ exp
`1

2zpĉ:q2´ 1
2z˚ĉ2

˘

for ĉ“ â, b̂.

The squeezing parameter is defined as z“ r exppiθ q.

To obtain the results, in all subsequent sections we normalize the equation (3.3). Let define

the new dimensionless variables g{J ” G, γ{J ” Γ, and Jt ” τ . Also,

G“
G0

1` Ia{Isat
. (3.5)

Thus,

d
dτ

¨

˚

˚

˝

â

b̂

˛

‹

‹

‚

“

¨

˚

˚

˝

G ´i

´i ´Γ

˛

‹

‹

‚

¨

˚

˚

˝

â

b̂

˛

‹

‹

‚

`
1
?

J

¨

˚

˚

˝

?
2G f̂ :a ptq

?
2Γ f̂bptq

˛

‹

‹

‚

. (3.6)

The noise operators are still a function of t. We know that

x f̂apτ{Jq f̂ :a pτ
1
{Jqy “ Jδ pτ´ τ

1
q. (3.7)
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So, we can change the second part as

1
?

J
ξ̂
:
a pτ{Jq Ñ ξ̂

:
a pτq,

and finally obtain

d
dτ

¨

˚

˚

˝

â

b̂

˛

‹

‹

‚

“

¨

˚

˚

˝

G ´i

´i ´Γ

˛

‹

‹

‚

¨

˚

˚

˝

â

b̂

˛

‹

‹

‚

`

¨

˚

˚

˝

?
2G ξ̂

:
a pτq

?
2Γ ξ̂bpτq

˛

‹

‹

‚

. (3.8)

Now everything is expressed versus normalized variables. If we define

M“

¨

˚

˚

˝

G ´i

´i ´Γ

˛

‹

‹

‚

, (3.9)

ĉpτq “
`

âpτq, b̂pτq
˘T

, (3.10)

and

n̂pτq “
`
?

2G ξ̂
:
a pτq,

?
2Γ ξ̂bpτq

˘T
, (3.11)

then the solution is

ĉpτq “ T̂ exp
”

ż

τ

0
Mpsq ds

ı

ĉp0q

`

ż

τ

0
ds T̂ exp

”

ż

τ

s
Mps1q ds1

ı

n̂psq “ ĉhpτq` ĉinpτq. (3.12)

where ĉhpτq and ĉinpτq are the homogeneous and inhomogeneous solutions, respectively. One can
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write the solution as
¨

˚

˚

˝

âpτq

b̂pτq

˛

‹

‹

‚

“

¨

˚

˚

˝

r11pτq r12pτq

r21pτq r22pτq

˛

‹

‹

‚

¨

˚

˚

˝

âp0q

b̂p0q

˛

‹

‹

‚

`

ż

τ

0
ds

¨

˚

˚

˝

r11pτ,sq r12pτ,sq

r21pτ,sq r22pτ,sq

˛

‹

‹

‚

¨

˚

˚

˝

?
2G f̂ :a pτq

?
2Γ f̂bpτq

˛

‹

‹

‚

, (3.13)

where

T̂ exp
”

ż

τ

0
Mpsq ds

ı

”

¨

˚

˚

˝

r11pτq r12pτq

r21pτq r22pτq

˛

‹

‹

‚

(3.14)

and

T̂ exp
”

ż

τ

s
Mps1q ds1

ı

”

¨

˚

˚

˝

r11pτ,sq r12pτ,sq

r21pτ,sq r22pτ,sq

˛

‹

‹

‚

. (3.15)

Since G varies with time, we cannot simply convert the matrix exponential in equation (3.12) as

we did in chapter 2. We need to find the intensity in order to solve the equation numerically.

Noting that only x f̂ipsq f̂ :i ps
1qy “ δ ps´ s1q and the other commutation relations are zero, and that

|Ψpτqy “ |z,zyb |0,0y and |zy “ Ŝpzq|0y, the intensity in the amplifying channel is

Iapτq “ xâ:pτqâpτqy

“ r˚11pτqr11pτqxâ:p0qâp0qy` r˚11pτqr12pτqxâ:p0qb̂p0qy

` r˚12pτqr11pτqxb̂:p0qâp0qy` r˚12pτqr12pτqxb̂:p0qb̂p0qy

`2G
ż

τ

0
ds
ż

τ

0
ds1 r˚11pτ,sqr11pτ,s1qx f̂apsq f̂ :a ps

1
qy

“
`

r11pτqr˚11pτq` r˚12pτqr12pτq
˘

sinh2 r

`2G
ż

τ

0
ds r˚11pτ,sqr11pτ,sq. (3.16)
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At t “ 0, we have Iap0q “ sinh2 r, and hence

G“
G0

1`psinh2 rq{Isat
. (3.17)

Our algorithm to solve equation (3.12) is as follows: at τ “ 0 we substitute equation (3.17) into

equation (3.9). Then we solve the system of equations assuming that the gain is constant, and

thereby find ri, jpτ,sq. Afterward, we substitute these coefficients into equation (3.16) and find the

new intensity. Substitute the new Ia in the dynamic matrix and repeat the same procedure until

Ia “ Isat , for which G “ G0{2. Having ri jpτiq, where i “ 0 : 0.00001 : final time, in hand, we can

find all favorite quantities such as the entanglement of the output fields or the Wigner function (see

the next sections).

3.3 The time evolution of Wigner function

In quantum mechanics, a pure (mixed) microscopic system is described by a state vector (density

matrix). In addition to these abstract objects, there are some representations in phase space, called

distribution functions, that directly introduce the properties of a quantum state. These distribution

functions are of interest because the extension of the quantum theory of radiation involves the non-

quantum stochastic effects such as thermal fluctuations. Moreover, using the methods of classical

statistical physics, one can calculate such distributions elucidate the interface between classical

and quantum physics such that quantities of interest in a quantum-mechanical problem [134]. This

quantum-classical correspondence is particularly appealing for partial differential equations like

the master equation. Furthermore, in quantum optics, often the radiation fields are nearly classical

but still have important quantum features [135]. The essentially quantum mechanical nature of the

problem is present in terms of the interpretation of apparently classical variables [47].
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One should note that the commutation relation between the position and momentum oper-

ators, rx̂, p̂s “ i, imposes some limitations on the phase space description. For example, while in

classical mechanics it is possible to show a point in phase space with a well-defined position and

momentum, the commutation relation does not allow to define a genuine phase-space distribution.

Nonetheless, we can define an object like the Wigner function that depends on the eigenvalues of

the position as well as the momentum operator [136]. One can use the Wigner function to calculate

a class of quantum mechanical averages in the same manner as the classical phase-space distribu-

tion function is used to calculate classical averages provided the operator is Weyl, or symmetrically,

ordered in terms of creation and annihilation operators [136].

The Wigner function facilitates the visualization and tomographic reconstruction of quan-

tum states. It has a lot of applications in optics and signal processing [137, 138] as well as quantum

computing [139, 140, 141]. The Wigner function of a quantum state described by a density opera-

tor ρ̂ is defined as [136]:

W px, pq ”
1

2π

ż 8

´8

dξ expp´ipξ q

A

x`
1
2

ξ |ρ̂ |x´
1
2

ξ

E

, (3.18)

where |x´ 1
2ξ y is the eigenket of position operator. Moreover,

ş8

´8
dξ

ş8

´8
d pW px, pq “ 1. In

contrast to classical distribution functions that only accept positive values, the Wigner function can

also take negative values, which is a signature of nonclassical states (because of possible negative

values, the Wigner function is called “quasi-distribution”). However, the positivity of the Wigner

function does not necessarily imply that the state is classical. For example, the squeezed states

have a positive Wigner function, though they are nonclassical [86].

Since the Wigner function provides information about the system, it is interesting to know

how it evolves with time. In open systems like that depicted in Figure 3.1, the time evolution is
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Figure 3.2: The projection of the scaled Wigner function of the coupled gain-loss waveguides
on pQB,PBq plane. The top row (a1 to a4) shows the time evolution of the Wigner function in
the unsaturated case at times Jt “ 2,4,6, and 8, respectively. We have assumed the squeezing
parameters of both input signals to be equal: r1 “ r2 “ 0.8 and θ1 “ θ2 “ 0. Also, g̃{J “ 0.5 and
γ{J “ 0.3. The bottom row (b1 to b4) demonstrates the time evolution in the saturated case at the
same time intervals. All parameters, except the gain, are equal to those in the unsaturated case.
Here, in the normalized version of equation (3.4), g0{J “ 4.5, Isat“ 0.1, and IapJtq “ xâ:pJtqâpJtqy.

affected by the quantum noise and the amplification (dissipation) process. In particular, one may

ask how the gain saturation affects the dynamical behavior of the Wigner function. We address this

question by comparing the time evolution of the Wigner function in the unsaturated and saturated

cases. We will also show the interplay between the quantum noise and the amplification results in

a quasi-steady state of the Wigner function.

The Wigner functions of fields in the coupled gain-loss waveguides have some special

features. If the gain rate is fixed, the quantum states of the fields inside the system keep to be

Gaussian, which takes the form [142]

W pXq “
exp

”

´ 1
2XV XT

ı

π
a

detrV s
, (3.19)
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because the inputs to waveguides A and B are squeezed vacuum states. In this equation, X ”

pQA,PA;QB,PBq, and the parameters inside the parenthesis are quadratures of the fields defined as

Q̂m “
1
?

2

`

ĉ` ĉ:
˘

, P̂m “´
i
?

2

`

ĉ´ ĉ:
˘

, (3.20)

where m stands for A and B and c “ a,b. The 4ˆ4 matrix V in equation (3.19) is the covariance

matrix (CM) [83] we defined in equation (2.15):

V “

¨

˚

˚

˝

A C

CT B

˛

‹

‹

‚

, (3.21)

whose entries are

Vi j “
1
2
xX̂iX̂ j` X̂ jX̂iy´xX̂iyxX̂ jy. (3.22)

Here we assume that the input to the waveguides is a single-mode squeezed vacuum state,

|zy “ Spzq|0y. One should note that the quadratures involved in equation (3.19) include two parts:

contribution of the input that is going to be amplified or dissipated (the homogeneous part of

equation (3.3)) and the contribution of the quantum noises (the non-homogeneous part of equation

(3.3)). Therefore, the gain saturation can directly affect both parts. Particularly, it alters the time

evolution due to the noise terms, which is proportional to the square root of the gain coefficient.

The first and second rows of Figure 3.2 show two examples of time evolutions of the Wigner

function in the unsaturated and saturated cases, respectively. We assume that, in the top row, the

gain coefficient is larger than the loss coefficient. In the unsaturated case, the gain coefficient is

constant but, in the saturated case, an effectively time-dependent factor gptq gives a different evolu-

tion pattern. Under the gain saturation, the gain coefficient becomes lower than the loss coefficient,

regardless of whether it is initially higher than the loss coefficient. As Figures 3.2(a1)-(a4) show,

the non-zero domain of the Wigner function expands with time, but its peak value substantially de-

creases. On the other hand, neither the domain nor the peak value of the Wigner function changes
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remarkably with time in the saturated case (Figures 3.2(b1)-(b4)). In other words, the Wigner

function evolves into a quasi-steady state. Since the gain coefficient decreases considerably upon

the saturation, the quantum noise effect also diminishes on the way to evolve into the quasi-steady

state. One should note that the magnitudes and shapes of the Wigner functions are different due

to the absence or the presence of the gain saturation. For example, the Wigner function profile in

Figure 3.2(a4) is circular, but in Figure 3.2(b4) it becomes elliptical. Moreover, in the unsaturated

case, the Wigner function profile keeps switching between circular and elliptical profiles (Gaus-

sian and non-Gaussian functions) for long times, whereas in the saturated case the profile becomes

almost circular after a short time and remains circular.

3.4 The effect of gain saturation of entanglement

3.4.1 Time evolution of entanglement

In the previous chapter, we showed that the coupled gain-loss waveguide system can be a platform

for generating continuous-variable entangled output fields [143]. However, amplifiers add quantum

noises to the optical fields, and the noise is especially significant in the amplification of fields

with low photon numbers. Even if the input is shot-noise-limited, the output remains noisy [86].

Meanwhile, one should understand that the quantum noise associated with amplification is more

detrimental to entanglement because in the amplification process more photons are added to the

optical field, while in the dissipation process, a portion of the photons disappears via absorption.

Mathematically, one can confirm the dominant role of the amplification noise by the fact that

in the calculation of xâ:ây the noise terms associated with the dissipation vanish because of the

commutation relations.

Moreover, the eigenvalues of such a non-Hermitian system are in general complex, and
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Figure 3.3: The time evolutions of the logarithmic negativity, EN , in the unsaturated (thin, blue
curves) and saturated (thick, red curves) cases. In all figures we assume that r1 “ r2 “ 0.3 and
θ1 “ θ2 “ π{4. Moreover, we assume that the constant gain coefficient, g̃, in each case is equal to
the initial value of gptq “ g0{p1` Iaptq{Isat. The other parameters are (a) gp0q{J “ 0.3, g0{J “ 0.8,
γ{J “ 0.3; (b) gp0q{J “ 0.3, g0{J “ 0.8, γ{J “ 1.3; (c) gp0q{J “ 0.7, g0{J “ 2, γ{J “ 0.5; (d)
gp0q{J “ 0.7, g0{J “ 2, γ{J “ 1.5; (e) gp0q{J “ 1.25, g0{J “ 1.5, γ{J “ 0.8; (f) gp0q{J “ 1.25,
g0{J“ 1.5, γ{J“ 1.8. The saturation intensity, Isat, in panels (a-d) is 0.05. In panels (e-f), Isat“ 0.5.

the eigenvectors are nonorthogonal [144]. The main consequence of non-orthogonality of the

eigenvectors is that, when random forces due to coupling to the reservoir drive the system, then the

noise introduced to the system can be stronger than that in the systems with orthogonal eigenvectors

[145]. If the quantum noise is intense, it degenerates a nonclassical light field into a classical

one. Therefore, one may expect that noise-sensitive quantities such as entanglement deteriorate

significantly in non-Hermitian systems. Knowing that the saturation of gain reduces the quantum

noise strength, one may ask how the gain saturation impacts the nonclassical features of light fields

such as entanglement. In particular, one could ask if the saturation effect can reduce the quantum

noise to a level that the entanglement sudden death is avoided.

Regarding the above points, we show below that the saturation effect can thoroughly al-
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ter the time evolution of entanglement. Under some special circumstances, the saturation of gain

significantly reduces the quantum noise so that the entanglement of output fields can be well pre-

served. Like the previous chapter, to quantify the degree of entanglement of a field in Gaussian

state, we use the logarithmic negativity (2.19):

EN “maxr0,´ ln2ηs,

In Figure 3.3, we present the numerically calculated time evolutions for some examples of field

entanglement, comparing the evolved EN in the unsaturated case (denoted by a thin, blue curve)

to that of the saturated case (shown by a thick, red curve). The gain coefficient in the unsaturated

case, g̃, keeps being equal to gp0q. Since the input fields are in squeezed vacuum states, in all cases

we have chosen small saturation intensities to demonstrate the difference between the unsaturated

and saturated cases better. If we assume other inputs like squeezed coherent states, larger satura-

tion intensities yield the same time evolution patterns. In Figure 3.3(a) we impose the conditions

g̃« γ and g̃`γ ă 2J. One should note that the eigenvalues of equation (3.3) in the unsaturated case

are 1{2rg̃` γ˘
a

pg̃` γq2´4J2s, so that the exponential factors involved in the solution are pure

imaginary. In the saturated case, the exponentials are complex because of gptq ă γ . Moreover, in

both cases, we expect to observe oscillations in EN due to the imaginary parts of the exponentials.

Figure 3.3(a) shows that the output field remains entangled within a finite time range in the unsat-

urated case. It reaches a maximum value, which depends on the coupling of the waveguides and

the squeezing parameters of the input fields. In the beginning, the two fields are independent, but

as they propagate, the optical field of waveguide A (B) penetrates the other waveguide, and thus

they become entangled. However, due to the domination of quantum noise, EN vanishes then. This

phenomenon is entanglement sudden death as discussed in the previous chapter. In the saturated
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case, however, EN reaches a quasi-steady state after a short time. Also, the oscillatory behavior of

EN is consistent with the expectation. Nevertheless, the oscillations are tiny at long times because

the intensity of the field propagating in waveguide A has approached its steady state, and it reaches

a constant value since the gain coefficient depends on the intensity. Consequently, the strength of

quantum noise substantially decreases so that EN comes to a quasi-steady state.

Without changing g̃, we increase γ in Figure 3.3(b) such that g̃ă γ , but still keep the relation

g̃` γ ă 2J. In contrast to Figure 3.3(a) where gptq{γ ă 1 after a short time, this ratio is always less

than one in Figure 3.3(b). Since the gain is substantially smaller than loss (in this case, roughly

four times), the quantum noise associated with the amplification is not strong enough to erase the

entanglement. Therefore, after a long time, a steady state of entanglement is achieved. Here the

saturation effect does not change the evolution pattern substantially. The only difference between

the unsaturated and saturated cases is that, in the saturated case, EN in the steady state is higher

than that of the unsaturated case because the gain saturation reduces the quantum noise effect.

In Figure 3.3(c), there is the relation g̃ ą γ but one still keeps g̃` γ ă 2J. Since the gain

is higher than the loss in the unsaturated case, we expect that the entanglement vanishes after a

finite time. On the other hand, the saturation effect decreases the gain to a value much smaller than

the loss, and hence the associated quantum noise is not dominant. Therefore, the entanglement

measure EN again approaches a steady state.

Without changing the gain, we increase the loss coefficient in Figure 3.3(d) so that g̃ă γ and

g̃`γ ą 2J. Although the gain is lower than the loss, it is not low enough to avoid the entanglement

sudden death. However, the saturation effect reduces the quantum noise and results in a steady

state. One should note that gptq` γ ă 2J due to the saturation, although gp0q` γ ą 2J.

In Figure 3.3(e), the system parameters keep the relations g̃ą γ and g̃` γ « 2J. Moreover,
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we use a higher saturation intensity for Figures 3.3(e) and 3.3(f) (10 times higher than that of the

previous figures). In this case, there is no considerable difference between the unsaturated and

saturated cases because in both cases the gain factor is large enough, so the associated quantum

noise cancels the entanglement. The saturation effect only modifies the maximum value of EN .

In Figure 3.3(f), one has the relations g̃ ă γ and g̃` γ ą 2J. Interestingly, in both unsaturated

and saturated cases, EN approaches a steady state. Moreover, the difference between these cases

is small. In contrast to the previous situations, the relation gptq` γ ą 2J is held forever for the

saturated cases, the saturation effect only leads to a small modification.

To sum up, one notices that a non-zero EN is possible when gptq ! γ , provided the initial

gain is not too high so that the associated quantum noise quickly erases the entanglement. The nu-

merical calculations are based on parameters achievable in laboratory. For example, they are close

to those in a recent experiment [25] of two high-Q silica-microtoroid resonators with balanced,

effective gain, in which γ “ 227-2210 MHz, g “ 2835 MHz, and J “ 8-544 MHz. Therefore, by

choosing large coupling coefficients, it is possible to obtain g{J ă 10 or γ ă 10. One can engineer

the gain and saturation intensity by changing the dopant density of the gain medium. We assumed

low saturation intensity to better demonstrate the difference between the situation of unsaturated

gain and that with saturated gain. If the saturation intensity is very high, then gptq « g0 and hence

no difference exists in the two situations. Due to the difference between the coupling between

micro-resonators and waveguides, more exact simulation of possible experiments with waveguides

should be based on the actual couplings between waveguides, which can be realized.
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Figure 3.4: Panel (a) shows the variation of the degree of entanglement with the saturation inten-
sity. We assume that r1 “ r2 “ 0.3, θ1 “ θ2 “ 0, Jt “ 4, and γ{J “ 1.3. The red curve corresponds
to g0{J “ 0.8, and the dashed, blue curve matches g0{J “ 0.4. The figure shows that the degree
of entanglement decays in a quasi-exponential manner to zero as the saturation intensity increases.
Panel (b) exhibits how the time evolution of EN varies with changing the saturation intensity. In
this case, g0{J “ 0.8, and the saturation intensities are 0.05 (red curve), 0.15 (dotted-dashed, blue
curve), and 0.25 (dashed, green curve).

3.4.2 Entanglement variation with the saturation intensity

After one sees the time evolution change of entanglement due to gain saturation, it is interesting

to know how the degree of entanglement varies with the saturation intensity. For this purpose,

we consider a particular time when EN approaches a steady state. As an example, we adopt the

parameters of Figure 3.3(b) and select Jt “ 4 in Figure 3.4(a), but the saturation intensity remains

a variable. The solid (red) and dashed (blue) curves in the figure correspond to g0{J “ 0.8 and

g0{J “ 0.4, respectively. Figure 3.4(a) shows that EN quasi-exponentially decays to zero as the

saturation intensity increases. Since higher saturation intensity leads to a higher gain coefficient

that intensifies the quantum noise, such quasi-exponential decay occurs. Also, by comparing the

results, one notes that a lower gain demands a higher saturation intensity so that the quantity EN

vanishes. Figure 3.4(b) shows that the time evolution changes as the saturation intensity increases.
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Figure 3.5: Panel (a) shows the cross-correlation function for the input fields to the waveguides
in the Fock state, |n,my. The dashed and solid curves demonstrate the unsaturated and saturated
cases, respectively. Here we assume n “ m “ 10. The other parameters are: γ{J “ 0.5, g0{J “ 2,
gp0q “ 1, and Isat “ 10. In panel (b) the input to the waveguides is in the coherent state |α,β y.
We assume α “ 1 and β “ 2. The other parameters are γ{J “ 0.4, g0{J “ 0.5, gp0q “ 0.42, and
Isat “ 5.

For higher saturation intensities, the steady-state value of gptq and hence the quantum noise in-

creases and the steady-state value of EN decreases.

3.5 Influence of gain saturation on cross-correlation function

Finally, we examine the Hanbury-Brown-Twiss (HBT) cross-correlation [86] between the two

modes â and b̂:

Aa,b “
xâ:ptqb̂:ptqâptqb̂ptqy
xâ:ptqâptqyxb̂:ptqb̂ptqy

, (3.23)

where xâ:ptqb̂:ptqâptqb̂ptqy is proportional to the probability of simultaneously detecting one pho-

ton each in the output of both waveguides. xâ:ptqâptqy and xb̂:ptqb̂ptqy are the photon numbers in

waveguides A and B, respectively (individual detections in the outputs). One can use the quantum

regression theorem [86] for Gaussian states to simplify equation (3.23):

xâ:ptqb̂:ptqâptqb̂ptqy “ xâ:ptqâptqyxb̂:ptqb̂ptqy`xâ:ptqb̂ptqyxb̂:ptqâptqy. (3.24)
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We classify the outputs according to their cross-correlation functions (for a single mode, the second

order correlation function). If Aa,b ą 1, then the photon statistics is sub-Poissonian. In this case

the photons are not equally spaced, but rather appear in bunches. If Aa,b “ 1, the photon statistics

is Poissonian, which is the characteristic of a coherent light filed. Then the photons are randomly

spaced. If Aa,b ă 1, the photon statistics is super-Poissonian, and the photons are anti-bunched

(equally spaced) [80]. The latter is the feature of non-classical light. One may ask how the gain

saturation affects the cross-correlation function. To address this question, we consider two differ-

ent cases in Figure 3.5. In Figure 3.5(a), we assume that the input to the waveguides is in the Fock

state |n,my (tensor product of two independent Fock states). Moreover, we suppose that the gain

coefficient is larger than the loss coefficient. A dashed (solid) curve denotes the unsaturated (satu-

rated) case. Initially, the state is purely quantum mechanical and accordingly Aa,b “ 0, but because

of the coupling between the waveguides, the photons can tunnel from one waveguide to the other

one. Therefore, the cross-correlation function oscillates in time. In the saturated case, however, the

oscillations disappear after a short time, and the cross-correlation function approaches a constant

value. Also, the average value of Aa,b in the saturated case is less than that of the unsaturated case.

This shows that the non-classical behavior of the fields is preserved better in the saturated case

because the quantum noise is damped due to the gain saturation.

In Figure 3.5(b) we consider the input to the waveguides to be in coherent state |α,β y,

which is a quantum state showing classical features. Because of this reason, one expects that

the differences between the saturated and unsaturated cases is not significant. As Figure 3.5(b)

shows, the difference between the two cases is indeed less important. An interesting feature of the

coherent input fields is that the cross-correlation function becomes not to remain to one throughout

the non-Hermitian process. This behavior is in contrast to the case of an unprocessed coherent

73



state whose cross-correlation function remains equal to one forever.

3.6 Summary and conclusion

We have demonstrated how the gain saturation affects the quantum noise in a non-Hermitian sys-

tem when the quantum properties of light are concerned. As the quantum noise alters the non-

classical properties of light, one sees that the gain saturation substantially changes the nonclassical

features of light. As examples, we first considered the Wigner function, which is an alternative

to the state vector and density matrix for the system. We find that the Wigner function evolves

into a quasi-steady state due to gain saturation, whereas in the unsaturated case, the distribution

of Wigner function in phase space expands, and its peak value drastically decreases. Moreover,

the profile of the evolved Wigner function is different for the saturated and unsaturated cases. The

gain saturation reduces the gain coefficient with time, and therefore the quantum noise effect is re-

duced. Also, we investigated the time evolution of entanglement, which is a pure quantum feature

with no classical counterpart. We consider different cases in which the gain, loss, and coupling

coefficients are comparable or very different from each other. Generally, as long as the quantum

noise level is high, a steady-state of entanglement is not achievable. However, the gain saturation

reduces the quantum noise strength, and hence in most cases, one can attain a final steady state. A

non-zero entanglement of the output fields is possible only for the cases with gptq ! γ . Then, we

show that the gain saturation is especially meaningful when the saturation intensity is low. On the

other hand, if the saturation intensity is sufficiently high, the degree of entanglement vanishes, or

the difference between the saturated and unsaturated cases is negligible. Finally, we examined the

cross-correlation function between the output modes for the inputs in quantum states. All these

results indicate that gain saturation does exert considerable impact on the quantum properties of
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light fields processed by our concerned non-Hermitian setup.
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4 Dyanmical phonon laser operating in a magnomechanical system

4.1 Phonon laser basics

As the same wave equation governs the oscillations of atoms, ions, and molecules in a sound wave

and the oscillation of electric and magnetic fields in an optical wave, electromagnetic waves and

sound waves are similar. Therefore, one can apply the concepts and techniques used in optics in

acoustic. For example, one can refer to the analogy between the acoustic and optical microscopes,

radar and sonar, and electrical and acoustic impedances. According to quantum physics, the quanta

of light (photons) and sound (phonons) obey the same commutation relations describing the bosons

[146].

The quantum nature of light allows us to plan a device that emits coherent photons of iden-

tical frequencies and phases. In 1917, Albert Einstein predicted the so-called stimulated emission,

but it took four decades to bring this concept to practice. Laser, the device emitting coherent light

through a process of optical amplification based on the stimulated emission of electromagnetic

radiation, was built in 1960. Regarding the similarities between the optical and sound waves, one

may ask if it is possible to make a device emitting coherent “phonons” of the same frequency

and phase via a stimulated process. Since sound waves propagate five orders of magnitude slower

than the speed of light, the wavelength of sound waves is much shorter than that of light waves

of the same frequency. Therefore, one can perform highly precise nondestructive measurements

and achieve a high concentration of energy using focused sound waves. Conventional sources of

sound waves, such as piezoelectric transducers, do not operate efficiently above a few tens of giga-

hertz. Hence, a phonon laser would be of great interest. Despite the similarities between photons
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and phonons, it is hard to develop a phonon laser because the short wavelength of sound causes

spontaneous emission processes to dominate over the stimulated emission unless one modifies the

density of phonon states [146].

Figure 4.1: (a) The scheme of a one-dimensional optical laser with a gain medium in an optical
cavity having one fully-reflecting mirror at one end and a partially-reflecting mirror at the other
end. (b) Mechanism of an optical laser, in which an optical mode interacts with the gain medium
and coherent output photons are generated via the stimulated emission process. (c) Equivalent
one-dimensional phonon laser with gain provided by the optical supermodes acting as a “two-level
system”. (d) The mechanism of a phonon laser in which the mechanical mode interacts with the
optical supermodes that play the role of a two-level system, such that coherent output phonons are
generated [147].
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In 2010, a research group at Caltech demonstrated the first experimental work on an opti-

cally pumped phonon laser in an optomechanical [51] system of coupled whispering-gallery-mode

(WGM) passive optical resonators, one of which supports mechanical mode [148]. In conven-

tional lasers, stimulated emission occurs from upper to lower states of the atoms and ions. But in

the Caltech setup, the supermodes of the WGM resonators play the role of upper and lower levels

(in the next sections, we will define supermode). The transitions between these levels are induced

by a phonon field due to the mechanical mode. However, there is a subtle difference between the

two-level atom and the supermodes of the WGM resonators. In the phonon laser, the traditional

roles of the material (laser medium) and cavity modes (lasing field) are reversed. Here the medium

is purely optical, while the laser field is provided by the material as a phonon mode (see Figure

4.1) [148].

One attains the best operation of the phonon laser if the frequency separation between the

upper and lower supermodes equals that of the mechanical mode. Under this resonance condition,

the upper state is populated with a sufficient number of photons coming from the pump laser via

the optical fiber. Then, these photons are split into the lower frequency photons of the lower state

and the “coherent phonons”. These vibrations are picked up optically and their power depends on

the pump power. This dependence demonstrates evidence of the onset of stimulated emission, also

known as the lasing threshold. Since phonons, as well as photons, are bosons, one can interpret this

process as a three-wave parametric process in which two waves (the “pump” and the “idler”) are

optical, and the third one (the “signal”) is acoustic. Also, one can view it as a stimulated Brillouin

scattering, i.e., an inelastic collision in which a photon is converted to a downshifted photon and a

phonon with energy equal to the difference is emitted. But one must achieve the threshold when

the phonon gain surpasses the phonon loss, whereas in Brillouin or Raman lasers the threshold is
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Figure 4.2: Coupled whispering- gallery-mode resonators. The optical tunneling rate J is tuned
by changing the distance between the rsonators. The corresponding optical supermodes with fre-
quencies ω` and ω´ coupled by phonons are also plotted [3].

achieved when the photon gain supersedes photon loss, and the coherent phonons are no more than

a byproduct [146].

The Caltech setup with two “passive microresonators” suceeded by a PT -symmetric

scheme. This later device has one active and one passive WGM resonator. The active resonator is

doped with Erbium ions that provide a gain medium. This resonator is coupled to a taper fiber that

conveys the optical pump. Also, there is a passive WGM resonator, supporting a mechanical mode,

coupled to another tapered fiber that is used for the output field. The resonators are coupled via the

evanescent wave, and the coupling can be adjusted by the gap between the resonators (see Figure

4.2). In contrast to passive COM, the PT -symmetric COM features a transition from linear to

nonlinear regimes for intracavity-photon intensity. One can observe this transition by controlling
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the gain-loss ratio. In the nonlinear regime, the optical pressure and hence the mechanical gain

is enhanced. The enhanced nonlinearity leads to the ultralow threshold of the phonon laser [3].

The PT -symmetric phonon laser analysis modified by investigating it in the dynamical regime

(beyond the steady state) [4] and under the gain saturation effect [132].

In addition to the phonon laser schemes mentioned above, we should refer to other setups

like nonreciprocal phonon laser [149], a phonon laser operating near the exceptional point [147],

phonon lasing in an electromechanical resonator [150], and semiconductor superlattices [151].

4.2 Magnomechanical phonon laser

Until today, most theoretical and experimental works on phonon laser are restricted to optome-

chanical systems. The traditional optomechanical systems operate based on the radiation force

[51, 62, 152, 153, 154, 155], electrostatic force [156, 157], and piezoelectric force [158] for the

interaction between phonons and cavity photons, but these mechanisms are not well adjustable.

Recently, a phonon laser in a cavity magnomechanical system is proposed [2]. This system

includes a microwave cavity, a sphere of magnetic material, and a uniform external bias mag-

netic field (see Figure 4.3). In this system, the magnetostrictive interaction realizes the phonon-

magnon coupling and magnetic dipole interaction leads to the cavity photon-magnon coupling.

The magnons are simultaneously driven directly by a strong microwave field. In this scheme, the

adjustable external magnetic field is a desirable control method for the phonon laser. Compared

with optomechanical phonon laser, this scheme provides a new degree of freedom of manipulation

[2].

This magnomechanical phonon laser is investigated in a steady state. However, as we

know from optomechanical phonon lasers, the results in the dynamical case radically differ from
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those in the steady-state. For example, for the PT -symmetric phonon laser, the results show

that only in the PT -symmetric domain the phonon lasing is possible [3, 147], but dynamical

investigation shows three fundamental differences: (1) phonon laser should operate under a blue-

detuned pump rather than resonant and red-detuned pumps. Under blue-detuned drives, the phonon

laser has a better performance with increased optical gain instead of reaching the optimum at

the balanced gain and loss; (2) the phonon laser can operate even better in the PT -symmetry

broken in contrast to the steady-state case; (3) the quantum noise can significantly contribute to the

supermode population inversion for magnifying the stimulated phonon field [4].

Regarding the mathematical isomorph between the optomechanical and magnomechanical

Hamiltonians, one may ask if the dynamic magnomechanical phonon laser demonstrates a signif-

icant difference. Also, we are interested to know if/how the quantum noise changes the analysis.

Since the magnomechanical systems have a better tunability, if one can achieve a strong phonon

number, the magnomechanical phonon laser would be a good alternative to optomechanical phonon

lasers.

Before we start analyzing the dynamical magnomechanical phonon laser, we disclose our

motivation for choosing this kind of system. The magnetostrictive force is one of the main ingre-

dients of magnomechanical systems. About two centuries ago, J. P. Joule discovered the magne-

tostrictive effect, which describes the deformation of magnetic material in response to an external

magnetic field [52]. This phenomenon reveals itself as a change in volume in a strong magnetic

field or as changes in linear dimensions in relatively low fields. The latter not only depends on the

intensity of magnetization in the material but also varies with the direction in the crystal [159]. The

deformation of the magnetic material also changes the magnetization. One can attribute the mag-

netostrictive effect to three types of interactions depending on the distance between ions: exchange
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Figure 4.3: Schematic diagram of the magnomechanical phonon laser. The YIG sphere is inserted
in the maximum magnetic field of the microwave cavity mode. Applying an external magnetic
field H along the z-direction provides a uniform magnon mode for the YIG sphere. The enlarged
YIG sphere on the right shows the magnetization of magnon (black down arrows), which leads to
deformations on the surface of spheres (y-direction). Also, the deformation leads to changes in the
magnetization of magnetons. [2].

interaction, dipole-dipole interaction, and spin-orbital interaction [52]. The magnetostrictive force

provides an alternative mechanism allowing magnon —a different information carrier— to couple

with phonon. Magnon is a collective excitation of magnetization, whose frequency is tuned by ad-

justing the bias magnetic field [59, 160, 161]. The magnetostrictive interaction is negligibly weak

in dielectric or metallic materials, but in magnetic materials becomes dominant, which provides a

great opportunity to establish a highly tunable hybrid system for coherent information processing.

82



Also, the magnetic field dependence of magnon provides our system with unprecedented tunabil-

ity compared with optomechanical or electromechanical systems. Furthermore, the great flexibility

allows us to achieve triple resonance among magnon, phonon, and photon [52].

The collective spins in a yttrium-iron-garnet (YIG) ferromagnetic material can be strongly

[162, 163] or even ultrastrongly [164] coupled to a microwave cavity. The YIG material is ferro-

magnetic at both cryogenic [162] and room temperatures [163] because its Curie temperature is

as high as 559 K. In contrast to spin ensembles in dilute paramagnetic impurities, these spins are

strongly exchange-coupled and have a much higher density (« 4.2ˆ1021cm´3) [165]. Because of

high spin density, spin excitations can strongly couple to the cavity using a YIG sample as small

as sub-millimeter in size. Also, one can achieve the ultrastrong coupling regime by increasing the

size of the YIG sample or by using a specially designed microwave cavity [164]. Furthermore,

the strong exchange coupling between the ferromagnetic electrons suppresses the contribution of

magnetic dipole interactions to the linewidth of spin excitations, which can have a dominant role

among paramagnetic impurities. Thus, for the same spin density, the spin excitations in YIG ex-

hibits a much better quantum coherence than those of the paramagnetic impurities [165]. The

YIG sphere is also an excellent mechanical resonator due to its superior material and geometrical

properties. The changing magnetization induced by the magnon excitation inside the YIG sphere

leads to deformation of its spherical geometry (and vice versa), introducing the coupling between

magnon and phonon modes [52].

In summary, our main motivation of using magnomechanical systems are [166]: (1) Due

to the high spin density and the strong spin-spin exchange interactions, the Kittel mode in the

YIG sample has a long coherence time and a low damping rate, providing the condition of strong-

coupling and even the ultrastrong-coupling regime; (2) Owing to the high tunability and good
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Figure 4.4: The equivalent coupling model. An external magnetic field H controls the frequency
of magnon mode, and the phonon mode b̂ regulates the intensity of the drive magnetic field. The
frequency of drive magnetic field is ωd . The drive magnetic field B0 is the magnetic part of the
microwave drive [2].

coherence, the cavity magnomechanical systems have become a promising platform to implement

various novel phenomena; (3) The magnons in the small YIG sample can couple to the optical

photons [167, 69, 168, 169], phonons [52], and superconducting qubits [70, 170]. This makes

it possible to produce the magnon-photon- phonon entanglement [171] and squeezed states of

magnons and phonons in cavity magnomechanics [172]. Moreover, owing to the superior material

and geometrical features of the YIG, it acts as a perfect mechanical resonator, which introduces the

phonon-magnon interaction. This property allows one to achieve magnetomechanically induced

transparency (MMIT), which arises from the quantum interference between different excitation

paths [52, 173]. MMIT is a coherent phenomenon similar to the electromagnetically induced

transparency (EIT) [174] and optomechanically induced transparency (OMIT) [175].
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4.3 Dynamics of the system

4.3.1 The Hamiltonian of the system

Figure 4.3 shows the phonon laser setup of reference [2] and Figure 4.4 demonstrates the a coupling

model for the interactions involved in the process. In this section, we investigate the phonon laser

system beyond the steady-state. In the Figure 4.3, we place a highly polished YIG sphere of 1 mm

in a microwave cavity. Simultaneously, we apply a uniform external bias magnetic field H in the

vertical direction. The range of the field H is between 0 and 1 T. This field establishes magnon-

photon coupling. One can tune the rate of coupling by changing the position of the sphere. There

are three modes in this system: cavity photon mode (with angular frequency ωa), magnon mode

(ωm), and phonon mode (ωb).

As indicated before, the magnetostrictive interaction leads to the coupling between magnons

and phonons. The magnon excitation changes the magnetization, which leads to the deformation

of the YIG sphere, converting it to a mechanical resonator with the phonon mode. We use a mi-

crowave source to drive the magnon mode. The directions of H, the drive magnetic field, and the

magnetic field of the cavity mode are perpendicular to each other. Thus, we can adjust each one

independently. Furthermore, we assume that the size of the YIG sphere is much smaller than the

wavelength of the cavity so that the photon-photon coupling is negligible.

We consider the YIG sphere as an ensemble of N spins with a quantum number 1{2 and of

operator Ŝi with nearest-neighbor ferromagnetic exchange interaction Ją 0 in an external magnetic

field H. Then, the Hamiltonian of such a spin ensemble is [60]

Ĥmag “ g˚µB

N
ÿ

i“1

Ĥ ¨ Ŝi´2J
ÿ

i, j

Ŝi ¨ Ŝ j, (4.1)

where g˚ and µB are the g-factor and Bohr magneton, respectively. The first term is a magnetic
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dipole interaction describing the Zeeman effect and the second term demonstrates the ferromag-

netic exchange interaction between neighboring spins. Using a dispersion relation, we can unify

these two terms and write

Ĥmag “
ÿ

k
ωmpkq m̂:m̂, (4.2)

where k is the wavevector of the spin-wave mode, and ωmpkq includes two terms for the magnetic

dipole and exchange interaction. In the static magnetic filed limit, the long-range dipole-dipole

interaction between spins is dominant over the short-range exchange interactions. In the simplest

case where the static magnetic field is uniform (Kittle mode), ωmpkq Ñ ωm “ g˚µBH, and hence

Ĥmagnon “ ωmm̂:m̂.

The Hamiltonian of a microwave cavity mode is given by Ĥphoton “ ωaâ:â, where â: and â

are the creation and annihilation operators of a microwave photon in the mode. Both magnetostatic

modes and microwave cavity modes are linear systems described as quantum harmonic oscillators.

The Hamiltonian describing the magnetic dipole interaction of the Kittle mode with the

microwave frequency cavity mode is

Ĥcoupling “ g˚µBpâ` â:q
N
ÿ

i“1

δBpriq ¨ Ŝi. (4.3)

If the microwave magnetic field δBpriq is uniform throughout the YIG crystal, magnetic dipole

coupling vanishes except for the uniform magnetostatic mode, i.e., the Kittel mode. Considering

only the Kittel mode, the Hamiltonian takes a simple form (after cancelling nonconservative terms)

Ĥcoupling “ Jpâm̂:` â:m̂q, (4.4)

where J is the coupling strength between the Kittel mode and the microwave cavity mode. The

coupling strength J between the Kittel mode and the microwave cavity mode must be compared
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with the decay of the Kittel mode, γm, and the decay of the cavity mode, γa. If J " γm,γa, the hybrid

system enters the strong coupling regime [60].

The Hamiltonian of the magnomechanical interaction is given by

ĤM “´gm̂:m̂
´

b̂` b̂:
¯

, (4.5)

whose full proof is presented in reference [52]. After including the microwave drive Hamiltonian,

the total Hamiltonian can be written as the sum of the linear, nonlinear, and system-reservoir parts

that the latter demonstrates the quantum noise:

Ĥ “ ĤL` ĤNL` ĤSR, (4.6)

where

ĤL “ ωaâ:â`ωmm̂:m̂`ωbb̂:b̂` J
´

â:m̂` m̂:â
¯

` iE
´

m̂:e´iωdt
´ m̂eiωdt

¯

, (4.7)

ĤNL “´gm̂:m̂
´

b̂` b̂:
¯

, (4.8)

and

ĤSR “ i
”

a

2γa

´

â: f̂a´ â f̂ :a
¯

`
a

2γm

´

m̂: f̂m´ m̂ f̂ :m
¯

`
a

2γb

´

b̂: f̂b´ b̂ f̂ :b
¯ı

. (4.9)

Using equation (1.19), we obtain the system of differential equations describing the time evolution

of the system operators:

9̂a“´pγa´ igx̂qâ´ iJm̂`Ee´iδ t
`
a

2γa f̂a,

9̂m“ γmm̂´ iJâ`
a

2γm f̂m,

9̂b“´γbb̂´ iωbb̂` igâ:â`
a

2γb f̂b,

(4.10)

where x̂ “ pâ` â:q and δ “ ωa´ωd . The common method to solve this system of nonlinear

equations is converting each operator to a classical average value plus a quantum fluctuation, i.e.,
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âÑαs`δ â. But this approximation requires a steady-state exists, whereas it is shown in reference

[4] that there is no steady-state for the PT -symmetric optomechanical phonon laser. Intuitively,

there should not be a steady-state for the magnomechanical phonon laser as well. Therefore, we use

an alternative method for linearizing the equation (4.10), called the time evolution decomposition

method. In section 1.3, we introduced the basics of this method, but here we fully explain it.

4.3.2 Decomposing the total evolution operator and the linearized equations of motion

Using equation (1.31), we can decompose the total time evolution operator as follows:

Ûptq “ T̂ exp
„

´i
ż t

0
ds
“

ĤLpsq` ĤNLpsq` ĤSRpsq
‰



“ Û0ptqT̂ exp
„

´i
ż t

0
ds Û:

0 psq
“

ĤNLpsq` ĤSRpsq
‰

Û0psq


“ Û0ptqT̂ exp
„

´i
ż t

0
ds

“

Ĥ1psq` Ĥ2psq
‰



“ Û0ptqT̂ exp
„

´i
ż t

0
ds Û2pt,sqĤ1psqÛ

:

2 pt,sq


Û2ptq

” Û0ptqÛ1ptqÛ2ptq,

(4.11)

where Ûiptq “ exp
`

´ i
şt

0 ds Ĥipsq
˘

. First, we find Û0ptq:

Û0ptq “ T̂ exp
”

´ i
ż t

0
ĤLpsqds

ı

“ exp
”

p´iωatqâ:â`p´iωmtqm̂:m̂

`p´iωbtqb̂:b̂`p´iJtq
`

â:m̂` m̂:â
˘

`Em̂:
ż t

0
e´iωdsds´Em̂

ż t

0
eiωdsds

˘

ı

“ exp
”

p´iωatqâ:â`p´iωmtqm̂:m̂`p´iωbtqb̂:b̂

`p´iJtq
´

â:m̂` m̂:â
¯

` i
E
ωd

m̂:
`

e´iωdt
´1

˘

` i
E
ωd

m̂
`

eiωdt
´1

˘

ı

.

(4.12)

We simplify the second integral in equation (4.11) as Û:

0 pτq
`

ĤNLpτq` ĤSRpτq
˘

Û0pτq ” Ĥ1pτq`

Ĥ2pτq. To find the explicit form, we need to find Û:

0 pτqĉÛ0pτq, where ĉ “ â, m̂, b̂. We can also

sandwich Û0Û:

0 between operators if necessary. Let define Û0 ” e´Ĝ and Âptq “ eĜâe´Ĝ, where
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Ĝ: “´Ĝ. Then,

dÂ
dt
“ eĜ

„

dĜ
dt

, â


e´Ĝ
“

„

dĜ
dt

, Â


. (4.13)

And similarly we can find the eqautions related to b̂ and m̂ in this rotating frame. After simplifying

equation (4.13), we obtain

d
dt

¨

˚

˚

˝

Â

M̂

˛

‹

‹

‚

“

¨

˚

˚

˝

´iωa ´iJ

´iJ ´iωm

˛

‹

‹

‚

¨

˚

˚

˝

Â

M̂

˛

‹

‹

‚

`

¨

˚

˚

˝

0

Ee´iωdt

˛

‹

‹

‚

. (4.14)

We define
a

4J2`pωa´ωmq2 “ 2Ω, ωa´ωm “ ∆, and ωa`ωm “ 2η . Then,
¨

˚

˚

˝

Âptq

M̂ptq

˛

‹

‹

‚

“

¨

˚

˚

˝

2ΩcospΩtq´i∆sinpΩtq
2Ω

e´iηt iJ sinpΩtq
Ω

´e´iηt iJ sinpΩtq
Ω

2ΩcospΩtq`i∆sinpΩtq
2Ω

˛

‹

‹

‚

¨

˚

˚

˝

Âp0q

M̂p0q

˛

‹

‹

‚

`

¨

˚

˚

˝

iEp4Ω2´∆2q
8JΩ

´

e´ipΩ`ηqt´e´iωdt

η`Ω´ωd
` eipΩ´ηqt´e´iωdt

η`Ω´ωd

¯

iE
4Ω

ˆ

p2Ω´∆qpe´ipΩ`ηqt´e´iωdtq
η`Ω´ωd

`
p2Ω`∆qpeipΩ´ηqt´eiωdtq

Ω´η`ωd

˙

˛

‹

‹

‚

. (4.15)

Noting that Âp0q “ â and M̂p0q “ m̂, we define “superoperators” as

ô1 “
â` m̂
?

2
, ô2 “

â´ m̂
?

2
, (4.16)

so that

â“
ô1` ô2
?

2
, m̂“

ô1´ ô2
?

2
.

In fact, the superoperators are the orthogonal eigenstates of the Hermitian Hamiltonian ωaâ:â`

ωmm̂:m̂` J
`

â:m̂` m̂:â
˘

. We can rewrite equation (4.15) versus new supermode operators:

¨

˚

˚

˝

Âptq

M̂ptq

˛

‹

‹

‚

“
1
?

2

¨

˚

˚

˝

cospΩtq´ i ∆

2Ω
sinpΩtq´ i J

Ω
sinpΩtqe´iηt

cospΩtq` i ∆

2Ω
sinpΩtq´ i J

Ω
sinpΩtqe´iηt

cospΩtq´ i ∆

2Ω
sinpΩtq` i J

Ω
sinpΩtqe´iηt

´ cospΩtq´ i ∆

2Ω
sinpΩtq´ i J

Ω
sinpΩtqe´iηt

˛

‹

‹

‚

¨

˚

˚

˝

ô1

ô2

˛

‹

‹

‚

(4.17)
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`

¨

˚

˚

˝

iEp4Ω2´∆2q
8JΩ

´

e´ipΩ`ηqt´e´iωdt

η`Ω´ωd
` eipΩ´ηqt´e´iωdt

η`Ω´ωd

¯

iE
4Ω

ˆ

p2Ω´∆qpe´ipΩ`ηqt´e´iωdtq
η`Ω´ωd

`
p2Ω`∆qpeipΩ´ηqt´eiωdtq

Ω´η`ωd

˙

˛

‹

‹

‚

The equation for B̂ is simple:

B̂ptq “ b̂e´iωbt . (4.18)

Thereby, we define a brief notation for equation (4.17) together with B̂ptq:
¨

˚

˚

˚

˚

˚

˚

˝

Âptq

M̂ptq

B̂ptq

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

α11 α12 0

α21 α22 0

0 0 e´iωbt

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

ô1

ô2

b̂

˛

‹

‹

‹

‹

‹

‹

‚

`

¨

˚

˚

˚

˚

˚

˚

˝

E1

E2

0

˛

‹

‹

‹

‹

‹

‹

‚

(4.19)

Then,

Û:

0 ptq
“

ĤNL` ĤSR
‰

Û0ptq “ ´gM̂:M̂
´

B̂` B̂:
¯

` i
”

a

2γa

´

Â: f̂a´ Â f̂ :a
¯

`
a

2γm

´

M̂: f̂m´ M̂ f̂ :m
¯

`
a

2γb

´

B̂: f̂b´ B̂ f̂ :b
¯ı

, (4.20)

Ĥ1 “´g
´

α21E˚2 ô1`α22E2ô2`α
˚
21E2ô:1`α

˚
22E2ô:2`|E2|

2
¯´

B̂` B̂:
¯

` i
a

2γa

”´

α
˚
11ô:1`α

˚
12ô:2`E˚1

¯

f̂a´pα11ô1`α12ô2`E1q f̂ :a
ı

` i
a

2γm

”´

α
˚
21ô:1`α

˚
22ô:2`E˚2

¯

f̂m´pα21ô1`α22ô2`E2q f̂ :a
ı

` i
a

2γb

”

B̂: f̂b´ B̂ f̂ :b
ı

(4.21)

and

Ĥ2 “´g
´

α21α
˚
21ô:1ô1`α21α

˚
22ô:2ô1`α22α

˚
21ô:1ô2`α22α

˚
22ô:2ô2

¯

ˆ

´

B̂` B̂:
¯

. (4.22)
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Now we should calculate Û2pt,sqĤ1psqÛ
:

2 pt,sq appeared in equation (4.11). For example, we find

an operator of Ĥ1psq, say, ô1 as follows:

Û2pt,sqô1Û:

2 pt,sq “ ô1´ iµ1ô1b̂´ iµ2ô1b̂:´ iµ3ô2b̂´ iµ4ô2b̂:

` higher order terms,

(4.23)

where, for example,

µ1 “ g
ż t

s
α21α

˚
21e´iωbs ds. (4.24)

After finding all operators of Ĥ1psq in this rotating frame, noting that

g!Ω,J,η ,ωa,ωm,γa,γm,

we conclude that the corrections of this order are negligible, because we have terms like g{2Ω in

the products. This is the only approximation we use. One should note that the effect of nonlinear

magnomechanical term is included in Ĥ1 as well because of factor g in it. This approximation,

which is independent of the drive E, linearizes the equations of motion.

Under this approximation, we can write the supermode populations as

xô:i ôiptqy “ TrS,R
`

Û:

2 ptqÛ
:

1 ptqÛ
:

0 ptqô
:

i ôiÛ0ptqÛ1ptqÛ2ptqρSp0qbρR
˘

“ TrS,R
`

Û:

1 ptqÛ
:

0 ptqô
:

i ôiÛ0ptqÛ1ptqÛ2ptqρSp0qbρRÛ:

2 ptq
˘

“ TrS,R
`

Û:

1 ptqÛ
:

0 ptqô
:

i ôiÛ0ptqÛ1ptqρSp0qbρR
˘

, (4.25)

where the action U2ptq does not change the quantum state ρSp0q b ρR because the initial state

ρSp0q is the product of a cavity vacuum state and the mechanical thermal state |Ψy “ |0yx0| b

ř8
n“0

nn
th

p1`nthq
n`1 |nyxn|, where nth is the thermal reservoir mean occupation number. Thus, H2ptq|0yc“

0 for the cavity vacuum state |0yc. The supermode populations xô:i ôiptqy only evolve due to the

successive actions of Û0ptq and Û1ptq. The unitary operation Û0ptq only displaces the supermode
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operators in equation (4.17), but using (1.27) we find that the action Û1ptq of the Hamiltonian Ĥ1

leads to a system of dynamical equations:

dĉ
dt
“Mĉ`λ ptq` n̂ptq (4.26)

where

ĉ“
`

ô1, ô
:

1, ô2, ô
:

2, b̂, b̂
:
˘T

. (4.27)

The matrix M includes entries mi, j where i, j vary between 1 and 6. Also,

n̂1 “´
a

2γaα
˚
11 f̂a´

a

2γmα
˚
21 f̂m,

n̂2 “´
a

2γaα
˚
12 f̂a´

a

2γmα
˚
22 f̂m,

n̂3 “´
a

2γbeiωbt f̂b,

(4.28)

and

λ1 “´pγaα
˚
11E1` γmα

˚
21E2q ,

λ2 “´pγaα
˚
12E1` γmα

˚
22E2q ,

λ3 “ ig|E2|
2eiωbt .

(4.29)

Since M cannot be shown due to its big size, we write only a few of its elements:

m11 “´pγaα
˚
11α11` γmα

˚
21α21q ,

m12 “ 0,

m13 “´pγaα
˚
11α12` γmα

˚
21α22q ,

m14 “ 0,

m15 “ igα
˚
21E2e´iωbt ,

m16 “ igα
˚
21E2eiωbt .

(4.30)
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The formal solution is

ĉptq “ T̂ exp
„
ż t

0
dτ Mpτq



ĉp0q

`

ż t

0
dτ T̂ exp

„
ż t

τ

ds Mpsq


´

λ pτq` n̂pτq
¯

“ ĉsptq` ĉdsptq` ĉnptq.

(4.31)

We can formally write

T̂ exp
„
ż t

τ

ds Mpsq


“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

d11pt,τq d12pt,τq . . . d16pt,τq

d21pt,τq d22pt,τq . . . d26pt,τq

... . . .

d61pt,τq d66pt,τq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (4.32)

Since it is difficult to find the matrix exponential, we use the following approximation

T̂ exp
„
ż t

0
ds Mpsq



«

0
ź

i“N´1

´

1`Mpsiqh
¯

, (4.33)

in which the step size h is chosen so small to assure MpsiqMpsi`1q “Mpsi`1qMpsiq. Similar to the

previous chapter, we cannot solve the equations of motion using the traditional methods, because

we cannot assign an initial value to the quantum operators. What has a physical meaning is their

expectation values like xĉ:p0qĉp0qy. Therefore, we use the algorithm developed in [132] which is

suitable for such cases dealing with quantum mechanical operators.

There are three terms in the solution (4.31). The supermode populations from the first term

are obtained by taking the average of ô:i,sôi,sptq with respect to the system’s initial state |0ycx0| b

ř

n
nn

th
p1`nthq

n`1 |nymxn|. Noting that x0|ô:1p0qô1p0q|0y “ 0 and x0|ô1ô:1p0q|0y “ 1, this part of the

contribution is found as
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xô:1,sô1,sy “ d21pt,0qd12pt,0q`d23pt,0qd14pt,0q

`d25pt,0qd16pt,0q
`

nth`1
˘

`d26pt,0qd15pt,0qnth,

(4.34)

xô:2,sô2,sy “ d41pt,0qd32pt,0q`d43pt,0qd34pt,0q

`d45pt,0qd36pt,0q
`

nth`1
˘

`d46pt,0qd35pt,0qnth.

(4.35)

Considering the displacement terms due to the action of Û0ptq, the second pure drive term

λ ptq yields to the following contribution:

A

ô:1,dsô1,ds

E

“ |E1`E2` ô1,dsptq|2,

A

ô:2,dsô2,ds

E

“ |E1´E2` ô2,dsptq|2.

(4.36)

where

ô1,ds “

ż t

0
dτ

”

d11pt,τqλ1`d12pt,τqλ ˚1 `d13pt,τqλ2

`d14pt,τqλ ˚2 `d15pt,τqλ3`d16pt,τqλ ˚3
ı

(4.37)

and

ô2,ds “

ż t

0
dτ

”

d31pt,τqλ1`d32pt,τqλ ˚1 `d33pt,τqλ2

`d34pt,τqλ ˚2 `d35pt,τqλ3`d36pt,τqλ ˚3
ı

. (4.38)
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Finally, having the following commutation relations for the noise terms,

@

n̂1ptq n̂
:

1pt
1
q
D

“

´

2γaα
˚
11α11`2γmα

˚
21α21

¯

δ pt´ t 1q,

@

n̂1ptq n̂
:

2pt
1
q
D

“

´

2γaα
˚
11α12`2γmα

˚
21α22

¯

δ pt´ t 1q,

@

n̂2ptq n̂
:

2pt
1
q
D

“

´

2γaα
˚
12α12`2γmα

˚
22α22

¯

δ pt´ t 1q,

@

n̂2ptq n̂
:

1pt
1
q
D

“

´

2γaα
˚
12α11`2γmα

˚
22α21

¯

δ pt´ t 1q,

@

n̂3ptq n̂
:

3pt
1
q
D

“

´

2γbpnth`1q
¯

δ pt´ t 1q,

@

n̂:3ptq n̂3pt 1q
D

“

´

2γbnth

¯

δ pt´ t 1q,

(4.39)

the contribution from the noise drive terms n̂ptq is

ô1,n “

ż t

0
dτ

”

d11pt,τq n̂1`d12pt,τq n̂
:

1`d13pt,τq n̂2`d14pt,τq n̂
:

2

`d15pt,τq n̂3`d16pt,τq n̂
:

3

ı

(4.40)

Therefore,

A

ô:1,nô1,n

E

“

ż t

0
dτ

”

d12pt,τqd21pt,τq
´

2γaα
˚
11α11`2γmα

˚
21α21

¯

`d14pt,τqd23pt,τq
´

2γaα
˚
12α12`2γmα

˚
22α22

¯

`d14pt,τqd21pt,τq
´

2γaα
˚
11α12`2γmα

˚
21α22

¯

`d12pt,τqd23pt,τq
´

2γaα
˚
12α11`2γmα

˚
22α21

¯

`d16pt,τqd25pt,τq
´

2γbpnth`1q
¯

`d15pt,τqd26pt,τq
´

2γbnth

¯ı

(4.41)
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and, similarly,
A

ô:2,nô2,n

E

“

ż t

0
dτ

”

d41pt,τqd32pt,τq
´

2γaα
˚
11α11`2γmα

˚
21α21

¯

`d43pt,τqd34pt,τq
´

2γaα
˚
12α12`2γmα

˚
22α22

¯

`d41pt,τqd34pt,τq
´

2γaα
˚
11α12`2γmα

˚
21α22

¯

`d43pt,τqd32pt,τq
´

2γaα
˚
12α11`2γmα

˚
22α21

¯

`d45pt,τqd36pt,τq
´

2γbpnth`1q
¯

`d46pt,τqd35pt,τq
´

2γbnth

¯ı

.

(4.42)

Adding the three parts of contributions, the total supermode populations becomes

@

ô:i ôi
D

“
@

ô:i,sôi,s
D

`
@

ô:i,dsôi,ds
D

`
@

ô:i,nôi,n
D

(4.43)

Then, the population inversion is

∆N “
@

ô:1ô1
D

´
@

ô:2ô2
D

. (4.44)

4.4 Results and discussion

To achieve a reasonably strong phonon field, one should provide a high population inversion condi-

tion between the optical supermodes. As discussed in the previous section, the population inversion

is a dynamical quantity varying with time, whereas in other references (i.g., [148, 3, 149, 2]) it is

treated as a constant value. The equation (4.26) not only yields the superoperators equations of

motion but also describes the “thermal” phonon evolution with time. But we need the “stimu-

lated” phonon evolution as well. In analogy to an optical laser [134], the phonon laser dynamical

equations are similar to those in [148, 3, 4, 132]:

dbs

dt
“
`

´ γb´ iωb
˘

bs´ i
g
2

p,

d p
dt
“ i

g
2

∆Nptqbs`
`

´ γa´ γm´2iJ
˘

p.

(4.45)
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Figure 4.5: The population inversion between superoperators for different values of the drive field.
Here we have set γa “ 2.6 MHz, γm “ 1.6 MHz, γb “ 628 Hz, ωa “ ωm “ ωd “ 20π GHz (the
resonant condition), ωb “ 24π MHz, J “ 2π MHz, g“ 0.2π , nth “ 2.4ˆ105. A higher population
inversion is obtained for a stronger drive filed.

Figure 4.6: The normalized amplified phonon filed using the parameter of Figure 4.5. Here if we
double the drive power, the difference between the amplified stimulated phonon fields is several
orders of magnitude in large time scales.
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In this equation, we have used a subscript “s” indicating it is the stimulated phonon (one can draw

an analogy between the spontaneous and stimulated emission of a photon in an optical laser and

thermal and stimulated phonons in a phonon laser). Also, p “ xô:2ô1y. The variables in equation

(4.45) are not quantum operators, but mean-field values. However, we insert the population in-

version ∆Nptq in it determined quantum mechanically in the previous section. This analogy also

comes from the similarity between the semiclassical treatment of atomic level transitions, in which

the atomic levels are described quantum mechanically while the radiations are regarded as clas-

sical. Because of the mean-field treatment, there are no noise terms in equation (4.45). After we

solve the system of differential equations in equation (4.45), we numerically obtain bsptq. In the

following, we demonstrate the plots of population inversion ∆N and the normalized stimulated

phonon number |bsptq{bsp0q|2. Here we use parameters close to the experimental values used in

other setups [52].

In the first case, we choose these parameters: γa “ 2.6 MHz, γm “ 1.6 MHz, γb “ 628

Hz, ωa “ ωm “ ωd “ 20π GHz (the resonant condition), ωb “ 24π MHz, J “ 2π MHz, g “

0.2π , and nth “ 2.4ˆ 105. E remains a variable in this case, but its order of magnitude is 1013.

Figure 4.5 shows that the population inversion demonstrates fast oscillations modulated on slow

oscillations. As we increase the drive power, on average we obtain a higher population inversion,

but the maxima and minima of the slow oscillation do not displace. We observe the same behavior

for the amplified phonon filed in Figure 4.6. Here also a stronger phonon field is achieved for higher

drive power. However, notice in the case of population inversion, if we double the drive filed, on

average the population inversion is roughly four folded, but for the amplified phonon field, at large

times, we observe a significant difference for the amplified phonon for drive powers E “ 2ˆ1013γa

and E “ 4ˆ1013γa. Physically, a strong drive field generates a higher magnon number and a more
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Figure 4.7: The population inversion for the same parameters used in Figure 4.6, except that here
we have fixed the value of the drive power to E “ 5ˆ1013γa, but J remains a variable. We observe
that a lower coupling power yields a higher population inversion at larger times, because in this
case the relative strengths of J and g determine the output.

Figure 4.8: The amplified stimulated phonon field for the same parameters used in Figure (4.7).
Here also a lower coupling leads to a stronger phonon field as illustrated in the text.

powerful mechanical oscillation due to the magnetostriction interaction. Therefore, it is normal to

achieve a stronger phonon field for higher power drives.
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In Figure 4.7, we are interested to know how the coupling strength changes the population

inversion and the stimulated phonon field. Therefore, we have fixed the value of the drive power

to E “ 5ˆ 1013γa in Figure 4.7, but we allow J to vary. The other parameters are the same as in

Figures 4.5 and 4.6. The figure shows a lower coupling power yields a higher population inversion.

However, this time the maxia and minima of ∆N are displaced as we change the coupling power.

Figure 4.8 exhibits the amplified phonon field for different values of the coupling power. Here also

we observe at large times a lower coupling power leads to a stronger phonon field. We can explain

this phenomenon by comparing the coupling Hamiltonian Jpâ:m̂` âm̂:q and the magnomechanical

Hamiltonian gm̂:m̂pb̂` b̂:q that describes the magnon-phonon coupling. Normally, J " g, and

hence the magnomechanical interaction is much smaller than the coupling interaction. Therefore,

a larger value of J indicates that magnomechanical interaction is less determining and vice versa.

Accordingly, we expect to have a stronger phonon field for lower coupling powers.

One should notice that initially, a higher coupling power may lead to a stronger phonon

field. For example, the red curve in Figure 4.8 corresponds to a coupling power ten times bigger

than that of the green curve, but initially, it is above the green curve. However, this is a transient

behavior that disappears at large times. We can illustrate this by noting that initially, when we

drive the system, first the magnon-phonon coupling occurs which deforms the YIG sphere and

hence vibrates the sphere, and thereby phonons are generated. Therefore, a time interval is needed

for the magnetostriction interaction. If the coupling power is larger, we expect a faster magnon-

phonon coupling, but finally, the amplified phonon field is decided by the relative strength of the

coupling power J and the magnomechanical coefficient g.

In addition to the drive power and the coupling strength, we are interested to know what

happens if the system is not in the resonance condition. Therefore, in Figures 4.9 and 4.10 we fix
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Figure 4.9: The population inversion for the same parameters used in Figure 4.8, but here we
allow a nonzero detuning between the frequencies of the cavity photons and the magnons. The
figure shows the population inversion is very sensitive to the detuning, so it either drops to very
low values for ∆ “ 0.01 (blue curve)or disappears totally for ∆ “ ´0.01. To have a reasonably
large population inversion, the detuning should be as small as a few Hz.

Figure 4.10: The amplified phonon field for the same parameters used in Figure 4.9. The same
conclusion applied to Figure 4.9 is also valid for this case. To have a strong phonon field, the
detuning must be as small as a few Hz.
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Figure 4.11: The population inversion for the same parameters used in Figure 4.10, but here we
allow a nonzero detuning between the frequencies of the cavity photons and the magnons and that
of the drive field. The figure shows the population inversion is very sensitive to the detuning, so
it either drops to very low values for ωd ´ωa “ 0.1 MHz (blue curve) or disappears totally for
ωd´ωa “´0.1. To have a reasonably large population inversion, the detuning should be as small
as a few Hz.

the values of the drive power and the coupling strength to E “ 5ˆ1013γa and J “ 2πˆ106γa, but

we allow a nonzero detuning ∆ “ ˘0.01. As we observe in both Figures 4.9 and 4.10, there is

no significant population inversion and amplified the phonon field for this value of detuning. This

result is because the magnetic field of the drive must be matched to the Kittel frequency of the YIG

sphere (which is adjusted by the fixed magnetic field H) to have a considerable magnon-phonon

coupling. Our detuning is relatively large (108 Hz), and it is normal not to have phonon lasing.

Thus, the detuning must be as small as possible, roughly a few Hz, so as not to affect the population

inversion and the phonon field substantially.

Finally, we terminate our discussion by investigating a frequency mismatch between the

drive field ωd and the cavity photon ωa and magnon ωm frequencies (ωa “ ωm). As we expect,
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the results of Figures 4.9 and 4.10 are repeated for the population inversion and the phonon field

in Figures 4.11 and 4.12 respectively. In these figures, use the same parameter of Figures 4.9

and 4.10, but we fix ωa “ ωm “ 20π GHz and allow ωd to vary a bit. Here also we observe

even a tiny frequency mismatch between the drive field and that of the cavity photon and magnon

leads to a visible difference. As both Figures, 4.11 and 4.12 show, a positive frequency mismatch

ωd´ωa“ 0.1 MHz significantly drops the population inversion and the amplified phonon field (the

blue curve in both figures), and for a negative mismatch, there is no population inversion and hence

no phonon lasing at all. This phenomenon is consistent with our expectation as one compares this

case to an optical laser. If we pump a two-level atom at a frequency different from the transition

frequency, no transition is induced. The same argument applies to the phonon laser. If the drive

or the pump frequency mismatches that of the cavity photon and magnon, there would not be an

efficient mechanical oscillation and hence no phonon lasing in the system.

Also, we emphasize in contrast to the reference [2] that has defined a “mechanical gain”

and a “threshold” for the drive field, here we cannot present an analyitcal expression for these two.

In [2], it is assumed there is a steady state for the population inversion. Then, one can obtain an

analytical expression for the “constant” population inversion (by constant, we mean it does not

vary with time, however it can change by changing the drive field). Given the constant population

inversion, after substituting it in equation (4.45) and some mathematical work, one can obtain an

expression like 9bs “ ∆bbs`cte., where ∆b contains the mechanical gain coefficient and some other

parameters. Having the mechanical gain and the losses of the system in hand, one can obtain a

threshold for the phonon laser. However, our analysis it totally different, showing the population

inversion in all cases is oscillatory, and therefor one cannot obtain an analytical expression for the

threshold, although below some particular drive filed no phonon lasing is possible.
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Figure 4.12: The amplified phonon field for the same parameters used in Figure 4.11. The same
conclusion applied to Figure 4.10 is also valid for this case. To have a strong phonon field, the
detuning must be as small as a few Hz.

Besides, we noticed the quantum noise does not play a significant role in the magnome-

chanical phonon laser. The effect is so negligible that cannot be represented on the plots because

the corresponding curves almost coincide with those obtained without considering the noise. This

is in contrast to the results of chapters 2 and 3 in which the quantum noise was an important factor

for the degree of the entanglement of the light fields. Here we deal with “coherent” emission of

phonons (similar to the coherent emission of photons in an optical laser). And, as we know, the

coherent states are similar to the classical states [134]. Therefore, it seems natural that the noise

does not have a determining effect because we do not deal with the pure quantum features of the

bosonic fields.

In summary, we studied a magnomechanical phonon laser beyond the steady-state approx-

imation. Our results show that the population inversion between the upper and lower supemodes

of the system demonstrates an oscillatory behavior with time. This oscillation is in contrast to the
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previous studies that assume a constant population inversion with time. Despite the oscillations of

the population inversion, one can achieve relatively large stimulated phonon numbers if the power

of the drive field is beyond a threshold and the frequency of the drive field is matched to the fre-

quencies of the cavity photons and magnons. Any detuning significantly drops the phonon number.

Since the magnomechanical system we considered is highly tunable with low loss and also it has

an extra degree of freedom provided by the constant magnetic field, it can be an alternative to the

traditional optomechanical systems.
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5 Conclusion

5.1 Summary

Quantum dynamics determines the time evolution of the quantum operators. In this thesis, we

studied the three cases quantum dynamically along with the quantum noise effect.

The first case was a hybrid PT -symmetric system of a gain-loss coupler with an added

squeezing element. We studied how quantum noises influence the continuous-variable entangle-

ment generated with that setup. According to the prediction of the non-Hermitian Hamiltonian

formalism, one can create highly entangled, high-intensity light fields by such a setup, especially

when the system is operating in the broken symmetry regime where the light fields can simulta-

neously be amplified and entangled. However, the quantum noise can completely erase the entan-

glement. The results obtained by the full dynamics indicate one can achieve certain amounts of

the entanglement, though they are weaker than those predicted without considering the quantum

noises. In particular, placing the squeezing element inside the waveguide amplifying the prop-

agating light field enables one to realize light fields with considerable CV entanglement. The

importance of studying this model setup was to clarify that quantum noises must be considered in

PT -symmetric optical systems for engineering the quantum properties of light fields.

We extended the study of the gain-loss coupler in chapter 3 by including the gain saturation

effect. We demonstrated how gain saturation affects quantum noise when the quantum properties

of light are concerned. As quantum noise alters the nonclassical properties of light, the gain satu-

ration substantially changes the nonclassical features of light. As examples, we first considered the

Wigner function, which is an alternative to the state vector and density matrix for the system. We
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found that the Wigner function evolves into a quasisteady state due to gain saturation, whereas in

the unsaturated case, the distribution of the Wigner function in phase space expands, and its peak

value drastically decreases. Furthermore, the profile of the evolved Wigner function was different

for the saturated and unsaturated cases. The gain saturation reduces the gain coefficient with time,

and therefore the quantum noise effect is reduced. Second, we investigated the time evolution of

entanglement by considering different cases in which the gain, loss, and coupling coefficients are

comparable or very different from each other. Generally, as long as the quantum noise level is high,

a steady state of entanglement is not achievable. However, gain saturation reduces the quantum

noise level, and hence in most cases, one can attain a final steady state. Then, we showed that

gain saturation is especially meaningful when the saturation intensity is low. On the other hand, if

the saturation intensity is sufficiently high, the degree of entanglement vanishes, or the difference

between the saturated and unsaturated cases is negligible. All these results indicate that gain sat-

uration does exert considerable impact on the quantum properties of light fields processed by our

non-Hermitian setup.

In the last chapter, we studied a magnomechanical phonon laser beyond the steady state.

This system includes a microwave cavity and a YIG sphere in it. The system is driven by two

fields: the first is a microwave whose intensity (or, power) should be beyond its threshold. The

second is a constant magnetic field that is perpendicular to the first drive field. The magnetic field

provides the collective excitation of the YIG sphere. As the magnomechanical systems are highly

tunable with low loss and having an extra degree of freedom due to the constant magnetic field,

they seem to be a good alternative to the optomechanical systems. Using the decomposition of

the time evolution operator, we linearzied the nonlinear set of differential equations describing the

dynamics of the system. After the numerical solving of the equations, we concluded it is possible to
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generate stimulated emitted phonons at relatively large numbers. Another feature of the dynamical

magnomechanical laser was the oscillatory behavior of the population inversion between optical

supermodes. Our results show one should finely tune the drive field frequency to the frequencies

of the cavity photon and magnon. Also, the drive field power must be larger than the threshold

power which can only be calculated numerically.

5.2 Outlook

As the future work, we have a couple of ideas that are related to the the topics investigated in this

thesis:

‚ Is that possible to have the magnetostriction cooling similar to the radiation pressure cooling

in optomechanics? If so, we are going to study it as a quantum dynamical process using the

the method of decomposing the time evolution operator.

‚ It is shown one can achieve entanglement using the magnomechanical systems [171] and

also it is possible to have a PT -symmetric magnomechanical system [176, 177, 58]. Thus,

one can think about macroscopic, intense entanglement generation using a magnomechanical

PT -symmetric system. Notably, the magnomechanical PT -symmetric system is passive,

having no material gain. Therefore, the quantum noise associated with the amplification is

absent, and one may expect a high degree of entanglement.
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[44] D. Suter and G. A. Álvarez, “Colloquium: Protecting quantum information against environ-
mental noise,” Reviews of Modern Physics, vol. 88, no. 4, p. 041001, 2016.

[45] C. H. Henry and R. F. Kazarinov, “Quantum noise in photonics,” Reviews of Modern
Physics, vol. 68, no. 3, p. 801, 1996.

[46] C. Gardiner and P. Zoller, The Quantum World of Ultra-Cold Atoms and Light Book I:
Foundations of Quantum Optics. World Scientific Publishing Company, 2014, vol. 2.

[47] C. Gardiner, P. Zoller, and P. Zoller, Quantum noise: a handbook of Markovian and non-
Markovian quantum stochastic methods with applications to quantum optics. Springer
Science & Business Media, 2004.

[48] P. Zoller and C. W. Gardiner, “Quantum noise in quantum optics: the stochastic schrz”
odinger equation,” arXiv preprint quant-ph/9702030, 1997.

[49] C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: Quantum
stochastic differential equations and the master equation,” Physical Review A, vol. 31, no. 6,
p. 3761, 1985.

[50] B. He, S.-B. Yan, J. Wang, and M. Xiao, “Quantum noise effects with kerr-nonlinearity en-
hancement in coupled gain-loss waveguides,” Physical Review A, vol. 91, no. 5, p. 053832,
2015.

[51] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Reviews of
Modern Physics, vol. 86, no. 4, p. 1391, 2014.

[52] X. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, “Cavity magnomechanics,” Science ad-
vances, vol. 2, no. 3, p. e1501286, 2016.
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