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ABSTRACT 

Hybridization has traditionally been viewed as a happenstance that negatively impacts 

populations, but is now recognized as an important evolutionary mechanism that can 

substantially impact the evolutionary trajectories of gene pools, influence adaptive capacity, and 

contravene or reinforce divergence. Physiographic processes are important drivers of dispersal, 

alternately funneling populations into isolation, promoting divergence, or facilitating secondary 

contact of diverged populations, increasing the potential for hybridization. In North America, 

glacial-interglacial cycles and geomorphological changes have provided a dynamic backdrop 

over the last two million years that promoted such oscillations of population contraction and 

expansion. These biogeographic processes have resulted in regional hybrid zones where 

hybridization spans generations 

Herein, I explored hybrid zones in two species complexes of reptiles across Eastern, 

Central, and Southwestern North America. Hybrid zones can influence evolutionary trajectories, 

and understanding the mechanisms underlying their formation is important for defining 

appropriate management strategies and can help avoid actions that would inadvertently lead to 

new hybrid zones.  

Chapter I assessed differential introgression in a complex of terrestrial turtles, the 

American Box Turtles (Terrapene spp.), from a contemporary hybrid zone in the southeastern 

United States. Transcriptomic loci were correlated with environmental predictors to evaluate 

mechanisms engendering maladapted hybrids and adaptive introgression. Selection against 

hybrids predominated for inter-specifics but directional introgression did so in conspecifics. 

Outlier loci also primarily correlated with temperature, reflecting the temperature dependency of 

ectotherms and underscoring their vulnerability to climate change.  



Chapter II performed a robust assessment of recently developed machine learning (M-L) 

approaches to delimit four Terrapene species and evaluate the impact of data filtering and M-L 

parameter choices. Parameter selections were varied to determine their effects in resolving 

clusters. The results provide necessary recommendations on using M-L for species delimitation 

in species complexes defined by secondary contact. These data exemplify usage of M-L software 

in a phylogenetically complex group. 

Chapter III describes an R package to visualize some of the analyses from Chapter I. 

Current software to generate genomic clines does not include functions to visualize the results. 

Thus, I wrote an API (application programming interface) that does so and also performs other 

genomic and geographic cline-related tasks.  

Chapter IV examines historical and contemporary phylogeographic patterns in the 

Massasaugas (Sistrurus spp.), a type of dwarf rattlesnake found across the Southwest and Central 

Great Plains. In the Southwest, S. tergeminus tergeminus and S. t. edwardsii putatively diverged 

in the absence of strong physiographic barriers and physical glaciers, suggesting primary 

divergence. In contrast, a disjunct population of S. t. tergeminus in Missouri reflects potentially 

historical secondary contact with S. catenatus. These taxa represent contrasting examples of 

divergence resulting from alternative phylogeographic processes and contextualizes 

evolutionarily significant and management units. 

Combined, the four chapters present population genomic data to elucidate impacts of 

phylogeographic processes on hybrid zones at a continental scale. The data will promote 

effective conservation management strategies, as many species in the focal regions have been 

affected by anthropogenic pressures. In this sense, the results can be extrapolated to co-

distributed taxa with similar phylogeographic histories.  
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INTRODUCTION 

Hybridization (interbreeding of distinct evolutionary lineages) is widespread, but its 

evolutionary impact has surprisingly long been debated. The traditional view of hybridization 

centered upon it as being maladaptive, and thus serving to reinforce species boundaries and the 

concept of the biological species. Outspoken proponents of this negative view of hybridization 

included Dobzhansky (1937), Muller (1942), and Mayr (1963), all of whom were involved in 

developing the ‘modern synthesis.’ Although this perspective was contemporary at the time, it 

has subsequently been argued against on numerous occasions (Hedrick 2013). In fact, the tenor 

of this debate has shifted markedly, such that interpretations of hybridization and its 

manifestations are now seen as being far more important in the evolutionary process than 

previously thought (e.g., Abbott et al. 2013).  

One phenomenon of hybridization as an evolutionary process is the formation of ‘hybrid 

zones’, areas were interbreeding amongst distinct lineages occurs at elevated frequencies and 

spanning multiple generations (Anderson 1948, 1949, 1953). Such 'hybrid zones' are often 

defined by physiographic processes at regional scales, where climate oscillation in synergy with 

geomorphological shifts have modulated dispersal and funneled populations into isolation, 

promoting divergence. Population expansion can follow, potentially leading to secondary contact 

of distinct lineages, and, in turn, increasing the potential for hybridization (Hewitt 1996, 2000, 

2001).  

In North America, glacial-interglacial cycles and geomorphological changes over the last 

two million years have provided a dynamic backdrop that promoted such oscillations of 

population contraction and expansion (Axelrod 1979, 1985; Soltis et al. 2006). These 

biogeographic processes have resulted in regional hybrid zones in the Southeast, Central, and 
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Southwest (Remington 1968; Swenson & Howard 2005). Hybrid zones are fascinating natural 

'experiments' of hybridization as an evolutionary process because they are characterized in both 

historic and contemporary contexts, are manifested across various taxonomic groups, and often 

involve species complexes with unresolved phylogenies. They also generally coincide with areas 

of high biodiversity and the juxtaposition of different habitats (Moore 1977; Arnold 1997). Thus, 

they offer opportunities for comparative approaches to explore evolutionary mechanisms that 

underly the formation and persistence of hybrid zones and provide insights into genomic 

consequences of hybridization (Barton & Hewitt 1985; Harrison & Larson 2016). Understanding 

their evolutionary underpinnings can also promote effective conservation management strategies 

and help avert the anthropogenically-induced formation of new hybrid zones. 

For my doctoral research, I addressed several general questions involving hybrid zones. 

1) How have regional biogeographic processes influenced North American hybrid zones? 2) Are 

the hybrid zones of interest primarily reflective of historical and/ or contemporary processes? 3) 

Are the underlying genomic processes occurring differentially across the genome and with 

respect to species boundaries? 4) Do the hybrid zones differ in a phylogeographic context? 

Hence, I explore hybrid zones in two species complexes of reptiles across Eastern, Central, and 

Southwestern North America to explore genomic signatures of historic and contemporary 

hybridization and their interplay with local adaptation. I also examined the correlation between 

taxonomic divergence, introgression, selection, and environmental factors at a continental scale. 

Chapter I assessed differential introgression in a complex of terrestrial turtles, Terrapene 

spp., from a contemporary hybrid zone in the southeastern United States. Transcriptomic loci 

were correlated with environmental predictors to evaluate mechanisms engendering maladapted 

hybrids and adaptive introgression. Selection against hybrids predominated inter-specific 
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admixture, whereas directional introgression defined intra-specific admixture. Direction 

introgression, as inferred from outlier loci, primarily correlated with temperature, reflecting the 

temperature dependency of ectotherms and underscoring their vulnerability of these species to 

climate change.  

Chapter II demonstrated a robust assessment of recently developed species delimitation 

software based on machine learning (M-L) to untangle phylogenetic relationships in a species 

complex defined by hybridization. Data filtering and M-L parameters were varied to determine 

their effects in resolving clusters. Minor allele frequency filters and low-to-moderate per-

individual and per-population missing data were optimal in Terrapene. The results provide 

necessary recommendations on using M-L that, in this application, is still in its infancy. 

Furthermore, four Terrapene species were delimited with secondary contact supported, likely 

facilitated by glaciation in the Eastern United States. These data exemplify usage of M-L 

software in a phylogenetically complex group. 

Chapter III describes an R package to visualize some of the analyses from Chapter I. 

Current software to generate genomic clines does not include functions to visualize the results, 

for which I wrote an API (application programming interface) that also performs other genomic 

and geographic cline-related tasks.  

Chapter IV examines historical and contemporary phylogeographic patterns in the 

Massasauga Rattlesnakes (Sistrurus spp.) across the Southwest and Central Great Plains. In the 

Southwest, S. tergeminus tergeminus and S. t. edwardsii putatively diverged in the absence of 

strong physiographic barriers and physical glaciers. The results accordingly suggest they are 

undergoing primary divergence. In contrast, a disjunct population of S. t. tergeminus in Missouri 

has potentially been subjected to historical secondary contact with S. catenatus. These taxa 
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represent contrasting examples of divergence resulting from alternative phylogeographic 

processes and contextualizes evolutionarily significant and management units. 

The above chapters present population genomic data to elucidate impacts of 

phylogeographic processes on hybrid zones at a continental scale. The data will promote 

effective conservation management strategies, as many species in the focal regions have been 

affected by anthropogenic pressures. In this sense, the results can be extrapolated to co-

distributed taxa with similar phylogeographic histories. Below I provide an overview of 

contemporary perspectives on hybridization, as well as what is currently known – or surmised – 

regarding how such perspectives define various aspects of biogeography and ecology. 

 

Traditional perspective of hybridization 

Hybridization has traditionally been considered inherently maladaptive, impacting the 

dynamics of gene flow and reproductive output (Dowling & Secor 1997). For example, 

hybridizing individuals may represent negative reproductive effort if hybrids are indeed sterile or 

offspring inviable (Rhymer & Simberloff 1996). The latter, in particular, may be a consequence 

of endogenous selection such as Dobzhansky-Muller incompatibilities or of sexual selection 

against hybrids (Coyne & Orr 2004; Gavrilets 2004). Maladapted and/or disrupted gene 

complexes may also occur in fertile hybrids, particularly if some traits are intermediate whereas 

the environment is not (exogenous selection). In either case, reinforcement of reproductive 

isolation or genetic assimilation were considered the endpoints under the Biological Species 

Concept [(BSC) (Mayr 1942, 1963)], with selection overshadowing recombination or vice versa 

(Abbott et al. 2013). 
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Hybridization as a promoter of evolution 

On the other hand, fertile hybrids can potentially backcross with one or both parental 

species (i.e., ‘introgressive hybridization;’ Anderson & Hubricht 1938) and introduce new alleles 

into lineages which, in turn, can promote adaptive potential via recombination (Lewontin & 

Birch 1966; Barton & Hewitt 1989). Increasingly, molecular studies have demonstrated that 

hybridization and introgression can facilitate adaptive evolution, thus refuting its original 

premise of being maladaptive (per Mayr 1942, 1963). One such case includes the introgression 

of darker coat color from domestic dogs into coyotes and wolves (Canis spp.), leading to positive 

selection for darker pelages in populations in forests versus those inhabiting more open areas 

(Anderson et al. 2009). Similarly, coyote/grey wolf introgression led to local adaptation for 

larger body size in coyotes of eastern North America (vonHoldt et al. 2016). Another case 

involves Darwin’s finches (Geospiza), where climatic change and anthropogenic disturbance 

have promoted the fitness of hybrids, as well as provoking reproductive isolation among hybrids 

and parentals (Arnold 2015). More in-depth studies into both Geospiza and Canis also revealed 

that some regions of their genomes were introgressed, while others exhibited reduced inter-

species gene flow, demonstrating the semipermeable nature of adaptive introgression and 

divergence (vonHoldt et al. 2016; Lawson & Petren 2017). In each of these cases, introgression 

allowed hybrids to reach adaptive peaks of fitness in heterogeneous landscapes that otherwise 

may have been inaccessible to the parental forms (Barton 2001). Thus, clearly introgression can 

facilitate evolutionary processes such as local adaptation and speciation. 
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Hybridization in the context of deep history 

Genetic signatures of historic introgression remain in the population and can be detected 

in the absence of contemporary hybridization. Identification of historic introgression has several 

benefits, including a perspective on past distributions, speciation events, and local adaptation. 

Historic hybridization can also result in introgressed alleles that are retained in a subset of 

populations, thus characterizing distinct evolutionarily significant units (ESUs) or management 

units (MUs) that may require unique conservation management strategies (e.g., Placyk et al. 

2012; vonHoldt et al. 2016). Finally, a recognition of historic hybridization can be beneficial 

with regard to uncertain phylogenetic relationships, particularly those where gene tree 

discordance is apparent, but with incomplete lineage sorting (ILS) as a possible counter-

argument for the observed patterns (Maddison 1997; Bangs et al. 2018; Chafin et al. 2020).  

 

Hybridization driven by climate change  

Climate oscillations are important drivers of large-scale dispersal, alternately isolating 

populations or promoting secondary contact among distinct lineages. In North America, 

Pleistocene glaciations dominated such phylogeographic processes over last two million years. 

Glacial expansion forced species to converge on glacial refugia, forcing the congregation of 

previously isolated taxa (Anderson 1949; Remington 1968). In contrast, interglacial recession 

opened new habitat, promoting dispersal from glacial refugia and leading to post-glacial contact 

with distinct lineages isolated nearby. However, if phylogeographic breaks induced multiple 

allopatric refugia, populations closer to the glacial margin could potentially block lineages from 

more distant areas from returning. A zone of secondary contact could thus emerge, with 

hybridization promoted (Hewitt 1996, 1999).  
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Hybridization and environmental complexity  

In addition, a mosaic of multiple habitat types in newly available area can lead to the 

breakdown of previously discrete gene pools, thus instigating contact (Rhymer & Simberloff 

1996). Importantly, these areas wherein hybridization occurs at elevated frequencies spanning 

multiple generations, or ‘hybrid zones’ (Anderson 1948, 1949, 1953), can also shift coincident 

with ecological, biogeographic, or climatic conditions (Barton & Hewitt 1985), facilitating local 

adaptation that can be heterogeneously expressed across the genome to maintain both gene flow 

and reproductive isolation (Harrison & Larson 2016). Hybrid zones can also be heavily 

influenced by anthropogenic disturbance (Anderson 1948, 1949). Thus, from a conservation and 

management standpoint, a better understanding of hybrid zone dynamics is certainly required. 

 

Hybridization in a contemporary context 

Recognizing how signatures of hybridization reverberate on contemporary population 

structure, coupled with understanding the disruption of pre-zygotic barriers in a hybrid zone, can 

inform management decisions (Anderson 1948; Rhymer & Simberloff 1996). Specifically, 

anthropogenic disturbance can facilitate contact between sympatric or parapatric taxa, thus 

increasing the frequency of hybridization. This, in turn, can disrupt local adaptation, or result in 

the formation of a hybrid swarm wherein hybrid gene pools replace those of distinct parental 

lineages (Allendorf et al. 2001). Alternatively, the reinforcement of reproductive barriers can 

further promote population divergence and, eventually, lead to further speciation, particularly if 

reduced hybrid fitness is followed by pre- or post-zygotic isolation mechanisms (Dobzhansky 

1936, 1940; Orr & Turelli 2001). Finally, hybridization within a localized area spanning multiple 

generations can promote breakdown of ecological barriers resulting in a hybrid zone.  
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Contemporary hybrid zones are also expected to have either mosaic or clinal 

distributions. They are typically maintained by two alternative processes: 1) Selective pressures 

enable hybrids to better survive in intermediate habitat (‘ecotonal’; Moore 1977) and 2) hybrids 

have lower fitness in the hybrid zone, but it persists because parental types continually disperse 

into it and interbreed therein (environmentally independent ‘tension-zone’; Bazykin 1969; 

Barton & Hewitt 1985). Selection pressures, and the potential for an environmental correlation, 

can be assessed by inspecting geographic and genomic clines (Endler 1977; Fitzpatrick 2013). 

For example, whether a particular habitat promotes hybridization can be determined by gauging 

the movement of the hybrid zone as environmental conditions change, and how this may be 

driven by habitat degradation.  

 

Hybrid zones of interest in North America 

Rationale 

Understanding the mechanisms underlying formation of historic and contemporary hybrid zones 

is important to define appropriate management strategies that prevent situations that would 

promote the inadvertent formation of new hybrid zones. First, the study of an historic hybrid 

zone such as that in midwestern North America will shed light on those processes that promoted 

hybrid zone formation in the past. It also will help understand mechanisms that allow locally 

adapted but introgressed populations to persist. Second, by clarifying how anthropogenically 

induced secondary contact between previously isolated taxa promote hybrid zones, management 

strategies can be implemented that avoid such situations from occurring in the first place. Lastly, 

pro-active management strategies can target anticipated effects of climate change such as altered 

distributions of species and/or altered environments. Climate change is predicted to enhance the 
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frequency and extent of introgression as well as detrimental or beneficial effects on locally 

adapted alleles under selection (Taylor et al. 2014, 2015). For example, selection against hybrids 

can reinforce distinct gene pools (Orr & Turelli 2001), and adaptive introgression (i.e., 

introgression provides adaptive capacity) can allow range expansion or even facilitate 

evolutionary rescue from inhospitable environments (Hamilton & Miller 2016; Oziolor et al. 

2019). These processes can be monitored by sampling transects in hybrid zones, sequencing 

genome-wide loci, and deriving genomic clines that regress ancestry against parental allele 

frequencies (Chown et al. 2015; Taylor et al. 2015; Gompert et al. 2017). In so doing, selection 

and adaptive introgression can be contrasted with environmental variables, allowing one to 

elucidate the manner by which individuals respond to habitat degradation, and consequently, 

how hybrid zones will shift accordingly.  

 

Regional foci 

Biodiversity and endemism are elevated in southeastern North America (Ricketts 1999), yet the 

region harbors many species of conservation concern (Lydeard & Mayden 1995). Anthropogenic 

disturbance, such as the clear-cutting of forests and the introduction of non-native species are 

also prevalent (Stapanian et al. 1997, 1998). In addition, multiple ecological regions are 

juxtaposed in this region which also is characterized by overlapping phylogeographic breaks 

(U.S.E.P.A. 2013). This has resulted in unique ecological, climatic, and biogeographical 

characteristics that facilitated formation of hybrid zones in the region (Swenson & Howard 

2005), as reflected by areas that containing hybrid zones across a variety of species (Remington 

1968; Swenson & Howard 2004). The region is sufficiently far south to have avoided Pleistocene 

glaciation, and accordingly served instead as a glacial refugia (Hewitt 2000). However, the 



10 

 

contemporary processes that maintain the hybrid zone, and how they may change over time, 

certainly warrant a more thorough investigation. 

Similarly, the southwestern United States also provides a worthwhile system within 

which to assess hybridization and introgression. It too has unique biodiversity, and much of the 

shortgrass prairie habitat of eastern Colorado, New Mexico, and western Texas has been lost or 

degraded (Samson et al. 2004). Furthermore, it may also represent a suture zone that formed 

from the convergence of post-glacial dispersal routes (Swenson & Howard 2005). Alternatively, 

the region has limited physiographic barriers to cause vicariant events in terrestrial species and 

lacked the physical presence of glaciers (Licciardi et al. 2004). Accordingly, the southwestern 

climate saw drastic shifts in temperature, precipitation, and vegetational composition during 

Pleistocene glacial-interglacial cycles (Axelrod 1948, 1979, 1983; Owen et al. 2003). These 

changes may have maintained mosaic hybrid zones, with gene flow persisting over time as mesic 

and xeric refugia expanded and contracted with the climate (Axelrod 1979; Van Devender et al. 

1987). They may also have facilitated ecological speciation, with divergence occurring when the 

habitat preferences of sympatric populations became sufficiently different to restrict gene flow 

(Douglas et al. 2006).  

Midwestern North America, on the other hand, represents an historic hybrid zone that 

stems from the contact zones developed during post-glacial recolonization. Contact between 

northern and southern taxa in the Midwest subsequently promoted dispersal into northeastern 

North America via the ‘Prairie Corridor.’ This region then evolved into a natural hybrid zone 

(Swenson & Howard 2005). However, some populations may have dispersed in atypical routes 

toward the southwest during post-glacial recession (Swenson & Howard 2005), a hypothesis that 

needs to be investigated further. 
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Overall implications 

 Herein, I explored hybrid zone dynamics by analyzing next-generation sequencing data 

across historic and contemporary perspectives and at a broad geographic scale. Data that quantify 

local adaptation, speciation, species distributions, selection, and hybridization/ introgression 

were employed. Specifically, the studies below broaden our knowledge on the evolutionary 

history of hybrid zones in Southeast, Central, and Southwest North America, and provide data on 

the impacts of climate change and anthropogenic disturbance on these processes. They also have 

broader implications for a wide variety of taxa because other terrestrial organisms will likely 

react similarly to habitat loss and anthropogenic disturbance. 
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CHAPTER I 

Contrasting signatures of introgression in North American box turtle (Terrapene spp.) 

contact zones 

 

Bradley T. Martin, Marlis R. Douglas, Tyler K. Chafin, John S. Placyk, Jr., Roger D. Birkhead, 

Christopher A. Phillips, Michael E. Douglas 

 

ABSTRACT 

Hybridization occurs differentially across the genome in a balancing act between selection and 

migration. With the unprecedented resolution of contemporary sequencing technologies, 

selection and migration can now be effectively quantified such that researchers can identify 

genetic elements involved in introgression. Furthermore, genomic patterns can now be associated 

with ecologically relevant phenotypes, given availability of annotated reference genomes. We do 

so in North American box turtles (Terrapene) by deciphering how selection affects hybrid zones 

at the interface of species boundaries and identifying genetic regions potentially under selection 

that may relate to thermal adaptations. Such genes may impact physiological pathways involved 

in temperature-dependent sex determination, immune system functioning, and hypoxia tolerance. 

We contrasted these patterns across inter- and intra-specific hybrid zones that differ temporally 

and biogeographically. We demonstrate hybridization is broadly apparent in Terrapene, but with 

observed genomic cline patterns corresponding to species boundaries at loci potentially 

associated with thermal adaptation. These loci display signatures of directional introgression 

within intra-specific boundaries, despite a genome-wide selective trend against intergrades. In 

contrast, outlier loci for inter-specific comparisons exhibited evidence of being under selection 
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against hybrids. Importantly, adaptations coinciding with species boundaries in Terrapene 

overlap with climatic boundaries and highlight the vulnerability of these terrestrial ectotherms to 

anthropogenic pressures.  
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1. INTRODUCTION 

 Hybrid zones are natural laboratories that allow the genetic architecture of local 

adaptation and/or reproductive isolation to be examined. They frequently juxtapose with 

underlying ecological gradients, allowing researchers to quantify the how selection impacts the 

genome (Barton & Hewitt 1985; Payseur 2010). Here, selection might prevent introgression at 

loci underpinning crucial adaptations while the rest of the genome essentially homogenizes (Via 

2009; Feder et al. 2013). Once such loci are identified, the phenotypes inferred by adaptive 

divergence can then be inferred via a bottom-up, “reverse-ecology” approach (Li et al. 2008; 

Tiffin & Ross-Ibarra 2014). Hybrid zones effectively become unique “windows” into the 

speciation process by allowing functional loci to be associated with various aspects of ecology 

(Taylor et al. 2015).  

 Diminishing costs associated with genomic sequencing, coupled with an upsurge in 

genomic annotations, has facilitated the reverse-ecology approach. Examples include adaptive 

divergence in seasonal growth and variability in immune responses (Rödin‐Mörch et al. 2019), 

proactive responses to environmental gradients (Keller & Seehausen 2012; Guo et al. 2016; 

Waterhouse et al. 2018; Teske et al. 2019), and an upsurge in contemporary effects such as 

anthropogenic modulation of reproductive boundaries (Garroway et al. 2010; Taylor et al. 2014; 

Grabenstein & Taylor 2018). Importantly, researchers can now effectively gauge the how the 

genome is impacted by ecological and climatic shifts, and the how species distributions are 

promoted by pre-existing adaptive gradients (Rosenzweig et al. 2008; Taylor et al. 2015; Ryan et 

al. 2018). Thus, genome-scale datasets can often refine our perspectives on two major 

evolutionary patterns: First, reproductive boundaries among historically co-existing species can 

become blurred due to substantial environmental change, a situation directly analogous to the 
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imposition of contact among otherwise allopatric taxa (Rhymer & Simberloff 1996). Second, 

selection and migration are balanced within hybrid zones (Key 1968; Parmesan et al. 1999), and 

this balance can shift due to rapid and/or exceptional climate change (Seehausen et al. 2008; 

Kearns et al. 2018). Genomic data extracted from hybrid zones may thus allow species 

boundaries to be defined according to their phenotypic and genetic underpinnings.  

 Species boundaries can either be strengthened (Ryan et al. 2018) or eroded (Muhlfeld et 

al. 2014) due to temperature shifts, a major component of climate change, potentially shifting 

species distributions and/or hybrid zone dynamics. Furthermore the effects of temperature on 

physiological and cellular mechanisms are well known (Kingsolver 2009), directly affecting 

growth, development, reproduction, locomotion, and immune response (Keller & Seehausen 

2012). As a result, the manner by which thermal gradients interact with species boundaries has 

become a major focus (Qin et al. 2013). Herein, we attempt to clarify how species boundaries 

reflect environmental processes by quantifying the geographic and ecological foundations of two 

hybrid zones in the ectothermic North American box turtles (Terrapene). 

 

1.1  Hybridization in North American box turtles 

 North American box turtles (Emydidae, Terrapene) are long-lived, omnivorous, and 

primarily terrestrial ectotherms, with a rectangular appearance defined by a dome-shaped dorsal 

carapace and a ventral plastron hinged to tightly close against the carapace (hence the common 

name) (Dodd 2001). Their North American range is characterized by two well-known zones of 

hybridization (Milstead 1969; Dodd 2001; Cureton et al. 2011) that provide excellent models 

from which to contrast regional patterns of hybridization and introgression. To do so, we 
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evaluated four southeastern taxa [the Woodland (T. carolina carolina), Gulf Coast (T. c. major), 

Three-toed (T. carolina triunguis), and Florida (T. bauri) box turtles (Auffenberg 1958, 1959; 

Milstead & Tinkle 1967; Milstead 1969; Martin et al. 2013; Iverson et al. 2017)], and two 

midwestern (the Ornate box turtle, T. ornata ornata and T. c. carolina; Cureton et al. 2011). 

Each hybridizes regionally, and therefore we focus on inter- and intra-specific contacts within 

these two regions.  

 One focal hybrid zone is nested within southeastern North America (Ricketts 1999), 

where box turtles inhabit a biodiversity hotspot. Here, clear-cutting, invasive species, and altered 

fire regimes are widespread (Stapanian et al. 1997, 1998; van Lear & Harlow 2002), and impact 

numerous endemic species (Lydeard & Mayden 1995). The region also displays clinal 

intergradation (i.e., interbreeding between subspecies), as well as hybridization across a variety 

of taxa (Remington 1968; Swenson & Howard 2004), due largely to coincident ecological and 

climatic transitions (Swenson & Howard 2005). 

 By contrast, contact zones in midwestern North America seemingly stem from secondary 

contact (i.e., resumption of interbreeding following a geographic separation), as associated with 

postglacial recolonization/ expansion (Swenson & Howard 2005). Here, prairie-grassland habitat 

has been anthropogenically fragmented such that niche overlap now occurs between grassland 

and woodland species (Johnson 1994; Samson & Knopf 1994; Rhymer & Simberloff 1996; 

Samson et al. 2004). Furthermore, while overlapping forms in the Midwest represent distinct 

species, southeastern forms are taxonomically in flux. Species status has varied for T. m. 

triunguis, and T. c. major is now viewed as an intergrade population (Butler et al. 2011; Iverson 

et al. 2017), despite recent molecular work suggesting specific status for T. m. triunguis and 

phylogenetic structure in T. c. major (Martin et al. 2013, 2014, 2020). For the sake of clarity, we 
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follow Martin et al., regarding T. m. triunguis as a full species and T. c. major as a recognized 

subspecies. 

 We used ddRAD sequencing (Peterson et al. 2012) to contrast genome-wide patterns of 

clinal introgression within each hybrid zone. We then identified/ quantified loci potentially under 

selection by mapping them to an available genomic reference and accordingly interpreted their 

potential ecological associations, which provide invaluable insights into how Terrapene has 

responded to a fluctuating climate. As such, our results extend to a proactive management 

paradigm that underscores the conservation of co-occurring forms. 

 

2. MATERIALS AND METHODS 

2.1. Tissue and DNA collection 

 Tissues for T. carolina, T. ornata, and T. mexicana triunguis were collected by volunteers 

and agency collaborators (Table S1). Additional samples were provided by numerous museums 

and organizations. Live animals were sampled non-invasively (e.g., blood, toenails, or toe-clips), 

whereas road-kills were sampled indiscriminately. Isolation of genomic DNA was performed 

using DNeasy Blood and Tissue Kits (QIAGEN), QIAamp Fast DNA Tissue Kit (QIAGEN), and 

E.Z.N.A. Tissue DNA Kits (Omega Bio-tek). The presence of genomic DNA was confirmed via 

gel electrophoresis using a 2% agarose gel. 
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2.2.  Library preparation 

 In silico digests were carried out to optimize restriction enzyme selection, using available 

genomic references [Painted turtle (Chrysemys picta), GenBank Accession #: 

GCA_000241765.2 (Shaffer et al. 2013); FRAGMATIC (Chafin et al. 2018); genome size=2.59 X 

109 bp]. The distribution of fragments (from N=24 samples) were first optimized then evaluated 

using an Agilent 4200 TapeStation. Library preparation was conducted per standard protocol 

(Peterson et al. 2012), using PstI (5’-CTGCAG-3’) and MspI (5’-CCGG-3’) restriction enzymes. 

We digested ~500-1,000ng of DNA/ sample at 37°C, with unique DNA barcode and sequencing 

adapters subsequently ligated. Prior to sequencing, quality control checks were performed at the 

core facility, to include fragment analysis for confirmation of correct size range and quantitative 

real-time PCR. Individuals (N=96) were pooled per lane of single-end Illumina sequencing at the 

University of Oregon Genomics and Cell Characterization Core Facility (Hi-Seq 4000, 

1x100bp). Populations were randomized across multiple lanes to mitigate batch effects. 

 

2.3.  Assembly and quality control 

 Read quality was quantified using FASTQC v. 0.11.5, then demultiplexed and aligned 

using IPYRAD v. 0.7.28 (Eaton & Overcast 2020), with reads mapped to the scaffold-level T. 

mexicana triunguis reference assembly (GenBank Accession #: GCA_002925995.2) at a 

distance threshold of 0.15. Non-mapping reads were discarded. This alignment is herein termed 

the “scaffold alignment” to differentiate it from a separate transcriptome-mapped alignment (see 

section 2.6). Barcodes and adapters were trimmed, as were the last five base pair (bp) of each 

read. Those exceeding five bases with low PHRED quality score (<33) were discarded, and 

potential paralogs were filtered by excluding loci with high heterozygosity (>75%) or >2 alleles 



24 

 

per individual. Loci with a sequencing depth of <20X per individual or <50% presence across 

individuals were also discarded. Our mapping and filtering steps above were conducted in 

IPYRAD.  

 

2.4.  Assessing admixture and population structure 

 ADMIXTURE (Alexander et al. 2009) was used to assess contemporary hybridization. It 

employs a model-based ML approach that estimates the proportion of ancestry shared across the 

genome-wide average of each sample. K=1-13 were used for datasets containing all sequenced 

taxa and subsets from the Southeast and Midwest hybrid zones, with 20 independent replicates 

per K (ADMIXPIPE; Mussmann et al. 2020). Hierarchical partitioning was done because 

ADMIXTURE often underestimates K by detecting only the uppermost hierarchy of population 

structure (Evanno et al. 2005). SNP data were pre-filtered using VCFTOOLS (Danecek et al. 

2011), with SNPs randomly thinned to one per locus to alleviate linkage bias and filtered by 

removing sites with a minor allele frequency (MAF)<1.0% to reduce bias associated with 

erroneous genotypes and singletons (Linck & Battey 2019). Model support across K-values was 

assessed using five-fold cross-validation (Alexander et al. 2009). ADMIXPIPE output was 

summarized using the CLUMPAK server (Kopelman et al. 2015), with each individual 

subsequently plotted as a stacked bar-chart (Rosenberg 2004).  

 We also performed Discriminate Analysis of Principal Components (DAPC) using the 

adegenet R-package (v2.0-0) with identical filtering parameters (Jombart et al. 2010). The 

find.clusters() function was utilized with 1,000,000 iterations to determine the optimal K with the 

lowest Bayesian Information Criterion (BIC). DAPC cross-validation (100 replicates, 90% 
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training dataset) then evaluated which principle components and discriminant functions to retain, 

with individuals plotted against the top three DAPC axes.  

 Finally, we also ran TESS3 (TESS3R R package; Caye et al. 2016) to estimate ancestry 

coefficients (as with ADMIXTURE), but also incorporate spatial proximity into ancestral genotype 

estimates. The TESS3 input alignments were subsets of those used in ADMIXTURE to include 

only individuals with GPS coordinates. Cross-validation (with 10% sites randomly masked) was 

performed for K=1-10 with twenty independent runs to assess optimal K. The output Q-matrix 

was interpolated using spatial kriging (Jay et al. 2012).  

 

2.5.  Identifying hybrids 

 NEWHYBRIDS (Anderson & Thompson 2002) was used to assign statistically-supported 

hybrids to genotype frequency classes (i.e., Pure, F1, F2, and backcrosses between F1 and parental 

types). The getTopLoc() function in HYBRIDDETECTIVE (Wringe et al. 2017a) reduced the data to 

300 loci containing the highest among-population differentiation (FST) and lowest linkage 

disequilibrium correlation (r2<0.2). Burn-in was 500,000 MCMC generations followed by 

2,000,000 post burn-in sweeps. Seeds were randomized and the analysis employed the Jeffrey’s 

prior for θ and π. To train the data, individuals sampled outside the focal hybrid zones with 

ADMIXTURE proportions=100% were pre-assigned as parentals. The following combinations of 

taxa were employed: Terrapene carolina carolina X T. c. major, T. c. carolina X T. m. triunguis, 

T. c. major X T. m. triunguis, and T. c. carolina X T. o. ornata. A posterior probability threshold 

>0.8 was required for assignment into the genotype frequency classes, as determined using a 
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power analysis conducted with HYBRIDDETECTIVE and PARALLELNEWHYBRID pipelines (Wringe 

et al. 2017b; a). 

 

2.6.  Genomic clines among scaffolds and mRNA mapping 

 In addition to the “scaffold alignment,” IPYRAD was rerun with reads mapped to the T. m. 

triunguis reference transcriptome (GenBank Accession: GCA_002925995.2), with identical 

filtering parameters. Three subsets of the resulting “transcriptomic alignment” were generated to 

retain only individuals per each pairwise combination of southeastern taxa (T. c. carolina, T. c. 

major, T. m. triunguis). The “scaffold” and “transcriptome” alignments were then independently 

examined for patterns of differential introgression using INTROGRESS (Gompert & Buerkle 2010) 

and Bayesian Genomic Clines (Gompert & Buerkle 2012). Both generate genomic clines, which 

assess locus-specific ancestry to identify outliers versus the genome-wide average and can 

identify outlier SNPs having cline shapes divergent from neutral expectations. Parental reference 

populations were determined a priori via population structure and NEWHYBRIDS results. Parental 

status was considered only for samples with ADMIXTURE ancestry coefficients=100%. 

 INTROGRESS derived neutral expectations from 1,000 parametric simulations (Gompert & 

Buerkle 2010). Genomic clines were only generated for SNPs with a high allele frequency 

differential (δ) between parental types (Andrés et al. 2013). Outlier SNPs were defined using a 

Bonferroni-corrected α-significance threshold. 

 Prior to running BGC, sites with a MAF<5% were removed because an over-abundance 

of uninformative loci inhibited parameter convergence. Five independent BGC runs were 

conducted for both scaffold and transcriptomic alignments, which included 1,000,000 and 
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1,800,000 burn-in, respectively, each with 200,000 post-burn-in generations. Samples were 

thinned with every 50 iterations retained to mitigate auto-correlation. Genotype uncertainty 

corrections were applied to each locus, with the sequencing error rate prior computed in IPYRAD 

(ranging from 0.1-0.2%). The BGC linkage model was tested but found to be computationally 

intractable (i.e., >1Tb memory and unreasonable running times). Upon run completion, 

parameter traces were visually inspected for convergence. Replicate runs were subsequently 

combined.  

 Two parameters [i.e., genomic cline center (α) and rate (ß)] represented BGC output 

(Gompert & Buerkle 2011). The α-parameter indicates the direction of introgression, with 

negative and positive outliers depicting excess P1 and P2 ancestry, respectively. ß characterizes 

the rate of change, with negative values reflecting a wider genomic cline where loci more freely 

introgress, and a steeper cline indicated by positive values with relatively sharp transitions from 

P1 to P2 ancestry. BGC outliers were considered significant if they met either of two criteria: 1) 

the 95% credible intervals for α or ß did not overlap zero, or 2) the median of the posterior 

distribution exceeded the probability distribution’s quantile interval [(
1− 0.975

2
,

0.975

2
); (Gompert 

& Buerkle 2011)].  

 

2.7.  Mapping BGC outliers to chromosomes 

 BGC parameters α and ß were plotted onto assembled chromosomes to visualize the 

distribution of outliers across the genome. The Terrapene reference is a scaffold-level assembly, 

so MINIMAP2 (Li 2018) and PAFSCAFF (https://github.com/slimsuite/pafscaff) were used to map 

the T. m. triunguis reference to a closely related chromosome-level assembly (Trachemys 
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scripta; Simison et al. 2020; GenBank accession: GCA_013100865.1). The ASM20 MINIMAP2 

preset was chosen to accommodate the ~5-10% sequence divergence expected between 

Trachemys and Terrapene (Feldman & Parham 2002). The mapping connected Terrapene BGC 

outliers with Trachemys chromosomal positions, allowing the putative BGC outlier locations to 

be visualized at the chromosome-level, with plots subsequently generated (RIDEOGRAM R 

package; Hao et al. 2020).  

 

2.8.  Correlating outliers with environmental variables 

 We also independently identified SNP outliers by environmental association using 

redundancy analysis (RDA). Outlier SNPs were correlated with the standard WorldClim v2 

Bioclimatic variables that included 19 raster layers of temperature and precipitation, plus mean 

annual solar radiation, mean annual wind speed, and elevation (Fick & Hijmans 2017). The 

finest available scale (30 arc-seconds) was chosen for each raster. Layers were projected to 

WGS84 and cropped to the sampling extent (RASTER R package; Hijmans & Van Etten 2016). 

Raster values at each sampling location were then extracted. 

 Each predictor variable was scaled, centered, and tested for normality with a Shapiro-

Wilks test. Non-normal distributions were transformed using the BESTNORMALIZE R package 

(Peterson & Cavanaugh 2019) per RDA’s assumptions. The environmental layers were assayed 

for predictive capabilities with uncorrelated variables retained (ADESPATIAL R package, forward 

selection with 10,000 permutations). Predictors that failed forward selection were removed. To 

account for underlying spatial influence, distance-based Moran’s eigenvector maps (dbMEM) 

were generated using sample coordinates (quickMEM() R function; Borcard et al. 2018). The 
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dbMEMs are a matrix of axes that capture spatial patterns from multiple angles rather than just a 

latitudinal or longitudinal vector. To reduce overfitting, informative, non-redundant dbMEM 

axes were subset, using forward selection with 1,000 permutations. Finally, the SNP matrix was 

imported into R using ADEGENET, and missing data were imputed as the most frequent allele per 

population, following RDA assumptions.  

 A partial RDA (pRDA) conditioned on the dbMEM spatial matrix was then conducted 

using genotypes as the response variables, with 1,000 permutations (VEGAN R package; Oksanen 

et al. 2019). This approach “partialed out” spatial autocorrelative effects that could yield false 

negative SNP-environment associations. Significant RDA axes were determined using VEGAN’s 

anova.cca() function, and SNPs with loadings +/- 3 standard deviations from the mean on a 

significant axis were considered outliers. A full RDA and a pRDA conditioned on environment 

were also conducted to estimate the contributions of spatial versus environmental predictors. 

Each SNP was then correlated pairwise with all environmental variables using Pearson’s 

correlation coefficient (r), and those with the strongest correlations represented the best 

supported SNP-environment association.  

 

3. RESULTS 

 A total of 368 individuals (Tables S1, S2) were retained across 12,052 (combined 

alignment), 10,338 (Midwest-only), and 11,308 (Southeast-only) unlinked reference-mapped 

loci. This, a result of quality control steps and post-alignment filters that eliminated individuals 

with >90% missing data, and sites with MAF<1.0%. The scaffold alignment included 134,607 

variable and 90,777 parsimoniously informative sites. The transcriptome-guided alignment 

contained 2,741 bi-allelic SNPs across 247 individuals, with subsets generated for T. c. carolina 
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X T. c. major (EAxGU), T. c. carolina X T. m. triunguis (EAxTT), and T. c. major X T. m. 

triunguis (GUxTT).  

 

3.1.  ADMIXTURE across the hybrid zones 

 The combined east/ west ADMIXTURE CV (Fig. S1) supported K=6 (x̄= 0.19279, SD = 

0.00017), followed by K=4 (x̄= 0.19490, SD = 0.0016) and K=5 (x̄= 0.19738, SD = 0.00013). 

The analysis indicated population structure for T. c. carolina, T. m. triunguis, two distinct T. c. 

major subpopulations (Alabama/ Mississippi and Florida panhandles), and northern and southern 

T. o. ornata subpopulations from Illinois+Wisconsin+Iowa and 

Kansas+Texas+Colorado+Nebraska (Fig. S2). Terrapene bauri was excluded due to limited 

sampling (N=4). Admixture occurred between T. c. carolina X T. c. major (EAxGU), T. c. 

carolina X T. m. triunguis (EAxTT), T. c. major X T. m. triunguis (GUxTT), T. o. ornata X T. c. 

carolina (EAxON), and the two T. o. ornata subpopulations.  

 The lowest CV score for the southeastern ADMIXTURE (N=259 individuals) was at K=4 

(x̄= 0.21851, SD=0.00016), with K=3 (x̄=0.22134, SD=0.00015) and K=5 (x̄= 0.22519, 

SD=0.00082) trailing (Fig. S3). Southeastern taxa included T. c. carolina, T. c. major, and T. m. 

triunguis, and their analysis concurred with the all-taxa dataset in terms of both population 

structure and admixed taxa (Figs. 1, S4). Admixture primarily occurred throughout Alabama and 

the Florida panhandle (EAxGU), Georgia and South Carolina (EAxTT), and Mississippi/ 

southern Alabama (GUxTT). The two T. c. major subpopulations in the all-taxa analysis were 

corroborated. The same four southeastern groups plus T. bauri were also produced by DAPC 
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(K=5; Fig. S5). We found T. bauri highly differentiated along axis 1 (71.9% variance explained), 

whereas axes 2-3 delineated the remaining southeastern taxa (17.5% and 5.73%, respectively).  

 The midwestern analysis (Figs. 1, S6) included an optimal K=2 (x̄= 0.24069, SD= 

0.00023), followed by K=3 (x̄=0.25703, SD=0.00454) and K=4 (x̄=0.25861, SD=0.00374) (Fig. 

S7). The K=2 groups consisted of T. c. carolina and T. o. ornata, with only a few individuals 

indicating admixture. At K=3, T. c. carolina from Illinois split as a distinct group, although only 

a few of the admixture proportions approached 100%. At K=4, the northern and southern T. o. 

ornata subpopulations produced by the all-taxa analysis also materialized. 

 TESS3 corroborated both midwestern and southeastern ADMIXTURE analyses, with T. o. 

ornata, T. c. carolina T. m. triunguis, and the two T. c. major subpopulations in Alabama/ 

Mississippi and Florida being delineated (Fig. 1). The Kriging interpolation also spatially 

highlighted ancestry gradients consistent with ADMIXTURE (FIG. S8), with lower surface 

prediction scores concordant with areas that contained frequently mixed ancestry. 

 

3.2.  Genealogical hybrid classification 

 HYBRIDDETECTIVE confirmed convergence for inter- and intra-simulation replicates (Fig. 

S9) with 500,000 burn-in and 2,000,000 post-burn-in sweeps (the EAxON analysis required 

4,000,000 sweeps with 1,000,000 burn-in). Our power analyses suggested 90% assignment 

accuracy (+/- SD) for all genotype classes at a critical threshold of 0.8 (Figs. S10, S12, S14, 

S16). Statistical power was also elevated (≥0.8), although some genotype classes for EAxGU 

displayed relatively lower power (<0.8) (Figs. S11, S13, S15, S17). 
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 The southeastern hybrid zone consisted entirely of backcrosses (F1 hybrids X parental 

types), F2-generation, and unassigned (>F2) hybrids (Fig. 2, Table S3). Specifically, the EAxGU 

analysis identified backcrosses with parental T. c. major and F2 hybrids in the Florida panhandle 

and southern Alabama (Fig. 2A). Similarly, all hybrid-generation EAxTT individuals from 

Georgia were identified as backcrosses with both parental types, whereas South Carolina hybrids 

were backcrosses with T. c. carolina (Fig. 2B). 

 Second-generation hybrids and backcrosses with both parental types were evident among 

GUxTT (Fig. 2C). Mississippi contained individuals with all three hybrid genotype classes (F2, 

B1, and B2), but with backcrosses to parental T. m. triunguis at the greatest frequency. Alabama 

and Florida GUxTT were only represented by T. m. triunguis backcrosses. Finally, T. o. ornata 

and T. c. carolina in Illinois displayed relatively few hybrid genotypes (5%) but all were F1, in 

contrast to the southeastern analyses (Fig. 2D).  

 

3.3.  Selective signatures at transcriptomic loci 

 Using INTROGRESS, only SNPs with a high allelic frequency differential (δ>0.8) were 

retained (Andrés et al. 2013). One exception was the EAxGU analysis where δ>0.7 was applied 

because no loci at the higher threshold were recovered.  

 The INTROGRESS genomic cline analysis recovered three outlier mRNA loci for EAxGU, 

and five each for EAxTT and GUxTT, with thirteen total and nine unique outliers among the 

three pairwise comparisons (Table 1; Fig. 3). Clines were inconsistent in that some pairwise 

taxon comparisons displayed rapid transitions from P1 to P2, whereas others demonstrated 

patterns indicative of directional introgression.  
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 For example, all three EAxGU outlier loci displayed an over-representation of EA alleles 

in the hybrid zone, concomitant with an under-representation of heterozygotes and GU alleles 

(Fig. 3A). The SULT locus was an extreme example, with excess EA alleles below a hybrid 

index of ~0.8 (=80% assignment to GU at diagnostic loci). This pattern was replicated to a lesser 

degree in ZNF236, whereas TLR9 was more sigmoidal. These genotypic proportions, coupled 

with the non-sigmoidal cline shape in SULT and ZNF236, suggest that introgression may be 

driven by a directional shift towards homozygous P1 genotypes. In contrast, a steep, sigmoidal 

cline represented the genomic trend among scaffold assembly (and putatively non-functional) 

loci (Fig. 18). Taken together, these results suggest underlying directional introgression 

facilitating exchange of EA alleles despite divergence being maintained at most loci. 

 Cline shape was inconsistent within the EAxTT hybrid zone (Fig. 3B). Three (of five) 

outlier loci (SASH3, SYPL2, and TLR9) were significantly under-represented with regards to 

heterozygotes. Their clines displayed steep slopes, suggesting rapid transition among parental 

genotypes. An additional locus (CITED4) reflected an overrepresentation of P2 (TT), and a fifth 

(FAM89B) displayed three equally-represented genotypes. Of note, FAM89B did not differ 

significantly from neutral expectations following Bonferroni correction (P=0.036).  

 By contrast, neutral expectations were rejected in all five GUxTT clines (P=0; α=0.007), 

with four (i.e., SASH3, SYPL2, ACAD11, FAM89B) suggesting a pattern of restricted 

introgression (Fig. 3C). A fifth (i.e., TMEM214) displayed directional introgression, with the 

homozygous P2 (TT) genotype being overrepresented. Both the GUxTT and EAxTT analyses 

showed a ubiquitous signal of steep clines in non-transcriptomic loci (Fig. S18). 

 A greater number of SNP outliers (N=81) were identified with BGC rather than 

INTROGRESS, likely reflecting the larger number of loci included in the former. All INTROGRESS 
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outliers were also corroborated by BGC (Fig. 4; Table 1). For EAxGU (Fig. 4A), all three 

exhibited excess EA ancestry (negative α=excess P1; positive α=excess P2), but there were no 

cline rate (ß) outliers in either direction. In contrast, four out of five EAxTT loci (SYPL2, SASH3, 

TLR9, and CITED4) were positive ß outliers, indicating steep clines and thus restricted 

introgression, with SYPL2 also being an α outlier with excess EA (P1) ancestry (Fig. 4B). The 

fifth locus (FAM89B) was an α (not ß) outlier that favored EA alleles. Finally, GUxTT (Fig. 4C) 

included two loci that were both α and ß outliers with steep clines and excess GU ancestry 

(SYPL2 and FAM89B). Two others were ß-only outliers with steep clines (SASH3 and ACAD11), 

and one (TMEM214) an α-only outlier with excess TT ancestry. 

 

3.4.  Environmental correlations with outliers 

 Shapiro-Wilks tests confirmed normality for all layers, following OrderNorm 

transformation. Forward selection retained ten uncorrelated and predictive layers (Table 2), and 

pRDAs revealed 49.2% environmental and 40.9% spatial contributions to model inertia. After 

controlling for spatial autocorrelation, the pRDA ANOVA identified four significant axes 

(P<0.05) explaining 21.5%, 10.6%, 10.3%, and 9.6% of the variance (cumulative 52.1%). The 

pRDA also identified 56 annotated outlier SNPs correlated with environmental predictors (Fig. 

5). Twenty-eight pRDA outliers overlapped with INTROGRESS and/or BGC analyses (Fig. 6). 

Many of the overlapping SNPs, including all nine INTROGRESS loci that remained as outliers 

across all three analyses, were most strongly correlated with temperature variables rather than 

precipitation or wind speed (Table 3).  
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4. DISCUSSION 

 Our analyses characterized introgression in two North American box turtle hybrid zones 

(i.e., midwestern and southeastern North America). The midwestern hybrid zone showed no 

evidence of introgression, with hybrids restricted at low frequency to F1, whereas southeastern 

hybridization was introgressive in nature, as evidenced by numerous backcrosses and F2 

individuals and a conspicuous lack of F1 hybrids. Furthermore, contrasting intra- and inter-

specific southeastern hybrid zones revealed they not only varied in the genealogical composition 

of their hybrids but also in the shapes and widths of locus-specific clines. We propose such a 

contrast provides insight into the evolutionary histories of the taxa involved and serves to 

delineate their appropriate taxonomic designations. Specifically, recent phylogenetic research 

indicates that T. m. triunguis is a separate species from T. c. carolina and T. c. major (Martin et 

al. 2013, 2014, 2020). The genomic clines herein are consistent with those phylogenetic results 

in that transcriptomic loci with steep clines are only found in inter-specific comparisons (i.e., T. 

mexicana versus T. carolina). The candidate genes at these transcriptomic loci may be targets of 

selection and directional introgression, as they deviated from neutral expectations not only with 

respect to genome-wide ancestry (i.e., genomic clines) but also multivariate environmental 

associations. Below we consider the impact of these results on the evolutionary history, genomic 

architecture, and species boundaries of Terrapene. 

 

4.1.  Regional and taxon-specific perspectives 

 Several of our conclusions have implications for Terrapene systematics. First, our 

ADMIXTURE analyses substantiate the presence of discrete T. c. major populations in Florida and 

Mississippi, with the Alabama and Apalachicola river drainages potentially serving as 
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biogeographic barriers (Fig. S8). This consideration was markedly absent in previous 

morphological analyses (Butler et al. 2011) that concluded T. c. major merely represented an 

area of admixture between other Terrapene in the region. We did indeed detect considerable 

admixture between T. c. major, T. c. carolina, and T. m. triunguis, but the presence of two 

apparently non-admixed T. c. major populations demonstrated the existence of cryptic genetic 

variation (Douglas et al. 2009). We interpret these populations as representing distinct 

evolutionary significant units (ESUs) or (at worst) management units (MUs). 

 Second, admixture is apparent among all southeastern Terrapene except T. bauri, which 

absorbed the greatest amount of DAPC variation. This is likely attributed to Pliocene vicariance 

in the Florida Peninsula, where the Okefenokee Trough divided northern from southern Florida 

(Bert 1986; Douglas et al. 2009). Each of these aspects will require careful consideration when 

conservation efforts are planned or implemented, particularly given that Terrapene are in decline 

throughout their range (Dodd 2001).  

 On the other hand, T. ornata and T. carolina are separated by greater genetic distances 

than are the southeastern taxa (Martin et al. 2013), which may suggest the presence of intrinsic 

genetic incompatibilities (Barton 2001; Abbott et al. 2013) and is consistent with the lack of 

hybrids beyond the F1 generation. Furthermore, the low frequency of F1 hybrids observed in the 

Illinois ONxEA population may have resulted from recent degradation of the prairie grassland 

habitat (Manning 2001; Mussmann et al. 2017), which subsequently initiated increased 

heterospecific contact or otherwise disturbed reproductive boundaries by altering the fitness 

consequences of hybridization (Chafin et al. 2019; Grabenstein and Taylor 2018). However, this 

hypothesis cannot be explicitly tested herein. Although we did not identify contemporary back-

crossed individuals, Cureton et al. (2011) did depict potential introgressive hybridization 



37 

 

between ONxEA based on mitochondrial DNA and multiple microsatellite markers. These 

discrepancies may reflect either historical admixture as a source of introgression, which we did 

not explicitly test for, or back-crossed hybrids as a rarity not encountered in our sampling.  

 

4.2.  Biogeography and hybrid zone formation in Terrapene 

 The disparity in early and late-generation hybrids between the midwestern (ONxEA) and 

southeastern (EAxGU, GUxTT, and EAxTT) hybrid zones suggests differences in the underlying 

evolutionary processes. Such differences could involve regional variability in the extent or nature 

of reproductive isolation, or simply their respective biogeographic histories. Pleistocene 

glaciation precipitated numerous widespread distributional shifts across many taxa in the 

Midwest (King 1981; Webb 1981). Subsequent postglacial “shuffling” has also been implicated 

in as an historical driver of introgressive hybridization in populations of Sistrurus rattlesnakes 

now allopatric in the same region (Sovic et al. 2016). The same process could explain evidence 

for past introgression in the ONxEA hybrid zone (Cureton et al 2011b), despite a lack of 

contemporary hybrids. Here, a rapid re-colonization [especially from northern refugia such as the 

“Driftless Area” of Wisconsin, Iowa, and Illinois during the last glacial maximum (Holliday et 

al. 2002)] resulted in north-south contact zones near the glacial maximum (i.e., “leading-edge” 

hypothesis; Hewitt 1996, 2000). However, our purported range overlap also represents a broad 

interdigitation of “prairie” and “interior highland” habitats (Ennen et al. 2017), indicating that 

later-generation hybrids simply requires a finer-scale sampling than ours to be detected.  

 The southeastern United States has long been known for the of co-occurrence of contact 

zones (Remington 1968; Avise 2000), with migration from refugia in southern Florida and east 
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Texas/ west Louisiana as an hypothesized mechanism (Swenson & Howard 2005). The 

divergence of these lineages prior to Pleistocene glaciation (Martin et al. 2013) seemingly 

indicates postglacial expansion as a potential mechanism underlying southeastern hybrid zone 

formation. Likewise, finer-scale phylogeographic breaks that corroborate those in Terrapene 

have also been detected in numerous other turtles (Walker & Avise 1998). For example, 

Sternotherus minor and S. odoratus show deep east-west phylogeographic breaks approximately 

centered on Alabama, with unique lineages in peninsular Florida (Iverson 1977; Walker & Avise 

1998). Kinosternon subrubrum mirrors this pattern, but with an additional unique lineage in the 

panhandle region (Walker et al. 1998). Similar breaks again appear in Trachemys scripta, 

Macroclemys temminckii (Walker & Avise 1998; Roman et al. 1999), and Gopherus polyphemus 

(Lamb et al. 1989). It is thus no surprise for the region to be identified as a hotspot for inter-

specific contact and phylogeographic concordance (Soltis et al. 2006; Rissler & Smith 2010), 

also reflected in Terrapene. As always, it becomes inherently difficult to separate the relative 

importance of historical processes from contemporary physiographic or ecological features.  

 

4.3.  Functional genomic architecture in the southeastern hybrid zone 

 Regardless of the biogeographic scenarios invoked, a clear hotspot for hybridization 

exists in the southeastern United States. The variance among locus-specific patterns of 

differentiation or exchange allows for the potential interpretation of adaptive processes, at least 

in the context of neutral expectations. SNPs located in several mRNA loci are implicated as 

potentially contributing to selection in Terrapene from three southeastern hybrid zones. Among 

inter-specific comparisons (Figs. 3B, 3C, 4B, 4C), the dominant pattern was a steep, sigmoidal 

cline (GUxTT and EAxTT, but most clearly apparent in the latter). This accordingly points to 
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selection against interspecific heterozygotes (Fitzpatrick 2013). In contrast, the selective 

advantage of EA alleles in the EAxGU hybrid zone (Figs. 3A, 4A) fails to agree with the general 

genome-wide pattern of underdominance (Fig. S18), which suggests directional introgression 

within which EA alleles are favored in hybrids under contemporary conditions. Mapping BGC 

outliers to Trachemys chromosomes (Fig. 4) also revealed their ubiquitous rather than finely 

concentrated distribution across the genome, and this in turn highlighted the differential nature of 

the observed interspecific introgression. Inaccuracies regarding mapping a Terrapene assembly 

against a Trachemys reference genome is also a possibility, although we attempted to minimize 

this by resolving conflicts via PAFSCAFF.  

 Loci with steep genomic clines were most strongly correlated with temperature 

predictors, suggesting the importance of thermal adaptations in maintaining species boundaries 

between southeastern Terrapene. In contrast, neither precipitation nor wind-associated outliers 

followed this pattern. Given the positive relationship between outlier genes and thermal 

predictors, a natural extrapolation would be that a thermal gradient drives differential 

introgression. This has multiple implications regarding the integrity of species boundaries if 

Terrapene are subjected to future environmental changes. In one scenario, a shifting adaptive 

landscape may promote hybridization by contravening long-term reproductive isolation 

(EAxGU), with subsequent introgression at specific loci (as herein). Alternatively, rapid 

environmental change could simply outpace the selective filtering of maladaptive variants, with a 

subsequent decrease in fitness (Kokko et al. 2017). This would be particularly evident when 

effective population sizes are already depressed following a population bottleneck (Chafin et al. 

2019). Here, extreme rates of change may also link with a genetic swamping effect (i.e., 

replacement of local genotypes by hybrids; Todesco et al. 2016). Both scenarios implicate 
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anthropogenic pressures as governing the fates of diverse taxa across hybrid zones (Taylor et al. 

2015). 

 The putative functions of the nine outlier loci supported by genomic clines and RDA 

provide additional support for the strong impact of thermal selection. Two loci potentially relate 

to TSD during embryonic development, while others seemingly associate with molecular 

pathways in skeletal muscle and nervous tissues that involve tolerance to anoxia and hypoxia 

(N=6), and immune response to pathogens [(N=2); see Table 1 for sources]. Anoxia/ hypoxia-

related genes have been associated with freeze tolerance in hibernating turtles (Storey 2006), 

thus supporting an obvious association with thermal gradients. Here, three loci (SYPL2, 

ACAD11, and TMEM214) may regulate brain function and metabolism by up-regulating Ca2+ 

concentrations (Takeshima et al. 1998; Pamenter et al. 2016), inducing lipid metabolism (He et 

al. 2011; Gomez & Richards 2018), and initiating stress-induced apoptosis (Kesaraju et al. 2009; 

Li et al. 2013). Similarly, the CITED4 gene (EAxTT) potentially inhibits hypoxia-related 

transcription factors (Fox et al. 2004), whereas FAM89B (GUxTT) may become up-regulated 

when physiological conditions turn hypoxic (Goyal & Longo 2014). The regulation of immune 

function is less clearly associated with underlying thermal gradients, but may associate instead 

with behavioral thermoregulation during infection, given that infection resistance increases at 

warmer temperatures (Dodd 2001; Agha et al. 2017). However, we remain cautious in that these 

genes have not been associated with specific functions in Terrapene, and to do so remains 

speculative. Nevertheless, their potential connection with thermal adaptations is consistent with 

the RDA. 

 We emphasize that ectothermic vertebrates are exceptionally vulnerable to contemporary 

pressures, and reflect an elevated extinction risk due to a strong reliance on environmental 
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thermoregulation and a dependence on suitable habitat (Gibbons et al. 2000; Sinervo et al. 2010; 

Winter et al. 2016). Indeed, ectotherms can exhibit reduced fitness and growth-rates when 

environmental conditions exceed their thermal optima (Deutsch et al. 2008; Martin & Huey 

2008; McCallum et al. 2009; Huey et al. 2012; Huey & Kingsolver 2019). Increased 

temperatures also impact physiological pathways, and these are putatively comparable with the 

genes described herein, such as increasing metabolic rates (Dillon et al. 2010), intensifying 

hypoxic stress despite higher temperature-driven O2 demands (Huey & Ward 2005), heightening 

disease transmission (Pounds et al. 2006), or even the over-extension of thermal tolerances 

(Sinervo et al. 2010; Ceia-Hasse et al. 2014). Going forward, climate change may facilitate 

evolutionary responses to changing thermal conditions, potentially including local adaptation 

(Holt 1990; Norberg et al. 2012; Bush et al. 2016), physiological and behavioral mechanisms 

(e.g., thermoregulation, phenology), plasticity (Urban et al. 2014; Sgrò et al. 2016), of shifts in 

species distributions (Parmesan et al. 1999; Parmesan & Yohe 2003; Moreno-Rueda et al. 2012). 

Accordingly, ectothermic species boundaries may be particularly susceptible if indeed governed 

by thermal conditions, as seemingly exemplified herein with Terrapene. 

 

4.4.  Conclusions 

 Our study suggests that reproductive isolation in turtles involves numerous mechanisms 

regulated by thermally induced selective pressures. Clearly, such selective pressures play a 

prominent role in chelonian ecology. Many turtle species are at elevated risks from climate 

change due to the imposition of TSD during embryonic development, as well as prolonged 

generation times. Similarly, long generation times can also restrict the adaptive capacity of 

turtles in a rapidly changing climate (Hoffmann et al. 2017). Here, climate change can shift sex-
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ratios and promote demographic collapse, with warmer temperatures initiating male bias in 

biological sex, and vice versa (Janzen 1994). 

 Two important evolutionary implications are evident in our data. First, we demonstrated 

differential introgression along an ecological gradient in three taxa inhabiting a North American 

hybrid zone. We then assessed scaffold-aligned and transcriptomic SNPs to identify several 

genes whose functions are consistent with physiological processes related to thermal ecology, 

and as such are capable of promoting adaptive divergence. In this sense, they potentially describe 

ecological gradients related to TSD, anoxia/ hypoxia tolerance, and immune response in a hybrid 

zone encompassing three taxa. While we acknowledge that the observed clinal patterns could 

represent “molecular spandrels” reflecting an underlying neutral process, such as isolation-by-

distance, we sought environmental associations by actively controlling for spatial autocorrelation 

as a corroboration of clinal loci with a putative adaptive role (Vasemägi 2006; Barrett & 

Hoekstra 2011). We also underscore specific loci displaying genomic cline patterns consistent 

with directional introgression and selection, and these loci are potentially sustaining divergence 

across species.  

 Second, we characterized a southeastern North American hybrid zone representing a 

variety of biodiversity elements as being susceptible to anthropogenic and environmental 

changes (Remington 1968; Swenson & Howard 2005; Rissler & Smith 2010). Our results 

demonstrate that NGS population genomic methods can clearly identify population structure and 

detect introgression, whereas traditional Sanger sequencing methods are inadequate to do so 

(Butler et al. 2011; Martin et al. 2013). We also underscore specific loci prone to directional 

introgression and selection that may potentially sustain divergence across species. 

 



43 

 

ACKNOWLEDGEMENTS 

The research herein was conducted in partial fulfillment of the Ph.D. degree in Biological 

Sciences at the University of Arkansas (BTM). We would like to extend our gratitude to the 

countless volunteers and organizations who collected and/or provided tissue samples (Table S1). 

We also thank the current and former members of the Douglas Lab and University of Arkansas 

faculty who provided advice and support, especially A. Alverson, W. Anthonysamy, M. Bangs, 

J. Koukl, S. Mussmann, J. Pummill, and Z. Zbinden. Finally, many thanks to the reviewers, 

whose comments led to a greatly improved manuscript. Sample collections were approved under 

the University of Texas-Tyler Animal Care and Use Committee (IACUC) permit #113 and 

University of Illinois IACUC protocols 16160 and 18000. Funding was provided by the Lucille 

F. Stickle Fund of the North American Box Turtle Committee, the American Turtle Observatory 

(ATO), and the following endowments: The Bruker Professorship in Life Sciences (MRD) and 

the Twenty-First Century Chair in Global Change Biology (MED). Analytical resources were 

provided by the Arkansas High Performance Computing Cluster (AHPCC) and an NSF-XSEDE 

Research Allocation (TG-BIO160065) that allowed access the Jetstream cloud service. 

 

DATA ACCESSIBILITY 

The demultiplexed ddRADseq reads are deposited as FASTQ files to NCBI’s sequence read 

archive (https://www.ncbi.nlm.nih.gov/sra); Accessions: SAMN12668545-SAMN12668981 

(BioProject ID: PRJNA563121). The R scripts, metadata, and input files for each analysis are 

available from a Dryad Digital Repository (https://doi.org/10.5061/dryad.brv15dv7k). 

 



44 

 

5. REFERENCES 

Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N, Boughman J, Brelsford A, 

Buerkle CA, and Buggs R (2013) Hybridization and Speciation. Journal of Evolutionary 

Biology, 26, 229–246. 

Agha M, Price S, Nowakowski A, Augustine B, and Todd B (2017) Mass mortality of eastern 

box turtles with upper respiratory disease following atypical cold weather. Diseases of 

Aquatic Organisms, 124, 91–100. 

Alexander DH, Novembre J, and Lange K (2009) Fast model-based estimation of ancestry in 

unrelated individuals. Genome Research, 19, 1655–1664. 

Anderson EC and Thompson EA (2002) A model-based method for identifying species hybrids 

using multilocus genetic data. Genetics, 160, 1217–1229. 

Andrés JA, Larson EL, Bogdanowicz SM, and Harrison RG (2013) Patterns of transcriptome 

divergence in the male accessory gland of two closely related species of field crickets. 

Genetics, 193, 501–13. 

Auffenberg W (1958) Fossil turtles of the genus Terrapene in Florida. Bulletin of the Florida 

State Museum, 3, 53–92. 

Auffenberg W (1959) A Pleistocene Terrapene hibernaculum, with remarks on a second 

complete box turtle skull from Florida. Quarterly Journal of the Florida Academy of 

Science, 22, 49–53. 

Avise JC (2000) Phylogeography. Harvard University Press, Cambridge, MA. 

Babik W, Dudek K, Fijarczyk A, Pabijan M, Stuglik M, Szkotak R, and Zieliński P (2015) 

Constraint and Adaptation in newt Toll-Like Receptor Genes. Genome Biology and 

Evolution, 7, 81–95. 

Barrett RDH and Hoekstra HE (2011) Molecular spandrels: Tests of adaptation at the genetic 

level. Nature Reviews Genetics, 12, 767–780. 

Barton NH (2001) The role of hybridization in evolution. Molecular Ecology, 10, 551–568. 

Barton NH and Hewitt GM (1985) Analysis of hybrid zones. Annual Review of Ecology and 

Systematics, 16, 113–148. 

Bert T (1986) Speciation in western Atlantic stone crabs (genus Menippe): the role of geological 

processes and climatic events in the formation and distribution of species. Marine Biology, 

93, 157–170. 

Borcard D, Gillet F, and Legendre P (2018) Spatial analysis of ecological data. In: Numerical 

ecology with R, pp. 299–367. Springer. 

Bush A, Mokany K, Catullo R, Hoffmann A, Kellermann V, Sgrò C, McEvey S, and Ferrier S 

(2016) Incorporating evolutionary adaptation in species distribution modelling reduces 

projected vulnerability to climate change. Ecology Letters, 19, 1468–1478. 



45 

 

Butler JM, Dodd Jr. CK, Aresco M, and Austin JD (2011) Morphological and molecular 

evidence indicates that the Gulf Coast box turtle (Terrapene carolina major) is not a distinct 

evolutionary lineage in the Florida Panhandle. Biological Journal of the Linnean Society, 

102, 889–901. 

Caye K, Deist TM, Martins H, Michel O, and François O (2016) TESS3: Fast inference of spatial 

population structure and genome scans for selection. Molecular Ecology Resources, 16, 

540–548. 

Ceia-Hasse A, Sinervo B, Vicente L, and Pereira HM (2014) Integrating ecophysiological 

models into species distribution projections of European reptile range shifts in response to 

climate change. Ecography, 37, 679–688. 

Chafin TK, Douglas MR, Martin BT, and Douglas ME (2019) Hybridization drives genetic 

erosion in sympatric desert fishes of western North America. Heredity, 123, 759–773. 

Chafin TK, Martin BT, Mussmann SM, Douglas MR, and Douglas ME (2018) FRAGMATIC: in 

silico locus prediction and its utility in optimizing ddRADseq projects. Conservation 

Genetics Resources, 10, 325–328. 

Cureton JC, Buchman AB, Deaton R, and Lutterschmidt WI (2011) Molecular analysis of 

hybridization between the box turtles Terrapene carolina and T. ornata. Copeia, 2011, 270–

277. 

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, 

Marth GT, Sherry ST, McVean G, Durbin R, and Group 1000 Genomes Project Analysis 

(2011) The variant call format and VCFtools. Bioinformatics, 27, 2156–2158. 

Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, and Martin PR 

(2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of 

the National Academy of Sciences, 105, 6668–6672. 

Dillon ME, Wang G, and Huey RB (2010) Global metabolic impacts of recent climate warming. 

Nature, 467, 704–706. 

Dodd KC (2001) North American Box Turtles, A Natural History. University of Oklahoma Press, 

Norman, OK, USA. 

Douglas ME, Douglas MR, Schuett GW, and Porras LW (2009) Climate change and evolution of 

the New World pitviper genus Agkistrodon (Viperidae). Journal of Biogeography, 36, 

1164–1180. 

Eaton DAR and Overcast I (2020) ipyrad: Interactive assembly and analysis of RADseq datasets. 

Bioinformatics, 36, 2592–2594. 

Ennen JR, Matamoros WA, Agha M, Lovich JE, Sweat SC, and Hoagstrom CW (2017) 

Hierarchical, quantitative biogeographic provinces for all North American turtles and their 

contribution to the biogeography of turtles and the continent. Herpetological Monographs, 

31, 114–140. 

Evanno G, Regnaut S, and Goudet J (2005) Detecting the number of clusters of individuals using 

the software structure: a simulation study. Molecular Ecology, 14, 2611–2620. 



46 

 

Feder JL, Flaxman SM, Egan SP, and Nosil P (2013) Hybridization and the build-up of genomic 

divergence during speciation. Journal of Evolutionary Biology, 26, 261–266. 

Feldman CR and Parham JF (2002) Molecular phylogenetics of emydine turtles: Taxonomic 

revision and the evolution of shell kinesis. Molecular Phylogenetics and Evolution, 22, 

388–398. 

Fick SE and Hijmans RJ (2017) WorldClim 2: new 1‐km spatial resolution climate surfaces for 

global land areas. International journal of climatology, 37, 4302–4315. 

Fitzpatrick BM (2013) Alternative forms for genomic clines. Ecology and Evolution, 3, 1951–

1966. 

Fox SB, Braganca J, Turley H, Campo L, Han C, Gatter KC, Bhattacharya S, and Harris AL 

(2004) CITED4 inhibits hypoxia-activated transcription in cancer cells, and its cytoplasmic 

location in breast cancer is associated with elevated expression of tumor cell hypoxia-

inducible factor 1α. Cancer Research, 64, 6075–6081. 

Garroway CJ, Bowman J, Cascaden TJ, Holloway GL, Mahan CG, Malcolm JR, Steele MA, 

Turner G, and Wilson PJ (2010) Climate change induced hybridization in flying squirrels. 

Global Change Biology, 16, 113–121. 

Gibbons JW, Scott DE, Ryan TJ, Buhlmann KA, Tuberville TD, Metts BS, Greene JL, Mills T, 

Leiden Y, Poppy S, and Winne CT (2000) The global decline of reptiles, déjà vu 

amphibians: reptile species are declining on a global scale. Six significant threats to reptile 

populations are habitat loss and degradation, introduced invasive species, environmental 

pollution, disease, unsustaina. Bioscience, 50, 653–666. 

Gomez CR and Richards JG (2018) Mitochondrial responses to anoxia exposure in red eared 

sliders (Trachemys scripta). Comparative Biochemistry and Physiology Part B: 

Biochemistry and Molecular Biology, 224, 71–78. 

Gompert Z and Buerkle CA (2010) INTROGRESS: a software package for mapping components 

of isolation in hybrids. Molecular Ecology Resources, 10, 378–384. 

Gompert Z and Buerkle CA (2011) Bayesian estimation of genomic clines. Molecular Ecology, 

20, 2111–2127. 

Gompert Z and Buerkle CA (2012) BGC: Software for Bayesian estimation of genomic clines. 

Molecular Ecology Resources, 12, 1168–1176. 

Goyal R and Longo LD (2014) Acclimatization to long-term hypoxia: gene expression in ovine 

carotid arteries. Physiological Genomics, 46, 725–734. 

Grabenstein KC and Taylor SA (2018) Breaking barriers: causes, consequences, and 

experimental utility of human-mediated hybridization. Trends in Ecology and Evolution, 33, 

198–212. 

Guo B, Lu D, Liao WB, and Merilä J (2016) Genomewide scan for adaptive differentiation along 

altitudinal gradient in the Andrew’s toad Bufo andrewsi. Molecular Ecology, 25, 3884–

3900. 



47 

 

Hao Z, Lv D, Ge Y, Shi J, Weijers D, Yu G, and Chen J (2020) RIdeogram: drawing SVG 

graphics to visualize and map genome-wide data on the ideograms. PeerJ Computer 

Science, 6, e251. 

He M, Pei Z, Mohsen A-W, Watkins P, Murdoch G, Van Veldhoven PP, Ensenauer R, and 

Vockley J (2011) Identification and characterization of new long chain acyl-CoA 

dehydrogenases. Molecular Genetics and Metabolism, 102, 418–429. 

Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and 

speciation. Biological Journal of the Linnaean Society, 58, 247–276. 

Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature, 405, 907–913. 

Hijmans RJ and Van Etten J (2016) raster: Geographic Data Analysis and Modeling. R package 

version 2.5-8. 

Hoffmann AA, Sgrò CM, and Kristensen TN (2017) Revisiting adaptive potential, population 

size, and conservation. Trends in Ecology and Evolution, 32, 506–517. 

Holliday VT, Knox JC, Running I V., Mandel RD, and Ferring CR (2002) The central lowlands. 

In: The physical geography of North America (ed Orme AR), pp. 335–362. Oxford 

University Press, New York. 

Holt RD (1990) The microevolutionary consequences of climate change. Trends in Ecology and 

Evolution, 5, 311–315. 

Huey RB, Kearney MR, Krockenberger A, Holtum JAM, Jess M, and Williams SE (2012) 

Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and 

adaptation. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 

1665–1679. 

Huey RB and Kingsolver JG (2019) Climate warming, resource availability, and the metabolic 

meltdown of ectotherms. The American Naturalist, 194, E140–E150. 

Huey RB and Ward PD (2005) Hypoxia, global warming, and terrestrial late Permian 

extinctions. Science, 308, 398–401. 

Iverson JB (1977) Geographic variation in the musk turtle, Sternotherus minor. Copeia, 1977, 

502. 

Iverson JB, Meylan PA, and Seidel ME (2017) Testudines—Turtles. In: Scientific and Standard 

English Names of Amphibians and Reptiles of North America North of Mexico, with 

Comments Regarding Confidence in Our Understanding (ed Crother BI), pp. 82-91. SSAR 

Herpetological Circular 43. 

Janzen FJ (1994) Climate change and temperature-dependent sex determination in reptiles. 

Proceedings of the National Academy of Sciences of the United States of America, 91, 

7487–90. 

Jay F, Manel S, Alvarez N, Durand EY, Thuiller W, Holderegger R, Taberlet P, and François O 

(2012) Forecasting changes in population genetic structure of alpine plants in response to 

global warming. Molecular Ecology, 21, 2354–2368. 



48 

 

Johnson W (1994) Woodland expansion in the Platte River, Nebraska: patterns and causes. 

Ecological Monographs, 64, 45–84. 

Jombart T, Devillard S, and Balloux F (2010) Discriminant analysis of principal components: a 

new method for the analysis of genetically structured populations. BMC Genetics, 11, 94. 

Kearns AM, Restani M, Szabo I, Schrøder-Nielsen A, Kim JA, Richardson HM, Marzluff JM, 

Fleischer RC, Johnsen A, and Omland KE (2018) Genomic evidence of speciation reversal 

in ravens. Nature Communications, 9, 906. 

Keller I and Seehausen O (2012) Thermal adaptation and ecological speciation. Molecular 

Ecology, 21, 782–799. 

Kesaraju S, Schmidt-Kastner R, Prentice HM, and Milton SL (2009) Modulation of stress 

proteins and apoptotic regulators in the anoxia tolerant turtle brain. Journal of 

Neurochemistry, 109, 1413–1426. 

Key KHL (1968) The concept of stasipatric speciation. Systematic Biology, 17, 14–22. 

King JE (1981) Late Quaternary vegetational history of Illinois. Ecological Monographs, 51, 43–

62. 

Kingsolver JG (2009) The well-temperatured biologist. (American Society of Naturalists 

Presidential Address). The American Naturalist, 174, 755–68. 

Kokko H, Chaturvedi A, Croll D, Fischer MC, Guillaume F, Karrenberg S, Kerr B, Rolshausen 

G, and Stapley J (2017) Can evolution supply what ecology demands? Trends in Ecology 

and Evolution, 32, 187–197. 

Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, and Mayrose I (2015) CLUMPAK: a 

program for identifying clustering modes and packaging population structure inferences 

across K. Molecular Ecology Resources, 15, 1179–1191. 

Kumaresan V, Pasupuleti M, Arasu MV, Al-Dhabi NA, Arshad A, Amin SMN, Yusoff FM, and 

Arockiaraj J (2018) A comparative transcriptome approach for identification of molecular 

changes in Aphanomyces invadans infected Channa striatus. Molecular Biology Reports, 

45, 2511–2523. 

Lamb T, Avise JC, and Gibbons JW (1989) Phylogeographic patterns in mitochondrial-dna of 

the desert tortoise (Xerobates-agassizi), and evolutionary relationships among the north-

american gopher tortoises. Evolution, 43, 76–87. 

van Lear DH and Harlow RF (2002) Fire in the eastern United States: influence on wildlife 

habitat. In: Proceedings: the role of fire for nongame wildlife management and community 

restoration: traditional uses and new directions. General Technical Report 288 (eds Ford 

W., Russell KR and Moorman CE), pp. 2–10. US Dept. of Agriculture, Forest Service, 

Northeastern Research Station. 

Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34, 3094–

3100. 

 



49 

 

Li YF, Costello JC, Holloway AK, and Hahn MW (2008) “Reverse ecology” and the power of 

population genomics. Evolution, 62, 2984–2994. 

Li C, Wei J, Li Y, He X, Zhou Q, Yan J, Zhang J, Liu Y, Liu Y, and Shu H-B (2013) 

Transmembrane Protein 214 (TMEM214) mediates endoplasmic reticulum stress-induced 

caspase 4 enzyme activation and apoptosis. The Journal of Biological Chemistry, 288, 

17908–17. 

Linck EB and Battey CJ (2019) Minor allele frequency thresholds strongly affect population 

structure inference with genomic datasets. Molecular Ecology Resources, 19, 639–647. 

Lydeard C and Mayden RL (1995) A diverse and endangered aquatic ecosystem of the southeast 

United States. Conservation Biology, 9, 800–805. 

Manning B (2001) Critical Trends in Illinois Ecosystems. Illinois Department of Natural 

Resources. Springfield, IL. 

Martin BT, Bernstein NP, Birkhead RD, Koukl JF, Mussmann SM, and Placyk JS (2013) 

Sequence-based molecular phylogenetics and phylogeography of the American box turtles 

(Terrapene spp.) with support from DNA barcoding. Molecular Phylogenetics and 

Evolution, 68, 119–134. 

Martin BT, Bernstein NP, Birkhead RD, Koukl JF, Mussmann SM, and Placyk Jr JS (2014) On 

the reclassification of the Terrapene (Testudines: Emydidae): a response to Fritz & Havaš. 

Zootaxa, 3835, 292–294. 

Martin BT, Chafin TK, Douglas MR, Placyk JS, Birkhead RD, Phillips CA, and Douglas ME 

(2020) Machine learning substantiates biologically meaningful species delimitations in the 

phylogenetically complex North American box turtle genus Terrapene. bioRxiv, doi: 

https://doi.org/10.1101/2020.05.19.103598. 

Martin TL and Huey RB (2008) Why suboptimal is optimal: Jensen’s inequality and ectotherm 

thermal preferences. The American Naturalist, 171, E102-18. 

McCallum M, McCallum JL, and Trauth SE (2009) Predicted climate change may spark box 

turtle declines. Amphibia-Replilia, 30, 259–264. 

Milstead WW (1969) Studies on the evolution of the box turtles (genus Terrapene). Bulletin of 

the Florida State Museum, Biological Science Series, 14, 1–113. 

Milstead WW and Tinkle DW (1967) Terrapene of Western Mexico, with comments on species 

groups in the genus. Copeia, 1967, 180–187. 

Moreno-Rueda G, Pleguezuelos JM, Pizarro M, and Montori A (2012) Northward shifts of the 

distributions of Spanish reptiles in association with climate change. Conservation Biology, 

26, 278–283. 

Muhlfeld CC, Kovach RP, Jones LA, Al-Chokhachy R, Boyer MC, Leary RF, Lowe WH, 

Luikart G, and Allendorf FW (2014) Invasive hybridization in a threatened species is 

accelerated by climate change. Nature Climate Change, 4, 620–624. 

 



50 

 

Mussmann SM, Douglas MR, Anthonysamy WJB, Davis MA, Simpson SA, Louis W, and 

Douglas ME (2017) Genetic rescue, the greater prairie chicken and the problem of 

conservation reliance in the Anthropocene. Royal Society Open Science, 4, 160736. 

Mussmann SM, Douglas MR, Chafin TK, and Douglas ME (2020) AdmixPipe: population 

analyses in Admixture for non-model organisms. BMC Bioinformatics, 21, 1–9. 

Norberg J, Urban MC, Vellend M, Klausmeier CA, and Loeuille N (2012) Eco-evolutionary 

responses of biodiversity to climate change. Nature Climate Change, 2, 747–751. 

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara 

RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, and Wagner H (2019) vegan: 

Community Ecology Package. 

Paitz RT and Bowden RM (2008) A proposed role of the sulfotransferase/sulfatase pathway in 

modulating yolk steroid effects. Integrative and Comparative Biology, 48, 419–427. 

Pamenter ME, Gomez CR, Richards JG, and Milsom WK (2016) Mitochondrial responses to 

prolonged anoxia in brain of red-eared slider turtles. Biology Letters, 12, 20150797. 

Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, 

Kullberg J, Tammaru T, Tennent WJ, Thomas JA, and Warren M (1999) Poleward shifts in 

geographical ranges of butterfly species associated with regional warming. Nature, 399, 

579–583. 

Parmesan C and Yohe G (2003) A globally coherent fingerprint of climate change impacts across 

natural systems. Nature, 421, 37–42. 

Payseur BA (2010) Using differential introgression in hybrid zones to identify genomic regions 

involved in speciation. Molecular Ecology Resources, 10, 806–820. 

Peterson RA and Cavanaugh JE (2019) Ordered quantile normalization: a semiparametric 

transformation built for the cross-validation era. Journal of Applied Statistics, 2019, 1–16. 

Peterson BK, Weber JN, Kay EH, Fisher HS, and Hoekstra HE (2012) Double digest RADseq: 

an inexpensive method for de novo SNP discovery and genotyping in model and non-model 

species. PLoS One, 7, e37135. 

Pounds AJ, Bustamante MR, Coloma LA, Consuegra JA, Fogden MPL, Foster PN, La Marca E, 

Masters KL, Merino-Viteri A, Puschendorf R, Ron SR, Sánchez-Azofeifa GA, Still CJ, and 

Young BE (2006) Widespread amphibian extinctions from epidemic disease driven by 

global warming. Nature, 439, 161–167. 

Qin D, Plattner G, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, and Midgley P 

(2013) Summary for policymakers. Climate change 2013: the physical science basis. 

Contribution of Working Group I to the fifth assessment report of the Intergovernmental 

Panel on Climate Change, eds Stocker, TF et al. Cambridge University Press, Cambridge, 

UK. 

Remington CL (1968) Suture-zones of hybrid interaction between recently joined biotas. In: 

Evolutionary Biology (ed Dobzhansky T), pp. 321–428. Springer, New York, NY, USA. 



51 

 

Rhymer JM and Simberloff D (1996) Extinction by hybridization and introgression. Annual 

Review of Ecology and Systematics, 27, 83–109. 

Ricketts TH (1999) Terrestrial ecoregions of North America: a conservation assessment. Island 

Press, Washington, DC, USA. 

Rissler LJ and Smith WH (2010) Mapping amphibian contact zones and phylogeographical 

break hotspots across the United States. Molecular Ecology, 19, 5404–5416. 

Rödin‐Mörch P, Luquet E, Meyer‐Lucht Y, Richter‐Boix A, Höglund J, and Laurila A (2019) 

Latitudinal divergence in a wide‐spread amphibian: contrasting patterns of neutral and 

adaptive genomic variation. Molecular Ecology, 28, 2996–3011. 

Roman J, Santhuff SD, Moler PE, and Bowen BW (1999) Population structure and cryptic 

evolutionary units in the alligator snapping turtle. Conservation Biology, 13, 135–142. 

Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. 

Molecular Ecology Notes, 4, 137–138. 

Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, Menzel A, Root TL, 

Estrella N, Seguin B, Tryjanowski P, Liu C, Rawlins S, and Imeson A (2008) Attributing 

physical and biological impacts to anthropogenic climate change. Nature, 453, 353–357. 

Ryan SF, Deines JM, Scriber JM, Pfrender ME, Jones SE, Emrich SJ, and Hellmann JJ (2018) 

Climate-mediated hybrid zone movement revealed with genomics, museum collection, and 

simulation modeling. Proceedings of the National Academy of Sciences, 2017–14950. 

Samson F and Knopf F (1994) Prairie conservation in North America. Bioscience, 44, 418–421. 

Samson FB, Knopf FL, and Ostlie WR (2004) Great Plains ecosystems: past, present, and future. 

Wildlife Society Bulletin, 32, 6–15. 

Seehausen O, Takimoto G, Roy D, and Jokela J (2008) Speciation reversal and biodiversity 

dynamics with hybridization in changing environments. Molecular Ecology, 17, 30–44. 

Sgrò CM, Terblanche JS, and Hoffmann AA (2016) What Can Plasticity Contribute to Insect 

Responses to Climate Change? Annual Review of Entomology, 61, 433–451. 

Shaffer HB, Minx P, Warren DE, Shedlock AM, Thomson RC, Valenzuela N, Abramyan J, 

Amemiya CT, Badenhorst D, and Biggar KK (2013) The western painted turtle genome, a 

model for the evolution of extreme physiological adaptations in a slowly evolving lineage. 

Genome Biology, 14, R28. 

Simison W, Parham J, Papenfuss T, Lam A, and Henderson J (2020) Annotated chromosome-

level reference genome of the red-eared slider turtle (Trachemys scripta elegans). Genome 

Biology and Evolution, 12, 456–462. 

Sinervo B, Méndez-de-la-Cruz F, Miles DB, Heulin B, Bastiaans E, Villagrán-Santa Cruz M, 

Lara-Resendiz R, Martínez-Méndez N, Calderón-Espinosa ML, Meza-Lázaro RN, Gadsden 

H, Avila LJ, Morando M, De la Riva IJ, Victoriano Sepulveda P, Rocha CFD, 

Ibargüengoytía N, Aguilar Puntriano C, Massot M et al. (2010) Erosion of lizard diversity 

by climate change and altered thermal niches. Science, 328, 894–9. 



52 

 

Soltis DE, Morris AB, McLachlan JS, Manos PS, and Soltis PS (2006) Comparative 

phylogeography of unglaciated eastern North America. Molecular Ecology, 15, 4261–4293. 

Sovic MG, Fries AC, and Gibbs HL (2016) Origin of a cryptic lineage in a threatened reptile 

through isolation and historical hybridization. Heredity, 117, 358–366. 

Stapanian MA, Cassell DL, and Cline SP (1997) Regional patterns of local diversity of trees: 

associations with anthropogenic disturbance. Forest Ecololgy and Management, 93, 33–44. 

Stapanian MA, Sundberg SD, Baumgardner GA, and Liston A (1998) Alien plant species 

composition and associations with anthropogenic disturbance in North American forests. 

Plant Ecology, 139, 49–62. 

Storey KB (2006) Reptile freeze tolerance: metabolism and gene expression. Cryobiology, 52, 1–

16. 

Swenson NG and Howard DJ (2004) Do suture zones exist? Evolution, 58, 2391–2397. 

Swenson NG and Howard DJ (2005) Clustering of contact zones, hybrid zones, and 

phylogeographic breaks in North America. The American Naturalist, 166, 581–591. 

Takeshima H, Shimuta M, Komazaki S, Ohmi K, Nishi M, Iino M, Miyata A, and Kangawa K 

(1998) Mitsugumin29, a novel synaptophysin family member from the triad junction in 

skeletal muscle. The Biochemical Journal, 331, 317–22. 

Taylor SA, Larson EL, and Harrison RG (2015) Hybrid zones: windows on climate change. 

Trends in Ecology and Evolution, 30, 398–406. 

Taylor SA, White TA, Hochachka WM, Ferretti V, Curry RL, and Lovette I (2014) Climate-

mediated movement of an avian hybrid zone. Current Biology, 24, 671–676. 

Teske PR, Sandoval-Castillo J, Golla TR, Emami-Khoyi A, Tine M, von der Heyden S, and 

Beheregaray LB (2019) Thermal selection as a driver of marine ecological speciation. 

Proceedings of the Royal Society B: Biological Sciences, 286, 20182023. 

Tiffin P and Ross-Ibarra J (2014) Advances and limits of using population genetics to understand 

local adaptation. Trends in Ecology and Evolution, 29, 673–680. 

Todesco M, Pascual MA, Owens GL, Ostevik KL, Moyers BT, Hübner S, Heredia SM, Hahn 

MA, Caseys C, Bock DG, and Rieseberg LH (2016) Hybridization and extinction. 

Evolutionary Applications, 9, 892–908. 

Urban MC, Richardson JL, and Freidenfelds NA (2014) Plasticity and genetic adaptation 

mediate amphibian and reptile responses to climate change. Evolutionary Applications, 7, 

88–103. 

Vasemägi A (2006) The adaptive hypothesis of clinal variation revisited: Single-locus clines as a 

result of spatially restricted gene flow. Genetics, 173, 2411–2414. 

Via S (2009) Natural selection in action during speciation. Proceedings of the National Academy 

of Sciences, 106, 9939–9946. 

 



53 

 

Walker DE and Avise JC (1998) Principles of phylogeography as illustrated by freshwater and 

terrestrial turtles in the southeastern United States. Annual Review of Ecology and 

Systematics, 29, 23–58. 

Walker DE, Moler PE, Buhlmann KA, and Avise JC (1998) Phylogeographic patterns in 

Kinosternon subrubrum and K. baurii based on mitochondrial DNA restriction analyses. 

Herpetologica, 54, 174–184. 

Waterhouse MD, Erb LP, Beever EA, and Russello MA (2018) Adaptive population divergence 

and directional gene flow across steep elevational gradients in a climate-sensitive mammal. 

Molecular Ecology, 27, 2512–2528. 

Webb T (1981) The past 11,000 years of vegetational change in eastern North America. 

BioScience, 31, 501–506. 

Winter M, Fiedler W, Hochachka WM, Koehncke A, Meiri S, and De la Riva I (2016) Patterns 

and biases in climate change research on amphibians and reptiles: a systematic review. 

Royal Society Open Science, 3, 160158. 

Wringe BF, Stanley RRE, Jeffery NW, Anderson EC, and Bradbury IR (2017a) 

HYBRIDDETECTIVE: a workflow and package to facilitate the detection of hybridization 

using genomic data in R. Molecular Ecology Resources, 17, e275–e284. 

Wringe BF, Stanley RRE, Jeffery NW, Anderson EC, and Bradbury IR (2017b) 

parallelnewhybrid: an R package for the parallelization of hybrid detection using 

NEWHYBRIDS. Molecular Ecology Resources, 17, 91–95. 

 

 



 

 

5
4
 

TABLES AND FIGURES 

Table 1: Annotation information for overlapping INTROGRESS and BGC (Bayesian Genomic Cline) outliers (Figs. 3, 4). Each outlier 

was derived from an alignment mapped to the Terrapene transcriptome, with three pairwise taxa combinations performed. The 

significance threshold (αB) was determined using a Bonferroni correction for multiple tests. Bold Gene abbreviations with an asterisk 

(*) differ significantly from neutral expectations. EA=Woodland (T. c. carolina), GU=Gulf Coast (T. c. major), TT=Three-toed (T. m. 

triunguis). 

Gene Abbr. 

(P-value) 
BGC (α/β) 

Outlier 

(α/β)‡ 
Full Gene Name Possible Function(s) Source(s) 

EAxGU (αB=0.01)      

SULT (P=0)* -1.59/-0.22 -/N Amine Sulfotransferase-like Regulates yolk steroids during TSD† (Paitz & Bowden 2008) 

TLR9 (P=0)* -0.74/1.14 -/N Toll-like Receptor 9 Immune Response to Pathogens (Babik et al. 2015) 

ZNF236 (P=0)* -0.94/0.14 -/N Zinc Finger Protein 236 Unknown  

      

EAxTT (αB=0.007)      

SASH3 (P=0)* -0.49/1.35 N/+ SAM and SH3 Domain Containing 3 Immune response (Kumaresan et al. 2018) 

SYPL2 (P=0)* -0.68/1.65 -/+ Synaptophysin-like Protein 2 (AKA Mitsugumin 

29) 

Maintenance of [Ca2+] during anoxia (Takeshima et al. 1998; Pamenter et al. 

2016) 

FAM89B 

(P=0.036) 

-0.59/0.23 -/N Family with Sequence Similarity 89, member B Upregulated in hypoxic conditions (Goyal & Longo 2014) 

CITED4 (P=0)* 0.26/0.97 N/+ Cbp/p300 Interacting Transactivator, Domain 4 Inhibits hypoxia-activated 

transcription 

(Fox et al. 2004) 

TLR9 (P=0)* -0.38/1.63 N/+ Toll-like Receptor 9 Immune Response to Pathogens (Babik et al. 2015) 

      

GUxTT (αB=0.007)      

SASH3 (P=0)* -0.22/1.86 N/+ SAM and SH3 Domain Containing 3 Immune response (Kumaresan et al. 2018) 

SYPL2 (P=0)* -0.48/2.23 -/+ Synaptophysin-like Protein 2 Maintenance of [Ca2+] during anoxia (Takeshima et al. 1998; Pamenter et al. 

2016) 

FAM89B (P=0)* -0.46/0.66 -/+ Family with Sequence Similarity 89, member B Upregulated in hypoxic conditions (Goyal & Longo 2014) 

ACAD11 (P=0)* -0.24/1.16 N/+ Acyl-CoA Dehydrogenase, family member 11-like Lipid metabolism (He et al. 2011; Gomez & Richards 

2018) 

TMEM214 (P=0)* 0.77/0.11 +/N Transmembrane Protein 214 Stress-induced apoptosis during 

anoxia 

(Kesaraju et al. 2009; Li et al. 2013) 

†TSD=Temperature-dependent sex determination 

‡α outliers=excess P1 (-) or P2 (+) ancestry; ß outliers=slow (-) or rapid (+) genomic cline rates; N=neutral
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Table 2: WorldClim environmental predictor abbreviations for the redundancy analysis (RDA). 

The raster layers were obtained from https://worldclim.org. Additional variables were excluded 

via forward selection due to low predictive capacity or correlation with the remaining layers. 

Abbr. Full Name BioClim No. 

tmDR2 Mean diurnal range [Monthly (Max temp - Min temp)] 2 

tS4 Temperature seasonality (standard deviation X 100) 4 

mxtWM5 Max temperature of warmest month 5 

mintCM6 Min temperature coldest month 6 

mtWQ8 Mean temperature of wettest quarter 8 

pAM12 Annual precipitation 12 

pDM14 Precipitation of driest month 14 

pWQ16 Precipitation of wettest quarter 16 

pCQ19 Precipitation of coldest quarter 19 

Wind Mean annual wind speed N/A 
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Table 3: Terrapene ddRAD SNP outliers (N=118) most strongly associated with ten predictive 

and uncorrelated WorldClim variables (Table 2), collapsed into temperature, precipitation, or 

wind speed categories. Percentages include the total for only redundancy analysis (% RDA) and 

for all three outlier methods (% All): INTROGRESS, Bayesian genomic cline (BGC), and RDA. 

Environment 

Type 

No. 

Outliers 

% 

(RDA) 

% 

(All) 

Temperature 44 78.6 34.7 

Precipitation 10 17.9 8.5 

Wind 2 3.6 1.7 

Total 56 100.0 44.9 
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Figure 1: ADMIXTURE (barplots) and TESS3 (map) analyses for 11,308 Terrapene ddRADseq 

loci. All plots include individuals (N=320; black circles on map) from the Midwest and 

Southeast hybrid zones, with the optimal number of clusters (K) determined via cross-validation 

across 20 independent runs. Labels above ADMIXTURE plots indicate subspecies (when available) 

as identified in the field: EA=Woodland (T. carolina carolina), ON=Ornate (T. o. ornata), 

TC=T. carolina (subspecies identification unavailable), GU=Gulf Coast (T. c. major), 

TT=Three-toed (T. mexicana triunguis). Bottom labels show hybrid zone localities by U.S. state: 

IL=Illinois, AL=Alabama, GA=Georgia, FL=Florida, MS=Mississippi, LA=Louisiana. A * 

represents a group of “pure” individuals from multiple localities outside the hybrid zones. TESS3 

ancestry coefficients (Q) are predicted across the spatial surface via Kriging interpolation (θ=10) 

and are color-coded with the ADMIXTURE plots. Lighter/ darker gradient shades depict lower/ 

higher Q.  
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Figure 2: Population-level NEWHYBRIDS plots for four pairs of southeastern and midwestern 

Terrapene taxa. Individuals were collapsed into populations based on field identification at the 

subspecific level. The first two characters represent: GU=Gulf Coast, T. c. major; 

EA=Woodland, T. c. carolina; TT=Three-toed, T. m. triunguis; ON=Ornate, T. o. ornata; TC=T. 

carolina (subspecies-level field identification unavailable). The last two characters represent 

U.S. state: AL=Alabama, FL=Florida, MS=Mississippi, SC=South Carolina, GA=Georgia, 

LA=Louisiana, IL=Illinois). Each plot corresponds to tests between parental groups (A) EAxGU 

(N=109), (B) EAxTT (N=135), (C) GUxTT (N=139), and (D) EAxON (N=112). A posterior 

probability threshold >0.8 was required for genotype frequency class assignments, which 

included P1 and P2 (parental types), F1 and F2 (first and second-generation hybrids), backcrosses 

(B1 and B2), and FN (unclassified).  
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Figure 3: Terrapene Genomic clines depicting outlier SNPs found in transcriptome-aligned 

ddRAD loci. Pairwise comparisons are between EA=Woodland (T. c. carolina), GU=Gulf Coast 

(T. c. major), and TT=Three-toed (T. mexicana triunguis) box turtles. The gray area represents 

neutral expectations based on 2,660 (EAxGU), 2,623 (EAxTT), and 2,622 (GUxTT) 

transcriptome-aligned SNPs, and each line is a genomic cline for one outlier locus (abbreviations 

defined in Table 1).  
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Figure 4: Bayesian genomic cline (BGC) outliers for Terrapene ddRADseq SNPs, plotted as 

heatmaps mapped to Trachemys scripta chromosomes. Each chromosome repeats to display 

significant outliers from the genomic cline center (α; left) and rate (ß; right) BGC parameters. 

Thinner and thicker bands represent SNPs from unknown scaffolds and annotated genes. BGC 

was run pairwise for three taxa: EA=T. carolina carolina, GU=T. c. major, and TT=T. mexicana 

triunguis. Outliers were significant if they had a 95% CI excluding zero or exceeding the 

probability distribution’s quantile interval (
1− 0.975

2
,

0.975

2
). The ϕ plots depict transcriptome-

aligned BGC genomic clines with hybrid index histograms above, and each line represents a 

genomic cline for one locus. The αXß plots illustrate the BGC parameters as a function of 

density. Polygons define density space for significant α (blue), ß (orange), and both (purple) 

outliers.  
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Figure 5: Redundancy analysis (RDA) representing outlier Terrapene SNPs correlated with ten 

predictive, non-redundant BioClim environmental variables (see Table 2 for predictor 

abbreviations). Significant outliers were designated as being +/- 3 standard deviations from the 

RDA axis loading means. Pairwise Pearson’s correlations between each outlier and 

environmental variable were performed, and the strongest correlation coefficient (r) determined 

the best-supported predictor. 
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Figure 6: Venn Diagram depicting overlap between Terrapene transcriptomic outliers identified 

in INTROGRESS, Bayesian genomic cline (BGC), and redundancy analysis (RDA). Each value 

includes raw counts (top) and percentages (bottom).
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SUPPLEMENTARY TABLES AND FIGURES 

Table S1: Terrapene sample metadata. Fields with a "-" indicate metadata that is unknown or was not provided by the collector(s). 

Taxonomic IDs are as designated in the field. Geographic coordinates are in decimal degrees. Collection dates generally follow the 

format "mm/year", unless only the year was known. Population codes precede the sample IDs with underscores as delimiters, with the 

first two characters representing subspecies (when available), and the second two U.S. state locality. 

Sample ID Collector(s) (Affiliation) Taxonomic ID Sex Tissue  State County Date Lat Long 

EAAL_BX1380 R Birkhead  T. carolina carolina M muscle AL Russell 06/2010 32.47 -85.20 

EAAL_BX1387 R Birkhead  T. carolina carolina M toe tips AL Bullock 06/2010 32.08 -85.69 

EAAL_BX211 R Birkhead  T. carolina carolina - toenails AL Lee 05/2009 32.44 -85.35 

EAAL_BXEA27 D O'Halloran, R Birkhead  T. carolina carolina F tail tip AL Dekalb 05/2010 34.45 -85.78 

EAGA_BX217 R Batts  T. carolina carolina M toenails GA Harris 05/2009 32.61 -84.82 

EAGA_BX219 W Birkhead  T. carolina carolina M toenails GA Harris 05/2009 32.63 -85.00 

EAGA_BX220 W Birkhead  T. carolina carolina - toenails GA Muscogee 05/2009 32.56 -84.91 

EAGA_BX301 W Birkhead  T. carolina carolina M toenails GA Harris 07/2009 32.74 -84.92 

EAGA_BX346 W Birkhead  T. carolina carolina M toenails GA Harris 07/2009 32.71 -84.96 

EAGA_BX472 W Birkhead  T. carolina carolina F toenails GA Marion 10/2009 32.30 -84.52 

EAGA_BX473 W Birkhead  T. carolina carolina - toenails GA Troup 10/2009 32.87 -85.14 

EAGA_BX660 W Birkhead  T. carolina carolina F toenails GA Harris 06/2009 32.62 -84.82 

EAGA_BXEA14 R Birkhead  T. carolina carolina F toe tips GA Dekalb 05/2010 33.67 -84.35 

EAGA_BXEA15_654 W Birkhead  T. carolina carolina - toenails GA Harris 05/2009 32.85 -84.85 

EAGA_BXEA17 W Birkhead  T. carolina carolina - toenails GA Harris 05/2009 32.78 -84.87 

EAGA_BXEA19 W Birkhead  T. carolina carolina M toenails GA Harris 06/2009 32.76 -84.90 

EAGA_BXEA21 W Birkhead  T. carolina carolina F toenails GA Harris 05/2009 32.79 -84.96 

EAGA_BXEA25 W Birkhead  T. carolina carolina F toenails GA Troup 06/2014 32.75 -84.90 

EAGA_BXEA26 R Birkhead  T. carolina carolina M toe tip GA Harris 05/2009 32.88 -85.09 

EAGA_BXEA29_655 W Birkhead  T. carolina carolina - toenails GA Harris 05/2009 32.69 -84.96 

EAGA_BXEA31_659 W Birkhead  T. carolina carolina F toenails GA Harris 05/2009 32.77 -84.91 

EAGA_BXEA32_662 W Birkhead  T. carolina carolina - toenails GA Harris 06/2009 32.67 -84.96 

EAGA_BXEA33_663 W Birkhead  T. carolina carolina F toenails GA Harris 06/2009 32.60 -84.83 
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Table S1 (Cont.) 

Sample ID Collector(s) (Affiliation) Taxonomic ID Sex Tissue  State County Date Lat Long 

EAGA_BXEA34_665 W Birkhead  T. carolina carolina - toenails GA Harris 06/2009 32.80 -84.92 

EAGA_BXEA35_666 R Birkhead and W Birkhead  T. carolina carolina M toenails GA Harris 06/2009 32.84 -84.94 

EAGA_BXEA49_564 R Birkhead  T. carolina carolina - toenails GA Harris 10/2009 32.70 -84.74 

EAIL_BX24 C Phillips (INHS) T. carolina carolina - blood IL Will 2004 41.44 -87.57 

EAIL_BX25 C Phillips (INHS) T. carolina carolina - blood IL Will 2004 41.40 -87.60 

EAIL_BX28 C Phillips (INHS) T. carolina carolina - blood IL Clinton - - - 

EAIL_BX33 C Phillips (INHS) T. carolina carolina - blood IL Clinton - - - 

EAIL_BX34 C Phillips (INHS) T. carolina carolina - blood IL Pope 2006 37.32 -88.73 

EAIL_BXIL02 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Vermillion - - - 

EAIL_BXIL03 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Macoupin 2009 39.06 -89.75 

EAIL_BXIL04 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Marion 2009 38.63 -88.79 

EAIL_BXIL05 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Green 2009 39.29 -90.53 

EAIL_BXIL06 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Clinton 2008 38.61 -89.35 

EAIL_BXIL07 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Macoupin 2009 39.04 -89.98 

EAIL_BXIL08 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Effingham 2009 39.08 -88.67 

EAIL_BXIL09 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Jersey 2009 39.97 -90.54 

EAIL_BXIL12 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Richland 2012 38.78 -88.09 

EAIL_BXIL13 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Wayne 2012 38.54 -88.59 

EAIL_BXIL14 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Hamilton 2013 38.05 -88.40 

EAIL_BXIL15 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Crawford 2013 39.10 -87.73 

EAIL_BXIL16 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Massac 2013 37.16 -88.70 

EAIL_BXIL18 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Jackson 2013 37.56 -89.21 

EAIL_BXIL19 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Jasper 2012 39.03 -88.11 

EAIL_BXIL20 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Johnson 2013 37.49 -88.91 

EAIL_BXIL21 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Massac 2013 37.13 -88.65 

EAIL_BXIL22 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Jackson 2013 37.60 -89.18 

EAIL_BXIL23 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Jersey 2009 39.04 -90.14 

EAIL_BXIL24 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Marion - - - 
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Table S1 (Cont.) 

Sample ID Collector(s) (Affiliation) Taxonomic ID Sex Tissue  State County Date Lat Long 

EAIL_BXIL33 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Vermillion - - - 

EAIL_BXIL36 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Vermillion - - - 

EAIL_BXIL39 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Vermillion - - - 

EAIL_BXIL42 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Vermillion - - - 

EAIL_BXIL45 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Marion - - - 

EAIL_BXIL46 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Effingham 2012 39.06 -88.70 

EAIL_BXIL47 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Clinton 2012 38.62 -89.29 

EAIL_BXIL51 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Jasper 2012 38.95 -88.25 

EAIL_BXIL53 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Brown 2014 39.92 -90.88 

EAIL_BXIL54 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Jersey - 39.05 -90.10 

EAIL_BXIL56 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Effingham 2012 38.99 -88.62 

EAIL_BXIL57 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Jersey - 39.04 -90.40 

EAIL_BXIL61 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Madison 2009 38.90 -89.93 

EAIL_BXIL62 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Will 2004 41.44 -87.57 

EAIL_BXIL70 C Phillips, M Allender (INHS) T. carolina carolina - blood IL Saline 2014 37.72 -88.63 

EAKY_BX1027 unknown  T. carolina carolina M toenails KY Carter - - - 

EAKY_BX26 GJ Watkins-Colwell, A.A. 

Leenders, B.T. Roach, L. Colwell 

(PMNH, Yale) 

T. carolina carolina - - KY Laurel 08/2004 37.00 -84.24 

EAKY_BX27 GJ Watkins-Colwell, A.A. 

Leenders, B.T. Roach, L. Colwell 

(PMNH, Yale) 

T. carolina carolina - - KY Leslie 08/2004 37.25 -83.38 

EAMS_BXEA28 J Lee (Nature Conservancy, Camp 

Shelby) 

T. carolina carolina M toenails MS Tishomingo 07/2008 - - 

EANC_BX316 J Reynolds (NC State Museum of 

Natural Sciences) 

T. carolina carolina - - NC Johnston 07/2009 35.68 -78.47 

EANC_BX318 J Reynolds (NC State Museum of 

Natural Sciences) 

T. carolina carolina - - NC Johnston 08/2009 35.68 -78.46 

EANY_BXEA11 E Smithes-Baker  T. carolina carolina M tail tip NY Westchester - 41.29 -73.87 

EAPA_BXEA13 S Ray  T. carolina carolina F tail tip PA - - 40.09 -76.89 

EARI_BX1608 Rhode Island Dept. of 

Environmental Management 

T. carolina carolina M toenails RI Washington 06/2011 - - 

EASC_BX1108 M Martin  T. carolina carolina M shell 

shavings 

SC Beaufort 06/2010 32.33 80.70 
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Table S1 (Cont.) 

Sample ID Collector(s) (Affiliation) Taxonomic ID Sex Tissue  State County Date Lat Long 

EASC_BX1109 M Martin  T. carolina carolina M toenails SC Beaufort 06/2010 32.34 80.70 

EASC_BX1110 M Martin  T. carolina carolina M muscle SC Jasper 06/2010 32.45 -81.11 

EASC_BX1111 M Martin  T. carolina carolina F toenails SC Barnwell 06/2010 33.43 -81.29 

EASC_BX1112 M Martin  T. carolina carolina F toenails SC Beaufort 06/2010 32.34 -80.70 

EASC_BX1114 M Martin  T. carolina carolina F toenails SC Beaufort 06/2010 32.36 -80.71 

EASC_BX1115 M Martin  T. carolina carolina M toenails SC Beaufort 06/2010 32.32 -80.69 

EASC_BX1116 M Martin  T. carolina carolina F toenails SC Beaufort 06/2010 32.35 -80.70 

EASC_BX231 J Smith  T. carolina carolina - muscle SC Laurens 06/2009 34.45 -81.86 

EASC_BX232 J Smith  T. carolina carolina - toenails SC Laurens 06/2009 34.52 -81.99 

EASC_BX235 J Smith  T. carolina carolina - foot 

tissue 

SC Laurens 07/2009 - - 

EASC_BXEA40_1304 ML Edwards (Erskine College) T. carolina carolina M toenails SC Abbeville 10/2010 34.33 -82.38 

EASC_BXEA41_1305 ML Edwards (Erskine College) T. carolina carolina - toenails SC Chester 10/2010 34.68 -81.18 

EASC_BXEA42_1306 ML Edwards (Erskine College) T. carolina carolina F toenails SC Greenville 10/2010 34.83 -82.39 

EASC_BXEA43_1307 ML Edwards (Erskine College) T. carolina carolina M toenails SC Abbeville 10/2010 34.33 -82.39 

EATN_BX35 W Duzak  T. carolina carolina - tail tip TN Davidson - 36.13 -86.93 

EATN_BXEA02_36x2 W Duzak  T. carolina carolina - tail tip TN Davidson - 36.13 -86.87 

EAVA_BX101 Wildlife Center of Virginia T. carolina carolina M - VA Albemarle - - - 

EAVA_BX103 Wildlife Center of Virginia T. carolina carolina M - VA Fluvanna - 38.04 -78.91 

EAVA_BX104 Wildlife Center of Virginia T. carolina carolina M - VA Fluvanna - 38.04 -78.91 

EAVA_BX320 E Winther  T. carolina carolina M toenails VA Norfolk - 36.68 -76.29 

EAVA_BX321 E Winther  T. carolina carolina M toenails VA Dinwiddie - 37.22 -77.39 

EAWV_BX449 A Gooley  T. carolina carolina - tail tip WV Roane 07/2009 38.54 -81.33 

GUAL_BX275 R Birkhead and V Jo  T. carolina major F tail tip AL Houston 08/2009 31.24 -85.12 

GUAL_BXGU02 R Birkhead  T. carolina major M toe tips AL Mobile 06/2010 30.55 -88.12 

GUAL_BXGU03 R Birkhead  T. carolina major F tail tip AL Mobile 06/2010 30.54 -88.12 

GUAL_BXGU04 R Birkhead  T. carolina major F toe tips AL Baldwin 06/2010 30.63 -87.91 

GUAL_BXGU05 R Birkhead  T. carolina major M tail tip AL Baldwin 06/2010 30.64 -87.91 
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Table S1 (Cont.) 

Sample ID Collector(s) (Affiliation) Taxonomic ID Sex Tissue  State County Date Lat Long 

GUFL_BX503 M Michelsohn  T. carolina major - scutes FL Franklin 05/2009 29.94 -85.01 

GUFL_BX504 M Michelsohn  T. carolina major - toenails FL Franklin 05/2009 29.80 -84.83 

GUFL_BX509 Museum of Vertebrate Zoology T. carolina major - muscle FL Wakulla - 30.06 -84.57 

GUFL_BX626 M Greene  T. carolina major M muscle FL Walton 04/2010 30.44 -85.96 

GUFL_BX627 M Aresco  T. carolina major F muscle FL Walton 06/2009 30.49 -85.94 

GUFL_BX628 B Walker  T. carolina major M muscle FL Calhoun 04/2009 30.43 -85.12 

GUFL_BX684 W Birkhead  T. carolina major M toenails FL Gulf 06/2009 30.06 -85.19 

GUFL_BX685 W Birkhead  T. carolina major F toenails FL Gulf 06/2009 29.82 -85.28 

GUFL_BX908 D Steen  T. carolina major F toenails FL Okaloosa 07/2009 30.75 -86.56 

GUFL_BX909 D Steen  T. carolina major - toe tips FL Okaloosa 07/2009 30.67 -86.63 

GUFL_BX910 D Steen  T. carolina major M toe tips FL Okaloosa 08/2009 30.75 -86.56 

GUFL_BX911 D Steen  T. carolina major - toe tips FL Okaloosa 05/2009 - - 

GUFL_BX929 K Krysko, PE Moler T. carolina major - muscle FL Holmes 05/2007 - - 

GUFL_BX931 K Krysko  T. carolina major - muscle FL Escambia - 30.57 -87.40 

GUFL_BX933 K Krysko  T. carolina major - muscle FL Gulf 03/2007 29.85 -85.26 

GUFL_BXGU07 R Birkhead  T. carolina major M toenails FL Gulf 09/2013 30.08 -85.19 

GUFL_BXGU08 R Birkhead  T. carolina major F tail tip FL Gulf 07/2013 29.99 -85.17 

GUFL_BXGU10 R Birkhead  T. carolina major M toenails FL Gulf 07/2013 29.68 -85.33 

GUFL_BXGU11 R Birkhead  T. carolina major - tail tip FL Gulf 07/2012 30.16 -85.21 

GUFL_BXGU13 R Birkhead, J McGuire  T. carolina major F tail tip FL Gulf 07/2015 29.69 -85.25 

GUFL_BXGU25 R Birkhead, J McGuire  T. carolina major M tail tip FL Gulf 07/2015 29.89 -85.22 

GUFL_BXGU26 R Birkhead, C Ward  T. carolina major F foot 

tissue 

FL Gulf 05/2015 29.87 -85.23 

GUFL_BXGU27 R Birkhead, C Ward  T. carolina major F toenails FL Calhoun 05/2015 30.50 -85.12 

GUFL_BXGU28 R Birkhead, C Ward  T. carolina major F toenails, 

muscle 

FL Gulf 05/2015 29.84 -85.27 

GUFL_BXGU29 R Birkhead, C Ward  T. carolina major F toenail FL Gulf 05/2015 30.00 -85.17 

GUFL_BXGU31 R Birkhead  T. carolina major F toenails, 

toe 

FL Walton 07/2016 30.49 -86.23 
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Table S1 (Cont.) 

Sample ID Collector(s) (Affiliation) Taxonomic ID Sex Tissue  State County Date Lat Long 

GUFL_BXGU32 R Birkhead  T. carolina major F tail tip FL Franklin 07/2016 29.72 -84.99 

GUFL_BXGU33 R Birkhead  T. carolina major F toenails FL Gulf 07/2016 29.93 -85.39 

GUFL_BXGU35_AA13 D Alix  T. carolina major M toenails FL Liberty 03/2018 30.37 -84.68 

GUFL_BXGU36_AA14 D Alix  T. carolina major F toenails FL Franklin 04/2018 30.00 -84.89 

GUFL_BXGU37_1391 R Birkhead, J Westmoreland  T. carolina major F toenails FL Bay 05/2010 30.19 -85.68 

GUFL_BXGU38_502 M Michelsohn  T. carolina major - scutes FL Franklin 05/2009 29.86 -84.75 

GUFL_BXGU61_U57 R Birkhead  T. carolina major M toenails, 

skin 

FL Gulf 09/2013 30.08 -85.19 

GUFL_BXGU62_AA36 C Matechik  T. carolina major F toenails FL Franklin 02/2018 29.88 -84.73 

GUFL_BXGU63_AA37 C Matechik  T. carolina major M toenails FL Franklin 03/2018 29.84 -84.68 

GUFL_BXGU65_AA39 C Matechik  T. carolina major - toenails FL Franklin 03/2018 29.75 -84.84 

GUFL_BXGU66_AA40 C Matechik  T. carolina major - toenails FL Franklin 04/2018 29.85 -84.69 

GULA_BX762 A Bass  T. carolina major - toenails LA Bastrob - 32.71 -91.93 

GUMS_BX188 J Lee (Nature Conservancy, 

Camp Shelby) 

T. carolina major F tail tip MS Forrest 07/2008 31.15 -89.18 

GUMS_BX190 J Lee (Nature Conservancy, 

Camp Shelby) 

T. carolina major F tail tip MS Perry 07/2008 31.06 -89.12 

GUMS_BX193 J Lee (Nature Conservancy, 

Camp Shelby) 

T. carolina major M tail tip MS Perry 07/2008 31.14 -89.15 

GUMS_BX200 J Lee (Nature Conservancy, 

Camp Shelby) 

T. carolina major M tail tip MS Perry 04/2009 31.14 -89.15 

GUMS_BX201 J Lee (Nature Conservancy, 

Camp Shelby) 

T. carolina major M tail tip MS Perry 05/2009 31.14 -89.15 

GUMS_BXGU15 A Lynn McCoy  T. carolina major M tail tip MS Jackson 05/2015 30.43 -88.54 

GUMS_BXGU17 A Lynn McCoy  T. carolina major M tail tip MS Jackson 05/2015 30.43 -88.54 

GUMS_BXGU18 A Lynn McCoy  T. carolina major F tail tip MS Jackson 05/2015 30.43 -88.54 

GUMS_BXGU20 A Lynn McCoy  T. carolina major F tail tip MS Jackson 05/2015 30.43 -88.54 

GUMS_BXGU21 A Lynn McCoy  T. carolina major F tail tip MS Jackson 07/2015 30.44 -88.55 

GUMS_BXGU22 A Lynn McCoy  T. carolina major M tail tip MS Jackson 06/2015 30.44 -88.55 

GUMS_BXGU23 A Lynn McCoy  T. carolina major M tail tip MS Jackson 05/2015 30.43 -88.54 

GUMS_BXGU24 A Lynn McCoy  T. carolina major M tail tip MS Jackson 05/2015 30.43 -88.54 
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GUMS_BXGU30 A Lynn McCoy  T. carolina major F tail tip MS Jackson 05/2015 30.43 -88.54 

GUMS_BXGU39_T34 A Lynn McCoy  T. carolina major M toenails MS Jackson 04/2015 30.42 -88.52 

GUMS_BXGU40_T46 A Lynn McCoy  T. carolina major F tail tip MS Jackson 05/2015 30.43 -88.54 

GUMS_BXGU43_T55 A Lynn McCoy  T. carolina major M tail tip MS Jackson 07/2015 30.44 -88.55 

GUMS_BXGU44_T56 A Lynn McCoy  T. carolina major F tail tip MS Jackson 05/2015 32.55 -85.64 

GUMS_BXGU45_T59 A Lynn McCoy  T. carolina major M tail tip MS Jackson 05/2015 30.43 -88.54 

GUMS_BXGU46_T60 A Lynn McCoy  T. carolina major M toenails MS Jackson 04/2015 30.42 -88.52 

GUMS_BXGU47_T61 A Lynn McCoy  T. carolina major F tail tip MS Jackson 05/2015 30.43 -88.54 

GUMS_BXGU48_T62 A Lynn McCoy  T. carolina major M tail tip MS Jackson 05/2015 30.43 -88.54 

GUMS_BXGU49_T66 A Lynn McCoy  T. carolina major M tail tip MS Jackson 07/2015 30.44 -88.55 

GUMS_BXGU50_T69 A Lynn McCoy  T. carolina major M tail tip MS Jackson 05/2015 30.43 -88.54 

GUMS_BXGU51_T70 A Lynn McCoy  T. carolina major M tail tip MS Jackson 05/2015 30.43 -88.54 

GUMS_BXGU52_T71 A Lynn McCoy  T. carolina major M tail tip MS Jackson 05/2015 30.43 -88.54 

GUMS_BXGU53_T72 A Lynn McCoy  T. carolina major F tail tip MS Jackson 05/2015 30.43 -88.54 

GUMS_BXGU54_T73 A Lynn McCoy  T. carolina major F tail tip MS Jackson 05/2015 30.43 -88.54 

GUMS_BXGU55_T78 A Lynn McCoy  T. carolina major F tail tip MS Jackson 05/2015 30.44 -88.55 

GUMS_BXGU56_T83 A Lynn McCoy  T. carolina major F tail tip MS Jackson 05/2015 30.43 -88.54 

GUMS_BXGU58_T92 A Lynn McCoy  T. carolina major F tail tip MS Jackson 05/2015 30.44 -88.55 

GUMS_BXGU59_T93 A Lynn McCoy  T. carolina major F tail tip MS Jackson 05/2015 30.43 -88.54 

GUMS_BXGU67_AA41 J Wright  T. carolina major - tail tip MS Jackson 04/2018 30.38 -88.71 

GUMS_BXGU68_AA42 J Wright  T. carolina major F tail tip MS Jackson 05/2018 30.38 -88.71 

GUMS_BXGU69_AA43 J Wright  T. carolina major M foot 

tissue 

MS Jackson 05/2018 30.38 -88.71 

GUMS_BXGU70_AA44 J Wright  T. carolina major F tail tip MS Jackson 05/2018 30.38 -88.70 

GUMS_BXGU71_AA45 J Wright  T. carolina major M tail tip MS Jackson 05/2018 30.38 -88.72 

GUMS_BXGU72_AA46 J Wright  T. carolina major - tail tip MS Jackson 05/2018 30.40 -88.73 

GUMS_BXGU73_AA47 J Wright  T. carolina major F tail tip MS Jackson 05/2018 30.36 -88.71 

GUMS_BXGU74_AA48 J Wright  T. carolina major M skin MS Jackson 05/2018 30.37 -88.69 
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GUMS_BXGU75_AA49 J Wright  T. carolina major M tail tip MS Jackson 05/2018 30.36 -88.69 

GUMS_BXGU76_AA50 J Wright  T. carolina major F tail tip MS Jackson 05/2018 30.38 -88.72 

GUMS_BXGU77_AA51 J Wright  T. carolina major F toe MS Jackson 06/2018 30.38 -88.71 

GUMS_BXGU78_AA52 J Wright  T. carolina major M tail tip MS Jackson 06/2018 30.38 -88.71 

GUMS_BXGU79_AA73 J Wright  T. carolina major M tail tip MS Jackson 06/2018 30.40 -88.75 

GUMS_BXGU80_AA54 J Wright  T. carolina major M foot 

tissue 

MS Jackson 06/2018 30.37 -88.71 

ONCO_BX580 AE Nash (Colorado Reptile 

Human Society) 

T. ornata ornata F toenails CO Weld 06/2009 40.30 -

104.47 

ONCO_BX588 AE Nash (Colorado Reptile 

Human Society) 

T. ornata ornata M toenails CO Weld 06/2009 40.29 -

104.48 

ONCO_BX601 AE Nash (Colorado Reptile 

Human Society) 

T. ornata ornata F toenails CO Weld 05/2009 40.30 -

104.48 

ONCO_BX602 AE Nash (Colorado Reptile 

Human Society) 

T. ornata ornata M toenails CO Weld 05/2009 40.29 -

104.48 

ONIA_BX1435 F Janzen  T. ornata ornata - blood IA - 04/2011 - - 

ONIL_BX32 C Phillips (INHS) T. ornata ornata - blood IL Franklin 2005 38.11 -88.94 

ONIL_BXON01 C Phillips, L Adamovicz (INHS) T. ornata ornata - blood IL Marion 2017 - - 

ONIL_BXON02 C Phillips, L Adamovicz (INHS) T. ornata ornata - blood IL Marion 2017 - - 

ONIL_BXON03 C Phillips, L Adamovicz (INHS) T. ornata ornata - blood IL Marion 2016 - - 

ONIL_BXON04 C Phillips, L Adamovicz (INHS) T. ornata ornata - blood IL Marion 2016 - - 

ONIL_BXON05 C Phillips, L Adamovicz (INHS) T. ornata ornata - blood IL Marion 2016 - - 

ONIL_BXON06 C Phillips, L Adamovicz (INHS) T. ornata ornata - blood IL Marion 2016 - - 

ONIL_BXON07 C Phillips (INHS) T. ornata ornata - blood IL Lee 2016 - - 

ONIL_BXON08 C Phillips (INHS) T. ornata ornata - blood IL Lee 2016 - - 

ONIL_BXON09 C Phillips (INHS) T. ornata ornata - blood IL Lee 2016 - - 

ONIL_BXON10 C Phillips (INHS) T. ornata ornata - blood IL Lee 2016 - - 

ONIL_BXON11 C Phillips (INHS) T. ornata ornata - blood IL Lee 2016 - - 

ONIL_BXON12 C Phillips (INHS) T. ornata ornata - blood IL Lee 2016 - - 

ONIL_BXON13 C Phillips (INHS) T. ornata ornata - blood IL Lee 2016 - - 

ONIL_BXON14 C Phillips (INHS) T. ornata ornata - blood IL Lee 2016 - - 
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ONIL_BXON15 C Phillips (INHS) T. ornata ornata - blood IL Lee 2016 - - 

ONIL_BXON16 C Phillips (INHS) T. ornata ornata - blood IL Lee 2016 - - 

ONIL_BXON17 C Phillips (INHS) T. ornata ornata - blood IL Lee 2016 - - 

ONIL_BXON18 C Phillips (INHS) T. ornata ornata - blood IL Lee 2016 - - 

ONIL_BXON20 C Phillips (INHS) T. ornata ornata - blood IL Lee 2016 - - 

ONIL_BXON21 C Phillips (INHS) T. ornata ornata - blood IL Lee 2016 - - 

ONIL_BXON22 C Phillips (INHS) T. ornata ornata - blood IL Lee 2016 - - 

ONIL_BXON23 C Phillips (INHS) T. ornata ornata - blood IL - - - - 

ONIL_BXON25 C Phillips (INHS) T. ornata ornata - blood IL - - - - 

ONIL_BXON26 C Phillips (INHS) T. ornata ornata - blood IL - - - - 

ONIL_BXON27 C Phillips (INHS) T. ornata ornata - blood IL - - - - 

ONIL_BXON28 C Phillips (INHS) T. ornata ornata - blood IL - - - - 

ONIL_BXON29 C Phillips (INHS) T. ornata ornata - blood IL - - - - 

ONIL_BXON30 C Phillips (INHS) T. ornata ornata - blood IL - - - - 

ONIL_BXON31 C Phillips (INHS) T. ornata ornata - blood IL Lee 2013 41.91 -89.35 

ONIL_BXON32 C Phillips (INHS) T. ornata ornata - blood IL - - - - 

ONIL_BXON33 C Phillips (INHS) T. ornata ornata - blood IL - - - - 

ONIL_BXON34 C Phillips (INHS) T. ornata ornata - blood IL Lee 2012 41.89 -89.35 

ONIL_BXON35 C Phillips (INHS) T. ornata ornata - blood IL Effingham 2008 39.07 -88.54 

ONIL_BXON36 C Phillips (INHS) T. ornata ornata - blood IL Lee 2013 41.92 -89.36 

ONIL_BXON37 C Phillips (INHS) T. ornata ornata - blood IL Scott 2008 39.59 -90.53 

ONIL_BXON38 C Phillips (INHS) T. ornata ornata - blood IL Lee 2012 41.89 -89.35 

ONIL_BXON40 C Phillips (INHS) T. ornata ornata - blood IL Jasper - - - 

ONIL_BXON41 C Phillips (INHS) T. ornata ornata - blood IL Franklin 2005 38.11 -88.94 

ONIL_BXON42 C Phillips (INHS) T. ornata ornata - blood IL Jasper 2012 38.93 -88.19 

ONIL_BXON43 C Phillips (INHS) T. ornata ornata - blood IL Cass 2013 40.00 -90.07 

ONIL_BXON44 C Phillips (INHS) T. ornata ornata - blood IL Will 2013 41.06 -87.59 
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ONKS_BXON47_160 J Jagels (Kansas Dept. of 

Wildlife and Parks) 

T. ornata ornata - tail tip KS Clark 06/2009 37.41 -99.76 

ONKS_BXON50_168 J Jagels (Kansas Dept. of 

Wildlife and Parks) 

T. ornata ornata F tail tip KS Meade 06/2009 37.38 -

100.14 

ONKS_BXON52_171 J Jagels (Kansas Dept. of 

Wildlife and Parks) 

T. ornata ornata - tail tip KS Meade 06/2009 37.04 -

100.49 

ONKS_BXON53_172 J Jagels (Kansas Dept. of 

Wildlife and Parks) 

T. ornata ornata - tail tip KS Meade 06/2009 37.07 -

100.47 

ONKS_BXON54_173 J Jagels (Kansas Dept. of 

Wildlife and Parks) 

T. ornata ornata - tail tip KS Meade 06/2009 37.29 -

100.37 

ONKS_BXON61_133 L Schmidt  T. ornata ornata F tail tip KS Miami - 38.55 -94.94 

ONKS_BXON62_134 L Schmidt  T. ornata ornata F tail tip KS Douglas - 38.77 -95.15 

ONKS_BXON64_136 L Schmidt  T. ornata ornata F tail tip KS Osage - 38.78 -95.51 

ONNE_BXON56_431 J Iverson  T. ornata ornata - tail tip NE Box Butte 06/2009 42.09 -

102.72 

ONNE_BXON57_432 J Iverson  T. ornata ornata - tail tip NE Sheridan 06/2009 42.06 -

102.46 

ONNE_BXON58_433x2 J Iverson  T. ornata ornata - blood NE Garden 06/2009 41.83 -

102.34 

ONNE_BXON59_439 J Iverson  T. ornata ornata - tail tip NE Box Butte 06/2009 42.09 -

102.74 

ONTX_BX765 C Franklin  T. ornata ornata - muscle TX Montague 10/2009 33.48 -97.79 

ONTX_BXON45_150 A Inslee (Aransas/Matagorda 

Island National Wildlife Refuge 

Complex) 

T. ornata ornata M - TX Calhoun 05/2009 28.20 -96.70 

ONTX_BXON46_153 A Inslee (Aransas/Matagorda 

Island National Wildlife Refuge 

Complex) 

T. ornata ornata M - TX Calhoun 06/2009 28.29 -96.53 

ONWI_BX486 B Hay  T. ornata ornata - toenails WI Sauk - 43.18 -90.07 

ONWI_BX489 B Hay  T. ornata ornata F toenails WI Iowa - 43.03 -90.11 

ONWI_BX490 B Hay  T. ornata ornata F toenails WI Iowa - 43.03 -90.11 

ONWI_BX491 B Hay  T. ornata ornata F toenails WI Iowa - 43.03 -90.11 

ONWI_BX492 B Hay  T. ornata ornata F toenails WI Iowa - 43.03 -90.11 

ONWI_BX493 B Hay  T. ornata ornata F toenails WI Dane - 43.18 -89.80 

ONWI_BX495 B Hay  T. ornata ornata F toenails WI Columbia - 43.46 -89.39 
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ONWI_BX497 B Hay  T. ornata ornata F toenails WI Columbia - 43.45 -89.35 

TCAL_BX1614 R Birkhead  T. carolina M tail tip AL Barbour 04/2011 31.88 -85.46 

TCAL_BX1616 R Birkhead  T. carolina F toenails AL Barbour 04/2011 32.03 -85.09 

TCAL_BX1618 R Birkhead  T. carolina M tail tip AL Russell 09/2011 32.26 -85.42 

TCAL_BX271 R Birkhead  T. carolina M toenails AL Lee/Macon 07/2009 32.54 -85.59 

TCAL_BX272 R Birkhead  T. carolina M tail tip AL Lowndes 07/2009 32.21 -86.55 

TCAL_BX273 R Birkhead  T. carolina - toenails AL Macon 07/2009 32.48 -85.80 

TCAL_BX279 R Birkhead  T. carolina - tail tip AL Macon 08/2009 32.51 -85.61 

TCAL_BX280 R Birkhead  T. carolina M muscle AL Tallapoosa 08/2009 32.87 -85.81 

TCAL_BX281 R Birkhead  T. carolina F toenails, 

muscle 

AL Elmore 08/2009 32.57 -86.03 

TCAL_BX282 R Birkhead  T. carolina M tail tip AL Macon 08/2009 32.45 -85.81 

TCAL_BX283 R Birkhead  T. carolina M tail tip AL Tallapoosa 08/2009 32.88 -85.82 

TCAL_BX289 F Scott, R Birkhead  T. carolina - scutes AL Tallapoosa 2009 32.88 -85.84 

TCAL_BX302 R Birkhead  T. carolina F tail tip AL Chambers 08/2009 32.89 -85.38 

TCAL_BX304 R Birkhead  T. carolina M toenails AL Lee 09/2009 32.60 -85.53 

TCAL_BX305 R Birkhead  T. carolina M toenails AL Elmore 09/2009 32.49 -86.33 

TCAL_BX310 R Birkhead  T. carolina - tail tip AL Chambers 09/2009 32.84 -85.48 

TCAL_BX326 R Birkhead  T. carolina F tail tip AL Lee 06/2009 32.54 -85.50 

TCAL_BX327 R Birkhead  T. carolina F tail tip AL Lee 06/2009 32.69 -85.32 

TCAL_BX329 R Birkhead  T. carolina F tail tip AL Chambers 06/2009 32.77 -85.26 

TCAL_BX592 R Birkhead  T. carolina M toenails AL Russell 08/2009 32.26 -85.35 

TCAL_BX612 R Birkhead, S Graham  T. carolina F toenails AL Barbour 03/2010 32.01 -85.40 

TCAL_BXTC01 R Birkhead  T. carolina F tail tip AL Macon 07/2009 32.50 -85.61 

TCAL_BXTC09 R Birkhead  T. carolina F toes AL Autauga 05/2010 32.44 -86.41 

TCAL_BXTC103 R Birkhead  T. carolina - toenails, 

muscle 

AL Hale 08/2013 32.83 -87.60 

TCAL_BXTC104 F Scott, R Birkhead  T. carolina - toenails AL Coosa 05/2011 32.87 -86.10 

TCAL_BXTC109 R Birkhead  T. carolina - tail tip AL Butler 07/2016 31.59 -86.73 
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TCAL_BXTC11 R Birkhead  T. carolina F muscle AL Macon 07/2010 32.46 -85.66 

TCAL_BXTC110 R Birkhead  T. carolina - tail tip AL Conecuh 08/2016 31.29 -87.19 

TCAL_BXTC111_U52 R Birkhead  T. carolina F toenails, 

muscle 

AL Bullock 07/2013 32.08 -85.69 

TCAL_BXTC12 R Birkhead  T. carolina F liver 

tissue 

AL Lee 04/2015 32.57 -85.12 

TCAL_BXTC21 R Birkhead  T. carolina F tail tip AL Lee 08/2009 32.55 -85.55 

TCAL_BXTC24 R Birkhead  T. carolina F toes AL Elmore 05/2010 32.54 -85.95 

TCAL_BXTC29 R Birkhead  T. carolina - toenails, 

muscle 

AL Lee 03/2012 32.57 -85.53 

TCAL_BXTC33 R Birkhead  T. carolina - tail tip AL Macon 04/2015 32.55 -85.64 

TCAL_BXTC39 D O'Halloran, R Birkhead  T. carolina F tail tip AL Jackson 08/2011 34.62 -86.20 

TCAL_BXTC45 R Birkhead  T. carolina - toenails, 

skin 

AL Coffee 08/2014 31.50 -86.01 

TCAL_BXTC63 R Birkhead, J McGuire  T. carolina F toenails AL Mobile 04/2014 30.84 -88.40 

TCAL_BXTC65 R Birkhead  T. carolina - toenails, 

skin 

AL Randolph 07/2013 33.14 -85.46 

TCAL_BXTC79 R Birkhead  T. carolina M muscle AL Bullock 04/2011 32.20 -85.50 

TCAL_BXTC80 R Birkhead  T. carolina F toenails, 

skin 

AL Bullock 07/2013 32.08 -85.69 

TCAL_BXTC86 D O'Halloran, S Dery, R 

Birkhead  

T. carolina M toenails AL Madison 07/2010 34.61 -86.58 

TCAL_BXTC90 R Birkhead  T. carolina M tail tip AL Coosa 05/2010 33.67 -86.05 

TCAL_BXTC91 R Birkhead  T. carolina - muscle AL Clay 05/2010 33.11 -85.89 

TCAL_BXTC92 R Birkhead  T. carolina M muscle AL Clay 05/2010 33.13 -85.86 

TCAL_BXTC93 R Birkhead  T. carolina F muscle AL Clay 05/2010 33.21 -85.82 

TCAL_BXTC94 S Graham  T. carolina - scutes AL St. Claire 04/2010 33.78 -86.24 

TCAL_BXTC97 R Birkhead  T. carolina F muscle AL Elmore 10/2009 32.69 -86.10 

TCAL_BXTC98 R Birkhead  T. carolina F tail tip AL Elmore 10/2009 32.62 -86.15 

TCAL_BXTC99 R Birkhead  T. carolina M muscle AL Shelby 05/2010 33.12 -86.81 

TCGA_BX300 W Birkhead  T. carolina F toenails GA Harris 07/2009 32.63 -85.00 

TCGA_BX343 W Birkhead  T. carolina F toenails GA Harris 06/2009 32.66 -84.98 
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TCGA_BX344 W Birkhead  T. carolina M toenails GA Harris 06/2009 32.74 -84.90 

TCGA_BX345 W Birkhead  T. carolina M toenails GA Calhoun 07/2009 31.51 -84.59 

TCGA_BX589 R Birkhead  T. carolina - tail tip GA Gwinett - 33.98 -83.97 

TCGA_BXTC34 J Greenway  T. carolina F whole 

foot 

GA Gilmer 06/2015 34.78 -84.39 

TCGA_BXTC35 J Greenway  T. carolina - whole 

foot 

GA Gilmer 02/2015 34.78 -84.52 

TCGA_BXTC36 J Greenway  T. carolina - whole 

foot 

GA Pickens 08/2015 34.50 -84.50 

TCGA_BXTC46 R Birkhead  T. carolina F toenails, 

skin 

GA Coweta 10/2012 33.25 -84.76 

TCMS_BXTC13 A Lynn McCoy  T. carolina F tail tip MS Jackson 07/2015 30.63 -88.57 

TCMS_BXTC14 A Lynn McCoy  T. carolina F tail tip MS Jackson 07/2015 30.67 -88.49 

TCMS_BXTC15 A Lynn McCoy  T. carolina M tail tip MS Jackson 08/2015 30.63 -88.57 

TCMS_BXTC16 A Lynn McCoy  T. carolina M tail tip MS Jackson 08/2015 30.67 -88.49 

TCMS_BXTC17 A Lynn McCoy  T. carolina M toe tip MS Jackson 05/2015 30.44 -88.55 

TCMS_BXTC18 A Lynn McCoy  T. carolina F tail tip MS Jackson 07/2015 30.63 -88.57 

TCMS_BXTC84 A Lynn McCoy  T. carolina M toenails MS Jackson 04/2015 30.44 -88.55 

TTAR_BX507 B Millig  T. mexicana triunguis M toenails AR Pulaski 08/2009 34.83 -92.49 

TTAR_BX984 B Millig  T. mexicana triunguis F toenails AR Pulaski 07/2009 34.83 -92.49 

TTAR_BX987 B Millig  T. mexicana triunguis M toenails AR Pulaski 07/2009 34.83 -92.49 

TTKS_BXTT20_78 J Jagels (Kansas Dept. of 

Wildlife and Parks) 

T. mexicana triunguis F tail tip KS Crawford 05/2009 37.59 -94.96 

TTKS_BXTT23_132 L Schmidt  T. mexicana triunguis F tail tip KS Linn - 38.34 -94.68 

TTLA_BX421 S Shively (Calcasieu Ranger 

District) 

T. mexicana triunguis M toenails LA Rapides 06/2009 31.20 -92.58 

TTLA_BX422 S Shively (Calcasieu Ranger 

District) 

T. mexicana triunguis F shell 

shavings 

LA Rapides 06/2009 31.18 -92.56 

TTLA_BX775 S Shively (Calcasieu Ranger 

District) 

T. mexicana triunguis F toenails LA Grant 08/2009 31.52 -92.53 
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TTLA_BXTT13 S Shively (Calcasieu Ranger 

District) 

T. mexicana triunguis F toenails LA Rapides 06/2010 31.16 -92.52 

TTLA_BXTT34_1482 S Shively (Calcasieu Ranger 

District) 

T. mexicana triunguis F toenails LA Rapides 06/2010 31.25 -92.64 

TTLA_BXTT35_1486 S Shively (Calcasieu Ranger 

District) 

T. mexicana triunguis M toenails LA Rapides 05/2010 31.14 -92.64 

TTLA_BXTT36_1491 S Shively (Calcasieu Ranger 

District) 

T. mexicana triunguis M toenails LA Rapides 05/2010 31.21 -92.58 

TTLA_BXTT37_1492 S Shively (Calcasieu Ranger 

District) 

T. mexicana triunguis F toenails LA Rapides 05/2010 31.21 -92.58 

TTLA_BXTT38_1493 S Shively (Calcasieu Ranger 

District) 

T. mexicana triunguis M toenails LA Rapides 04/2010 31.16 -92.52 

TTLA_BXTT39_1498 S Shively (Calcasieu Ranger 

District) 

T. mexicana triunguis F toenails LA Rapides 04/2010 31.18 -92.52 

TTMO_BX109 M Brodt  T. mexicana triunguis M toenails MO Jefferson - 38.20 -90.53 

TTMS_BX191 J Lee (Nature Conservancy, 

Camp Shelby) 

T. mexicana triunguis M tail tip MS Perry 07/2008 31.21 -89.07 

TTMS_BX192 J Lee (Nature Conservancy, 

Camp Shelby) 

T. mexicana triunguis F tail tip MS Perry 08/2008 31.21 -89.07 

TTMS_BX195 J Lee (Nature Conservancy, 

Camp Shelby) 

T. mexicana triunguis F tail tip MS Perry 08/2008 31.21 -89.07 

TTMS_BX196 J Lee (Nature Conservancy, 

Camp Shelby) 

T. mexicana triunguis M tail tip MS Perry 08/2008 31.21 -89.07 

TTMS_BX198 J Lee (Nature Conservancy, 

Camp Shelby) 

T. mexicana triunguis F tail tip MS Forrest 09/2008 31.32 -89.31 

TTMS_BX199 J Lee (Nature Conservancy, 

Camp Shelby) 

T. mexicana triunguis F tail tip MS Perry 09/2008 31.21 -89.07 

TTMS_BX236 J Hoover  T. mexicana triunguis M toenails MS Warren - 32.36 -90.84 

TTMS_BX238 J Hoover  T. mexicana triunguis M toenails MS Hinds - 32.36 -90.47 

TTMS_BX239 J Hoover  T. mexicana triunguis M toenails MS Hinds - 32.36 -90.47 

TTMS_BX240 J Hoover  T. mexicana triunguis F toenails MS Hinds - 32.36 -90.47 

TTMS_BX241 J Hoover  T. mexicana triunguis M toenails MS Hinds - 32.36 -90.47 

TTMS_BX242 J Hoover  T. mexicana triunguis F toenails MS Hinds - 32.30 -90.87 
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Sample ID Collector(s) (Affiliation) Taxonomic ID Sex Tissue  State County Date Lat Long 

TTMS_BX243 J Hoover  T. carolina carolina F toenails MS Warren - 32.29 -90.71 

TTMS_BX465 B Rosamond (US Fish and 

Wildlife Service) 

T. mexicana triunguis - scutes MS Carroll - 33.49 -89.85 

TTMS_BX467 B Rosamond (US Fish and 

Wildlife Service) 

T. mexicana triunguis M toenails MS Grenada 05/2009 33.78 -90.04 

TTMS_BX471 B Rosamond (US Fish and 

Wildlife Service) 

T. mexicana triunguis F toenails MS Panola 09/2009 34.18 -90.11 

TTMS_BXTT07 J Lee (Nature Conservancy, 

Camp Shelby) 

T. mexicana triunguis F toe tip MS Forrest 07/2008 31.19 -89.25 

TTMS_BXTT08 J Lee (Nature Conservancy, 

Camp Shelby) 

T. mexicana triunguis M tail tip MS Forrest 09/2008 31.19 -89.25 

TTTX_BX11 J Koukl  T. mexicana triunguis F toenails TX Smith 05/2008 32.30 -95.21 

TTTX_BX15 J Koukl  T. mexicana triunguis M toenails TX Dallas 05/2008 32.95 -96.73 

TTTX_BX16 J Koukl  T. mexicana triunguis M toenails TX Smith 05/2008 32.35 -95.30 

TTTX_BX19 J Koukl  T. mexicana triunguis F toenails TX Dallas 05/2008 32.97 -96.74 

TTTX_BX22 J Koukl  T. mexicana triunguis M toenails TX Tarrant 05/2008 33.04 -97.12 

TTTX_BX222 J Placyk  T. mexicana triunguis - tail tip TX Henderson 08/2009 32.34 -95.75 

TTTX_BX223 J Koukl  T. mexicana triunguis - toenails TX Smith - 32.34 -95.27 

TTTX_BX224 C Samuelson  T. mexicana triunguis - toenails TX Smith 08/2009 32.26 -95.19 

TTTX_BX225 C Samuelson  T. mexicana triunguis - toenails TX Smith 08/2009 32.34 -95.27 

TTTX_BX227 J Placyk  T. mexicana triunguis - toenails TX Smith 08/2009 32.34 -95.27 

TTTX_BX228 J Placyk  T. mexicana triunguis - toenails TX Smith 08/2009 32.34 -95.27 

TTTX_BX23 J Koukl  T. mexicana triunguis M toenails TX Collin 05/2006 33.22 -96.57 
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Table S2: Number of sequenced individuals (N) per Terrapene taxon, as identified in the field. 

T. carolina carolina=Woodland, T. c. major=Gulf Coast, T. c. bauri=Florida, T. carolina=field 

identification limited to species-level, T. m. triunguis=Three-toed, and T. o. ornata=Ornate box 

turtles. 

Taxonomic ID N 

T. carolina carolina 106 

T. carolina major 88 

T. carolina bauri 4 

T. carolina 65 

T. mexicana triunguis 47 

T. ornata ornata 62 

Total 368 
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Table S3: Genotype frequency proportions from four NEWHYBRIDS analyses involving the 

GU=Gulf Coast (T. c. major), EA=Woodland (T. c. carolina), TT=Three-toed (T. m. triunguis), 

and ON=Ornate (T. o. ornata) box turtles; TC=T. carolina (subspecies unidentified). The second 

two letters in the population ID correspond to U.S. state locality (AL=Alabama, FL=Florida, 

LA=Louisiana, SC=South Carolina, GA=Georgia, MS=Mississippi, IL=Illinois). Columns depict 

the proportion of assignment to parental (P1 and P2), first and second-generation hybrid (F1 and 

F2), backcross (B1 and B2), and unassigned (FN) genotype frequency classes. 

Population P1 P2 F1 F2 B1 B2 FN 

GUxEA        

PureGU 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

PureEA 0.00 1.00 0.00 0.00 0.00 0.00 0.00 

EAAL 0.00 1.00 0.00 0.00 0.00 0.00 0.00 

GUFL 0.46 0.04 0.00 0.08 0.21 0.00 0.21 

TCAL 0.02 0.86 0.00 0.02 0.02 0.00 0.08 

GUAL 0.20 0.20 0.00 0.00 0.00 0.00 0.60 
        

EAxTT        

PureEA 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

PureTT 0.00 1.00 0.00 0.00 0.00 0.00 0.00 

TTLA 0.00 1.00 0.00 0.00 0.00 0.00 0.00 

EASC 0.47 0.00 0.00 0.00 0.40 0.00 0.13 

TCGA 0.80 0.00 0.00 0.00 0.00 0.10 0.10 

EAGA 0.91 0.00 0.00 0.00 0.05 0.00 0.05 

TCAL 0.96 0.00 0.00 0.00 0.04 0.00 0.00 
        

TTxGU        

PureTT 0.00 1.00 0.00 0.00 0.00 0.00 0.00 

PureGU 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

GUAL 0.60 0.00 0.00 0.00 0.20 0.00 0.20 

TTMS 0.00 0.50 0.00 0.17 0.00 0.06 0.28 

TTLA 0.00 1.00 0.00 0.00 0.00 0.00 0.00 

TCMS 0.43 0.00 0.00 0.00 0.57 0.00 0.00 

GUMS 0.52 0.02 0.00 0.00 0.13 0.04 0.28 

GUFL 0.88 0.04 0.00 0.00 0.04 0.00 0.04 
        

ONxEA        

PureON 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

PureEA 0.00 1.00 0.00 0.00 0.00 0.00 0.00 

ONIL 0.74 0.21 0.05 0.00 0.00 0.00 0.00 

EAIL 0.00 0.98 0.00 0.00 0.00 0.00 0.03 
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Figure S1: Cross-validation (CV) scores across K-values (K=1-10) for ADMIXTURE runs 

containing all sequenced samples (N=368). Lower CV values indicate less error and stronger 

support for the corresponding K. 
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Figure S2: Top three Terrapene ADMIXTURE plots representing 12,052 unlinked ddRAD SNPs 

across all sampled populations. The lowest cross-validation score was for K=6 (depicted at right 

in red), followed by K=4 and then K=5. Each bar represents a unique individual, and bars with 

mixed colors represent admixed ancestry. The first two letters of the populations correspond to 

subspecific field identification (ON=Ornate, T. ornata ornata; EA=Woodland, T. carolina 

carolina; GU=Gulf Coast, T. c. major; TT=Three-toed, T. mexicana triunguis; TC=Terrapene 

carolina, with subspecies unidentified in the field). The second two letters (if present) represent 

locality codes for U.S. or Mexican state (IL=Illinois; AL=Alabama; GA=Georgia; SC=South 

Carolina; FL=Florida; MS=Mississippi; LA=Louisiana). Populations lacking a state locality code 

consisted of multiple localities sampled outside hybrid zones.  
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Figure S3: Cross-validation (CV) scores across K-values (K=1-13) for ADMIXTURE runs 

containing samples from southeastern North America (N=259). Lower CV values indicate less 

error and stronger support for the corresponding K. 
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Figure S4: Top three southeastern Terrapene ADMIXTURE plots representing 11,308 unlinked ddRAD SNPs. The lowest cross-

validation score was for K=4 (depicted in red), followed by K=3 then K=5. Each bar represents a unique individual, and bars with 

mixed colors depict admixed ancestry. The first two population code letters correspond to subspecific field identification 

(EA=Woodland, T. c. carolina; GU=Gulf Coast, T. c. major; TT=Three-toed, T. m. triunguis; TC=Terrapene carolina, with 

subspecies unidentified). The second two letters represent locality codes for U.S. states (AL=Alabama; GA=Georgia; SC=South 

Carolina;FL=Florida; MS=Mississippi; LA=Louisiana). Populations lacking a state code consisted of multiple localities sampled 

outside the hybrid zone.  
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Figure S5: Discriminant Analysis of Principle Components (DAPC) for southeastern Terrapene. Each circle represents one 

individual, and each “X” delineates cluster centroids. The clusters (K=5, determined via Bayesian Information Criterion) represent: T. 

c. carolina (EA=Eastern), T. c. major (GU=Gulf Coast) from the Mississippi (GUMS) and Florida (GUFL) Panhandles, T. m. 

triunguis (TT=Three-toed), and T. c. bauri (FL=Florida). Inset plots demonstrate the number of retained principle components (PCs; 

N=40; shaded area), as determined using cross-validation (100 replicates with 90% of the dataset partitioned for training), versus the 

non-retained PCs (light gray area). 
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Figure S6: Top three midwestern Terrapene ADMIXTURE plots representing 10,338 unlinked 

ddRAD SNPs. The lowest cross-validation score was for K=2 (depicted in red at right), followed 

by K=4 then K=3. The first two letters of the population codes correspond to subspecific field 

identification (EA=Woodland, T. c. carolina; ON=Ornate, T. o. ornata). The second two letters 

(if present) represent locality codes for U.S. state (IL=Illinois). Populations lacking state locality 

code consist of multiple localities sampled outside the hybrid zone. 

 

  



 

86 

 

 

Figure S7: Cross-validation (CV) scores across all K-values (K=1-10) for ADMIXTURE runs 

containing samples from midwestern North America (N=135). Lower CV values indicate less 

error and stronger support for the corresponding K. 
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Figure S8: Terrapene distribution map. Cross-hatched areas represent contact zones. Circles 

indicate individual sampling localities, and the accompanying pie charts depict admixture 

proportions from the all-taxon K=5 (for midwestern individuals) and southeastern K=4 

ADMIXTURE analyses (Fig. 1, 2). The expanded regions highlight two distinct T. c. major 

populations in the panhandles of Mississippi (red box) and Florida (black box), located in the 

Alabama and Apalachicola river basins, respectively. EA=Woodland (T. carolina carolina), 

GU=Gulf Coast (T. c. major), TT=Three-toed (T. mexicana triunguis), , ON=Ornate (T. ornata 

ornata). 
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Figure S9: Results for Terrapene NEWHYBRIDS simulations that tested for convergence between 

inter- and intra-simulation replicates. Convergence was confirmed by the HYBRIDDETECTIVE 

pipeline, thus only one of the virtually identical simulation replicates is presented for each of (A) 

T. carolina carolina (Woodland) X T. c. major (Gulf Coast), (B) T. c. carolina X T. mexicana 

triunguis (Three-toed), (C) T. c. major X T. m. triunguis, and (D) T. c. carolina X T. o. ornata 

(Ornate) is shown here. The genotype frequencies included parental groups (P1 and P2), first and 

second-generation hybrids (F1 and F2), and backcross (B1 and B2) generations.  
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Figure S10: NEWHYBRIDS power analysis for Terrapene carolina carolina (Woodland) X T. c. 

major (Gulf Coast; EAxGU) showing predicted accuracy plotted against posterior probability 

thresholds. Accuracy was calcuated using simulated datasets for parental (P1 and P2), first and 

second-generation hybrid (F1 and F2), and backcross (B1 and B2) generations. 
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Figure S11: NEWHYBRIDS power analysis for Terrapene carolina carolina (Woodland) X T. c. 

major (Gulf Coast; EAxGU) showing predicted power plotted against posterior probability 

thresholds. Power was calcuated using simulated datasets for parental (P1 and P2), first and 

second-generation hybrid (F1 and F2), and backcross (B1 and B2) generations. 
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Figure S12: NEWHYBRIDS power analysis for Terrapene carolina carolina (Woodland) X T. 

mexicana triunguis (Three-toed; EAxTT) showing predicted accuracy plotted against posterior 

probability thresholds. Accuracy was calcuated using simulated datasets for parental (P1 and P2), 

first and second-generation hybrid (F1 and F2), and backcross (B1 and B2) generations. 
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Figure S13: NEWHYBRIDS power analysis for Terrapene carolina carolina (Woodland) X T. 

mexciana triunguis (Three-toed; EAxTT) showing predicted power plotted against posterior 

probability thresholds. Power was calcuated using simulated datasets for parental (P1 and P2), 

first and second-generation hybrid (F1 and F2), and backcross (B1 and B2) generations. 
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Figure S14: NEWHYBRIDS power analysis for Terrapene carolina major (Gulf Coast) X T. 

mexicana triunguis (Three-toed; GUxTT) showing predicted accuracy plotted against posterior 

probability thresholds. Accuracy was calcuated using simulated datasets for parental (P1 and P2), 

first and second-generation hybrid (F1 and F2), and backcross (B1 and B2) generations. 
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Figure S15: NEWHYBRIDS power analysis for Terrapene carolina major (Gulf Coast) X T. 

mexicana triunguis (Three-toed; GUxTT) showing predicted power plotted against posterior 

probability thresholds. Power was calcuated using simulated datasets for parental (P1 and P2), 

first and second-generation hybrid (F1 and F2), and backcross (B1 and B2) generations. 
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Figure S16: NEWHYBRIDS power analysis for Terrapene carolina carolina (Woodland) X T. 

ornata ornata (Ornate; EAxON) showing predicted accuracy plotted against posterior probability 

thresholds. Accuracy was calcuated using simulated datasets for parental (P1 and P2), first and 

second-generation hybrid (F1 and F2), and backcross (B1 and B2) generations. 
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Figure S17: NEWHYBRIDS power analysis for Terrapene carolina carolina (Woodland) X T. 

ornata ornata (Ornate; EAxON) showing predicted power plotted against posterior probability 

thresholds. Power was calcuated using simulated datasets for parental (P1 and P2), first and 

second-generation hybrid (F1 and F2), and backcross (B1 and B2) generations. 
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Figure S18: Genomic clines depicting outlier SNPs for all Terrapene ddRAD loci. Pairwise 

comparisons are between T. carolina carolina (EA=Woodland), T. c. major (GU=Gulf Coast), 

and T. mexicana triunguis (TT=Three-toed), with the number of loci per comparison being: 

N=10,106 (EAxGU); N=11,390 (EAxTT); and N=10,786 (GUxTT). The dark green area 

represents null expectations and each line is a genomic cline at one outlier locus. In each 

analysis, the P1 genotype represents EA, EA, and GU, respectively.
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CHAPTER II 

The choices we make and the impacts they have: Machine learning and species delimitation 

in North American box turtles (Terrapene spp.) 

 

Bradley T. Martin, Tyler K. Chafin, Marlis R. Douglas, John S. Placyk Jr., Roger D. Birkhead, 

Christopher A. Phillips, Michael E. Douglas 

 

ABSTRACT 

Model-based approaches that attempt to delimit species are hampered by computational 

limitations as well as the unfortunate tendency by users to disregard algorithmic assumptions. 

Alternatives are clearly needed, and machine-learning (M-L) is attractive in this regard as it 

functions without the need to explicitly define a species concept. Unfortunately, its performance 

will vary according to which (of several) bioinformatic parameters are invoked. Herein, we 

gauge the effectiveness of M-L-based species-delimitation algorithms by parsing 64 variably-

filtered versions of a ddRAD-derived SNP dataset collected from North American box turtles 

(Terrapene spp.). Our filtering strategies included: (A) minor allele frequencies (MAF) of 5%, 

3%, 1%, and 0% (=none), and (B) maximum missing data per-individual/per-population at 25%, 

50%, 75%, and 100% (=no filtering). We found that species-delimitation via unsupervised M-L 

impacted the signal-to-noise ratio in our data, as well as the discordance among resolved clades. 

The latter may also reflect biogeographic history, gene flow, incomplete lineage sorting, or 

combinations thereof (as corroborated from previously observed patterns of differential 

introgression). Our results substantiate M-L as a viable species-delimitation method, but also 
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demonstrate how commonly observed patterns of phylogenetic discordance can seriously impact 

M-L-classification.
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1. INTRODUCTION 

Species are recognized as the currency of biodiversity, yet defining what constitutes a species 

has been hampered by subjective interpretations. This in turn creates downstream issues for 

conservation (Mace 2004), where spurious ‘splitting’ or ‘lumping’ impede an equitable 

allocation of limited resources. Although genomic approaches based on the multispecies 

coalescent (MSC) are promising and have been commonly applied to the species problem 

(Allendorf et al. 2010), conflicting genome-wide signals are widely apparent due to incomplete 

lineage sorting (ILS) and gene flow (Funk & Omland 2003). Two MSC methods, BPP and BFD* 

(Yang & Rannala 2010; Leaché et al. 2014), seemingly over-split in the presence of strong 

population structure (Sukumaran & Knowles 2017) or with continuous geographic distributions 

(Chambers & Hillis 2019). Both are also computationally limited when applied to large datasets. 

As model complexity and data expand concomitantly, so also do: 1) efforts required to 

computationally explore appropriate parameter space; and 2) the probabilities that models fail to 

accommodate process. Herein, we explore alternative approaches for the parsing of high-

dimensionality data by evaluating the performance of recently developed machine-learning (M-

L) algorithms and classificatory approaches in successfully adjudicating variably-filtered 

versions of a ddRAD-derived SNP dataset.  

 ‘Unsupervised’ machine learning methods (UML) are of particular interest for group 

delimitation, in that they do not require a priori designations to train the classification model. 

Several UML classifiers lend themselves to species delimitation, including: Random Forest (RF; 

Breiman 2001), t-distributed stochastic neighbor embedding (T-SNE; Maaten & Hinton 2008), 

and variational autoencoders (VAE; Kingma & Welling 2013). Each has distinct advantages: RF 

uses randomly replicated data subsets to develop ‘decision trees’ that are subsequently 
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aggregated (=‘forest’), with classificatory decisions parsed as a majority vote. The random sub-

setting approach is robust to correlations among features (=summary statistics or principal 

components used for prediction) as well as model overfitting (i.e., over-training the model such 

that it does not generalize to new data). One stipulation is that features must lack undue noise 

(Rodriguez-Galiano et al. 2012). By contrast, T-SNE creates clusters in reduced-dimension 

space, typically a 2D plane distilled from multi-dimensional data, and as such conceptually 

resembles principal components analysis (Maaten & Hinton 2008). On the other hand, VAE 

employs neural networks to ‘learn’ patterns within multidimensional data extracted from a 

compressed, low-dimensionality (=‘encoded’) representation. Again, an ordination technique is 

simulated but without imposing linear/orthogonal constraints, such that a statistically 

interpretable result emerges that is appropriate for highly-complex data (Derkarabetian et al. 

2019).  

 Some algorithms are robust to gene flow (Derkarabetian et al. 2019; Newton et al. 2020; 

Smith & Carstens 2020), yet a greater number of tests must be performed across diverse systems 

so as to understand which parameters impinge upon performance. Potentials include: Data 

quantity (Newton et al. 2020), the proportion of missing data (Mussmann et al. 2020), and 

evolutionary complexity (Austerlitz et al. 2009). Here, we employ M-L algorithms alongside 

coalescent methods such as BFD* (Leaché et al. 2014) as vehicles to parse a taxonomically 

recalcitrant clade. Included algorithms are: Process-based RF (DELIMITR; Smith et al. 2017; 

Smith & Carstens 2020) and unsupervised RF, T-SNE, and VAE, as implemented in 

Derkarabetian et al. (2019). 
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1.1.  Species concepts and their evolution in Terrapene 

North American box turtles (Emydidae: Terrapene) are a primarily terrestrial group that includes 

five currently recognized species (Minx 1996; Iverson et al. 2017): Eastern (Terrapene 

carolina), Ornate (T. ornata), Florida (T. bauri), Coahuilan (T. coahuila), and Spotted (T. 

nelsoni), with a sixth (T. mexicana) proposed (Martin et al. 2013). Terrapene carolina is split 

into two subspecies east of the Mississippi River and south through the Gulf Coast [Woodland 

(T. c. carolina) and Gulf Coast (T. c. major); Figure 1]. Terrapene mexicana contains three 

subspecies: Three-toed (T. m. triunguis); Mexican (T. m. mexicana); and Yucatan (T. m. 

yucatana) that range across southeastern and midwestern United States, the Mexican state of 

Tamaulipas, and the Yucatan Peninsula. Ornate (T. ornata ornata) and Desert (T. o. luteola) 

inhabit the Midwest and Southwest U.S. and Northwest México, while Southern and Northern 

Spotted box turtles (T. nelsoni nelsoni and T. n. klauberi) occupy the Sonoran Desert in western 

México. Terrapene coahuila is semi-aquatic and restricted to Cuatro Ciénegas (Coahuila, 

México), while Florida box turtle occurs in Peninsular Florida. 

 Morphological analyses delineate T. carolina/mexicana as a single species, sister to T. 

coahuila (Minx 1992, 1996), as supported by genetic studies (Feldman & Parham 2002; 

Stephens & Wiens 2003). Martin et al. (2013) elevated T. mexicana, and nested T. coahuila 

within T. carolina. Terrapene carolina carolina is sister to T. c. major/T. coahuila, although 

gene flow was suspected with T. c. major. Terrapene carolina major was recently demoted to an 

intergrade with subsequent loss of subspecific status (Butler et al. 2011; Iverson et al. 2017). 

However a recent genomic study supported pure T. c. major populations in Florida and 

Mississippi (Martin et al. 2020). Similarly, T. bauri (formerly T. carolina bauri) was recently 

elevated (Butler et al. 2011; Iverson et al. 2017), but more substantial evidence is needed (Martin 
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et al. 2013). For clarity, we retain the nomenclature of Martin et al. (2013, 2014), with T. c. 

major and bauri representing T. carolina subspecies.  

 One explanation for the enigmatic classification of T. carolina and T. mexicana involves 

hybridization (Auffenberg 1958, 1959; Milstead & Tinkle 1967; Milstead 1969). Some 

researchers (Fritz & Havaš 2013, 2014) interpreted reproductive semi-permeability as 

justification sufficient to collapse the southeastern taxa. However, their classificatory status must 

be re-examined, as indicated by results modulating the species boundaries of southeastern 

Terrapene (Martin et al. 2020).  

 Taxonomic disputes in Terrapene highlight the philosophical disparity among species 

definitions [e.g., biological (Mayr 1963) versus phylogenetic (Eldredge & Cracraft 1980)]. The 

approach advocated herein acknowledges that operational criteria among concepts are intimately 

related. Specifically, reproductive barriers (through time) beget genealogical concordance, while 

contemporary evaluations of gene flow are contextualized via phylogenetic/phylogeographic 

perspectives (Avise 2000a; b). We thus subscribe to a ‘unified species concept’ (De Queiroz 

2007) wherein the primary criterion for formal taxonomic rank is the existence of evolutionary 

lineages (e.g., as distinct metapopulations), with evidence via reproductive isolation, 

phylogenetic-phylogeographic resolution, and phenotypic adaptation, with all acknowledged as 

being inherently linked. Here, our clustering and classificatory approaches define molecular 

diagnosability, and as such variably place Terrapene lineages along a speciation continuum (Via 

2009; Nosil & Feder 2012; Edwards et al. 2016; Martin et al. 2020).  
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2. MATERIALS AND METHODS 

2.1.  DNA extraction and library preparation 

Tissue samples were obtained from museums, agencies, and volunteers (Supplementary 

Information Table S1) and stored at -20°C. Genomic DNA was extracted via spin-column kits: 

DNeasy Blood and Tissue (QIAGEN), QIAamp Fast DNA (QIAGEN), and E.Z.N.A. Tissue 

DNA Kits (Omega Bio-tek). Extracted DNA was quantified using Qubit fluorometry (Thermo 

Fisher Scientific), and characterized using gel electrophoresis on 2% agarose.  

Samples were processed via ddRADseq (Peterson et al. 2012), with ~500-1,000ng of genomic 

DNA/sample digested with PstI and MspI at 37°C for 24 hours. Samples were bead-purified 

(Beckman-Coulter) at 1.5X concentration then standardized at 100ng. Barcoded adapters were 

ligated before pooling 48 samples per library. Taxa were spread across libraries to mitigate batch 

effects then size-selected (454-509 bp, including ligated adapters) on a Pippin Prep (Sage 

Science). Adapter-extension was performed via twelve-cycle PCR, followed by 1×100 

sequencing on the Illumina Hi-Seq 4000 (University of Oregon/Eugene), with two indexed 

libraries pooled/lane. 

 

2.2.  Quality control and assembly 

FASTQCv.0.11.5 was used to assess sequence quality (Andrews 2010), with raw reads 

demultiplexed via IPYRAD v.0.7.28 (Eaton & Overcast 2020), allowing for one barcode mismatch 

as a maximum. Low quality sequences (>5 bases with Q<33) and adapters were removed. 

Assembly was reference-guided using Terrapene mexicana (GCA_002925995.2), with 

unmapped reads discarded. To reduce error, only loci exhibiting ≥20X coverage were retained 
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(Nielsen et al. 2011). We also excluded loci with excessive heterozygosity (≥75% of individual 

SNPs), <50% global occupancy, or >two alleles/sample. 

 

2.3.  Phylogenomic inferences 

F1 and F2-generation hybrids previously identified in a population-level analysis (Martin et al. 

2020) were excluded as a means of mitigating impacts of contemporary gene flow on species 

tree inference (Long & Kubatko 2018). We then employed SVDQUARTETS (Chifman & Kubatko 

2014) filtered to one SNP per locus to reduce linkage bias, with exhaustive quartet sampling and 

100 bootstrap pseudo-replicates. Taxon partitions were grouped by subspecies and U.S./Mexican 

state locality, with Emydoidea blandingii and Clemmys guttata as outgroups.  

 We also employed a polymorphism-aware model (POMO: Schrempf et al. 2016), as 

implemented in IQ-TREE v1.6.9 (Nguyen et al. 2015), with full-locus alignments and 1,000 

ultrafast bootstrap (UFBOOT) replicates (Hoang et al. 2017). The maximum virtual population 

size was 19, with discrete gamma-distributed rates=4.  

 Using ten-thousand re-samplings, we performed topology tests (IQ-TREE) with seven 

statistical criteria on the SVDQUARTETS and POMO trees, as well as a previously published 

morphological (Minx 1996) and a molecular hypothesis (Martin et al. 2013). Additional details 

are in Supplementary Information Appendix A.1.1. 

 A lineage tree was generated (IQ-TREE v2.0.6; Minh et al. 2020) and full-locus 

partitions merged (Chernomor et al. 2016), with the top 10% of combinations employed and a 

per-partition model search (MODELFINDER: Kalyaanamoorthy et al. 2017). Node support was 

assessed using 1,000 UFBOOT replicates and site-wise concordance factors (SCF; Minh et al. 

2018). The SCF values were calculated from 10,000 randomly sampled quartets.  
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2.4.  Divergence dating 

A full concatenation tree was time-calibrated via least square dating (LSD2), as implemented in 

IQ-TREE (To et al. 2016). Four fossil calibration points were used (Holman & Fritz 2005; 

Spinks & Shaffer 2009), including the following most recent common ancestors (MRCAs): (1) 

T. ornata and T. carolina/T. mexicana, minimally constrained to 13 million years ago (Mya); (2) 

T. o. ornata and T. o. luteola (9.0-13.0 Mya); (3) T. carolina and T. mexicana (9.0-11.0 Mya); 

and (4) Terrapene and Clemmys/Emydoidea [(maximally constrained to 29.4 Mya) (per Martin et 

al. 2013)]. Branch lengths were simulated from a Poisson distribution with 1,000 replicates to 

assess 95% confidence intervals.  

 

2.5.  Species delimitation using BFD* 

We employed Bayes Factor Delimitation (BFD*; Leaché et al. 2014) as a comparative baseline. 

Given its computationally-intense process, each taxon was subset to a maximum of five 

individuals containing the least missing data (N=37+outgroups). Sites with >50% missing data in 

any population were removed (see Supplementary Information Appendix A.2.1 for prior 

selection and data formatting steps for BFD*).  

 For each BFD* model, we used 48 path-sampling steps, 200,000 burn-in, plus 400,000 

MCMC iterations, sampling every 1,000 generations. Path-sampling was conducted with 

200,000 burn-in+300,000 MCMC generations, α=0.3, 10 cross-validation replicates, and 100 

repeats. Trace plots were visualized in TRACER v1.7.1 to evaluate parameter convergence and 

compute effective sample sizes (ESS; Rambaut et al. 2018). Bayes factors (BF) were calculated 

from normalized likelihood estimates (MLE) as [2 × (MLE1-MLE2)]. We considered the 
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following scheme for model support: 0<BF<2=no differentiation; 2<BF<6=positive; 

6<BF<10=strong; and BF>10=decisive support (Kass & Raftery 1995). 

 

2.6.  Preparing and executing UML datasets 

To assess the influence of bioinformatic choices on M-L species delimitation, we performed 

missing data filtering sweeps to produce 64 datasets across three filtering options. Missing data 

was filtered per-individual and per-population, with the maximum permitted occupancy set to 

25%, 50%, 75%, and no filtering (=100%). Datasets were also filtered by minor allele frequency 

(MAF) at values of 5%, 3%, 1%, and 0% (=no MAF filter). Custom scripts were employed for 

all filtering steps (https://github.com/tkchafin/scripts). 

 RF and T-SNE (Breiman 2001; Maaten & Hinton 2008) were executed and visualized 

using an R script [Derkarabetian et al. (2019); 

https://github.com/shahanderkarabetian/uml_species_delim]. We ran 100 replicates for each of 

the 64 datasets, with data subsequently represented as scaled principal components 

(ADEGENETv2.1.1; Jombart & Ahmed 2011) in Rv3.5.1 (R Development Core Team 2018). To 

generate RF predictions, we averaged 10,000 majority-vote decision trees. Clustered RF output 

was visualized using both classic and isotonic multidimensional scaling (CMDS and ISOMDS; 

Shepard et al. 1972; Kruskal & Wish 1978). We ran T-SNE for 20,000 iterations, with equilibria 

of the clusters visually observed. Perplexity, which limits the effective number of T-SNE 

neighbors, was subjected to a grid search with values from 5-50, incremented by five. 

 VAE (Derkarabetian et al. 2019) employs neural networks to infer the marginal 

likelihood distribution of sample means (μ) and standard deviations [(σ) (i.e. ‘latent variables’)]. 

As with RF and T-SNE analyses, VAE was also run with 100 replicates to assess cluster 
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stochasticity. Each of the 64 datasets were split into 80% training/20% validation datasets using 

the train_test_split module (scikit-learn: Pedregosa et al. 2011), with model loss (~error) 

visualized to determine the optimal number of ‘epochs’ (=cycles through the training dataset). 

VAE should ideally be terminated when loss converges on a minimal difference between training 

and validation datasets [the ‘Goldilocks zone’; Supplementary Information Figure S1 (Al’Aref et 

al. 2019)]. 

 Overfitting is indicated when model loss in the validation dataset escalates, whereas 

underfitting is a failure to reach minimum points (=inability to generalize to unseen data). Thus, 

we added minor modifications to the original Python script (Derkarabetian et al. 2019) by 

implementing an early stopping callback (keras.callbacks Python module; Chollet 2015), which 

terminates training when model loss fails to improve for 50 epochs, then restores the best model 

prior to the tolerance period (see Supplementary Information Appendix A.2). 

 

2.7.  K-selection for RF, t-SNE, and VAE 

Two clustering algorithms (R-scripts: Derkarabetian et al. 2019), were used to identify clusters 

and derive optimal K for RF and T-SNE analyses. The first [Partitioning Around Medoids 

(PAM); Kaufman and Rousseeuw 1987] minimizes the distance of intra-cluster points to a 

centroid. The program requires K to be defined a priori, and thus K=1-10 were tested. The 

second (hierarchical clustering, HC; Fraley & Raftery 1998) iteratively merges points with 

minimal dissimilarity. After clustering, optimal K was chosen using the gap statistic (GS) and 

highest mean silhouette width [HMSW; Rousseeuw (1987), Tibshirani et al. (2001)]. 

 VAE used DBSCAN (Ester et al. 1996), as implemented in a custom Python script 

(vae_dbscan.py), to derive clusters using a distance threshold (ε) rather than a priori setting of K. 
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Here we used 2 × the standard deviation, but averaged globally across all samples (following 

Derkarabetian et al. 2019).  

 For plotting, we implemented a permutation-based heuristic search to align K across all 

replicates and the 64 datasets [‘Cluster Markov Packager Across K;’ Kopelman et al. (2015) 

implemented in POPHELPER (Francis 2017)]. Assignment probabilities were then visualized as 

stacked bar plots for each method (via a custom script: plotUML_missData_maf.R). For each 

dataset, we plotted as heatmaps the optimal K and standard deviation (SD) among replicates 

[(plot_missData_comparison_maf.R) (Scripts deposited at: 

https://github.com/btmartin721/mecr_boxturtle)]. 

 

2.8.  Demography, migration history, and species-delimitation 

We tested for reticulation in our phylogenomic dataset, as complementary to a range-wide 

evaluation of introgression in Terrapene (Martin et al. 2020). We first explored reticulation by 

identifying candidate edges (TREEMIX; Pickrell & Pritchard 2012), with populations having but 

one sample (T. nelsoni and T. m. yucatana) being excluded from input, which was then thinned 

to bi-allelic SNPs. TREEMIX was run 10X with subsets of SNPs randomly sampled per locus at 

1,000 bootstrap replicates using the ‘global search’ option. The optimal number of admixture 

edges (m) was determined by running for m=1-10 and choosing the inflection point of log-

likelihood scores.  

 TREEMIX results and introgression (Martin et al. 2020) were used to generate gene flow 

hypotheses in a species-delimitation framework (DELIMITR: Smith et al. 2017; Smith & Carstens 

2020). DELIMITR uses the joint site-frequency spectrum (JSFS) and FASTSIMCOALV2.6 (Excoffier 

et al. 2013) to simulate demographic models, including possible variations of lumping/splitting 
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taxa and primary divergence, secondary contact, or no gene flow. The program then builds an 

RF-classifier trained with the simulated models (i.e., ‘supervised’ M-L) to predict the best 

model. Input was generated using EASYSFS (https://github.com/isaacovercast/easySFS), with 

taxa reduced to N=6 given computational resources required by larger datasets. Those excluded 

(T. m. mexicana, T. m. yucatana, T. o. luteola, T. coahuila, T. nelsoni) were either limited in 

sample size or had clear taxonomic identities in the other analyses.  

 To improve efficiency, we also used EASYSFS to down-project the JSFS to six alleles for 

T. c. bauri, and ten each for the remaining taxa. Samples were selected to maximize per-

individual occupancy, followed by a maximum 50% per-population missing data filter. The 

SVDQUARTETS result served as our topological prior for DELIMITR. Models considered were: No 

gene flow, primary divergence, secondary contact, and up to four migration edges. Migration 

was permitted between: T. c. carolina x T. c. major, T. c. carolina x T. c. bauri, T. c. major x T. 

m. triunguis, and T. m. triunguis x T. o. ornata. Population size priors were set broadly (1,000-

100,000) and divergence times were obtained from LSD2 results. We defined a rule set that 

ranked overlapping coalescence times for T. c. bauri/T. m. triunguis and T. c. major from 

Mississippi/Florida. The migration rate prior range (1.96 × 10-6–9.78 × 10-5) was estimated from 

the number of migrants (GENEPOP v4.7.5; Rousset 2008). We applied three JSFS binning classes 

and 5,000 RF trees to build the classifier and predict the models. 

 

3. RESULTS 

3.1.  Sampling and data processing 

We sequenced 214 geographically-widespread Terrapene (Figure 1; Supplementary Information 

Table S1) including all recognized species and subspecies save the rare T. nelsoni klauberi. 
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IPYRAD recovered 134,607 variable sites (of 1,163,463 total) across 14,760 retained loci, with 

90,777 as parsimony informative. The mean per-individual depth was 56.3X (Supplementary 

Information Figure S2). 

 

3.2.  Species tree inference 

The lineage tree contained N=214 tips (Figure 2), whereas those from SVDQUARTETS (Figure 

3a) and POMO (Figure 3b) grouped individuals into N=26 populations, again per locality and 

subspecies. SVDQUARTETS examined 10,299 unlinked SNPs and the species tree was assembled 

from 87,395,061 quartets. Full loci were used for POMO. All trees clearly delineated eastern 

versus western clades, with T. mexicana, T. carolina, and T. coahuila composing the eastern 

clade, with western represented by T. ornata and T. nelsoni.  

 All phylogenies delineated T. ornata and T. nelsoni. However, SVDQUARTETS nested T. 

o. luteola within a paraphyletic T. o. ornata, whereas IQ-TREE and POMO represented them as 

reciprocally monophyletic. In the eastern clade, SVDQUARTETS displayed two subdivisions: 

Terrapene mexicana (all subspecies) and T. carolina+T. coahuila. POMO included T. m. 

triunguis as sister to T. c. carolina+T. c. major but paraphyletic with respect to T. m. 

mexicana+T. m. yucatana. Furthermore, SVDQUARTETS, POMO, and IQ-TREE each differed 

with respect to the placement of T. c. bauri, T. coahuila, and two previously recognized 

populations within T. c. major (Martin et al. 2013, 2020). SVDQUARTETS depicted T. c. bauri as 

sister to the major/coahuila/carolina clade, whereas POMO placed T. c. major from 

Mississippi/coahuila as sister to T. c. major (FL)/bauri/carolina. IQ-TREE placed T. c. bauri 

sister to T. carolina/T. mexicana, and T. coahuila/T. c. major (MS) sister to T. c. carolina/T. c. 

major (FL). 
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 The topology tests failed to reject either Martin et al. (2013) or the SVDQUARTETS trees, 

whereas morphology-based and POMO trees were significantly rejected (Table 1). Although the 

SVDQUARTETS tree was ranked highest, site-likelihood scores indicated a minority of sites drove 

those topologies (Supplementary Information Figure S3). 

 

3.3.  Species delimitation via BFD* and DELIMITR  

TREEMIX converged upon four migration edges (Figure 3c; Supplementary Information Figure 

S4), with gene flow identified between: Terrapene m. mexicana × T. o. ornata+T. o. luteola; T. 

c. carolina × T. c. bauri; T. m. triunguis × T. c. major (MS); and T. coahuila × T. c. major (FL). 

To target specific reticulation hypotheses, DELIMITR was run with a reduced set of sub-species, in 

compliance with computational constraints. The best-fitting DELIMITR model within selected taxa 

(T. m. triunguis, T. o. ornata, T. c. major, T. c. bauri, and T. c. carolina) was K=4 (posterior 

probability=0.98; Table 3; Figure 3d). Also, T. c. major and T. c. carolina were collapsed, and 

three secondary contact migration edges were apparent: T. o. ornata × T. c. carolina+T. c. major; 

T. c. bauri × T. c. carolina+T. c. major; and T. o. ornata × T. m. triunguis. The second-best 

model was identical save for excluding the latter migration, although it also had the highest error 

(Table 3).  

 BFD* supported two top models (Table 2), each delimited (K=9), and all distinct except 

T. o. ornata/T. o. luteola (K=8; Figure 3d). Although not statistically distinguishable (BF<2), 

both were decisively better than others (BF>10). Convergence was confirmed for the likelihood 

traces, with mean per-model ESS>300 (Supplementary Information Table S2). 
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3.4.  UML species delimitation  

UML results varied considerably (Figures 4, 5; Supplementary Information Figures S5-S10), 

with mean optimal K greatest for T-SNE, followed by CMDS, VAE, and ISOMDS (Figures 4a, 

5a). Across datasets, PAM clustering with the gap statistic (PAM+GS) exhibited the largest K, 

whereas PAM with the highest mean silhouette width (PAM+HMSW) was lowest (Figure 5b). 

Hierarchical clustering (HC)+HMSW and VAE were intermediate (Figures 4a, 5a; 

Supplementary Information Figure S5). Each algorithm delimited T. ornata from T. carolina+T. 

mexicana in most datasets, save PAM+HMSW in some of the larger datasets, and among some 

T-SNE replicates (e.g., Supplementary Information Appendix B, B1). In all cases, CMDS with 

PAM+GS and HC+HMSW further delimited T. m. triunguis+T. m. mexicana from T. carolina, 

whereas CMDS with PAM+HMSW did not. Whether the remaining algorithms did so depended 

upon filtering parameters. Finally, CMDS with PAM+GS and HC+HMSW further partitioned 

subgroups within T. carolina in most datasets, whereas ISOMDS did so in a limited fashion, and 

T-SNE split T. carolina into multiple clusters without a phylogenetic pattern. Bar plots for 64 

filtered datasets are in Supplementary Information Appendix B1-B60. 

 We present representative results (Figure 3d) that displayed minimal inconsistencies 

among replicates and with respect to the phylogeny, with parameter choice also reflecting how 

each algorithm interacted with filtering values (below). This included 25% per-individual and 

per-population filters for all algorithms, a 5% MAF filter for CMDS, T-SNE, and VAE, and a 1% 

MAF filter for ISOMDS. Five groups were delineated by CMDS with PAM+GS: T. o. ornata 

(ON)+T. o. luteola (DS), T. c. major from Mississippi (GUMS), T. c. major from Florida 

(GUFL), T. c. carolina (EA), and T. m. mexicana (MX)+T. m. triunguis (TT). However, T. c. 

bauri displayed mixed assignment between T. c. carolina and GUMS. CMDS with HC+HMSW 
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also delimited K=5 but lumped the two populations of T. c. major, splitting T. c. bauri, and 

grouped some T. c. carolina individuals with T. c. bauri. It also split T. ornata and T. 

carolina+T. mexicana. While ISOMDS with PAM+GS resembled CMDS with HC+HMSW, it 

clustered T. c. bauri with T. c. carolina. Similarly, ISOMDS with HC+HMSW showed T. o. 

ornata+T. o. luteola, T. c. carolina+GUMS+GUFL, and T. m. mexicana+T. m. triunguis. 

However, ISOMDS with PAM+HMSW only delimited T. ornata from T. carolina+T. mexicana. 

The model T-SNE (at perplexity=15) clearly partitioned T. ornata, T. carolina, and T. mexicana, 

though the PAM+GS algorithm exhibited spurious groupings within T. carolina. However, T-

SNE with HC+HMSW clustered many T. c. carolina with GUFL and the remaining with GUMS. 

We found VAE and T-SNE with PAM+HMSW only delimited T. ornata, T. carolina, and T. 

mexicana. 

 

3.5.  Effects of data filtering 

Among all dimensionality reduction and clustering algorithms, greater per-individual and per-

population missing data generally increased mean optimal K and SD (Figures 4a-b and 5a-b; 

Supplementary Information Figure S5). PAM+HMSW deviated due to low K, regardless of 

filtering. This was manifested as two types of noise in the bar plots (Supplementary Information 

Appendix B1-B60): ‘vertical striping’ (inconsistency of assignment among replicates) and 

‘horizontal striping’ (groupings inconsistent with phylogeny). We found the former largely 

driven by increased missing data per-locus, whereas the latter by increased missing data per-

individual. However, performance varied among algorithms in how they interacted with both 

missing data parameters.  
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 We found that T-SNE consistently resolved T. ornata and T. carolina+T. mexicana, but T. 

mexicana was only partitioned when per-population filtering was 25%. However, T-SNE did not 

further partition T. carolina in any dataset and displayed a tendency to form phylogenetically 

spurious groupings (=horizontal striping). The perplexity grid search (Figures 4c-d and 5b; 

Supplementary Information Figures S6-S10) suggested that the highest K and SD among 

replicates was at perplexity=5-10, with a plateau at higher perplexities.  

 We also found CMDS with PAM+GS and HC+HMSW delineated most clades, save for 

inconsistency amongst the T. c. major populations and T. coahuila. In contrast, CMDS and 

ISOMDS with PAM+HMSW typically displayed K=2 or 3 and contained no phylogenetically 

meaningful clusters with ≥75% missing data per-individual (e.g., Supplementary Information 

Appendix B58). Finally, VAE partitioned T. ornata from T. carolina+T. mexicana in all datasets, 

but T. mexicana was only delineated from T. carolina when per-individual missing data was 

≤50% and with MAF filter.  

 Filtering by MAF ubiquitously reduced noise, although results varied by algorithm 

(Supplementary Information Appendix B1-B60). For T-SNE, optimal K and SD were reduced. In 

contrast, the clusters yielded by CMDS with PAM+GS and HC+HMSW were only marginally 

affected. We found CMDS and ISOMDS with PAM+HMSW and MAF filters ≥3% were less 

noisy, but for ISOMDS with PAM+GS and HC+HMSW the MAF filter effect was dependent on 

the number of individuals present in the dataset. With a maximum of 25% per-individual missing 

data (N=117), a 1% MAF filter shows minimal striping and higher K than did a >1% MAF filter. 

However, larger MAF filters have a greater effect above 25% per-individual filtering. Lastly, 

optimal K, SD, and striping in VAE were strongly influenced by MAF filters (Figures 4e-f, 5a, 

Supplementary Information Figure S5). With lower per-individual filters (≤50%) and a 5% MAF 
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filter, VAE consistently delineated T. mexicana from T. carolina, even with high per-population 

filters. However, lower MAF and higher per-individual (>50%) filters introduced progressively 

more noise and grouped T. carolina and T. mexicana.  

 

3.6.  Relative performance among approaches 

The CMDS model with PAM+GS and HC+HMSW consistently displayed the highest K and was 

less susceptible to data filtering. However, ISOMDS with PAM+GS and HC+HMSW were more 

influenced by filtering parameters, but still consistently resolved the highest level of hierarchical 

structure (T. ornata/T. carolina+T. mexicana). Both CMDS and ISOMDS with PAM+HMSW 

consistently displayed the lowest K at the top hierarchy and were usually in complete agreement. 

We note that T-SNE was highly susceptible to horizontal and vertical striping, and only 

partitioned T. mexicana from T. carolina ssp. at 25% per-individual filtering. Similarly, VAE 

performed far more consistently with a 5% MAF filter and ≤50% per-individual filtering. VAE 

also consistently hovered between K=2 and K=3, making it the second most conservative 

algorithm next to PAM+HMSW. In contrast, BFD* delimited the most taxa among all the 

approaches, splitting all save T. o. luteola and T. o. ornata, and DELIMITR partitioned T. ornata, 

T. carolina, T. mexicana, and T. c. bauri.  

 In terms of computational resources, the UML algorithms were far less intensive than 

BFD* and DELIMITR, enabling stochasticity to be assessed in many replicates. Each UML 

algorithm needed ~1-3GB RAM per replicate and ~2-3 days runtime for 100 replicates. 

Comparatively, BFD* required the greatest memory and time, often using >200GB RAM (with 

16 CPU threads) and a ~10-day runtime per model. We note DELIMITR used much less memory 

and was faster than BFD*, but output ~3.2 TB with six tips and 51 models.  
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4. DISCUSSION 

We observed substantial heterogeneity in resolving Terrapene via M-L approaches, which 

echoed previous morphological and single-gene results (Milstead 1967, 1969; Milstead & Tinkle 

1967; Butler et al. 2011; Martin et al. 2013). We interpret this variability as reflecting inherent 

differences in dimensionality-reduction, clustering, and K-selection, as well how methodologies 

interact with biological aspects of the data and user-defined filtering. 

  

4.1.  Delimitation hypotheses and biological interpretations reconciled 

Two factors likely contribute to the observed heterogeneity: 1) An hierarchical arrangement of 

phylogenetic signal (Martin et al. 2013); and 2) Phylogenetic discord (Martin et al. 2020). Both 

reverberate noticeably within prior literature and phylogenetic evaluations.  

 The most consistent grouping was eastern (T. carolina+T. mexicana) versus western (T. 

ornata) clades, representing the deepest Terrapene divergence (Figures 3a-b). This is 

unsurprising given it is the most prominent axis of molecular variation (morphologically 

corroborated; Milstead & Tinkle 1967; Dodd 2001) Nominal species have been identifiable since 

late Miocene (Holman & Fritz 2005), as corroborated by molecular dating (Figure 2). 

 

 Terrapene ornata 

Although introgression between T. o. ornata and T. m. triunguis occurred during secondary 

contact (Table 3; Figure 3d), no contemporary evidence for introgression among these clades 

emerged from previous evaluations, except rare F1 hybrids between T. o. ornata and T. carolina 

(Martin et al. 2020). TREEMIX also suggested introgression between T. ornata and T. m. 

mexicana (Figure 3c). Although contact with T. mexicana was certainty possible during glacial 
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expansion-contraction (Martin et al. 2020), we echo earlier conclusions that hybridization lacks 

justifiable taxonomic implications, per hybridization between T. ornata and T. carolina (Martin 

et al. 2020).  

 Regarding T. ornata, algorithms failed to further partition T. o. ornata/T. o. luteola, 

suggesting a lack of diagnosability at our most recent scale. Notably, both also lack reciprocal 

monophyly in some phylogenomic (Figure 3a) and single-gene analyses (Martin et al. 2013). 

They also lack clear morphological synapomorphies (Minx 1996). Although T. o. luteola 

exhibits habitat and movement patterns markedly different from mesic conspecifics (Nieuwolt 

1996), few investigations have similarly compared T. ornata subspecies, such that inferences 

regarding reproductive isolation (or potential thereof) are difficult. Populations of T. o. luteola 

also do not exhibit thermal adaptations that are mutually exclusive from T. o. ornata, as might be 

surmised given other desert-dwelling tortoises (Plummer 2003).  

 Previous authors hypothesized T. o. luteola as a relict population (Milstead & Tinkle 

1967). Weak differentiation [molecular: Martin et al. (2013); morphological: Dodd (2001)], as 

well as possible paraphyly of T. o. ornata (Figure 3a) suggest isolation was recent. Although 

phylogenetic structuring was present in some analyses (e.g., Figure 2), it is insufficient to 

mandate recognition beyond the subspecific level. However, special guidelines that delineate 

relictual lineages may be warranted (Mussmann et al. 2020), particularly given the isolation and 

reduced Ne in T. o. luteola (Nieuwolt 1996). 

 Terrapene mexicana 

The second most frequent split (Figures 2, 3a) divided T. mexicana and T. carolina, 

corresponding to the second-deepest phylogenetic node (Figures 2, 3a). This lends further 
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support to a prior elevation of T. mexicana (Martin et al. 2013). Conspecifics of T. mexicana also 

share multiple morphological characteristics, such as carapace coloration and a degree of 

concavity to the posterior plastron, that separate the group from T. carolina (Minx 1996). 

Terrapene mexicana mexicana (as well as T. m. yucatana, excluded due to sample size) have 

isolated, allopatric ranges (Smith & Smith 1980; Ernst & Lovich 2009), with reproductive 

isolation difficult to assume. 

 Evidence for interbreeding of T. m. triunguis with T. carolina subspecies in the 

southeastern United States (Butler et al. 2011) has led some to conclude that species-level 

recognition of T. mexicana sensu lato is unwarranted (Fritz & Havaš 2014). Indeed, our own 

results suggest introgression between T. m. triunguis and T. carolina in secondary contact 

(Figure 3d). Martin et al. (2020) confirmed hybridization of T. m. triunguis with both T. c. major 

and T. c. carolina in the southeast, yet found genetic exchange was restricted, given that: (1) 

Genetically ‘pure’ individuals are predominant throughout the contact zone; and (2) patterns of 

gene-level exchange exhibit strong sigmoidal patterns, suggesting selection against interspecific 

heterozygotes. Additionally, the sigmoidal pattern was strongest within a subset of genes 

involved in thermal adaptation (Martin et al. 2020), suggesting species boundaries are modulated 

by an adaptive barrier between co-occurring T. mexicana and T. carolina sub-species. This 

functional perspective corroborates the proposed taxonomy herein, and by Martin et al. (2013). 

 

 Terrapene carolina 

Partitioning within T. carolina echoed inconsistencies in our phylogenies (Figures 2, 3a-b), and 

seemingly depended upon algorithm and filtering regime (Figure 3d; Supplementary Information 

B). Terrapene carolina major, for example, occasionally split from the remaining T. carolina 
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(usually including T. coahuila; CMDS+HC, Figure 3d), whereas in other cases, T. c. major (FL 

and MS) were separated (with the former grouped into T. c. carolina) (T-SNE+HC, Fig. 3d) . 

 In contrast to steep clines in interspecific comparisons (Martin et al. 2020; see above), a 

transect of the T. c. carolina and T. c. major contact zone revealed shallow genetic transition, 

with multiple loci showing potential signatures of selection-driven introgression. Previous 

authors have hypothesized either direct ancestry (Bentley & Knight 1998) or historic admixture 

with a now extinct taxon, [T. c. putnami; Butler et al. (2011)]. While such ‘ghost’ admixture can 

mislead population structure (Lawson et al. 2018), such a signal is unlikely manufactured in 

entirety. In contrast to Butler et al. (2011), Martin et al. (2020) found a pervasive signal of 

population structure and strong molecular diagnosability in T. c. major, with a cryptic east-west 

division roughly defined by the Apalachicola River [a recurring phylogeographic discontinuity 

reflecting recolonization from disparate Gulf Coast refugia; Soltis et al. (2006)]. Our 

interpretations refuted the ‘genetic melting pot’ assertion (Fritz & Havaš 2014) and favored 

instead recognition of the two as distinct evolutionarily significant units (ESUs). Additionally, 

differences in habitat use and movement patterns distinguish T. c. major (Meck et al. 2020), 

which spends greater time in mesic habitats (e.g., floodplain swamps). In support, early studies 

observed a distinct webbing of the hind foot in T. c. major (Taylor 1895). Given the genetic data 

herein, we reject the taxonomic coalescence of T. c. major. 

 Terrapene carolina bauri was similarly resistant to straightforward classification, 

although generally grouping with T. c. major (when the latter was separated from T. c. carolina; 

Figure 3b). We found T. c. bauri as sister to either the remaining T. carolina group, T. c. 

carolina+T. c. major, or only T. c. carolina (Figures 2-3; Martin et al. 2013). This argues against 

it being sister to T. m. triunguis (per Spinks et al. 2009). Osteologically, it alone shares a 
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complete zygomatic arch with T. c. major (Taylor 1895; Ditmars 1934), although other 

morphological investigations have allied it more closely with T. c. carolina (Minx 1996). Thus, 

phylogenetic inconsistency for T. c. bauri clearly extends beyond our results. 

 Although hybridization likely contributes to this issue (as with T. c. major), the 

biogeography of the region may provide insight, with peninsular Florida recognized as a distinct 

biogeographic province (Ennen et al. 2017). Intraspecific division are recognized in multiple 

species [e.g., Chelydra serpentina, Deirochelys reticularia (Walker & Avise 1998)], a 

phylogenetic legacy likely reflecting periodic isolation from the mainland that may have inflated 

genetic divergences (Douglas et al. 2006), and facilitated secondary contact. This scenario is 

supported by DELIMITR and TREEMIX (Figures 3c-d). Here, we again stress that evidence is 

sufficient to support continued recognition, yet not for taxonomic elevation. 

  

 Terrapene coahuila 

Terrapene coahuila represents a persistent phylogenetic uncertainty (Spinks et al. 2009; Wiens 

et al. 2010; Martin et al. 2013). It is unique in that it occupies streams, ponds, and marshes, with 

terrestrial movements restricted to the rainy seasons (Webb et al. 1963). Milstead (1967) 

postulated that T. coahuila evolved as a relictual population of a Terrapene ancestor (potentially 

the extinct T. c. putnami) during pluvial periods associated with Pleistocene glacial-interglacial 

cycles across the broad eastern coastal plain of Mexico. In this scenario, relictual populations are 

what remains from those north-south migrations, as hypothesized for T. m. mexicana and T. m. 

yucatana. The scenario is plausible, given semi-aquatic adaptations in the presumed ancestor (T. 

c. putnami) and closely related T. c. major, as well as shared morphologies between extinct T. c. 

putnami and modern T. coahuila (Milstead 1967). The phylogenetic placement of T. coahuila, as 
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nested within T. c. major, offers further evidence (Figure 2-3), as does the almost unanimous 

UML grouping in our results (Figure 3d; Supplementary Information Appendix B1-B60). As 

with T. o. luteola, small, isolated populations that differ in evolutionary rates could contribute to 

a lack of molecular similarity with extant T. c. major, despite a unique functional morphology 

(Brown 1971).  

 

4.2.  Relative performance of species-delimitation methods  

As with prior studies (Derkarabetian et al. 2019; Mussmann et al. 2020), we also found 

considerable variation among methods, some of which can be attributed either to idiosyncrasies 

in the data or to algorithms and their implementation. First, among RF methods CMDS with 

PAM+GS and HC+HMSW displayed higher K and ISOMDS generally yielded smaller K (Figure 

3d), with the latter being attributed by Derkarabetian et al. (2019) to the retention of only two 

dimensions. PAM+HMSW (Figure 3d) also trended towards a small K=2, corresponding to the 

deepest Terrapene bifurcation, and suggesting a potential failure in identifying hierarchical 

clusters. Here, a solution might include partitioning divergent subtrees for separate analyses.  

 In contrast to Derkarabetian et al. (2019), we found T-SNE the most inclined to produce 

inconsistent groupings, a pattern most prevalent with the gap statistic (Supplementary 

Information Appendix B1-B60). Mussmann et al. (2020) concurred, although in their case it was 

PAM+HMSW. We see this as an inherent problem relating to data structure. Previous 

comparisons of T-SNE found low fidelity with global data patterns, and latent space distances 

were poor proxies for ‘true’ among-group distances, particularly when compared to VAE (Becht 

et al. 2019; Battey et al. 2020). This potentially explains our observed ‘plateau’ of mean optimal 

K and SD in the T-SNE perplexity grid-search, in that perplexity defines relative weighting of 
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local versus global components (Wattenberg et al. 2016). It may also explain the formation of 

spurious clusters even at higher perplexities, in that clusters are formed post hoc (PAM or HC). 

Thus, T-SNE may perform poorly when inter-cluster distances/dispersion in global data structure 

are skewed, although it is not clear to what degree hyperparameter choice and initializations 

contribute (Belkina et al. 2019; Kobak & Berens 2019).  

 In our case, VAE with DBSCAN yielded higher fidelity to the underlying phylogeny 

(Figure 3a) and was also more robust to missing data (Figures 4e-f). A particular benefit of the 

VAE approach is the output of a standard deviation around samples in latent space 

(Derkarabetian et al. 2019). Our DBSCAN hyperparameters were informed directly from latent 

variable uncertainties, and in so doing, we circumvented the issue of K-selection that drove 

heterogeneity in the RF and T-SNE methods [also recognized with other clustering approaches 

(Janes et al. 2017)].  

 By comparison, BFD* partitioned all groups, which may reflect a vulnerability to local 

structure at the population level, as reported by others for MSC methods (Sukumaran & Knowles 

2017). BFD* and VAE partitioned equally in Mussmann et al. (2020), although their populations 

were relictual and without contemporary connectivity, whereas Terrapene reflects both historical 

(Figure 3d) and contemporary gene flow (Martin et al. 2020). In corroboration, other studies 

have also demonstrated reticulation to condense VAE clusters (Derkarabetian et al. 2019; 

Newton et al. 2020). Although not run on a full dataset, DELIMITR formed clusters consistent 

with (or similar to) several of the UML methods (e.g., ISOMDS+GS; Figure 3d, Table 3). The 

latter displayed a particular utility regarding testing targeted hypotheses relating to demographic 

processes such as migration, whereas these must be applied to UML results post hoc. 
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4.3.  Data treatment and assignment consistency  

We generally found a tendency for UML methods to ‘over-split’ given large amounts of missing 

data, and phylogenetically inconsistent groupings (‘horizontal striping’) were most pronounced 

when missing data was elevated per-individual (Supplementary Information Appendix B1-B60). 

However, low-level, undetected introgression could also drive such a pattern. Mussmann et al. 

(2020) noted a similar pattern with the RF methods, possibly reflecting an artificial similarity 

among samples generated by a non-random distribution of missing data. A similar ‘vertical 

striping’ effect was seen when missing data was elevated per-locus (e.g., Supplementary 

Information Appendix B13), often manifested as inconsistency among replicates. However, 

effects varied across methods, as per previous analyses [phylogeographic: Graham et al. (2020); 

phylogenetic: Molloy & Warnow (2018)].  

 Missing-data bias is a particular concern when patterns are non-random (i.e., presence or 

absence of observations are data-dependent; Rubin 1976). Here, the temptation is to filter 

stringently, yet we found highly filtered datasets were biased towards smaller K, generally 

retaining only nodes deepest within the phylogeny. The same pattern was identified using the 

VAE method (Newton et al. 2020), and is intuitive given expectations that a major subset of 

missing ddRAD data are systematically distributed [defined by mutation-disruption of restriction 

sites: Gautier et al. (2013); Eaton et al. (2017)]. Thus, indiscriminate exclusion may 

unintendedly bias information content leading to the underestimation of diversity (Arnold et al. 

2013; Leaché et al. 2015; Huang & Knowles 2016). Again, care must be taken to filter the data 

such that sufficient discriminatory signal remains, while also being mindful of the signal-to-noise 

ratio, and the underlying biases driving interactions of sparse data versus information content 

(Nakagawa & Freckleton 2008).  



 

125 
 

 A potential solution involves the input of genotypes to fill in missing values (per Howie 

et al. 2009; Durbin 2014; Das et al. 2016). However, a cautious a priori designation of 

population references is needed, particularly when group-delimitation is the goal. It may be 

appropriate to employ phylogenetically-informed methods previously applied in comparative 

studies (e.g., Goolsby et al. 2017).  

 We found MAF filters dampened the effect of missing data, likely by removing 

sequencing errors and uninformative variants at low-frequency (Mathieson & McVean 2012; 

Jakobsson et al. 2013). In a similar context, Linck & Battey (2019) found MAF filters to 

significantly increase in the discriminatory capacity of assignment-test methods (STRUCTURE; 

Pritchard et al. 2000). In our case, MAF filtering reduced noise and improved group 

differentiation (e.g., resulting in lower variability among replicates; Figures 4-5, Supplementary 

Information Figures S5-S6), although this might prompt the M-L algorithms to miss low levels 

of introgression. Thus, we view it as a parameter in need of further empirical exploration. 

 

4.4.  Conclusions 

UML approaches identify groups based on the structure of the data, and as such, represent a 

natural extension to species-delimitation approaches. However, we found idiosyncrasies 

regarding: Phylogenetic context of the study system (e.g., hierarchical structure, reticulation); the 

manner by which clustering and K-selection approaches were applied post hoc; and the 

bioinformatic treatment of the data. We particularly note that lax filtering, performed to 

maximize size and information content, actually promote spurious groupings and inflate 

variability among replicates. An alternate method, i.e., filtering via MAF to promote informative 

characters, favorably altered the signal-to-noise ratio and increased the consistency of our 
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delimitations. Thus, we recommend that UML practitioners test multiple algorithms, veer away 

from high levels of missing data, and utilize MAF filters. We conclude that UML approaches, 

when applied to formulate taxonomic hypotheses and reduce dimensionality of complex data, are 

valuable and computationally efficient tools for integrative species-delimitation, as demonstrated 

within our study system. 
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TABLES AND FIGURES 

Table 1: Topology tests for hypothesized Terrapene phylogenies. Sanger sequencing and 

morphology trees are based on previously published data whereas those representing 

SVDQUARTETS and POMO (Polymorphism-Aware Model) were generated in this study from 

ddRADseq data. P-values in bold with ‘*’ indicate significance (P>0.05/highly weighted).  

 

Guide Tree Log-likelihood ΔLL BP-RELL P-KH P-SH C-ELW P-AU 

Morphology -2639307.9 601.5 0.00 0.01 0.02 0.00 0.01 

PoMo -2639200.2 493.8 0.01 0.03 0.06* 0.01 0.03 

Sanger -2638898.4 192.0 0.23* 0.24* 0.41* 0.23* 0.26* 

SVDquartets -2638706.4 0.0 0.75* 0.76* 1.00* 0.75* 0.81* 

ΔLL=change in log-likelihood 

BP-RELL=Bootstrap proportions using RELL method (weights sum to 1) 

P-KH=Kishino-Hasegawa test 

P-SH=Shimodaira-Hasegawa test 

C-ELW=Expected likelihood weight (sum to 1) 

P-AU=Approximately unbiased test 
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Table 2: Species-delimitation results from Bayes Factor Delimitation (BFD) in Terrapene. 

Bayes factors (BF) depict support among models and were calculated as 2 × (MLE1-MLE2). 

‘*’=best supported models; ‘+’=taxa grouped together; ‘/’=multiple groupings. DS=T. o. luteola, 

ON=T. o. ornata, EA=T. c. carolina, GUFL=T. c. major from Florida, GUMS=Mississippi T. c. 

major, CH=T. coahuila, FL=T. c. bauri, TT=T. m. triunguis, and MX=T. m. mexicana. East=all 

T. carolina and T. mexicana, West=all T. ornata. Outgroup (not shown) included Clemmys 

guttata. 

 

BFD* Model MLE† K‡ Rank§ BF¶ 

All Separate* -2403.39 10 1 - 

DS+ON* -2404.34 9 2 1.90 

EA+GUFL -2417.84 9 3 28.91 

GUMS+GUFL -2427.58 9 4 48.39 

GUMS+CH -2448.61 9 5 90.44 

GUMS+CH/GUFL+EA -2461.28 8 6 115.79 

GUMS+GUFL+CH -2489.62 8 7 172.45 

EA+FL -2511.83 9 8 216.89 

GUMS+GUFL+CH+EA -2514.86 7 9 222.94 

EA+FL+GUFL -2552.22 8 10 297.66 

EA+FL/CH+GUMS -2555.16 8 11 303.53 

EA+FL+GUFL/CH+GUMS -2594.91 7 12 383.04 

EA+CH+GUMS+GUFL+TT -2607.72 6 13 408.66 

EA+CH+GUMS+GUFL+MX -2657.48 6 14 508.19 

EA+FL+CH+GUMS+GUFL -2693.37 6 15 579.96 

EA+CH+GUMS+GUFL+TT+MX -2719.02 5 16 631.27 

ON+DS/EA+TT+MX+CH+GUMS+GUFL/FL -2720.23 4 17 633.69 

EA+FL+CH+GUMS+GUFL+TT -2800.56 5 18 794.35 

EA+FL+CH+GUMS+GUFL+TT+MX -2926.20 4 19 1045.62 

East/West -2926.56 3 20 1046.35 

†MLE=Marginal likelihood estimates 

‡K=# tips 

§Rank=model ranking based on MLE (lower=better) 

¶BF=Bayes factors 

 
 



138 
 

Table 3: The top five (of 51) DELIMITR models describing six Terrapene taxa. Model=rank 

determined by random forest (RF) vote counts (=# Votes). ‘*’=best supported model. Lumped 

taxa are grouped by ‘+’, whereas ‘/’ delimits taxa. ‘×’ indicates migration events promoting 

secondary contact, with multiple migrations per model separated by commas. ON=T. o. ornata, 

TT=T. m. triunguis, FL=T. c. bauri, GUMS=T. c. major from Mississippi, GUFL=Florida T. c. 

major, EA=T. c. carolina. Error=proportion of incorrect model choices. 

 
Model # Votes Species (# delimited) Secondary Contact Error 

17* 464 ON/TT/FL/GUMS+GUFL+EA (4) ON × TT, TT × GU+EA, FL × GU+EA 0.017 

14 445 ON/TT/FL/GUMS+GUFL+EA (4) TT × GU+EA, FL × GU+EA 0.036 

3 441 ON/TT+FL+GUMS+GUFL+EA (2) ON × TT+FL+GU+EA 0.009 

8 359 ON/TT/FL+GUMS+GUFL+EA (3) ON × TT, TT × FL+GU+EA 0.009 

30 218 ON/TT/FL/GUMS+GUFL/EA (5) TT × GU, FL × EA, GU × EA 0.007 
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Figure 1: Range map and sample localities (=circles) for N=214 Terrapene. Closed circles=T. 

carolina samples without subspecific identification in the field. Cross-hatched areas=known 

hybrid zones. Headings and subheadings represent species and subspecies. Terrapene carolina 

major=T. carolina major and includes distinct subpopulations from Mississippi (GUMS) and 

Florida panhandle (GUFL). Parenthetical legend abbreviations correspond to Tables 2 and 3. 
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Figure 2: Chronogram reflecting relationships among 214 Terrapene ddRADseq samples as 

generated in IQ-TREE v2.1.2 and time-calibrated using LSD2. Node support was assessed with 

1,000 ultrafast bootstrap (UFBOOT) replicates, and site concordance-factors (SCF) calculated 

from 10,000 randomly-sampled quartets. Well-supported nodes (UFBOOT≥95%, SCF≥50%) are 

represented by color-coded circles or squares, with squares showing fossil calibration points. 

Node bars reflect 95% confidence intervals based on 1,000 simulated trees. Clemmys guttata and 

Emydoidea blandingii represent outgroups. 
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Figure 3: Species trees, TREEMIX, and species delimitation results among Terrapene ddRADseq 

samples. Parenthetical legend abbreviations correspond to Tables 2 and 3. Phylogenies (N=214) 

were generated by (a) SVDQUARTETS and (b) POMO with 26 populations grouped by subspecies 

and state locality. ‘*’ and ‘+’ indicate 100% and ≥95% bootstrap support. (c) Migration 

supported by TREEMIX (blue arrows) and previously published results (red/dashed lines; Martin 

et al. 2020). Outgroups were omitted for clarity. (d) Species delimitations for UML (N=117), 

multispecies coalescent (MSC; BFD=Bayes Factor Delimitation; N=37), and process-based 

(DELIMITR; N=28) methods. UML data filtering allowed ≤25% missing data per-individual and 

per-population, with minor allele frequency filters=5% (CMDS/T-SNE/VAE) and 1% (ISOMDS), 

and T-SNE perplexity=15. UML includes RF=random forest, visualized with CMDS and 

ISOMDS ordination, T-SNE, and VAE, with bar plots depicting assignment proportions among 

100 replicates and aligning with chronogram tips. RF and T-SNE optimal K were assessed using 

partition around medoids (PAM)+gap statistic (GS), PAM+highest mean silhouette width 

(HMSW), and hierarchical clustering (HC)+HMSW, whereas VAE, BFD, and DELIMITR used 

DBSCAN, Bayes Factors (BF) and RF votes. Blue/dashed arrows show gene flow supported by 

DELIMITR. ‘†’ indicates a monotypic T. coahuila.  
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Figure 4: Heatmaps depicting mean and standard deviation (SD) of optimal K among 100 

unsupervised machine learning species-delimitation replicates. Input ddRADseq alignments were 

filtered with a maximum of 25%, 50%, 75%, and 100% (=no filter) missing data allowed per-

individual and per-population, and with minor allele frequency (MAF) filters as 5%, 3%, 1%, 

and 0% (=no filter). (a) and (b)=Pairwise missing data heatmaps for three dimensionality-

reduction methods (CMDS and ISOMDS=classical and isotonic multidimensional scaling), T-

SNE=t-distributed stochastic neighbor embedding versus three clustering algorithms [(partition 

around medoids+gap statistic (GS)]; HC=hierarchical clustering+highest mean silhouette width 

(HMSW); PAM=partition around medoids+HMSW. (c) and (d)=T-SNE heatmap panels 

comparing clustering algorithms with ten perplexity (P) settings. (e) and (f)=VAE (variational 

autoencoder) heatmaps with optimal K chosen via DBSCAN.   
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Figure 5: Regressions showing relationship between mean optimal K (y-axes), missing data, and 

minor allele frequency (MAF) filtering parameters. Missing data was filtered both per-individual 

(x-axes) and per-population (panel rows), with a maximum allowed of 25%, 50%, 75%, and 

100% (=no filtering). Minor allele frequency (MAF) filters of 5%, 3%, 1%, and 0% (=no 

filtering) were also applied (panel columns). (a) Colors correspond to the dimensionality-

reduction methods: CMDS and ISOMDS=classical and isotonic multidimensional scaling, T-

SNE=t-distributed stochastic neighbor embedding, VAE=variational autoencoder. (b) Colors 

indicate three clustering algorithms: GS=partition around medoids+gap statistic, 

HC=hierarchical clustering+highest mean silhouette width (HMSW), PAM=partition around 

medoids+HMSW. 
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SUPPLEMENTARY TABLES AND FIGURES 

Table S1: Terrapene sample metadata. Fields with a "-" indicate metadata that is unknown or 

was not provided by the collector(s). Taxonomic IDs are as designated in the field. Geographic 

coordinates are in decimal degrees. Collection dates generally follow the format "mm/year", 

unless only the year was known. Population codes precede the sample IDs with underscores as 

delimiters, with the first two characters representing subspecies (when available), and the second 

two U.S. state locality. "y" and "n" in the BFD column indicate individuals that were or were not 

used in the BFD analyses, respectively. 

 

Taxonomic ID Sex Tissue State County Date Lat Long 

T. coahuila - toenails Coahuila, MX - 01/2011 - - 

T. coahuila - toenails Coahuila, MX - 01/2011 - - 

T. ornata luteola - muscle AZ Cochise - 31.6307 -109.198 

T. ornata luteola - muscle AZ Cochise - 31.6307 -109.198 

T. ornata luteola - shell shavings AZ Cochise - 31.7614 -109.26 

T. ornata luteola - shell shavings AZ Cochise - 31.9126 -109.151 

T. ornata luteola F tail tip NM Socorro 08/2007 - - 

T. ornata luteola - tail tip NM Socorro 05/2007 - - 

T. ornata luteola - tail tip NM Socorro - - - 

T. ornata luteola - dried muscle NM Socorro 06/2008 - - 

T. carolina carolina M muscle AL Russell 06/2010 32.4654 -85.1998 

T. carolina carolina M toe tips AL Bullock 06/2010 32.0841 -85.6902 

T. carolina carolina - toenails AL Lee 05/2009 32.4399 -85.352 

T. carolina carolina F tail tip AL Dekalb 05/2010 34.4455 -85.7772 

T. carolina carolina M toenails GA Harris 07/2009 32.7381 -84.915 

T. carolina carolina M toenails GA Harris 07/2009 32.7074 -84.9566 

T. carolina carolina F toenails GA Marion 10/2009 32.3004 -84.5171 

T. carolina carolina F toenails GA Harris 06/2009 32.6151 -84.8216 

T. carolina carolina F toe tips GA Dekalb 05/2010 33.6654 -84.3467 

T. carolina carolina - toenails GA Harris 05/2009 32.8514 -84.8459 

T. carolina carolina - toenails GA Harris 05/2009 32.7795 -84.8739 

T. carolina carolina F toenails GA Harris 05/2009 32.7859 -84.9566 

T. carolina carolina F toenails GA Troup 06/2014 32.753 -84.9003 

T. carolina carolina - toenails GA Harris 05/2009 32.695 -84.959 

T. carolina carolina F toenails GA Harris 05/2009 32.766 -84.9082 

T. carolina carolina - toenails GA Harris 06/2009 32.6683 -84.956 

T. carolina carolina F toenails GA Harris 06/2009 32.597 -84.8266 

T. carolina carolina - toenails GA Harris 06/2009 32.8013 -84.9217 

T. carolina carolina M toenails GA Harris 06/2009 32.8436 -84.9379 

T. carolina carolina - toenails GA Harris 10/2009 32.7038 -84.7357 

T. carolina carolina M toenails KY Carter - - - 
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Table S1 (Cont.) 

Taxonomic ID Sex Tissue State County Date Lat Long 

T. carolina carolina - - KY Laurel 08/2004 37.0029 -84.2375 

T. carolina carolina - - KY Leslie 08/2004 37.2459 -83.3816 

T. carolina carolina - - NC Johnston 07/2009 35.6838 -78.4682 

T. carolina carolina - - NC Johnston 08/2009 35.6832 -78.4621 

T. carolina carolina M tail tip NY Westchester - 41.2884 -73.8658 

T. carolina carolina F tail tip PA - - 40.0851 -76.8906 

T. carolina carolina M toenails RI Washington 06/2011 - - 

T. carolina carolina M shell shavings SC Beaufort 06/2010 32.3261 80.69663 

T. carolina carolina M toenails SC Beaufort 06/2010 32.3402 80.69961 

T. carolina carolina M muscle SC Jasper 06/2010 32.447 -81.1053 

T. carolina carolina F toenails SC Beaufort 06/2010 32.3393 -80.7006 

T. carolina carolina F toenails SC Beaufort 06/2010 32.3575 -80.7093 

T. carolina carolina M toenails SC Beaufort 06/2010 32.318 -80.6866 

T. carolina carolina F toenails SC Beaufort 06/2010 32.3509 -80.696 

T. carolina carolina - muscle SC Laurens 06/2009 34.4524 -81.8601 

T. carolina carolina M toenails SC Abbeville 10/2010 34.3276 -82.3797 

T. carolina carolina - toenails SC Chester 10/2010 34.6807 -81.1752 

T. carolina carolina F toenails SC Greenville 10/2010 34.8298 -82.394 

T. carolina carolina M toenails SC Abbeville 10/2010 34.3319 -82.3865 

T. carolina carolina - tail tip TN Davidson - 36.1346 -86.9305 

T. carolina carolina - tail tip TN Davidson - 36.1302 -86.8651 

T. carolina carolina M - VA Albemarle - - - 

T. carolina carolina M - VA Fluvanna - 38.0382 -78.9138 

T. carolina carolina M - VA Fluvanna - 38.0382 -78.9138 

T. carolina carolina M toenails VA Norfolk - 36.6787 -76.2937 

T. carolina carolina M toenails VA Dinwiddie - 37.2176 -77.3915 

T. carolina carolina - tail tip WV Roane 07/2009 38.542 -81.3251 

T. carolina bauri F toenails FL Alachua 06/2009 29.6436 -82.3457 

T. carolina bauri - muscle FL Taylor 04/2008 29.7745 -83.5711 

T. carolina bauri F toenails FL - 06/2009 - - 

T. carolina bauri - muscle FL Hernando 06/2007 28.593 -82.3708 

T. carolina major - scutes FL Franklin 05/2009 29.9422 -85.0068 

T. carolina major - toenails FL Franklin 05/2009 29.7981 -84.8308 

T. carolina major - muscle FL Wakulla - 30.0588 -84.5688 

T. carolina major M muscle FL Walton 04/2010 30.4428 -85.9583 

T. carolina major F muscle FL Walton 06/2009 30.4932 -85.9365 

T. carolina major M muscle FL Calhoun 04/2009 30.4261 -85.1194 

T. carolina major M toenails FL Gulf 06/2009 30.0581 -85.1898 

T. carolina major F toenails FL Gulf 06/2009 29.8199 -85.2836 

T. carolina major - toe tips FL Okaloosa 07/2009 30.6725 -86.6317 
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Table S1 (Cont.) 

Taxonomic ID Sex Tissue State County Date Lat Long 

T. carolina major - muscle FL Escambia - 30.5694 -87.3991 

T. carolina major - muscle FL Gulf 03/2007 29.8473 -85.2616 

T. carolina major M toenails FL Gulf 09/2013 30.0785 -85.1943 

T. carolina major F tail tip FL Gulf 07/2013 29.9909 -85.1696 

T. carolina major M toenails FL Gulf 07/2013 29.685 -85.3277 

T. carolina major - tail tip FL Gulf 07/2012 30.1579 -85.2093 

T. carolina major F tail tip FL Gulf 07/2015 29.6914 -85.2511 

T. carolina major M tail tip FL Gulf 07/2015 29.8875 -85.2184 

T. carolina major F foot tissue FL Gulf 05/2015 29.8731 -85.2297 

T. carolina major F toenails FL Calhoun 05/2015 30.5039 -85.1173 

T. carolina major F toenails, muscle FL Gulf 05/2015 29.8375 -85.273 

T. carolina major F toenail FL Gulf 05/2015 30.0036 -85.1735 

T. carolina major F tail tip FL Franklin 07/2016 29.7224 -84.9897 

T. carolina major F toenails FL Gulf 07/2016 29.9291 -85.3929 

T. carolina major M toenails FL Liberty 03/2018 30.3715 -84.6813 

T. carolina major F toenails FL Franklin 04/2018 30.0049 -84.886 

T. carolina major F toenails FL Bay 05/2010 30.1851 -85.6819 

T. carolina major - scutes FL Franklin 05/2009 29.8647 -84.7533 

T. carolina major M toenails with skin FL Gulf 09/2013 30.0785 -85.1943 

T. carolina major F toenails FL Franklin 02/2018 29.8814 -84.7286 

T. carolina major M toenails FL Franklin 03/2018 29.8398 -84.6809 

T. carolina major - toenails FL Franklin 03/2018 29.7537 -84.8423 

T. carolina major - toenails FL Franklin 04/2018 29.85 -84.6881 

T. carolina major M tail tip MS Perry 04/2009 31.1418 -89.1517 

T. carolina major F tail tip MS Jackson 05/2015 30.4317 -88.5381 

T. carolina major M toenails MS Jackson 04/2015 30.4241 -88.5167 

T. carolina major F tail tip MS Jackson 05/2015 30.4317 -88.5381 

T. carolina major M tail tip MS Jackson 07/2015 30.4401 -88.5494 

T. carolina major F tail tip MS Jackson 05/2015 32.5546 -85.6424 

T. carolina major M tail tip MS Jackson 05/2015 30.4317 -88.5381 

T. carolina major M toenails MS Jackson 04/2015 30.4241 -88.5167 

T. carolina major F tail tip MS Jackson 05/2015 30.4317 -88.5381 

T. carolina major M tail tip MS Jackson 05/2015 30.4317 -88.5381 

T. carolina major M tail tip MS Jackson 07/2015 30.4401 -88.5494 

T. carolina major M tail tip MS Jackson 05/2015 30.4317 -88.5381 

T. carolina major M tail tip MS Jackson 05/2015 30.4317 -88.5381 

T. carolina major M tail tip MS Jackson 05/2015 30.4317 -88.5381 

T. carolina major F tail tip MS Jackson 05/2015 30.4317 -88.5381 

T. carolina major F tail tip MS Jackson 05/2015 30.4317 -88.5381 

T. carolina major F tail tip MS Jackson 05/2015 30.4408 -88.5512 

T. carolina major F tail tip MS Jackson 05/2015 30.4317 -88.5381 
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Table S1 (Cont.) 

Taxonomic ID Sex Tissue State County Date Lat Long 

T. carolina major F tail tip MS Jackson 05/2015 30.4381 -88.5475 

T. carolina major F tail tip MS Jackson 05/2015 30.4317 -88.5381 

T. carolina major - tail tip MS Jackson 04/2018 30.376 -88.7107 

T. carolina major F tail tip MS Jackson 05/2018 30.3756 -88.7095 

T. carolina major M foot tissue MS Jackson 05/2018 30.3756 -88.7124 

T. carolina major F tail tip MS Jackson 05/2018 30.3757 -88.7049 

T. carolina major M tail tip MS Jackson 05/2018 30.3758 -88.7179 

T. carolina major - tail tip MS Jackson 05/2018 30.3955 -88.7309 

T. carolina major F tail tip MS Jackson 05/2018 30.3558 -88.7095 

T. carolina major M skin MS Jackson 05/2018 30.3662 -88.6905 

T. carolina major M tail tip MS Jackson 05/2018 30.3557 -88.6893 

T. carolina major F tail tip MS Jackson 05/2018 30.3757 -88.7187 

T. carolina major F toe MS Jackson 06/2018 30.3757 -88.7056 

T. carolina major M tail tip MS Jackson 06/2018 30.3754 -88.7077 

T. carolina major M tail tip MS Jackson 06/2018 30.4005 -88.7543 

T. carolina major M foot tissue MS Jackson 06/2018 30.375 -88.7076 

T. mexicana mexicana - toenails Tamaulipas, MX - 01/2011 - - 

T. mexicana mexicana - toenails Tamaulipas, MX - 01/2011 - - 

T. mexicana mexicana - toenails Tamaulipas, MX - 01/2011 - - 

Clemmys guttata M blood IL Will - - - 

Clemmys guttata M blood IL Will - - - 

Clemmys guttata M blood IL Will - - - 

Emydoidea blandingii - blood IL Will - - - 

Emydoidea blandingii - blood IL Will - - - 

Emydoidea blandingii - blood IL Will - - - 

T. ornata ornata F toenails CO Weld 06/2009 40.2992 -104.475 

T. ornata ornata M toenails CO Weld 06/2009 40.2947 -104.476 

T. ornata ornata F toenails CO Weld 05/2009 40.2989 -104.479 

T. ornata ornata M toenails CO Weld 05/2009 40.2935 -104.481 

T. ornata ornata - blood IL Marion 2016 - - 

T. ornata ornata - blood IL Lee 2016 - - 

T. ornata ornata - blood IL Lee 2013 41.9087 -89.3451 

T. ornata ornata - tail tip KS Clark 06/2009 37.4071 -99.7555 

T. ornata ornata F tail tip KS Meade 06/2009 37.3809 -100.141 

T. ornata ornata - tail tip KS Meade 06/2009 37.0441 -100.494 

T. ornata ornata - tail tip KS Meade 06/2009 37.0656 -100.471 

T. ornata ornata - tail tip KS Meade 06/2009 37.2855 -100.369 

T. ornata ornata F tail tip KS Miami - 38.5476 -94.9369 

T. ornata ornata F tail tip KS Osage - 38.7823 -95.5135 

T. ornata ornata - tail tip NE Box Butte 06/2009 42.0886 -102.723 

T. ornata ornata - tail tip NE Sheridan 06/2009 42.059 -102.461 
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Table S1 (Cont.) 

Taxonomic ID Sex Tissue State County Date Lat Long 

T. ornata ornata - blood NE Garden 06/2009 41.8305 -102.342 

T. ornata ornata - tail tip NE Box Butte 06/2009 42.0898 -102.736 

T. ornata ornata - muscle TX Montague 10/2009 33.4824 -97.7948 

T. ornata ornata M - TX Calhoun 05/2009 28.1958 -96.7004 

T. ornata ornata M - TX Calhoun 06/2009 28.2896 -96.5278 

T. ornata ornata - toenails WI Sauk - 43.1753 -90.0711 

T. ornata ornata F toenails WI Iowa - 43.0305 -90.1094 

T. ornata ornata F toenails WI Iowa - 43.0305 -90.1094 

T. ornata ornata F toenails WI Iowa - 43.0305 -90.1094 

T. ornata ornata F toenails WI Iowa - 43.0305 -90.1094 

T. ornata ornata F toenails WI Dane - 43.1767 -89.7994 

T. ornata ornata F toenails WI Columbia - 43.458 -89.3883 

T. ornata ornata F toenails WI Columbia - 43.4514 -89.3532 

T. nelsoni - toenails Sonora, MX - 10/2011 29.9113 -111.027 

T. carolina M tail tip AL Russell 09/2011 32.255 -85.4165 

T. carolina - toenails AL Macon 07/2009 32.4777 -85.7977 

T. carolina - tail tip AL Macon 08/2009 32.5139 -85.6096 

T. carolina F 

toenails with 

muscle AL Elmore 08/2009 32.5733 -86.0344 

T. carolina M tail tip AL Macon 08/2009 32.445 -85.8103 

T. carolina F tail tip AL Lee 06/2009 32.5377 -85.5042 

T. carolina F tail tip AL Chambers 06/2009 32.7701 -85.259 

T. carolina M toenails AL Russell 08/2009 32.2568 -85.354 

T. carolina F toenails AL Barbour 03/2010 32.0095 -85.404 

T. carolina F muscle AL Macon 07/2010 32.4553 -85.6562 

T. carolina - tail tip AL Conecuh 08/2016 31.2888 -87.1884 

T. carolina F toenails, muscle AL Bullock 07/2013 32.0826 -85.6897 

T. carolina F toenails AL Mobile 04/2014 30.8447 -88.3953 

T. carolina - toenails with skin AL Randolph 07/2013 33.1354 -85.465 

T. carolina F toenails with skin AL Bullock 07/2013 32.0826 -85.6897 

T. carolina M toenails AL Madison 07/2010 34.6109 -86.5778 

T. carolina M muscle AL Clay 05/2010 33.1264 -85.8595 

T. carolina F muscle AL Clay 05/2010 33.2063 -85.8222 

T. carolina F toenails GA Harris 06/2009 32.6649 -84.9763 

T. carolina M toenails GA Harris 06/2009 32.7432 -84.9036 

T. mexicana triunguis M toenails AR Pulaski 08/2009 34.8347 -92.4916 

T. mexicana triunguis F toenails AR Pulaski 07/2009 34.8347 -92.4915 

T. mexicana triunguis M toenails AR Pulaski 07/2009 34.8347 -92.4915 

T. mexicana triunguis F tail tip KS Crawford 05/2009 37.5874 -94.9584 

T. mexicana triunguis M toenails LA Rapides 06/2009 31.2036 -92.5784 

T. mexicana triunguis F shell shavings LA Rapides 06/2009 31.1811 -92.5562 

T. mexicana triunguis F toenails LA Rapides 06/2010 31.1552 -92.5231 
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Table S1 (Cont.) 

Taxonomic ID Sex Tissue State County Date Lat Long 

T. mexicana triunguis F toenails LA Rapides 06/2010 31.247 -92.6409 

T. mexicana triunguis M toenails LA Rapides 05/2010 31.1387 -92.6377 

T. mexicana triunguis M toenails LA Rapides 05/2010 31.2058 -92.5836 

T. mexicana triunguis F toenails LA Rapides 05/2010 31.2058 -92.5836 

T. mexicana triunguis M toenails LA Rapides 04/2010 31.156 -92.5226 

T. mexicana triunguis F toenails LA Rapides 04/2010 31.1827 -92.5198 

T. mexicana triunguis M toenails MO Jefferson - 38.1959 -90.5324 

T. mexicana triunguis F toenails TX Smith 05/2008 32.2963 -95.2086 

T. mexicana triunguis M toenails TX Dallas 05/2008 32.9483 -96.7299 

T. mexicana triunguis M toenails TX Smith 05/2008 32.3513 -95.3011 

T. mexicana triunguis F toenails TX Dallas 05/2008 32.9702 -96.7364 

T. mexicana triunguis M toenails TX Tarrant 05/2008 33.0352 -97.1173 

T. mexicana triunguis - tail tip TX Henderson 08/2009 32.3373 -95.7455 

T. mexicana triunguis - toenails TX Smith - 32.345 -95.2668 

T. mexicana triunguis - toenails TX Smith 08/2009 32.2564 -95.1869 

T. mexicana triunguis - toenails TX Smith 08/2009 32.345 -95.2668 

T. mexicana triunguis - toenails TX Smith 08/2009 32.345 -95.2668 

T. mexicana triunguis - toenails TX Smith 08/2009 32.345 -95.2668 

T. mexicana triunguis M toenails TX Collin 05/2006 33.2162 -96.5723 

T. mexicana yucatana F toenails Yucatan, MX - 05/2010 20.1417 -89.2092 

 



 

 
 

1
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Table S2: Summary statistics from twenty BFD* models (Bayes Factor Delimitation, *with genomic data) among 37 North American 

box turtle (Terrapene spp.) samples and 179 unlinked ddRADseq single nucleotide polymorphism (SNP) variants. The standard 

deviations reflect error in the calculation of the marginal likelihood estimate (MLE) from ten path sampling cross-validation runs. 

 

BFD Model ESS Mean ESS Median (Min, Max) MLE Std. Dev. 

run1, East/West 649.18 506.72755 (122.6519, 1334) -2926.56 0.06 

run2, EA+FL+CH+GUMS+GUFL+TT+MX 515.20 422.0864 (105.0803, 1289.1458) -2926.20 0.08 

run3, ON+DS/EA+TT+MX+CH+GUMS+GUFL/FL 593.63 459.24485 (71.6897, 1334) -2720.23 0.07 

run4, EA+FL+CH+GUMS+GUFL+TT 487.48 372.5475 (21.7602, 1264.0155) -2800.56 0.09 

run5, EA+CH+GUMS+GUFL+TT+MX 493.91 492.88135 (56.1857, 1115.7808) -2719.02 0.08 

run6, EA+FL+CH+GUMS+GUFL 484.56 433.14245 (74.3832, 1236.2148) -2693.37 0.10 

run7, EA+CH+GUMS+GUFL+MX 478.60 380.1236 (68.1691, 1153.8154) -2657.48 0.09 

run8, EA+CH+GUMS+GUFL+TT 455.44 379.51645 (28.2256, 1217.8904) -2607.72 0.10 

run9, GUMS+GUFL+CH+EA 420.68 369.88705 (28.1414, 1295.5895) -2514.86 0.11 

run10, EA+FL+GUFL/CH+GUMS 407.49 322.56155 (38.1882, 1181.6271) -2594.91 0.11 

run11, GUMS+GUFL+CH 367.29 305.75535 (62.5265, 1097.3091) -2489.62 0.12 

run12, GUMS+CH/GUFL+EA 340.61 285.44545 (42.0809, 968.308) -2461.28 0.13 

run13, EA+FL/CH+GUMS 365.06 307.52505 (73.946, 913.1602) -2555.16 0.13 

run14, EA+FL+GUFL 321.74 251.91375 (31.6129, 1127.1272) -2552.22 0.11 

run15, GUMS+GUFL 288.79 274.3423 (59.7872, 815.3268) -2427.58 0.12 

run16, GUMS+CH 330.86 261.6958 (68.1546, 880.6262) -2448.61 0.13 

run17, EA+GUFL 314.11 212.32105 (49.5533, 1158.6918) -2417.84 0.12 

run18, EA+FL 343.54 299.22845 (28.5148, 1291.1445) -2511.83 0.14 

run19, DS+ON 386.57 265.64725 (54.6711, 1181.5824) -2404.34 0.12 

run20, All Separate 305.72 223.09945 (81.8985, 1066.5475) -2403.39 0.13 

ESS = Effective sample size 

MLE = Marginal likelihood estimate 
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Figure S1: Prediction error versus model complexity for machine learning. Ideally, training 

should stop when the validation and training prediction error are at their lowest point 

[‘Goldilocks zone’, indicated by gray dashed lines; (Al’Aref et al. 2019)]. High bias and 

underfitting occur when training ends prior to reaching the Goldilocks zone, and high variance 

and overfitting occur when validation error begins to climb. 
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Figure S2: Mean per-individual read depth (points) ± standard deviation (gray bars) for 214 

North American box turtle (Terrapene spp.) ddRAD sequencing samples. 
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Figure S3: Terrapene constraint trees and respective changes in site-likelihood scores (ΔSLS) 

representing genome-wide support for the a) SVDQUARTETS, b) POMO, C) Sanger, and d) 

Morphological phylogenetic hypotheses. The SVDQUARTETS and POMO trees are derived in this 

study, whereas the Sanger and morphological hypotheses are results previously published (Minx 

1996; Martin et al. 2013). 
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Figure S4: Log-likelihoods for the number (N) of TREEMIX admixture edges. 
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Figure S5: Tukey-style box and whiskers plots for 100 unsupervised machine learning (UML) 

species delimitation replicates. Data were filtered using per-individual (panel columns) and per-

population (panel rows) missing data filters (25%=most stringent; 100%=no filtering) and a) 0%, 

b) 1%, c) 3%, and d) 5% minor allele frequency filters. Black bars on the boxplots indicate the 

median, lower and upper hinges represent the 25th and 75th percentiles, and the whisker range 

includes 1.5 times the inter-quartile range (IQR) past the hinges. cMDS and isoMDS = random 

forest classification visualized with classical and isotonic multidimensional scaling; 

VAE=variational autoencoder. Optimal K among cMDS and isoMDS was determined in three 

ways among two clustering algorithms: partition around medoids (PAM) with the gap statistic 

(GS), hierarchical clustering with the highest mean silhouette width (HMSW), and PAM with 

HMSW. Optimal K for VAE was determined using DBSCAN. 
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Figure S6: Tukey-style box and whiskers plots depicting variation in mean optimal K among a t-

SNE perplexity grid search (x axes). Data were filtered with 25%, 50%, 75%, and 100% (no 

filtering) per-individual (panel columns) and per-population (panel rows) missing data filters and 

0%, 1%, 3%, and 5% minor allele frequency (MAF) filters. Black bars on the boxplots indicate 

the median, lower and upper hinges represent the 25th and 75th percentiles, and the whisker range 

includes 1.5 times the inter-quartile range (IQR) past the hinges. t-SNE = t-distributed stochastic 

neighbor embedding. 
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Figure S7: Regressions showing mean optimal K among ten t-SNE perplexity settings and three 

clustering algorithms for a minor allele frequency (MAF) filter=0% (no filtering). Panel columns 

and rows represent per-individual and per-population missing data filters, respectively. Mean 

optimal K was chosen using three clustering algorithms (fill colors): 1) Partition around medoids 

(PAM) with the gap statistic (GS), hierarchical clustering (HC) with the highest mean silhouette 

width (HMSW), and PAM with HMSW. R2 values show correlations per clustering algorithm.  
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Figure S8: Regressions showing mean optimal K among ten t-SNE perplexity settings and three 

clustering algorithms for a minor allele frequency (MAF) filter=1%. Panel columns and rows 

represent per-individual and per-population missing data filters, respectively. Mean optimal K 

was chosen using three clustering algorithms (fill colors): 1) Partition around medoids (PAM) 

with the gap statistic (GS), hierarchical clustering (HC) with the highest mean silhouette width 

(HMSW), and PAM with HMSW. R2 values show correlations per clustering algorithm.  
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Figure S9: Regressions showing mean optimal K among ten t-SNE perplexity settings and three 

clustering algorithms for a minor allele frequency (MAF) filter=3%. Panel columns and rows 

represent per-individual and per-population missing data filters, respectively. Mean optimal K 

was chosen using three clustering algorithms (fill colors): 1) Partition around medoids (PAM) 

with the gap statistic (GS), hierarchical clustering (HC) with the highest mean silhouette width 

(HMSW), and PAM with HMSW. R2 values show correlations per clustering algorithm.  
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Figure S10: Regressions showing mean optimal K among ten t-SNE perplexity settings and 

three clustering algorithms for a minor allele frequency (MAF) filter=5%. Panel columns and 

rows represent per-individual and per-population missing data filters, respectively. Mean optimal 

K was chosen using three clustering algorithms (fill colors): 1) Partition around medoids (PAM) 

with the gap statistic (GS), hierarchical clustering (HC) with the highest mean silhouette width 

(HMSW), and PAM with HMSW. R2 values show correlations per clustering algorithm 
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SUPPLEMENTARY INFORMATION APPENDIX A 

1.1. Additional phylogenomic analyses 

1.1.1. Topology tests 

We performed IQ-TREE topology tests using for four Terrapene phylogenetic hypotheses: (a) 

The SVDQUARTETS and (b) POMO topologies, as generated herein; (c) Sanger sequencing with 

mtDNA and nuclear introns (Martin et al. 2013); and (d) Morphological data (Minx 1996). 

MODELFINDER was again employed to optimize per-partition substitution models 

(Kalyaanamoorthy et al. 2017), and nodal confidence of each tree was assessed using 1,000 

ultrafast bootstrap (UFB) replicates (Hoang et al. 2017). We then compared support among the 

constraint trees using seven topological tests, each with 10,000 re-samplings: (a) Raw log-

likelihoods; (b) bootstrap proportion test using the RELL approximation (bpRELL; Kishino et al. 

1990); (c) Kishino-Hasegawa test (KH; Kishino & Hasegawa 1989); (d) Shimodaira-Hasegawa 

test (SH; Shimodaira & Hasegawa 1999); (e) Approximately Unbiased test (AU; Shimodaira 

2002); and (f) Expected Likelihood Weights (ELW; Strimmer & Rambaut 2002). To visualize 

support for each topology across the genome, site-likelihood probabilities and pairwise site-

likelihood score differences (ΔSLS) were calculated between the best-supported versus 

remaining trees. 

 

2.1. Species delimitation analyses 

2.1.1. BFD* Prior Selection and Data Filtering 

Here, we derived appropriate priors following (Bangs et al. 2020). We first calculated a pairwise 

distance matrix using the DIVEIN web server (Deng et al. 2010). We did so with a random 
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subset of the full concatenated alignment (Nsites=36,800, the maximum allowed by DIVEIN) 

derived using a custom Perl script, nremover.pl (https://github.com/tkchafin/scripts). Average 

within-species divergence was calculated from the DIVEIN pairwise distance matrix across all 

taxa to represent our prior for ancestral population size (θ=0.000730885) which served as the 

mean (α/β) for a gamma-distributed prior. The coalescent rate was set to 2/θ=2736.4086. The 

lineage birth-rate for the Yule process (λ=196.5038) was determined with pyule 

(https://github.com/joaks1/pyule), which invokes tree height and number of species to determine 

λ. Tree height was calculated as ½ the maximum among-group pairwise distance 

(=0.002549775), and the number of species was conservatively set to three to limit potential 

biases from over-splitting (a tendency for multi-species coalescent species delimitation 

approaches). The mutation rate priors were fixed to 1.0 per recommendations from the BFD* 

tutorial (Leaché & Bouckaert 2018). 

 Before running BFD*, we first removed loci containing >50% missing data, both 

globally and per-population, using a custom Perl script phylipFilterPops.pl 

(https://github.com/tkchafin/scripts). Thus, all retained sites contained SNP data in at least 50% 

of individuals from each population. We further filtered the alignment by removing non-binary 

SNPs and invariant sites via the Phrynomics R package 

(https://github.com/bbanbury/phrynomics). We then generated XML files for 20 models using 

BEAUTI v2.5.2 and ran BFD* via the SNAPP v1.4.2 plug-in for BEAST v2.5.2 (Bryant et al. 

2012; Bouckaert et al. 2019). 
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2.1.2. Machine learning data preparation 

Using R v3.5.1 (R Core R Development Core Team 3.0.1. 2013), we ran a slightly modified 

version of the R script developed by Derkarabetian et al. [(2019) (PCA-DAPC-RF-tSNE_str.r; 

https://github.com/shahanderkarabetian/uml_species_delim)] to load and prepare the input 

alignments, perform the random forest (RF) and t-distributed stochastic neighbor embedding (t-

SNE) machine learning algorithms, and identify taxon clusters. The modified script, PCA-

DAPC-RF-tSNE_gridSearch_maf.r, adds the capability of performing multiple independent runs 

among multiple datasets to assess RF and t-SNE variability and evaluate model performance 

among differently filtered datasets. It also performs a t-SNE grid search for the perplexity 

setting. Generally, the script used the R package adegenet v2.1.1 (Jombart & Ahmed 2011) to 

load the input alignments from STRUCTURE-formatted files. The data were scaled using the 

scaleGen function and subjected to dimensionality reduction via principle component analysis 

(PCA; dudi.pca function in adegenet). The full suite of PCA axes were assessed using DAPC 

(discriminant analysis of principle components; Jombart et al. 2010) cross-validation with 1,000 

replicates (xvalDapc function in adegenet) to determine the optimal number of principle 

components and discriminant functions to retain. The scaled PCA data with the optimal number 

of axes were ultimately used as input for the RF and t-SNE analyses.  

 Input alignments for VAE (variational autoencoder; Kingma & Welling 2013) were 

generated from PHYLIP-formatted files using a custom python script, phylip2onehotsnps.py. 

VAE was then run via the Python3 script developed by Derkarabetian et al. (2019), with some 

minor modifications (sp_deli_clust_commandline_noClust.py; vae_dbscan.py). Changes 

included the implementation of a training/test data split to assess model performance, an early 

stopping callback to reduce overfitting, support for multiple independent runs to evaluate 
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variability and cluster stability, and the DBSCAN clustering algorithm to determine the optimal 

number of clusters (K) in an unsupervised manner. Modified scripts can be found in a GitHub 

repository: https://github.com/btmartin721/mecr_boxturtle.  

 

2.1.3. Random forest 

A user-specified number of classification/ decision trees (i.e., a “forest”) are created by the 

Random Forest (RF) algorithm (Breiman 2001), and classification trees (N=10,000) are then 

trained with random data subsets from which majority-vote class predictions are made. Nodes 

containing overlapping among-sample distances elevate a “proximity score” that is bootstrapped 

and aggregated (i.e., “bagged”) over all classification trees, with higher proximity scores 

indicating similar individuals. The output proximity matrix was visualized using two 

dimensionality reduction algorithms, classic and isotonic multidimensional scaling (cMDS and 

isoMDS; Shepard et al. 1972; Kruskal & Wish 1978). CMDS utilizes the full dissimilarity matrix 

from the RF classifier, whereas ISOMDS forces a monotonic transformation that only uses the 

ranks from the proximity scores. Thus, CMDS preserves among-sample distances, whereas 

ISOMDS does not. 

 

2.1.4. T-SNE 

Similar to PCA, t-SNE is a dimensionality reduction algorithm (Maaten & Hinton 2008). Rather 

than using proximity scores to generate probability distributions representing similarities 

between samples in multidimensional space, it instead employs non-parametric, non-linear 

algorithms to estimate pairwise distances. It then attempts to minimize differences between high-

dimensional space versus low-dimensional embedding. Samples with low similarity continue to 
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repel each other as each iteration occurs, such that they become diffuse across parameter space. 

t-SNE was run for 20,000 iterations, within which the equilibria of the clusters were visually 

confirmed. Perplexity, which limits the effective number of neighbors, was tested at values 

ranging from 5-50 (incrementing by five), with the initial number of dimensions parameter set to 

five. 

 

2.1.5. Variational autoencoders 

SNPs were first converted from a PHYLIP file to a binary ‘one-hot’ format, from which two 

latent variables representing the sample mean (µ) and standard deviation (σ) can be inferred by 

VAE (as implemented by Derkarabetian et al. 2019). VAE reconstructs the SNP dataset using 

the latent variables and self-trains by minimizing the difference (i.e., model loss) between the 

input and reconstructed datasets. Following training, latent variables are predicted from the full 

dataset and represented in two-dimensional space.  

VAE was run with three encoder and decoder layers, each containing 100 neurons subjected to a 

dropout rate of 0.5 to reduce overfitting. Encoded SNP data was normalized and scaled to reduce 

the impact of stochasticity, with input split into datasets representing 80% training/ 20% 

validation (as is standard with machine learning). Model loss was assessed using an early 

stopping callback function from the scikit-learn Python package (Pedregosa et al. 2011) to 

determine an optimal number of epochs (i.e. cycles through the training dataset). Ideally, this 

should terminate when loss (~error) has converged and is minimized among both the training and 

validation datasets [(i.e. the ‘Goldilocks zone’; Al’Aref et al. 2019) (Fig. S3)]. An escalating loss 

in the validation dataset indicates overfitting. On the other hand, losses that have not yet reached 
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their minimum value suggest model underfitting (i.e. a lack of generalization for both training 

and unseen data). Other parameters were chosen following Derkarabetian et. al. (2019). 
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CHAPTER III 

ClinePlotR: Visualizing genomic clines and detecting outliers in R 

 

ABSTRACT 

Patterns of multi-locus differentiation (i.e., genomic clines) often extend broadly across hybrid 

zones and their quantification can help diagnose how species boundaries are shaped by adaptive 

processes, both intrinsic and extrinsic. In this sense, the transitioning of loci across admixed 

individuals can be contrasted as a function of the genome-wide trend, in turn allowing an 

expansion of clinal theory across a much wider array of biodiversity. However, computational 

tools that serve to interpret and consequently visualize ‘genomic clines’ are limited. Here, we 

introduce the CLINEPLOTR R-package for visualizing genomic clines and detecting outlier loci 

using output generated by two popular software packages, BGC and INTROGRESS. CLINEPLOTR 

bundles both input generation (i.e, filtering datasets and creating specialized file formats) and 

output processing (e.g., MCMC thinning and burn-in) with functions that directly facilitate 

interpretation and hypothesis testing. Tools are also provided for post-hoc analyses that interface 

with external packages such as ENMEVAL and RIDEOGRAM. Our package increases the 

reproducibility and accessibility of genomic cline methods, thus allowing an expanded user base 

and promoting these methods as mechanisms to address diverse evolutionary questions in both 

model and non-model organisms. 
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1. INTRODUCTION 

Patterns of multi-locus differentiation, as distributed across admixture gradients, have long 

provided a window into divergence and speciation (e.g., Barton, 1983; Gompert, Mandeville, & 

Buerkle, 2017). Accordingly, they have been used to map loci associated with adaptation or 

reproductive isolation (Buerkle & Lexer, 2008; Martin et al., 2020), and as indicators of biotic 

responses to environmental change (Chafin, Douglas, Martin, & Douglas, 2019). Rather than 

relating these to patterns in the landscape, contemporary approaches have instead drawn 

conclusions based on genome-wide ancestries (Gompert & Buerkle, 2009; Fitzpatrick, 2013). 

The evolutionary processes that generate ‘genomic clines’ can be illuminated even when 

constituent taxa do not segregate geographically, but rather patchily (Bierne, Gagnaire, & David, 

2013), or as a hybrid mosaic (Chafin et al., 2019).  

 Several programs are available specifically to investigate genomic clines. Of these, BGC 

(GOMPERT & BUERKLE, 2011, 2012) is the most robust to false positives and uses a Bayesian 

approach that accounts for genotype uncertainty (Gompert, Lucas, et al., 2012) and 

autocorrelation caused by physical linkage (Gompert, Parchman, & Buerkle, 2012) in next-

generation sequencing datasets. Although a powerful tool for analyzing hybridization with 

molecular data, it lacks user-friendly output. Researchers must either develop custom scripts or 

build cumbersome, one-off pipelines, neither of which is parsimonious. A more direct approach 

is clearly necessary.  

 Here, we present a comprehensive R-package, CLINEPLOTR, that promotes the genomic 

cline methodology. The package includes functions that facilitate BGC input file generation and 

output visualization and extend the plotting functionality from another genomic cline software 

package, INTROGRESS (GOMPERT & BUERKLE, 2010).  Locus-wise clinal patterns are visualized 
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by accessing a suite of R-methods that interpret them as a function of the genome-wide average, 

genomic position along chromosomes, and in relation to spatial and environmental parameters.  

 

2. DESCRIPTION 

2.1.  Overall package workflow 

The CLINEPLOTR R-package incorporates an introduction to available functions and can be 

installed via provided instructions directly from the GitHub repository 

(github.com/btmartin721/ClinePlotR). CLINEPLOTR includes three primary pipelines, a summary 

of which can be visualized in Figure 1.  

 The workflow for our BGC PIPELINE includes functions to aggregate outputs from multiple 

independent runs, thin MCMC samples, and plot log-likelihood and BGC parameter traces. From 

these, CLINEPLOTR can both identify outlier loci using any of several user-defined options and 

plot locus-wise ancestry probabilities () as a function of the hybrid index (Figure 2). Finally, 

users can examine the locus-wise relationship between cline center () and rate (), with 

polygon hulls included to encapsulate 2D ‘outlier space’ for each parameter (Gauthier et al., 

2020).  

 CLINEPLOTR additionally includes accessory functions that allow an examination of 

variation in clinal parameters across the genome. Although mapping loci to reference assemblies 

is outside the scope of this package, an example of a workflow using MINIMAP2 (Li, 2018) is in 

the documentation. If the user has access to physical SNP (single nucleotide polymorphism) 

coordinates and a closely-related chromosome-level assembly, CLINEPLOTR can integrate these 

data with the RIDEOGRAM package (Hao et al., 2020) to yield karyotype-style ideograms 

annotated with heatmaps for both BGC cline parameters (Figure 3).  
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 Functions are also provided to facilitate an INTROGRESS workflow by generating input 

data frames as well as accessories that embellish the plotting functions already present in 

INTROGRESS. These accessory functions will visualize spatial patterns (e.g., latitude/ longitude) 

and environmental variables that are inherent to genomic clines (Figure 4), to include helper 

functions that invoke ecological niche models (MAXENT: Phillips, Anderson, & Schapire, 2006) 

as generated in the R-package ENMEVAL (Muscarella et al., 2014).  

 

2.2.  Input and file format 

The primary purpose of CLINEPLOTR is to simplify the use of rather cumbersome software 

designed to estimate genomic clines. To facilitate this task, accessory scripts that prepare files for 

input into BGC and INTROGRESS are available in the GitHub repository, with a few variants. For 

example, phylip2bgc.pl script converts a PHYLIP-formatted alignment containing concatenated 

SNPs to the CUSTOM BGC input format. It can also subset populations and/ or individuals from a 

larger alignment. A similar script, phylip2introgress.pl, does likewise with INTROGRESS INPUT. 

Because BGC can additionally consider linkage among loci as well as genotype uncertainty, an 

input script (vcf2bgc.py) that employs the PYVCF Python library (https://pyvcf.readthedocs.io/) 

is also provided as a means to format an IPYRAD (Eaton & Overcast, 2020) VCF file containing 

annotations for physical position and genotype read counts. Finally, an additional script, 

nremover.pl, is provided to comprehensively filter a PHYLIP-formatted SNP file. The program 

includes the capacity to filter by matrix occupancy per individual and per SNP column, and by 

minor allele frequency. It will also remove non-biallelic or monomorphic SNPs, and can 

randomly subsample large datasets.  
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2.3.  Outlier detection for Bayesian genomic clines 

 BGC output (extracted from HDF5 format using BGC’s estpost function) must be named as 

prefix_bgc_stat_param_replicate, where prefix is shared across all independent BGC replicates, 

param is an individual output parameter (e.g., LnL), and replicate is an integer. Outputs from 

any number of replicates can then be parsed, thinned, and combined via the combine_bgc_output 

function in CLINEPLOTR. The combine_bgc_output function provides arguments for the number 

of MCMC samples to be removed as burn-in, and for a sampling frequency with which to thin 

samples. Following BGC run aggregation, the MCMC samples can be visually inspected for 

mixing and convergence using a trace plotting function, plot_traces. Adjustments can then be 

made to thinning or burn-in parameters by re-running the combine_bgc_output function or, if 

necessary, by re-running BGC with altered parameters or increased MCMC length. 

A primary goal of genomic cline analysis is to identify loci that possess either excess 

ancestry or exceptionally steep transitions relative to the genome-wide average. Here, we provide 

the function get_bgc_outliers that offers two outlier detection methods [described in Gompert & 

Buerkle (2011, 2012)]. Briefly, the first simply queries if the credibility intervals for the 

posterior probability distribution of cline parameters α or β (i.e., cline center and rate, 

respectively) exclude the neutral expectation (i.e., α or β = 0). If this interval excludes zero for 

either parameter, a locus can be flagged as either an α-outlier, β-outlier, or both. 

The second method considers if per-locus parameter estimates are statistically unlikely, 

given the distribution of values across all loci. This is accomplished by classifying outliers as 

those for which posterior median α and ß estimates are not encapsulated by the (
𝑛

2
) and (

1−𝑛

2
) 

quantiles from a conditional α and ß prior distribution (Gaussian with a mean of zero), where n 

represents a user-specified threshold (e.g., 95%, 97.5%). Users can choose whether to classify 
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outliers using any combination of the above methods, but all require the zeta and gamma quantile 

estimates from the BGC output. 

We additionally track whether parameter values are significantly positive or negative. 

This indicates either an increase (α > 0) or decrease (α < 0) in the probability of parental 

population ancestry among hybrids for a given locus, or deviation in the rate of transition in 

probabilities of locus-specific ancestries towards either very steep (β > 0) or wide (β < 0) shapes 

(Gompert & Buerkle, 2011). 

 

2.4.  Visualization options 

We attempted to tailor available visualizations in CLINEPLOTR towards common applications of 

Bayesian genomic clines found in the literature, and we will continue to add additional ones as 

need arises. Many applications seek to identify loci subject to various selective processes 

(Parchman et al., 2013) by comparing how ancestries transition among loci with respect to the 

genome wide average. To facilitate this, the phiPlot function computes ijn, the probability of 

parental population1 ancestry for each locus (i) and individual (n) within each admixed 

population (j) [Eqn. 3 and 4; Gompert & Buerkle (2011)]. It then produces a plot of  (per locus) 

on the y-axis against posterior estimates of hybrid index on the x-axis (sensu Gompert et al., 

2012), with a user-specified color scheme that designates statistical outliers (Figure 2). 

Other applications have specifically examined relationships among cline rate and center 

parameters (Gauthier et al., 2020), and we also do so by implementing the alphaBetaPlot 

function. A 2-D density contour plot of α and ß parameters is produced, with values for 

individual loci optionally mapped, and with the potential to calculate and plot polygon hulls that 

encapsulate positive and negative outliers with respect to each parameter (Figure 2).  
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2.5.  Extended functions and helper scripts 

We also provide several additional functions (see Figure 1) that have considerable use cases, 

although some seemingly deviate from the ‘core’ BGC workflow. The first of several can be used 

to map parameter values of BGC clines onto a chromosomal ideogram via the function 

plot_outlier_ideogram (e.g., Figure 3), Here, BGC results are depicted for a case study examining 

hybridization between Woodland (Terrapene carolina carolina) and Three-toed box turtles 

(Terrapene mexicana triunguis) (Martin et al., 2020). However, some external user-steps are 

required to use the function.  

Briefly, we mapped the Terrapene ddRAD sequencing alignment against the available 

Terrapene mexicana triunguis scaffold-level assembly (GenBank Accession: 

GCA_002925995.2). Scaffold coordinates were then converted to chromosome coordinates by 

mapping Terrapene scaffolds against the closely related chromosome-level Trachemys scripta 

assembly [(Simison, Parham, Papenfuss, Lam, & Henderson, 2020); GenBank accession: 

GCA_013100865.1]. This was accomplished by employing MINIMAP2 (Li, 2018) and PAFSCAFF 

(github.com/slimsuite/pafscaff). The output from get_bgc_outliers and PAFSCAFF, plus a GFF 

file read/ parsed via the provided functions parseGFF and join_bgc_gff, were used to plot a 

heatmap of BGC α- and ß-values on an ideogram. Essentially, the ideogram plot (generated using 

the RIDEOGRAM R-package) allows the chromosomal locations of each outlier to be visualized 

(Figure 3). It also provides a distinction between transcriptomic SNPs falling within known 

genes versus loci from surrounding scaffolds. For additional details, a more in-depth tutorial is 

provided at github.com/btmartin721/ClinePlotR.  
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 Other extended functions include a wrapper to simplify running INTROGRESS 

(runIntrogress), and a function that allows genomic clines (Figure 4A) and hybrid indices 

(Figure 4B) from INTROGRESS to be correlated with spatial and environmental variables. To 

access this functionality, one can run clinesXenvironment using the object returned from 

runIntrogress and raster values extracted from each sample locality. Multiple rasters can be 

included (e.g., the 19 BioClim layers; https://worldclim.org/), and users can run the included 

ENMEVAL wrapper functions (runENMeval and summarize_ENMeval) to identify uninformative 

layers that may subsequently be excluded from clinesXenvironment. These latter functions access 

MAXENT using the ENMEVAL pipeline (Muscarella et al., 2014), whereby the most informative 

raster layers are designated with the ‘permutation importance’ statistic. 

 

3. CONCLUSIONS 

Genomic clines are useful for assessing patterns of introgression in hybrid zones. 

Unfortunately, parsing and plotting results from the available genomic cline software can be 

difficult. Given that genomic clines have a variety of applications, to include conservation 

genetics, evolutionary biology, and speciation research, it is clearly important that they be 

accessible for use by researchers. Here, we present an R-package that greatly simplifies the 

parsing of output from available genomic cline software, as well as the production of 

publication-quality figures. Our R-functions are intended to be user-friendly, and to this end 

employ a variety of parameters that can be altered by users to suit specific research needs. 

Furthermore, CLINEPLOTR allows outlier SNPs to be visualized across the genome, while also 

distinguishing known genes and surrounding loci. In addition, the environmental and spatial 

effects on genomic clines can be assayed. This extended functionality enhances the interpretation 
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of genomic clines and provides greater insight into those underlying processes that potentially 

contribute to the observed patterns. Hopefully, future iterations of genomic cline software can act 

to extend chromosomal and environmental associations, particularly as whole genome 

sequencing becomes less expensive and more common. 
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TABLES AND FIGURES 

 

Figure 1: Simplified example workflow listing all available CLINEPLOTR functions. Yellow 

boxes group inter-dependent functions working towards producing one or two particular plots 

(terminal plotting steps depicted as flags). Connecting arrows indicate a pipeline where each step 

is dependent on the returned R objects. The green ‘Run BGC’ diamond identifies BGC as an 

external a priori step for the bgcPlotter and chromosome plot functions. The dotted lines indicate 

optional steps.  
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Figure 2. Example workflow for parsing Bayesian genomic cline (BGC) output, visualizing 

MCMC traces, detecting outliers, and plotting results. The ‘phiPlot’ (right-side, lower right box) 

shows hybrid indices (x-axis) and probability of parental population1 alleles (y-axis), plus a 

histogram of hybrid indices in the admixed population. The ‘alphaBetaPlot’ (left-side, lower 

right box) shows 2-D density of cline width/ rate representing the cline center (i.e., bias in SNP 

ancestry; α; x-axis) and steepness of clines (ß; y-axis). Outliers are additionally encapsulated 

using polygon hulls.  
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Figure 3. Example ideogram plot using Bayesian genomic cline (BGC) outliers for Terrapene 

ddRAD SNPs (y-axis), plotted onto Trachemys scripta chromosomes (x-axis). Chromosomes are 

duplicated, with alternative heatmaps for cline center (α; left) and rate (ß; right). Larger heatmap 

bands correspond to SNPs located within known genes, whereas smaller bands were found in 

unknown scaffolds.  



 

182 
 

 

Figure 4: Example plots that can be made using the INTROGRESS pipeline in CLINEPLOTR. The 

includes climatic variable on the X-axis corresponds to BioClim raster layer 5 

(https://worldclim.org). The gray shading indicates confidence intervals for each regression line. 

(A) Genomic clines for six outlier SNPs mapped to the Terrapene mexicana triunguis 

transcriptome. Transcript IDs correspond to GenBank accession numbers and the position of 

each SNP (in base pairs) on the locus. (B) Hybrid index output from INTROGRESS versus an 

environmental variable. 
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CHAPTER IV 

The impacts of relictual hybridity and primary divergence on phylogeographic patterns in 

Massasauga rattlesnakes (Sistrurus spp.) 

 

ABSTRACT 

Broad geomorphic processes interspersed with climatic fluctuations have not only yielded major 

North American biomes but also driven the phylogenies and phylogeographies of biodiversity so 

contained. Cycles of demographic expansion/contraction reticulate evolution of historical 

biogeography in driving patterns in the Massasauga rattlesnakes (Sistrurus spp.). We utilized 

ddRAD sequencing to sample thousands of genome-wide SNPs necessary to assess demographic 

and phylogeographic patterns at a fine temporal and spatial grain. In so doing, we observed 

paraphyly in the Prairie Massasauga, S. t. tergeminus, with respect to the Desert Massasauga, S. 

t. edwardii, and fine-scale intraspecific structure within S. t. tergeminus and S. t. edwardsii that 

was previously unsupported with single-gene and microsatellite markers. We also detected 

directional re-expansion following a period of secondary contact in the Midwest, which we posit 

is associated with historical fluctuation of the Mississippi River during altithermal Pleistocene 

periods that act in synergy with glacial-interglacial cycles to define alternating periods of 

refugial contact and vicariance. We found hybridization as resulting in the origin of a relictual 

lineage in Missouri lying between the respective eastern and western edges of S. t. tergeminus 

and Eastern Massasauga (S. catenatus) ranges. We also detected contemporary intergradation 

between S. t. tergeminus and S. t. edwardsii in a contact zone in western Texas and eastern New 

Mexico, but with demographic model selection indicating primary divergence. Our results 
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contribute to a broader understanding of the role of historical biogeography in driving 

hybridization and range dynamism and clarify units for management within Sistrurus.   
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1. INTRODUCTION 

Species distributions in North America exhibit widespread dynamism in response to historic 

climate fluctuations that rendered biogeographic barriers into semi-permeable zones of transition 

(Antonelli 2017). Major periods of Quaternary range expansion and contraction (Hewitt 1996, 

1999, 2001) were punctuated by variable temperature regimes largely modulated by glacial 

cycles that varied over time and by region (Clark et al. 1995; Adams et al. 1999). Some species 

were largely displaced by glaciation, followed by retreat into and/or emergence from isolated 

refugia such that complex demographic patterns developed. This process often occurred 

iteratively as the climate waxed and waned, with ample opportunities for secondary contact as 

inhospitable habitat re-opened via brief interglacials (Douglas et al. 2009). Cataloguing biotic 

responses to dramatic climatic change, and contrasting the resulting histories of biodiversity, is 

now much more accessible and interpretable given our capacity to assay the adaptations so 

produced and recorded in genomes of constituent species. This, in turn promotes a predictive 

capacity going forward, particularly with regards to the ongoing (and rapid) changes being 

elicited by the Anthropocene. 

The Eastern United States represents a good example of historic climate change and its 

impacts. Recurring glaciations drove biodiversity southward, forcing previously isolated taxa and 

overlapping refugia to intersect (Swenson & Howard 2005). Vegetation south of the glacial 

maximum consisted primarily of mesic broadleaf forests (Pound et al. 2012) that has remained 

relatively stable since the Miocene (~16-5 million years ago, Mya). Many non-glaciated 

geological features serve as phylogeographic breakpoints, to include Ozark and Appalachian 

mountains, the Apalachicola and Tombigbee rivers, and intermittent oceanic incursions that 
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served to bifurcate the Florida peninsula (Avise et al. 1987; Walker & Avise 1998; Soltis et al. 

2006).  

In contrast, the western U.S. was far less affected by the physical presence of glaciers, 

but rather by climatic oscillations driving drastic changes in precipitation and temperature 

(Axelrod 1948, 1979; Owen et al. 2003; Licciardi et al. 2004). The major river basins therein 

served to segregate biogeography over longer timescales, but with periodic alterations in flow 

and stream captures driving distributional fluctuations (Cole & Armentrout 1979; Trimble 1980; 

Wood et al. 2013; Graham et al. 2015; O’Connell et al. 2017). As a result, speciation in 

southwestern deserts and nearby shortgrass prairies was often driven by environmental 

heterogeneity and ‘soft allopatry’ (i.e., unstable isolation over time provoked by physiographic 

transition zones) (Douglas et al. 2006; Myers et al. 2019). Regional vegetation was driven by 

Plio-Pleistocene fluctuations, with the reemergence of mesic habitat from montane areas and 

highlands during altithermal periods, whereas arid refugia persisted in lowland patches (Axelrod 

1979; Van Devender et al. 1987). These patterns were imprinted upon endemic biota as a result 

of fluctuations in genetic structure as populations ‘tracked’ shifting habitats through time 

(Douglas et al. 2006).  

Finally, the Great Plains is characterized by sparse endemism, which reflects a relatively 

recent formation near the Miocene-Pliocene boundary, as large-scale shifts occurred from 

forested habitat to tallgrass prairie (Axelrod 1985). The Mississippi River basin was a major 

phylogeographic barrier dividing the Great Plains from the eastern deciduous forest (Braun 1950; 

Soltis et al. 2006), with periodic reductions in discharge allowing northeastward dispersal via a 

‘prairie corridor’ (Cook 1993). Deciduous habitat encroached into some areas during the Plio-

Pleistocene, with the re-emergence of prairie habitat during drier periods (Axelrod 1985). 
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However, much of the region lacks elevation such that post-glacial vegetation remained 

relatively continuous from west of the Mississippi to northwest Texas, where the habitat 

transitions into xeric shrubland (Greene & Oliver 1965; Wells 1970).  

 Regional biogeography is often reflected in distributions and divergences of species 

therein (Avise 2000; Soltis et al. 2006). Likewise, contact zones are often elicited by common 

barriers and climatic processes, and as such, serve as reservoirs for genetic transitions, 

intergradations, and hybridizations (Anderson 1949; Remington 1968). The hybrid zones form 

via a range of scenarios, to include secondary contact via glacially-induced range contractions 

and expansions (Hewitt 1996, 1999), and porous species boundaries as a product of  

interdigitated habitats (Rhymer & Simberloff 1996). As such, they are rather ubiquitous and are 

manifested in all three continental regions (Remington 1968; Swenson & Howard 2005), 

although with distinctly different origins and variable genomic consequences (Martin et al. 

2020). Herein we examine the historic biogeography its genomic corollaries in a group of viperid 

snakes that span all three regions. 

 

1.1.  Study species - Sistrurus 

The Massasauga and Pygmy rattlesnakes (Viperidae: Crotalinae: Sistrurus; Garman 1883) form a 

sister clade respective to the remaining North American crotalids, Crotalus and Agkistrodon 

(Murphy et al. 2002). Sistrurus inhabit much of the eastern United States, the Great Plains from 

Iowa to southernmost Texas, and the shortgrass prairie in central Texas, New Mexico, and 

southeastern Arizona (Fig. 1). It contains three currently recognized species: Eastern (S. 

catenatus) and Western (S. tergeminus) Massasaugas, and the Pygmy rattlesnake (S. miliarius). 
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Sistrurus catenatus is monotypic, whereas S. miliarius and S. tergeminus include subspecies: The 

Carolina (S. m. miliarius), Dusky (S. m. barbouri), and Western Pygmy (S. m. streckeri) 

rattlesnakes, and the Prairie (S. t. tergeminus) and Desert (S. t. edwardsii) massasaugas. The 

latter two are of interest as they contain several highly disjunct populations in Missouri, 

Colorado, New Mexico, and southeastern Arizona (Greene 1997). Herein our focus is on S. 

catenatus and S. tergeminus sensu lato. 

Sistrurus catenatus typically inhabit mesic areas that include upland pastures and 

agricultural areas, open grasslands, coniferous and deciduous forests, lowland swampy areas, and 

edge habitat (Wright 1941; Reinert & Kodrich 1982; Weatherhead & Prior 1992; Johnson 2000; 

Harvey & Weatherhead 2006). The spatial ecology of S. t. tergeminus is far less studied but is 

characterized by tallgrass prairie, adjacent woodlands, and their edge habitats (Patten et al. 

2016). In contrast, S. t. edwardsii occupies xeric shortgrass prairie and sandhills (Hobert et al. 

2004; Wastell & Mackessy 2011). All three exhibit marked seasonal habitat preferences, with S. 

catenatus (Harvey & Weatherhead 2006) and S. t. tergeminus (Patten et al. 2016) preferring 

open summer habitats and forested winter hibernacula. Similarly, S. t. edwardsii overwinters in 

lowland shortgrass prairie with summers in upland sandhills (Wastell & Mackessy 2011, 2016). 

As such, S. t. edwardsii displays starkly different habitat preferences than do S. catenatus and S. 

t. tergeminus.  

 Sistrurus catenatus is recognized as threatened in multiple midwestern and northeastern 

U.S. states and Canadian provinces (Szymanski et al. 2016), as well as via the U.S. Endangered 

Species Act (ESA). While not federally-listed, S. tergeminus is considered Vulnerable, whereas 

S. t. tergeminus is Critically Imperiled in Nebraska and Iowa, and Vulnerable in Kansas and 
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Texas (NatureServe 2021). Sistrurus t. edwardsii is a Vulnerable Subspecies that is Critically 

Imperiled in Arizona, Imperiled in Colorado, and Vulnerable in Texas and New Mexico.  

Anthropogenically-induced habitat loss and fragmentation, road-based mortality, and 

prescribed fires have been the impetus for overall conservation status (Szymanski 1998; 

Szymanski et al. 2016), although fragmented habitat prior to anthropogenic impacts is also 

acknowledged (Chiucchi & Gibbs 2010; Sovic et al. 2019; Ochoa et al. 2020). Nevertheless, 

small effective population sizes and population bottlenecks in S. catenatus are consistent with 

anthropogenic timescales (Sovic et al. 2019). Sistrurus t. edwardsii has also experienced 

desertification and a loss of shortgrass prairie habitat, with several populations in New Mexico, 

Arizona, and Colorado now disjunct (Greene 1997; Samson et al. 2004). Despite this, and in 

contrast to S. catenatus, genetic diversity has been seemingly retained (Anderson et al. 2009). In 

addition the southeastern Colorado population may also be relatively large, despite being highly 

isolated (Mackessy 2005; Wastell & Mackessy 2011). In comparison, Great Plains S. t. 

tergeminus also displays stable population sizes, but with less habitat fragmentation than the 

other taxa (McCluskey & Bender 2015). 

Recent phylogenetic assessments (e.g., Kubatko et al. 2011) indicate S. catenatus as 

being monophyletic and S. t. tergeminus as paraphyletic with respect to S. t. edwardsii. Other 

studies also documented population structure within both S. catenatus (Chiucchi & Gibbs 2010; 

Sovic et al. 2016) and S. t. edwardsii (Anderson et al. 2009). However, while the only study to 

date that included both S. t. edwardsii and S. t. tergeminus did observe regional population 

structure, it spanned subspecific boundaries (Ryberg et al. 2015). Therein, S. t. tergeminus-only 

populations occurred in Missouri and Oklahoma, S. t. edwardsii-only were in New Mexico west 

of the Pecos River/ Arizona and the southern tip of Texas, and subspecies-transcending structure 
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was found in Oklahoma/ western Texas/ eastern New Mexico and Colorado/ Kansas. Notably, 

the Missouri and western Texas/ eastern New Mexico populations may also overlie contact zones 

(Minton 1983), although these may involve different chronologies.  

 Hybridization in Missouri Sistrurus is controversial, in that individuals in transitional 

habitat were morphologically identified as intermediate between S. catenatus and S. t. 

tergeminus (Evans & Gloyd 1948). However, two recent genetic studies identified these 

individuals as pure S. t. tergeminus (Gerard et al. 2011; Gibbs et al. 2011). However, in 

neighboring Iowa where individuals are also disjunct from the larger S. tergeminus and S. 

catenatus populations (as in Missouri), introgression between the two subspecies has been 

identified (Sovic et al. 2016). Given the contemporary isolation of this Iowa population, it is 

assumed the introgression is historical in nature.  

In addition, there is anecdotal evidence for potential admixture between the two S. 

tergeminus subspecies, given the presence of intermediate habitat in the contact zone separating 

western Texas/ eastern New Mexico. Few studies have assessed genetic population structure in 

S. tergeminus ssp., and those that have employed only single-gene markers and/ or 

microsatellites. The utilization of next generation sequencing (NGS) may elucidate fine-scale 

population structure and admixture in these clades and allow a much closer examination of their 

phylogeography. Herein, we do so by performing double digest RAD sequencing (ddRADseq) to 

ascertain a large-scale single nucleotide polymorphism (SNP) dataset with strong sampling 

across a broad geographic range.  
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2. METHODS 

2.1.  Study system, tissue collection, and DNA extraction 

We acquired a wide geographic sampling of Sistrurus (Fig. 1), to include every recognized 

species and subspecies across the majority of states within which they occur. Additional 

sampling was focused on three disjunct Missouri populations, as well as a contact zone located in 

the southwestern United States. Blood and skin sheds were either collected or provided by 

colleagues, volunteers, museums, and agencies (Table S1), with genomic DNA extracted upon 

receipt using PureGene® or DNeasy Blood and Tissue Kits (Qiagen) and subsequent storage at -

20⁰C. DNA quantification was performed with broad-range DNA fluorometry (Qubit; Thermo 

Fisher Scientific), with each sample subsequently tested for high molecular weight DNA via 2% 

agarose gel electrophoresis. 

 

2.2.  Library preparation and bioinformatics 

Genomic DNA (~500-1,000ng) was digested at 37⁰C using PstI (5’-CTGCA|G-3’) and MspI 

(5’-C|CGG-3’). Another 2% agarose gel electrophoresis was run to confirm fragmentation of the 

genomic DNA, followed by a 1.5X AMPure XP (Beckman Coulter) purification. DNA was then 

standardized to 100ng, ligated with unique barcoded adapters and pooled into 48-individual 

libraries. Following ligation, a size-selection of 323-423bp was performed using a Pippin Prep 

(Sage Science), followed by a 12-cycle polymerase chain reaction (PCR) using high-fidelity 

Phusion DNA Polymerase (New England BioLabs). DNA amplification was confirmed using 

Qubit fluorometry, and quality control steps (qPCR and fragment visualization) were performed 

at the Genomics and Cell Characterization Core Facility (University of Oregon/Eugene). Three 
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libraries (N=144 individuals each) were pooled per lane of 1x100 single-end ddRADseq on an 

Illumina Hi-Seq 4000. 

 Sequence quality was first assessed (FASTQC v0.11.5) and raw reads subsequently 

demultiplexed, clustered, and aligned (IPYRAD v0.7.30; Eaton & Overcast 2020). We removed 

barcodes and adapters and assembled our alignments de novo with a minimum coverage depth 

requirement of ≥20 reads/ fragment, and a 50% missing data threshold. Sites with >75% 

heterozygosity were removed as potential paralogs, and the last five bases trimmed from each 

locus to mitigate potential sequencing error due to primer degradation. Various clustering 

thresholds, ranging from 70% to 97%, were tested and the optimal threshold determined 

(CLUSTOPT; McCartney-Melstad et al. 2019) via R v3.6.3 (R Development Core Team 2018). In 

doing so, we evaluated multiple clustering thresholds using three metrics: 1) Cumulative 

variance [principal component analysis (PCA)], 2) Pearson’s correlation coefficients between 

genetic distance versus percent missing data, and 3) isolation-by-distance (IBD). The optimal 

threshold is interpreted as the inflection point in the resulting slopes. Finally, to remove poorly 

sequenced individuals (>90% missing data), a post-hoc filtering of alignments was applied via a 

custom script (nremover.pl; github.com/tkchafin/scripts). 

 

2.3.  Phylogenomic analysis of Sistrurus 

We first inferred a maximum-likelihood phylogenomic tree for Sistrurus (IQ-TREE v2.0.6; Minh 

et al. 2020), using the edge-linked partition model (Chernomor et al. 2016) with sister genera 

Crotalus and Agkistrodon as outgroups. Loci without parsimoniously informative sites were 

removed and the remaining full loci were concatenated into a NEXUS file containing a per-locus 
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partition block, as executed via three custom scripts [filterLoci.py, concatenateNexus.py, and 

filterUninformative.py (github.com/tkchafin/scripts, and github.com/btmartin721/ddrad_scripts)]. 

Those partitions (=ddRAD loci) exhibiting overlapping substitution models were merged using 

the fast-relaxed clustering method (‘--rclusterf’ option), with the top 10% of clusters considered, 

and the optimal nucleotide substitution model for each super-partition selected (MODELFINDER; 

Kalyaanamoorthy et al. 2017). A consensus tree was then constructed from the merged 

partitions, 1,000 ultrafast bootstrap (=UFBOOT) replicates (Hoang et al. 2017), and the ‘--bnni’ 

and ‘--safe’ options that mitigated overestimation of UFBOOT-support and prevented numerical 

underflow, respectively. 

 

2.4.  Divergence dating 

We estimated divergence times from the IQ-TREE species tree using the LSD2 (least square 

dating v2) approach (IQ-TREE v2.1.2; To et al. 2016). Molecular clock calibrations included 

fossil-based minimum/ maximum age constraints for four nodes, with lower bounds supplied for 

the MRCA (most recent common ancestor). These are: the Sistrurus genus [(9.0 Mya) (Parmley 

& Holman 2007)], Agkistrodon contortrix + A. piscivorous [(4.5 Mya) (Holman 2000; Guiher & 

Burbrink 2008; Douglas et al. 2009)], Crotalus + Sistrurus [(15.5 Mya) (Parmley & Holman 

2007)], and Agkistrodon + Crotalus [(7.0 Mya) (Douglas et al. 2006, 2009)]. A maximum root 

constraint of 22.0 Mya represented the earliest known pitviper fossil (Holman 2000; Parmley & 

Holman 2007; Douglas et al. 2009). To calculate confidence intervals for the divergence times, 

LSD2 was run on 1,000 bootstrapped trees with branch lengths simulated from a relaxed-clock 

Poisson distribution. The resulting phylogeny was then plotted [R packages: PHYTOOLS (Revell 

2012); GGTREE (Yu et al. 2017)].  
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2.5.  Phylogeographic signal within Sistrurus 

We explored our time-calibrated phylogenetic signal using a Brownian motion evolutionary 

model corresponding to the observed spatial signal (PICANTE R package; Kembel et al. 2010). 

Phylogenetic signal was tested using the multiPhylosignal function for all combinations of 

adjacent Massasauga taxa (i.e., S. catenatus, S. t. tergeminus, and S. t. edwardsii, plus the whole 

tree). Signal was significantly influenced by latitude and longitude when the K-statistic 

(Blomberg et al. 2003) was >1.0 and the phylogenetic signal non-random and greater than 

expected (P < 0.05). 

 We also estimated the distance of each phylogeny tip from the most ancestral node per 

subspecies (PALEOTREE R package; Bapst 2012). Here, the time-calibrated IQ-TREE phylogram 

was input into the dateNodes function, and the number of tips that occur between the current one 

and the root of the clade was calculated. Nodal distances were standardized as proportions to 

account for differences in clade depth.  

 

2.6.  Admixture and population structure 

We assessed population structure and admixture [ADMIXTURE v1.3.0 (Alexander & Lange 2011) 

via ADMIXPIPE (Mussmann et al. 2020)]. Sites that were either monomorphic or had a minor 

allele frequency <1% were a priori removed from the unlinked IPYRAD SNP output (Linck & 

Battey 2019) using ADMIXPIPE filtering options. We ran ADMIXTURE for K=1-10 clusters with 20 

replicates per K and 20-fold cross-validation (CV). Optimal K represented the lowest CV score 

and the ADMIXTURE results were visualized as stacked bar-plots (ADMIXPIPE scripts cvSum.py 

and distructRerun.py). ADMIXTURE proportions were plotted as pie charts on a range map of 
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Sistrurus so as to visualize spatial distributions of derived clusters (QGIS v3.16; QGIS 

Development Team 2009). 

 

2.7.  Tests of hybridization and deep-time reticulation 

We also evaluated if our observed admixture was statistically supported [4-taxon D-statistic 

(Green et al. 2010; Durand et al. 2011) via COMP-D (Mussmann et al. 2019)]. As with 

ADMIXTURE, singletons and monomorphic sites were removed. We employed a custom script to 

generate the input COMP-D files (makeCompD.py; https://github.com/tkchafin/makeCompD). 

The MPI (message passing interface) version of COMP-D was run with 1,000 bootstrap replicates 

and heterozygous sites included (‘--hinclude’ option). Benjamini and Yekutieli (B-Y) corrections 

were independently applied to adjust P-values for multiple comparisons (Bonferroni 1936; 

Benjamini & Yekutieli 2001). Positive D-statistic tests were then summarized per individual and 

population. 

We inferred phylogenetic networks and computed ancestry components (SNAQ method 

in PHYLONETWORKS; Solís-Lemus & Ané 2016; Solís-Lemus et al. 2017)as a means to refine 

hypothesized reticulations previously identified using ADMIXTURE and the D-statistic. We first 

computed locus-wise concordance factors (CFs) as our input, using a Bayesian concordance 

analysis (BUCKy; Larget et al. 2010), run in parallel across quartets (TICR pipeline; Stenz et al. 

2015). Given the computational overhead imposed by network inference, we computed our CFs 

across a reduced dataset of 3,988 loci, chosen as a subset of non-monomorphic loci containing at 

least five parsimony-informative sites, and for which at least a single diploid genotype could be 

sampled per targeted tip. To maximize the number of loci employed, we reduced taxa to eight 
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sampled tips, to include the major taxa and intraspecific clades identified in earlier analyses. 

Posterior distributions were generated for each gene-tree (MRBAYES v3.2.6; Ronquist et al. 

2012) with 4 independent chains each and 100,000,000 iterations, 50% of which were discarded 

as burn-in, with sampling every 10,000 generations so as to reduce autocorrelation among 

samples. Quartet concordance factors (CFs) were then run across all possible four-taxon 

combinations, using a chain length of 10,000,000 with 50% burn-in. As input to 

PHYLONETWORKS, a starting tree was first generated (QUARTETMAXCUT; Snir & Rao 2012), 

followed by network estimation under models of 0-6 hybrid nodes (h). Models were evaluated 

using 100 independent replicates each, with the best-fit model maximizing first-order change in 

pseudo-likelihood (ΔL).  

 To corroborate our PHYLONETWORKS analysis, we also estimated admixture edges (m) 

along a maximum-likelihood phylogeny [TREEMIX v1.1 (Pickrell & Pritchard 2012) via the 

IPYRAD analysis toolkit (Eaton & Overcast 2020)]. The input SNP alignment was randomly 

subsampled to one SNP per ddRAD locus, replicated nine times. Optimal m was determined for 

each subsample replicate by observing the inflection point of the log-likelihood scores, using 

1,000 bootstrap replicates and the more thorough ‘global’ search option. 

 

2.8.  Demographic modeling using GADMA 

We assessed the pattern of introgression events in Missouri Sistrurus by employing demographic 

modeling [(MOMENTS; Jouganous et al. 2017) via the GADMA pipeline (Noskova et al. 2020)]. 

A joint site-frequency spectrum (jSFS) was applied to user-defined demographic models so as to 

estimate the size (NE), divergence time (τ), and migration (m) parameters of each population. an 
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iterative MOMENTS model search was automated in GADMA to select the optimal model per the 

Akaike Information Criterion (AIC). Model search terminates when log-likelihood values fail to 

improve over 100 genetic algorithm iterations. GADMA then further optimizes the parameters of 

the selected model using local optimization searches in MOMENTS.  

Two GADMA runs were conducted. First, the Sistrurus alignment was subset to three 

populations (the maximum allowed). These were: Sistrurus t. tergeminus from Missouri 

(=TEMO), S. t. tergeminus from all other localities (=TERG), and S. catenatus (=CAT). Second, 

GADMA was run with S. t. tergeminus and S. t. edwardsii. Sites in each input alignment were 

filtered to a minimum of 50% site-wise coverage in any given population, and SNPs thinned to 

one random bi-allelic per ddRAD locus. This random selection was then repeated 100 times to 

provide non-parametric bootstrap replicates for estimating GADMA parameter confidence 

intervals (easySFS.py script; https://github.com/isaacovercast/easySFS). Alleles in each resulting 

SFS were down-projected (easySFS.py) to yield counts that maximized the number of 

segregating sites (per the MOMENTS manual). The GADMA model search was permitted to 

explore up to two divergence times prior to and subsequent to each population split. GADMA 

requires the population size of the reference population (Nref) as a means of scaling the moments 

parameters in actual time (years), rather than genetic units. This was calculated as: 

𝑁𝑟𝑒𝑓 =  
𝜃

𝜃0
 =  

4 ×  𝑁𝑒 ×  𝑢 ×  𝐿

4 ×  µ ×  𝐿
, 

where Ne is the effective population size, µ is the mutation rate per generation and L is the 

effective sequence length after filtering. The effective sequence length was calculated as: 

𝐿 =  
𝑡𝑜𝑡𝑎𝑙 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑑 ×  𝑆𝑁𝑃𝑠 𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑 𝑓𝑜𝑟 𝑢𝑠𝑒 𝑖𝑛 𝑚𝑜𝑚𝑒𝑛𝑡𝑠 

𝑡𝑜𝑡𝑎𝑙 𝑆𝑁𝑃𝑠 𝑖𝑛 𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑑 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒
. 
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To calculate a mutation rate [per Gutenkunst et al. (2009) and the GADMA manual], we first 

derived the following: Average sequence divergence (Dxy) from the input alignment (DNASP 

v6.12.03; Rozas et al. 2017), a Sistrurus generation time (G) of ~4.0 years (Sovic et al. 2016), 

and a divergence time for S. catenatus X S. t. tergeminus, as estimated from the time-calibrated 

phylogeny. Given these, we then calculated the mutation rate as: 

µ =  
𝐷𝑥𝑦 ×  𝐺 

2 × 𝜏
, 

 

3. RESULTS 

3.1.  Data assembly and filtering 

The IPYRAD clustering threshold was set to 0.82 to maintain a weak correlation (r ≤ 0.3) between 

genetic distance and percent missing data in the alignment (Fig. S1A). IBD and the cumulative 

variance from PCA were largely unaffected by clustering thresholds (Figs. S1B, S1C). The final 

IPYRAD alignment included 49,879 parsimoniously informative sites across 10,190 ddRAD loci 

from 226 Sistrurus individuals (Fig. 1; Table S2). 

 

3.2.  Phylogeographic and demographic analyses 

The ML phylogeny found reciprocal monophyly for S. miliarius, S. catenatus, and S. t. 

tergeminus + S. t. edwardsii. However, S. t. tergeminus was paraphyletic with respect to S. t. 

edwardsii (Figs. 2A, 3). The S. tergeminus clade was largely pectinate from the northeast to the 

southwest, with the most ancestral individuals in Missouri and the most derived in Texas and 

New Mexico. This longitudinal signal was statistically corroborated (PICANTE; P=0.001), with 
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the K-statistic >1.0 for all but the whole-tree analysis. The longitudinal signal in the analysis was 

consistently higher than latitudinal (Table 1), except when S. t. edwardsii was independently 

considered. Finally, PALEOTREE indicated disparate directional patterns of increasingly derived 

lineages (Fig. 2B), with S. catenatus extending northeast and S. tergiminus southwest. 

Individuals with the least nodal distance to the root node in S. t. tergeminus and S. t. edwardsii 

were in Kansas/ Missouri/ Iowa, and Texas/ New Mexico. 

The Midwestern GADMA SFS was down projected to yield 30 x 30 x 28 alleles for S. 

catenatus, S. t. tergeminus (Missouri), and all other S. t. tergeminus (hereafter referred to as the 

‘CAT x TERG x TEMO’ model). Southwestern S. t. edwardsii/ S. t. tergeminus (‘ED X TERG’ 

model) were down projected to 40 x 56 alleles. The optimal demographic model for CAT x 

TERG x TEMO included a post-divergence period of weak migration followed by considerable 

recent migration within the last 7 Kya (Figs. 4A, 4B). Every supported migration edge and 

population bottleneck involved S. catenatus and S. t. tergeminus (Missouri). In contrast, a strong 

continuous migration since divergence was found in ED x TERG, as well as a recent (<7 Kya) S. 

t. edwardsii population expansion (Figs. 4C, 4D). 

 

3.3.  Hybridization in two North American contact zones 

The CV scores from ADMIXTURE (Fig. S2) suggested an optimal K=5, with K=4 reasonably 

close. The five identified clusters included S. catenatus and two populations for each of S. t. 

tergeminus and S. t. edwardsii (Fig. 2C). The two S. t. tergeminus populations were generally 

(albeit porously) geographically localized along a gradient from Northwest (darker blue shade 

primarily in northcentral MO/ eastern Kansas/ southeastern Nebraska) to Southwest (lighter blue 
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in Kansas/ Texas/ Oklahoma/ New Mexico) clusters (Figs. 2C, 2D). The dark blue population 

also aligns with the point-of-origin from PALEOTREE analysis (Fig. 2B). Similarly, S. t. edwardsii 

was partitioned into Texas/ New Mexico/ Arizona (darker red) and Colorado (lighter red) 

populations (Figs. 2C, 2D). Admixture across species/ subspecies was localized regionally in the 

midwestern and southwestern contact zones. Results from the K=4 admixture analysis (Fig. S3) 

were very similar, with the exception that S. t. edwardsii (CO) did not represent its own cluster 

but instead displayed ~50% ancestry between southern S. t. tergeminus and S. t. edwardsii. 

 The four-taxon D-statistic tests only supported introgression between S. t. tergeminus 

(MO) and S. catenatus (Figs. 5A, 5B, 6), with significant tests negligible among southwestern S. 

t. tergeminus and S. t. edwardsii (Fig. S4). Results from PHYLONETWORKS and TREEMIX agreed 

(Fig. 6), with a single admixture edge (Fig. S5) between S. t. tergeminus (MO) + S. catenatus. 

The ancestry proportions (α) from PHYLONETWORKS assigned S. t. tergeminus (MO) as 33.8% S. 

catenatus. TREEMIX results differed slightly from D-statistics and PHYLONETWORKS by only 

connecting S. catenatus (IA) to S. t. tergeminus (MO), whereas the latter two did so with all S. 

catenatus. 

 

4. DISCUSSION 

4.1.  Population structure in Sistrurus tergeminus 

Kubatko et al. (2011) identified S. catenatus as being monophyletic, and S. t. tergeminus 

paraphyletic with respect to S. t. edwardsii. They also partitioned S. t. tergeminus into MO and 

KS clades, with the latter sister to S. t. edwardsii. Our ADMIXTURE results broadened and 

extended their findings by recognizing northeastern (Missouri/ eastern Kansas) and southwestern 
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(south-central Kansas/ Nebraska/ Oklahoma/ Texas) populations of S. t. tergeminus (Figs. 2C, 

2D). Although reproductive boundaries between the two populations are seemingly porous, their 

primary separation corresponds to the Arkansas River, a barrier likewise significant in other 

studies (Fontanella et al. 2008; Ruane et al. 2014; Herman & Bouzat 2016). Differentiation of 

central Texas and Oklahoma has also been previously observed (Ryberg et al. 2015), with our 

results again in agreement. Our ADMIXTURE results also delineated two S. t. edwardsii 

populations in Texas/ New Mexico/ Arizona and Colorado, in concordance with their topograpic 

separation. The initial separation of northern and southern S. t. edwardii populations may have 

been due to the occurrence of glaciation within the southern Rocky Mountains (Hafner & 

Sullivan 1995; Arbogast et al. 2001).  

However, our results also contrast with previous studies that found minimal structure 

within S. t. tergeminus (McCluskey & Bender 2015) or failed to support subspecific boundaries 

(Ryberg et al. 2015). The former study was geographically constrained to KS and MO, and thus 

may have missed the southern population. Additionally, both studies were based on 

microsatellite or mitochondrial DNA/ introns, and thus had a reduced capacity to discriminate 

relative to our large SNP dataset (Rašić et al. 2014; Vendrami et al. 2017), particularly given the 

complications introduced by admixture (Haasl & Payseur 2011).  

 

4.2.  Hybridization and phylogeography in Sistrurus tergeminus and S. catenatus 

We demonstrated that admixture occurred regionally in two contact zones, although contrasting 

evolutionary processes may be involved. In Missouri, 22/24 S. t. tergeminus (92%) were 

identified as hybrids, with the network analysis attributing 33.8% ancestry to S. catenatus. Our 
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results concur with a previous morphological assessment that portrayed these Missouri 

populations as intermediate (Evans & Gloyd 1948), yet contradict more recent molecular studies 

utilizing microsatellites and nuclear introns (Gerard et al. 2011; Gibbs et al. 2011). Given that 

the Missouri populations are disjunct from the larger (and contiguous) populations of S. 

catenatus and S. t. tergeminus, the introgression would seemingly be defined as both historical 

and discontinued. In this sense, SNP data have greater capacity to discern evolutionary and 

demographic processes that have occurred at deeper time scales (Morin et al. 2004; Haasl & 

Payseur 2011; Lee et al. 2018; Camacho‐Sanchez et al. 2020; Chafin et al. 2021). 

GADMA further supported periods of intermittent secondary contact and isolation, likely 

due to glacial cycles and the vicariant barrier created by the Mississippi or Missouri River 

(Szymanski 1998; Sovic et al. 2016). Indeed, the Mississippi River has impacted 

phylogeographic patterns in other viperid snakes, such as Agkistrodon (Douglas et al. 2009) as 

well as Iowa Sistrurus (Sovic et al. 2016) where demographic modeling supported secondary 

contact consistent with our GADMA analysis, and at similarly-estimated times (11 versus 7 Kya) 

(Figs. 4A, 4B) with both models.  

Secondary contact and northeastern expansion in S. catenatus (Fig. 2B; Table 1) may 

stem from periodic vicariance. Likely candidates include the Mississippi and Missouri Rivers, 

which saw drastic increases in glacial discharge from the Appalachian and Rocky Mountains 

during late Miocene [(~4 Mya) (Bentley Sr et al. 2016)]. Furthermore, the late Miocene/ early 

Pliocene transition is consistent with the estimated divergence time between S. catenatus and S. 

t. tergeminus (~4.86 Mya; 95% CI=4.09 – 6.25 Mya). The earliest known fossils attributable to 

S. catenatus or S. tergeminus date to the Pliocene in Kansas, Texas, and Nebraska, whereas the 

earliest identifiable Sistrurus dates to the Miocene (~9 Mya) in Nebraska. It is likely the MRCA 
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to S. catenatus/ S. tergeminus originated in the Great Plains and dispersed both northeastward 

and southwestward, per our PALEOTREE results. However, northeastern S. catenatus could 

alternatively reflect newer, post-glacial populations that expanded from refugia. The more 

‘ancestral’ S. t. tergeminus lineages are Missouri and Iowa, in agreement with the fossil record 

(Holman 2000; Parmley & Holman 2007). 

 It is also possible that the observed introgression in Missouri individuals has yielded 

artificially short nodal-root distances (Bangs et al. 2018). A similar pattern is found in S. t. 

edwardsii where individuals with short nodal distances in Texas/ New Mexico may represent 

artifacts of recent admixture in the southwestern contact zone. Although admixture seemingly 

affects diversification patterns in PALEOTREE, eastern Kansas does not contain admixed 

individuals and may thus represents the origin of both northeastern and southwestern 

diversifications, a prospect consistent with the fossil record. 

 Despite ADMIXTURE results depicting mixed ancestry in the southwestern contact zone, 

our D-statistics, PHYLONETWORKS, or TREEMIX results failed to statistically support 

introgression between S. t. tergeminus and S. t. edwardsii (Fig. 6). The paraphyletic relationship 

of the two S. tergeminus subspecies and their more recent divergence time may indicate ongoing 

primary divergence. Our GADMA analyses concur (Figs. 4C, 4D), with strong, persistent 

migration occurring since divergence. The southwestern contact zone seemingly lacks an 

apparent vicariant barrier (Kubatko et al. 2011), and this would conform with ongoing primary 

divergence. 

Distinct ecological and physiological differences between S. t. tergeminus and S. t. 

edwardsii may also contribute towards divergence. For example, S. t. edwardsii prefers 

ectothermic prey (Holycross & Mackessy 2002) and is found in xeric grasslands and dunes 
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(Hammerson 1999; Stebbins 2003; Degenhardt et al. 2005; Wastell & Mackessy 2011, 2016), 

whereas S. t. tergeminus prefers mammalian prey (Holycross & Mackessy 2002) and mesic 

prairies and grasslands (Seigel 1986). These differences are reinforced by ecological niche 

modeling (Wooten & Gibbs 2012), with temperature and precipitation regimes delineating the 

two subspecies. They also differ in venom composition which may also support their dietary 

preferences (Sanz et al. 2006; Gibbs & Mackessy 2009; but see Gibbs et al. 2013).  

 Our more recent divergence estimated for S. t. tergeminus and S. t. edwardsii (1.44 Mya; 

95% CI=1.26-1.73 Mya) coincides with the Pliocene-Pleistocene transition (~1.5-2.0 Mya). The 

southwestern United States has undergone many climate and vegetational fluctuations since 

(Savage 1960; Findley 1969; Morafka 1977; Axelrod 1983), oscillating between aridification/ 

increasing xeric shrub vegetation (Axelrod 1979; Wilson & Pitts 2010) versus cooler climates 

and mesic habitat more suitable for S. t. tergeminus (MacKay & Elias 1992; Pendall et al. 1999; 

Holycross 2002; Holmgren et al. 2003; Wilson & Pitts 2010). The region also seemingly arrived 

at its current state ~8-4 Kya (Van Devender 1977; MacKay & Elias 1992; Hunter et al. 2001; 

Holmgren et al. 2003), and is consistent with population expansion from ~7 Kya, as modeled by 

GADMA (Fig. 4). Moreover, mesic versus xeric habitat fluctuation may have contributed to a 

gradual divergence by promoting long-term mosaic zones of contact between the two S. 

tergeminus ecotypes. A contemporary example that may resemble Pleistocene conditions can be 

seen in northwestern Texas, where intermediate habitat forms a contact zone that spans 

numerous taxa (Swenson & Howard 2005). We cannot confirm if S. tergeminus was present in 

the southwest at end-of-Pliocene, or if it gradually encroached afterwards, given a weak fossil 

record (Holman 2000; Parmley & Holman 2007). Nevertheless, our observed diversification 
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patterns and a recent but highly labile habitat suggest a strong ecological component to 

divergence.  

 

4.3.  Conservation implications 

Our analyses clearly delineate S. catenatus and S. tergeminus and support previous assessments 

of genetic diversity. First, GADMA showed a population bottleneck in S. catenatus consistent 

with recent estimates of small effective population size (Sovic et al. 2019; Ochoa et al. 2020), 

and with major contributing factors to their decline being habitat fragmentation and loss 

(Szymanski et al. 2016). Second, the higher genetic diversity found in S. t. tergeminus and S. t. 

edwardsii also supports other recent studies, with each having greater effective population size 

compared to S. catenatus (Sovic et al. 2016) and recent population growth (Anderson et al. 

2009). The S. t. tergeminus habitat in at least parts of its range is less affected by anthropogenic 

fragmentation (Greene 1997; Szymanski 1998; McCluskey & Bender 2015), although previously 

undescribed population structure (herein) warrants further investigation.  

Our analyses also identified population structure within S. t. edwardsii, as an addendum 

to previous research (e.g., Anderson et al. 2009), but with the recognition that population 

structure also transcended subspecific boundaries (Ryberg et al. 2015). Although S. t. edwardsii 

has elevated genetic diversity, its habitat is either disappearing or being seriously fragmented 

(Lowe et al. 1986; Greene 1997; Werler & Dixon 2010), which in turn implies an impending 

‘drift debt’ (per S. catenatus; Ochoa et al. 2020) that stems from the time lag between habitat 

fragmentation/ loss and a decline in genetic diversity. Given the observed genetic differentiation 

as well as the aforementioned ecological and physiological disparities, we posit that S. t. 
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tergeminus and S. t. edwardsii should be recognized as evolutionarily significant units (ESUs). 

The population structure within each also reflects a cryptic genetic diversity potentially 

warranting consideration as management units (MUs). 

 

4.4.  Conclusions 

Herein, we have expanded upon and contextualized the population structure and phylogeography 

of S. catenatus and S. tergeminus ssp. In doing so, we demonstrate these taxa have a more 

complex and diversified evolutionary history than previously understood. In the northeastern S. 

tergeminus range, speciation has been strongly influenced by vicariant barriers and secondary 

contact, whereas a primary divergence event may be currently underway in the southwest, as 

facilitated by ecological differences and a habitat whose availability has fluctuated since 

Pliocene.  
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TABLES AND FIGURES 

Table 1: PICANTE analysis assessing spatial signals along a time-calibrated phylogeny (Fig. 3). 

Included Taxa Trait K-statistic Variance (Obs.) Variance (Null) P-value Z 

Whole Tree latitude 0.35 2684.63 26211.12 0.001 -5.56 
 

longitude 0.52 4900.14 104569.21 0.001 -5.90 
 

  
    

S. catenatus + latitude 1.67 1981.66 21012.10 0.001 -5.15 

all S. tergeminus longitude 3.51 4032.37 88579.73 0.001 -5.39 
 

  
    

S. t. tergeminus + latitude 1.91 2078.13 10941.77 0.001 -3.40 

S. t. edwardsii longitude 3.59 3622.37 23196.68 0.001 -3.94 
 

  
    

S. catenatus latitude 1.90 1704.21 12610.29 0.001 -4.26 
 

longitude 3.97 5598.68 66123.00 0.001 -4.33 
 

  
    

S. t. tergeminus  latitude 1.44 2094.76 9206.51 0.001 -2.41 
 

longitude 2.21 1368.13 8067.78 0.001 -2.95 
 

  
    

S. t. edwardsii latitude 4.07 1558.06 10628.07 0.001 -2.94 

  longitude 3.50 955.64 6605.08 0.001 -2.94 
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Figure 1: Sistrurus range map depicting subspecies distributions and ddRAD sequencing 

samples. Cross-hatched areas in Texas, New Mexico, and Missouri indicate overlapping ranges 

with known contact zones. White circles indicate samples sequenced for this study. Adapted 

from Sanz et al. (2006). 
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Figure 2: Phylogenetic and ADMIXTURE results for Sistrurus. Colors correspond to each 

currently recognized Sistrurus species and subspecies (per field identification). (A) IQ-TREE 

phylogeny depicting the geographic localities per tip. Outgroups included several species of 

Crotalus and Agkistrodon. Dashed lines link the phylogeny tips with the corresponding sample 

on the map. (B) PALEOTREE diversification distances, with nodal distances corresponding to the 

proportion of nodes between the tip and the most ancestral node per species (S. catenatus=CA, S. 

tergeminus edwardsii=ED, S. tergeminus tergeminus=TERG). (C) Barplot depicting the 

ADMIXTURE proportions for K=5, with each bar representing one individual and bars with mixed 

colors indicating mixed ancestry. The barplot is partitioned into sub-populations based on 

subspecies field identification (upper guide) and U.S. state locality (bottom guide; IA=Iowa, 

MO=Missouri, NE=Nebraska, KS=Kansas, OK=Oklahoma, TX=Texas, CO=Colorado, 

NM=New Mexico, AZ=Arizona). The asterisk for S. catenatus indicates that individuals were 

included from multiple state localities. (D) Pie charts on the map geographically display the 

ADMIXTURE proportions.   
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Figure 3: Sistrurus molecular clock, with the phylogeny inferred using the edge-linked partition 

model from IQ-TREE v2.1.2 and scaled to actual time (millions of years ago, Mya) using the IQ-

TREE implementation of least square dating (LSD). Populations are color-coded according to 

the ADMIXTURE analysis in Figures 1C and 1D, with S. tergeminus tergeminus subdivided into 

northern and southern clusters and S. t. edwardsii represented by Texas/ New Mexico/ Arizona 

and Colorado populations. Red circles indicate nodes with ultrafast bootstrap (UFBoot) support 

≥ 95%, and the node bars correspond to the divergence time (τ) confidence interval as calculated 

from 1,000 input trees with branch lengths simulated from a relaxed-clock Poisson distribution. 

The main plot is zoomed to S. catenatus and S. tergeminus ssp., whereas the inset plot shows the 

full tree including S. miliarius and the outgroup taxa (several species of Agkistrodon and 

Crotalus).
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Figure 4: Demographic models chosen by GADMA. Arrows depict migration events with sizes proportional to estimated migration 

parameters. Branch size on the Y-axis is scaled to the reference population size (Nref). (A) Optimal model for Sistrurus catenatus (CA) 

X S. tergeminus tergeminus from Missouri (TEMO) and from all other sample localities (TERG). (B) Allele frequency spectra for the 

data, model, and residuals as heatmaps and histograms. (C) Optimal model for S. t. tergeminus from all sample localities except 

Missouri (TERG) and S. t. edwardsii (ED). (D) Allele frequency spectra and residuals for the TERG X ED GADMA analysis. 
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Figure 5: Four-taxon D-statistic tests for S. catenatus (P3) and S. tergeminus tergeminus (P1 and 

P2). Stacked bars indicate the percentage of significant D-statistic tests per P3 sample locality 

with (A) no P-value correction for multiple tests and (B) a Benjamini–Yekutieli (B-Y) correction 

for controlling the false discovery rate. State locality abbreviations include: TX=Texas, 

OK=Oklahoma, NE=Nebraska, MO=Missouri, KS=Kansas, MI=Michigan, NY=New York, 

OH=Ohio, WI=Wisconsin, and ON=Ontario (Canada). The outgroups (P4) included S. miliarius 

streckeri and S. m. barbouri. 
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Figure 6: Supported Sistrurus admixture edges among TREEMIX, four-taxon D-statistic tests, 

and PHYLONETWORKS. The percentage corresponding to the PHYLONETWORKS arrow illustrates 

the estimated S. catenatus ancestry in Missouri S. t. tergeminus. Scientific names are followed by 

state or regional locality. Northwestern and Southwestern S. t. tergeminus correspond to sub-

populations identified in the ADMIXTURE analysis (Fig. 2). TX=Texas, NM=New Mexico, 

AZ=Arizona.  
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SUPPLEMENTAL TABLES AND FIGURES 

 

Table S1: Sample and collector information for the N=226 sequenced Sistrurus, Crotalus, and 

Agkistrodon samples. 

ID Date Sex Collector(s)/ Source(s) State County 

SMAR1 X-00 F C. Montgomery AR Washington 

SMAR4 X-00 M K. Irwin AR Montgomery 

SMAR5 8-VII-00 F K. Irwin AR Marion 

CM2  M A. Holycross AZ Coconino 

CMO72 04-VII-02 M G. Carpenter AZ Mohave 

CS8 07-VIII-00  G. Schuett AZ Yavapai 

CVC32 VIII-98 - C. Meachum AZ Pima 

CVC6  M G. Schuett AZ Coconino 

CWW6 VII-93  T. LaDuc AZ Cochise 

CWW7 VIII-02  G.W. Schuett AZ Cochise 

SCE10  F Phx. Zoo AZ Cochise 

SCE11  F Phx. Zoo AZ Cochise 

SCE12  F Phx. Zoo AZ Cochise 

SCE9  M Phx. Zoo AZ Cochise 

SICA52G   L. Gibbs; A. Holycross AZ Cochise 

SICA53G   L. Gibbs; A. Holycross AZ Cochise 

SICA54G   L. Gibbs; A. Holycross AZ Cochise 

SCCO1  F S. Mackessy CO Lincoln 

SCCO10   S. Mackessy CO Lincoln 

SCCO12   S. Mackessy CO Lincoln 

SCCO13   S. Mackessy CO Lincoln 

SCCO14   S. Mackessy CO Lincoln 

SCCO15   S. Mackessy CO Lincoln 

SCCO16   S. Mackessy CO Lincoln 

SCCO17   S. Mackessy CO Lincoln 

SCCO18   S. Mackessy CO Lincoln 

SCCO19   S. Mackessy CO Lincoln 

SCCO2  F S. Mackessy CO Lincoln 

SCCO20   S. Mackessy CO Lincoln 

SCCO21   S. Mackessy CO Lincoln 

SCCO22   S. Mackessy CO Lincoln 

SCCO23   S. Mackessy CO Lincoln 

SCCO24   S. Mackessy CO Lincoln 

SCCO25   S. Mackessy CO Lincoln 

SCCO26   S. Mackessy CO Lincoln 

SCCO27   S. Mackessy CO Lincoln 
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Table S1 (Cont.) 

ID Date Sex Collector(s)/ Source(s) State County 

SCCO28   S. Mackessy CO Lincoln 

SCCO29   S. Mackessy CO Lincoln 

SCCO3  M S. Mackessy CO Lincoln 

SCCO35   S. Mackessy CO Lincoln 

SCCO37   S. Mackessy CO Lincoln 

SCCO38   S. Mackessy CO Lincoln 

SCCO39   S. Mackessy CO Lincoln 

SCCO4   S. Mackessy CO Lincoln 

SCCO41   S. Mackessy CO Lincoln 

SCCO42   S. Mackessy CO Lincoln 

SCCO43   S. Mackessy CO Lincoln 

SCCO44   S. Mackessy CO Lincoln 

SCCO45   S. Mackessy CO Lincoln 

SCCO47   S. Mackessy CO  

SCCO48   S. Mackessy CO Baca 

SCCO49   S. Mackessy CO Baca 

SCCO5   S. Mackessy CO Lincoln 

SCCO50   S. Mackessy CO Cheyenne 

SCCO6   S. Mackessy CO Lincoln 

SCCO9   S. Mackessy CO Lincoln 

APFL1   W. Hayes FL Liberty 

SMFL12 21-VIII-03  P. Moler FL Wakulla 

SMFL13 21-VIII-03  P. Moler FL Okaloosa 

SMFL5   S. Conners FL Collier 

SMFL6 23-XI-01  S. Conners FL Miami-Dade 

SMFL8 27-XII-02  G. Pyron FL Franklin 

SMGA1 16-IV-03  G. Schuett GA Cherokee 

SMGA2 15-VI-03 M C. Ponder GA Ware 

SCIA3 20-IV-04 F T.VanDeWalle IA Bremer 

SCIA4 3-V-04 M T.VanDeWalle IA Bremer 

SCIA5 3-V-04 F T.VanDeWalle IA Bremer 

SCIA7 3-V-04 F T.VanDeWalle IA Bremer 

SCIA8 VIII-90  J. Christiansen IA Scott 

SCIL1   - C. Phillips IL Clinton 

SCIL2   - C. Phillips IL Clinton 

SCIL3   - C. Phillips IL Clinton 

SCIL4 08-VI-01 M T. Anton IL Cook 

SCIL6  F  IL Carlisle 

SCIL7  F  IL Carlisle 

SCIL8  F  IL Carlisle 

ACKS3 VI-00  H. Alamillo KS Johnson 
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Table S1 (Cont.) 

ID Date Sex Collector(s)/ Source(s) State County 

ACKS5 10-V-00  C. Shiel KS Douglas 

SCKS1  F S. Mackessy KS Barton 

SCKS11 19-IX-04  T. Taggart KS Clark 

SCKS12 20-IX-04  T. Taggart KS Comanche 

SCKS13 20-IX-04  C.J. Schmidt KS Kiowa 

SCKS14    KS Chase 

SCKS15    KS Chase 

SCKS16    KS Barber 

SCKS17    KS Chase 

SCKS18    KS Kiowa 

SCKS19    KS Comanche 

SCKS2  M S. Mackessy KS Barton 

SCKS20    KS Allen 

SCKS21    KS Barber 

SCKS22    KS Reno 

SCKS23    KS Russell 

SCKS24    KS Kiowa 

SCKS25    KS Douglas 

SCKS26    KS Stafford 

SCKS3  M S. Mackessy KS Barton 

SCKS4  M S. Mackessy KS Barton 

SCKS5  M S. Mackessy KS Barton 

SCKS6 28-IV-01  D. Fogell KS Pottawatomie 

SCKS7 VI-02 F D. Fogell KS Chase 

SCKS8   D. Shepard KS Butler 

SCKS9 23-VI-04  J. Voelkler KS Washington 

SICA18G 25-IV-09  R. Brown, KU, P. Ingram KS Chase 

SICA21G   B. coyner SNOMNH KS Butler 

SICA27G 15-X-04  C.J. Schmidt SMNH, M. Washburne KS Chautauque 

E058   J. Moore MI  

E114   J. Moore MI  

E270   J. Moore MI  

E294   J. Moore MI  

E301   J. Moore MI  

E356   J. Moore MI  

E513   J. Moore MI  

E545   J. Moore MI  

E577   J. Moore MI  

E635   J. Moore MI  

E794   J. Moore MI  

E819   J. Moore MI  
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Table S1 (Cont.) 

ID Date Sex Collector(s)/ Source(s) State County 

SCMI2 VI-01  K. Schuett MI Hillsdale 

SICA46G   J. Moore MI  

SCMO1 26-IX-01 F F. Durbian MO Holt 

SCMO11 VI-02 F  MO Chariton 

SCMO12 VI-02 M  MO Chariton 

SCMO13 VI-02    MO Chariton 

SCMO14 02-IV-05 F R.Seigel/T.Crabill MO Linn 

SCMO15 02-IV-05 M R.Seigel/T.Crabill MO Linn 

SCMO16 02-IV-05 F R.Seigel/T.Crabill MO Linn 

SCMO17 03-IV-05 M R.Seigel/T.Crabill MO Linn 

SCMO18 03-IV-05 M R.Seigel/T.Crabill MO Linn 

SCMO19 03-IV-05 F R.Seigel/T.Crabill MO Linn 

SCMO2 27-IX-01 M F. Durbian MO Holt 

SCMO20 04-IV-05 F R.Seigel/T.Crabill MO Linn 

SCMO21 04-IV-05 M R.Seigel/T.Crabill MO Linn 

SCMO22 04-IV-05  R.Seigel/T.Crabill MO Linn 

SCMO23 04-IV-05  R.Seigel/T.Crabill MO Linn 

SCMO24    MO Chariton 

SCMO25    MO Linn 

SCMO3 27-IX-01 M F. Durbian MO Holt 

SCMO4 27-IX-01 M F. Durbian MO Holt 

SCMO5 27-IX-01 F F. Durbian MO Holt 

SCMO6 27-IX-01 M F. Durbian MO Holt 

SCMO7 02-X-01 F F. Durbian MO Holt 

SCMO8 02-X-01 F F. Durbian MO Holt 

SCMO9 VI-02 J  MO Chariton 

SMMS1 VI-01 F VanDevender MS Copiah 

SCNE1 VIII-00 F D. Fogell NE Pawnee 

SCNE2 VIII-00 M D. Fogell NE Pawnee 

SCNE3 VIII-00 F D. Fogell NE Pawnee 

SCNE4 V-99  M. Ingrasci NE Russell 

CVV12 09-IV-00 F C. Painter NM Chaves 

SCE1 22-VII-00 J D.&K.Salceies NM Bernalillo 

SCE2 14-VII-00 J D.&K.Salceies NM Bernalillo 

SCE3 7-VII-00 J D.&K.Salceies NM Bernalillo 

SCE4 3-VII-00 J D.&K.Salceies NM Bernalillo 

SCE5 22-VFII-00 J D.&K.Salceies NM Bernalillo 

SCE6 4-VII-00 J D.&K.Salceies NM Bernalillo 

SCE7 14-VII-00 J D.&K.Salceies NM Bernalillo 

SCE8 IX-00 M C. Painter NM Socorro 

SCNM1 29-VI-00 M T. LaDuc NM Valencia 
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Table S1 (Cont.) 

ID Date Sex Collector(s)/ Source(s) State County 

SCNM2 06-X-96  T.R. Jones NM Lincoln 

SCNM3 18-V-98  L. Kamees NM Socorro 

SCNM4   B. Christman NM Otero 

SCNM5 VII-01  B. Christman NM Otero 

SCNM6   B. Mackin NM Grant 

SCNM7   B. Mackin NM Grant 

SICA67G   Elda Sanchez NNTRC NM Otero 

SCNY1 09-VI-92  G. Johnson NY Monroe 

SCNY2 09-VI-92  G. Johnson NY Monroe 

SCNY3 4-V-92  G. Johnson NY Onandaga 

SCNY4 18-VI-92 F G. Johnson NY Onandaga 

SCOH1 25-VIII-00 - M. Spille OH Greene 

SCOH11   M. Spille OH Greene 

SCOH12   M. Spille OH Greene 

SCOH16 29-V-92 F G. Johnson OH Clark 

SCOH17 29-V-92 F G. Johnson OH Clark 

SCOH3 25-VIII-00 - M. Spille OH Greene 

SCOH8 06-IX-00 - D. Wynn OH Wyandot 

SCOK08   B. coyner SNOMNH OK Roger Mills 

SCOK1 26VIII05 F D.Shepard/L.Vitt OK Beckham 

SCOK10    OK Dewey 

SCOK11    OK Beckham 

SCOK12    OK Rogers 

SCOK2 26VIII05 J D.Shepard/L.Vitt OK Beckham 

SCOK3   D.Shepard/L.Vitt OK Roger Mills 

SCOK4   D.Shepard/L.Vitt OK Roger Mills 

SCOK5   D.Shepard/L.Vitt OK Ellis 

SCOK6   D.Shepard/L.Vitt OK Blaine 

SICA65G   Elda Sanchez NNTRC OK Comanche 

SMOK3 7-VII-05  C. Whitney OK Tulsa 

SICA57G   L. Gibbs ON Dorcas Bay 

SMSC1 15-XI-00 F B. Starrett SC Charleston 

APTX1   W. Hayes TX Eastland 

CSTX6 2003  B. Mackin TX Culberson 

CSTX6 2003  B. Mackin TX Culberson 

SCT1 9-V-00 - K. McCoy TX Concho 

SCT2 24-VI-00 M T. Hibbitts TX Parker 

SCT3 24-VI-00 M T. Hibbitts TX Hood 

SCTX1  M A. Price TX Cottle 

SCTX10    TX Cottle 

SCTX11    TX Cottle 
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Table S1 (Cont.) 

ID Date Sex Collector(s)/ Source(s) State County 

SCTX14    TX Runnels 

SCTX15    TX Motley 

SCTX16    TX Dickens 

SCTX17    TX Borden 

SCTX18    TX Cottle 

SCTX2 29-V-01  T. LaDuc TX Andrews 

SCTX3 06-V-01  T. LaDuc TX Crockett 

SCTX4 26-V-01  T. LaDuc TX Motley 

SCTX5 26-VI-01  T. LaDuc TX Crockett 

SCTX8  114-IX-99 J Tamu-K TX Galveston 

SCTX9   GladysPorterZoo TX Starr 

SICA3G 9-IX-14  Matador WMA, S. Hein, M. Barazowski TX Cottle 

SICA48G   Matador WMA, S. Hein, M. Barazowski TX Cottle 

SICA61G 8-VI-15  R. Couvillian TX Jim Hogg 

SICA62G 26-VI-15  S. Hein and S. Pitts TX Ward 

SICA66G   Elda Sanchez NNTRC TX Nueces 

SICA70G   T. Hibbitts TX Archer 

SMTX1 31-VII-06  T. Sinclair TX Montgomery 

SMTX2 31-VII-06  T. Sinclair TX Montgomery 

SCWI10 10-X-01 M E. McCumber WI Buffalo 

SCWI2 01-VIII-00 F via ATH WI Buffalo 

SCWI6 30-VIII-01 F E. McCumber WI Buffalo 

SCWI7 02-IX-01 F E. McCumber WI Buffalo 

SCWI8 02-IX-01 M E. McCumber WI Buffalo 

SCWI9 12-VII-01 M E. McCumber WI Buffalo 

CVV56     W. Hayes WY Sheridan 
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Table S2: Number of sequenced individuals per Sistrurus taxon. 

Taxonomic ID Count 

S. catenatus 44 

S. tergeminus tergeminus 85 

S. tergeminus edwardsii 68 

S. miliarius miliarius 2 

S. miliarius barbouri 6 

S. miliarius streckeri 7 

Total 212 
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Figure S1: Assessments of varying IPYRAD clustering threshold parameters on Sistrurus ddRAD 

data. (A) Pearson’s correlation coefficient (r) between genetic distance and the percentage of 

missing data in the alignment. (B) Percent sequence divergence per 100 kilometers (Km) as a 

measure of isolation by distance; (C) principal component analysis (PCA) variance across five 

principal component axes. 
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Figure S2: Boxplots for cross-validation scores from an ADMIXTURE analysis between Sistrurus 

catenatus, S. tergeminus tergeminus, and S. t. edwardsii. ADMIXTURE was run with 20 replicates 

per K and 20-fold cross-validation. 
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Figure S3: Admixture barplot depicting ADMIXTURE proportions among Sistrurus populations. 

Each bar represents one individual and bars with mixed colors indicating mixed ancestry. The 

top guide indicates subspecies designation as identified in the field: ED=S. tergeminus 

edwardsii, TERG=S. tergeminus tergeminus, CA=S. catenatus. The barplot is further partitioned 

into sub-populations based on U.S. state locality (IA=Iowa, MO=Missouri, NE=Nebraska, 

KS=Kansas, OK=Oklahoma, TX=Texas, CO=Colorado, NM=New Mexico, AZ=Arizona). The 

asterisk for S. catenatus indicates that individuals were included from multiple state localities. 
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Figure S4: Four-taxon D-statistic tests for Sistrurus tergeminus tergeminus (P3) and S. 

tergeminus edwardsii (P1 and P2). Stacked bars indicate the percentage of significant D-statistic 

tests per P3 sample locality with (A) no P-value correction for multiple tests and (B) a 

Benjamini–Yekutieli (B-Y) correction for controlling the false discovery rate. State locality 

abbreviations include: TX=Texas, NM=New Mexico, CO=Colorado, AZ=Arizona, KS=Kansas, 

NE=Nebraska, OK=New Oklahoma. The outgroups (P4) included S. miliarius streckeri and S. m. 

barbouri. 
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Figure S5: (A) TREEMIX log-likelihoods for 1-10 migration edges. (B) PHYLONETWORKS first-

order change in pseudo-likelihood (ΔL) for 0-6 hybrid nodes (h).
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CONCLUSIONS 

Herein, I have contextualized the genome-wide impacts of historical and contemporary 

hybridization in several North American regions across two reptilian groups of conservation 

concern. The formation and maintenance of these regional hybrid zones were demonstrated to 

involve a variety of evolutionary processes, including secondary contact of previously allopatric 

lineages, primary divergence pertaining to ecological speciation, and selective processes 

occurring differentially with respect to species boundaries. They also provide insight into the 

current and future status of species from conservation management, taxonomic, and evolutionary 

standpoints. Below, I summarize my findings for each hybrid zone and their associated study 

species. 

 

Secondary contact in historical and contemporary hybrid zones 

Southeastern United States 

Species in the southeastern United States have been subjected to several glacially-induced 

historical and contemporary processes. First, the glacial expansion pushed distributions 

southward, thereby forcing secondary contact of previously isolated taxa (Hewitt 1996, 2000). 

Taken together with the abundance of phylogeographic breaks and the juxtaposition of multiple 

habitat types in the unglaciated Southeast (Walker & Avise 1998; Avise 2000; Soltis et al. 2006), 

the region clearly involves a complex array of evolutionary processes that extend into 

contemporary times. The Woodland (Terrapene carolina carolina/ T. c. major) and Three-toed 

(T. mexicana triunguis) Box Turtles, for example, have introgressed on anthropogenic 

timescales, with secondary contact being a promoter for the formation of this hybrid zone. 
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Genome-wide investigation also revealed that while selection against hybrids was evident across 

inter-specific boundaries (as supported by species delimitation analyses; Chapter III), intra-

specific introgression may be adaptive in nature (Chapter I). This disparity was most prominent 

at functional loci potentially governed by thermal adaptation, indicating that introgression 

patterns in these ectothermic turtles may exhibit marked susceptibility to oncoming climate 

change.  

 

Midwestern region 

On the other hand, introgression between the Eastern (Sistrurus catenatus) and and Prairie (S. 

tergeminus tergeminus) Massasaugas occurred on historical timescales in highly disjunct 

Missouri and Iowa populations. Given the fossil record (Holman 2000; Parmley & Holman 

2007), Sistrurus likely originated in nearby Kansas with subsequent diversification extending 

northeastward across a ‘Prairie Corridor’ (Cook 1993). Importantly, this corridor was likely 

controlled by glacial-interglacial cycles that modulated Mississippi River discharge, with 

secondary contact occurring among Missouri and Iowa individuals that are presently isolated 

from the larger contiguous S. t. tergeminus range. Indeed, the Missouri individuals, at least, may 

manifest local adaptation as a consequence of this historical introgression with intermediate 

morphologies and inhabitance of habitat graded between the western and eastern sides of the 

Mississippi River (Evans & Gloyd 1948). Thus, despite their potentially ‘hybrid’ status, they 

may represent an evolutionarily significant or management units that represent unique genetic 

diversity. As with S. catenatus (Sovic et al. 2019), the Missouri S. t. tergeminus population may 

have undergone bottlenecks, with current levels of adaptive variation perhaps being 

overestimated due to a time lag with genetic drift (Ochoa et al. 2020). However, S. t. tergeminus 
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are not currently listed as of conservation concern in Missouri, a status that may warrant 

reconsideration following further investigation into whether local adaptation exists. 

 

Ecological refugia in the southwest 

As with S. catenatus, S. t. tergeminus also appears to have undergone a southwestward 

diversification concomitant with the Mississippi River as a dispersal barrier. During an 

interglacial period high discharge volumes of the Mississippi River may have prompted S. 

tergeminus to disperse into the southwestern Great Plains in search of new habitat. The region 

largely lacks physical influence from glaciers, but has been subject to climate change effected by 

glacial-interglacial cycles (Axelrod 1948, 1979), which may have induced ecological divergence 

between S. t. tergeminus and the Desert Massasauga (S. t. edwardsii). The data presented herein 

indicate that these two taxa are currently undergoing primary divergence, which I postulate was 

maintained by persistent gene flow occurring between individuals inhabiting lowland arid and 

highland mesic refugia. A contemporary example may include a S. t. tergeminus and S. t. 

edwardsii contact zone in western Texas and eastern New Mexico where the habitat grades from 

tallgrass to shortgrass prairies. Essentially, S. t. edwardsii and S. t. tergeminus may represent taxa 

in the process of diverging, and the markedly differing habitat preferences of S. t. edwardsii 

should preclude dissolution of their subspecies status or at least warrant their consideration as an 

evolutionarily significant or management unit.  
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Overall conclusions 

I have presented data describing the historical and contemporary effects of hybridization and 

introgression on a variety of evolutionary, biogeographic, and ecological processes. The data 

involve two ectothermic genera that are susceptible to impending climate change and 

anthropogenic effects. However, these genera each inhabit regions where numerous other co-

distributed species also hybridize (Remington 1968; Swenson & Howard 2005), and thus the 

data herein may serve as a proxy for other taxa that are also of conservation concern. For 

example, the ecological divergence observed between S. t. tergeminus and S. t. edwardsii is 

hardly unique, with other co-distributed species often following similar patterns (Douglas et al. 

2006). Likewise, in the southeastern United States other ectotherms are subject to hybrid zones 

coinciding with similar phylogeographic breaks, habitat juxtapositions, and ecological processes 

(Walker & Avise 1998; Soltis et al. 2006; Rissler & Smith 2010). Finally, the Great Plains 

region has been strongly influenced by the Mississippi River as a physiographic barrier (Braun 

1950; Soltis et al. 2006), which may have left relictual locally adapted populations following 

intermittent periods of secondary contact and isolation. On a continental scale, hybrid zones are 

clearly important for creating and sustaining adaptive variation across and within species. Thus 

the underlying evolutionary, physiographic, and ecological processes should be strongly 

considered to facilitate successful conservation management strategies. 
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