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Abstract

The aim of this dissertation is the investigation of the static and dynamical properties of the complex

antiferroelectric materials using Effective Hamiltonian method and First principles calculations. In

chapter 3, a novel elemental interatomic coupling in perovskite materials which bilinearly couples

the antiferroelectric displacements of cations with the rotations of the oxygen octahedra. This

new coupling explains a very complex crystal structure of prototypical antiferroelectric PbZrO3.

My explanation provides a unified description of many other complex antipolar crystal structures

in variety of perovskite materials, including the occurrence of incommensurate phases in some

of them. In chapter 4, results and analysis of atomistic simulations explaining the dynamics of

antiferroelectric distortions in BiFeO3 (BFO) bulk under hydrostatic pressure are reported. This

system undergoes a phase transition on cooling from paraelectric Pm3̄m state at high temperatures

to an intermediate P4/mbm phase followed by Pnma state at low temperatures. On the basis of

my calculations, I prepared an analytical model of these phase transitions. The model developed

can be easily applied to predict dynamics of antipolar cation motion in improper ferroelectrics. I

found out that the antipolar modes do not soften themselves in the high temperature regime but

they soften in the intermediate and Pnma phases, due to trilinear energetic coupling term. In chap-

ter 5, the finite temperature behavior of the polar, antipolar, and antiferrodistortive phonons in a

prototypical hybrid improper ferroelectric (BiFeO3)1/(NdFeO3)1 1:1 superlattice is studied. In the

low-temperature phase, a spontaneous polarization appears due to trilinear coupling of structural

and antiferroelectric (ferrroelectric) modes. In chapter 6, results of first-principles calculations to

investigate and analyze properties of (001) thin films made of the most complex perovskite system,

namely NaNbO3, are presented.



Ferroelectric, antiferroelectric and antiferrodistortive properties of this thin film are reported and

discussed, as a function of misfit strain.
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Chapter 1

INTRODUCTION AND OUTLINE OF THE THESIS

1.1 Introduction

My dissertation is devoted to the study of static and dynamical properties of antiferroelectric (AFE)

and improper ferroelectric (IFE) materials having the perovskite crystal structure. Several works

based on density-functional calculations have devoted to study static properties of AFE and IFE

1−13, but their dynamical properties remain mostly unknown. In this chapter, important back-

ground information will be introduced, including perovskite structure, ferroelectricity, improper

ferroelectricity, hybrid improper ferroelectricity, and antiferroelectricity.

Perovskite materials from an important class of functional materials. Oxides with a perovskite

structure generally possess the ABO3 formula. The simple ideal perovskite lattice is cubic, has

5 atoms per unit cell and adopts the space group Pm3̄m (221). The Russian mineralogist Lev

Perovski discovered this crystal structure for the first time in the mineral CaTiO3. A typical

perovskite structure is shown in Fig.1.1. Most of the perovskite compounds adopts this cubic phase

at high temperature and are thus paraelectric. When the temperature decreases, they undergo a

structural phase transition with a different type of polar (electric dipoles are aligned parallel to

each other) or anti-polar (electric dipoles are aligned opposite to each other) structure or even more

complex structure.

1



Chapter 1. General background 5

Cochran further explained the origin of the instability of the ferroelectric soft mode

from a competition between short-range forces stabilizing the cubic structure and

long-range electrostatic interactions destabilizing the structure. This basic idea was

checked and validated at the first-principles level in perovskite compounds. In that

context, it appeared that the giant Born effective charges related to dynamical trans-

fer of charges between O 2p and B atom d levels in perovskite compounds was a key

ingredient to produce a dipolar interaction sufficiently large to destabilize the crystal.

1.3 The ABO3 family of compounds

The widely investigated ABO3 cubic perovskite compounds have crystal structures

related to the mineral perovskite CaTiO3 which was discovered by Gustav Rose in

1839 and named as perovskite in honor of the eminent Russian mineralogist, Count

Lev Alexevich von Perovski [4]. Figure 1.1 shows the basic structure of ideal ABO3

compounds, which is cubic with space group Pm3̄m(221). This cubic phase observed

in most compounds at high temperature is paraelectric. When the temperature

decreases, these compounds may undergo different types of polar or non-polar struc-

tural phase transitions. In this part, we will briefly introduce the background of

ABO3 compounds, from bulk to superlattices.

Figure 1.1: The ideal structure of ABO3 perovskite compounds

Figure 1.1: The structure of ABO3 perovskite compounds

Perovskite materials played a critical role in the development of theory of ferroelectricity.

Moreover, these materials have become most useful commercially due to their large polarization

and good piezoelectric properties. The first ferroelectric perovskite discovered was BariumTitanate

(BaTiO3). This discovery was done by Wul and Goldman in 1945[14]. It has a paraelectric cubic

perovskite structure (Pm3̄m) at high temperature. However, as the temperature is lowered, there are

successive phase transitions to three different ferroelectric phases, each involving small distortions

from the cubic symmetry. The first phase transition at 393K is from paraelectric phase (Pm3̄m)

to tetragonal phase (P4mm). The tetragonal phase remains stable until 278K and then there is a

second phase transition to orthorhombic ferroelectric phase (Amm2). At 183K, it again undergoes

to a third phase transition which is ferroelectric having rhomboherdral symmetry (R3m). Each

of these phase transitions (distortion from cubic symmetry) is due to the elongation of the cubic

unit cell along [001] direction for the tetragonal phase, along [011] direction for the orthorhombic

ferroelectric phase, and along [111] direction for the rhombohedral phase. The elongation of the

cubic unit cell along these distortions results in a net displacement of the cation with respect to

the oxygen octahedra. The displacements of ions (atoms) are along different directions for above
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mentioned phase transition sequence, which results in dipole moment in different directions. The

total dipole moments per unit volume is defined as polarization and is quantifies as follows:

P =
∑
µ

V
(1.1)

where µ is the dipole moment and V is the volume. Then, BaTiO3 was subject to broad research

that has given rise of our basic knowledge about ferroelectrics in general.

1.2 Perovskite structure components

Any distortion from the ideal perovskite structure typically consists of one of the following three

components:

1. Displacements of the cation; when displacements are parallel to each other, it is identified as

ferroelectric displacement (FE), and when antiparallel, it is identified as antiferroelectric displace-

ment (AFE).

2. Distortion of the octahedra; Such distortion mechanism is due to the electronic instability of

the octahedral metal ion. The Jahn-Teller distortion in KCuF3 (Okazaki & Suemune, 1961) is an

example of electronic instability leading to octahedral distortions.

3. Tilting of the anion octahedra; this distortion mechanism in octahedral tilting can be realized by

tilting rigid BO6 octahedra while maintaining their corner-sharing connectivity. Usually , this type

of distortion is observed when the A cation is too small for the cubic BO6 corner-sharing octahedral

network.

The change in overall crystal symmetry when material undergoes a phase transition can depend

on the how the octahedron is tilted. The most common distortion of the cubic Pm3m structure

is octahedral tilting. There are numbers of ways in which the octahedral can be tilted. In 1972,
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A.M. Glazer [15] gave rational explanation for octahedral tilting and created a notation to classify

the different octahedral tilting patterns. This classification is only based on the octahedral tilting

around each axis. It is as follows: when each successive octahedron of oxygen rotates in the same

direction along one axis, it is known as in-phase tilting and is denoted by the “+” sign, while when

each successive octahedron of oxygen rotates in opposite directions, it is know as out-of-plane

tilting or anti-phase tilting and denoted by the “-” sign. When there is no rotation of the oxygen

octahedral, it is denoted by the “0” symbol. The letters “a”, “b”, and “c” are used to represent the

three possible directions of the rotations along x, y, or z axes, respectively. The Glazer notation

for the in-phase and anti-phase tiltings of the oxygen octahedral around the z-axis are, for instance,

a0a0c+ and a0a0c−, respectively.

The displacement of the cation and octahedron tilt are often coupled to each other. The tilting

of the anion octahedra, if present in the perovskite structure, will help to identify the space-group

symmetry of the structure. The soft mode is a collective excitation (as the collective excitations

includes phonons which are the vibrations of the atoms in solid) whose frequency decreases

enormously near a transition point. Such soft mode causes a lattice instability of the crystal,

critically resulting in a structural phase transition, which can be of the first or second order.

1.3 Types of perovskite oxides

1.3.1 Ferroelectrics

Perovskite oxides form the most well known and most studied class of ferroelectrics. Ferroelectrics

(FE) are materials that have a spontaneous polarization of two or more orientational states in the

absence of an electric field and these states can be shifted from one to another by applying an electric

field. Most of the ferroelectric materials exhibit a phase transition to a non-centrosymmetric phase
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at some temperature when the material is cooled from high to low temperatures. The temperature

at which the phase transition occurs is known as Curie temperature (Tc) and the non-symmetric

phase is ferroelectric and exhibits hysteretic phenomena. At high temperature, the phase of

ferroelectric materials has been called a “paraelectric” phase. This phase is centrosymmetric.

When there are more than one ferroelectric phase, the temperature at which the crystal transitions

from one ferroelectric phase to another is called the transition temperature. These are structural

phase transitions, accompanied by structural changes and, most often, by symmetry. Dielectric,

thermal, optical and elastic properties show anomalous behavior around the Curie temperature. The

temperature dependence of the dielectric constant in ferroelectric crystals is usually determined by

the Curie-Weiss law:

ε − ε0 =
C

T − Tc
f or T > Tc (1.2)

Where ε and ε0 are the permittivity of the material and vacuum respectively, C is the Curie constant

and Tc is the Curie temperature.

With increase in temperature, the dielectric constant increases and reaches a maximum value at

Tc, with further increase in temperature the dielectric constant decreases following the Curie-Weiss

law. The spontaneous polarization (Ps) for most of the ferroelectric crystals will be maximum at

low temperature below Tc and at Tc it decreases to zero. If the spontaneous polarization disappears

suddenly then the phase transition is classified as first order and if it decreases continuously at Tc

then the phase transition is classified as second order as shown in figure 1.2.
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Figure 1.2: The spontaneous polarization as a function of temperature for (a) first order and (b)
second order phase transition.

In 1937, the thermodynamical approach for the first and second order phase transitions was first

given by Landau[16, 17]. Landau theory served as a theory of phenomenology with arguments

based on symmetry for macroscopic entities. In 1949, Devonshire applied the Landau theory to

BaTiO3[18].

In Landau theory, the phase transition is explained in terms of order parameter contained in

the thermodynamics potential[19, 20, 21, 22, 23, 24]. The order parameter associated in the phase

transition determines the symmetry involved in the phase transition. Based on the order parameter,

ferroelectric materials can be classified as proper, improper and hybrid ferroelectric materials

according to the phenomenological description in terms of Landau theory. The proper, improper,

and hybrid improper ferroelectrics are distinguished with respect to the order parameter.

1.3.2 Proper ferroelectrics

In proper ferroelectrics, the structure changes (phase transition) at the Curie temperature can be

directly associated to the electric polarization P. Let us begin with the Landau theory in terms of

single order parameter. The free energy of a proper ferroelectric system based on the Landau theory
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is as follows:

f (T) = f0(T) + α(T − Tc)P
2 +

1
4
βP4 +

1
6
γP6 +O(P8) (1.3)

where f0 is the energy of the undistorted paraelectric phase and α, β, and γ are coefficients,P is

the polar lattice distortion which is the primary order parameter and is directly proportional to the

amplitude of the electric polarization in proper ferroelectrics. When α > 0, β < 0 , and γ > 0 the

system undergoes a first-order phase transition i.e. the first derivative of free energy with respect

to the primary order parameter at Tc is not continuous. When β > 0, the P6 and higher order terms

may be neglected, resulting in a transition to the second order phase i.e. the primary order at Tc is

continuous. The free energy as a function of the order parameter P for T < Tc and T > Tc is shown

in Figure 1.3. When the temperature (T) is above the Curie temperature (Tc), zero polarization

minimizes the energy corresponding to paraelectricity. The Landau free energy has a dual-well

shape when the temperature (T) is below Tc, which allows for finite non-zero polarization in the

ground state which is one characteristic of proper ferroelectrics.

E

P

T	>	Tc

T	<	Tc

Figure 1.3: Energy behavior of polarization with the temperature (T), for T above and below the
Curie temperature (Tc) of the primary order parameter for a proper ferroelectric transition.
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1.3.3 Improper ferroelectrics

Unlike proper ferroelectrics where the polar lattice distortion is the major driving force for a

transition, polarization is only part of a more complex lattice distortion in improper ferroelectrics

or appears as a by-product of some other order parameter [25, 26]. The Landau free energy for

improper ferroelectrics system is expressed as[26]:

f (T) = f0(T) + αP2 + βP4 + f (Q2,Q4) + δQnP +O(P6) (1.4)

where P indicates polar lattice distortion, Q is the primary distortion (i.e. the primary order

parameter), and n is the exponent of the coupling and is termed as faintness index[27]. In order to

minimize free energy, polarization appears below Tc only when Q is not zero, as shown in Figure

1.4. This means that the polar lattice distortion P is a by-product of the primary lattice distortion

Q.

E

P

T	>	Tc

T	<	Tc

Figure 1.4: Energy behavior of the polarization with the temperature (T), for T above and below
the Curie temperature (Tc) of the primary order parameter for a improper ferroelectric transition.

In the case of improper ferroelectrics YMnO3[28, 29], n=3 in the Landau free energy equation
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(4). The single unstablemode at q = (13,
1
3, 0)which is composed of a rotation of theMnO5 polyhedra

and a buckling of the Y-O planes, is the primary distortion which is responsible for transition to

the ferroelectric ground state. This primary distortion contributes to a tripling of the unit cell

volume due to the coupling between P which is linear and Q (last second term in equation 4).

Physically, the coupling term (odd in P and Q) means that the primary order parameter, in addition

to polarization, changes direction when the electrical field is applied to an improper ferroelectric.

1.3.4 Hybrid improper ferroelectricity

Hybrid improper ferroelectrics (HIF) undergo a ferroelectric transition, i.e. transition to a polar

structure, through a trilinear coupling contained in the free energy term [1]. The Landau free

energy for hybrid improper ferroelectrics system is expressed as:

f (T) = f0(T) + (T − Tc)a[Q2
1 + Q

2
2] + αP

2 − γQ1Q2P + 4th order terms (1.5)

Here temperature Tc is related to the primary order parameters Q1 and Q2 and a, α, and γ are

coefficients,P is the polar distortion. The order parametersQ1 andQ2 are the two oxygen octahedral

tiltings. More precisely, the ferroelectricity in HIF materials arises from a trilinear coupling of the

form γPQ1Q2 between the ferroelectric mode P and two oxygen octahedral rotational mode (Q1

andQ2) [7]. In hybrid improper ferroelectric systems, the electric polarization is usually induced by

the inversion symmetry breaking through āāc+ (Glazer Notation [15]) octahedral rotation. In the

Glazer Notation system, three components with superscripts imply rotations along three different

Cartesian directions. The lower case letters represent the rotation amplitude, “+” implies in-phase

and “-” implies out-of-phase rotation along a specific axis. In chapter 5, we will see in detail that

the trilinear energetic couplings between two octahedral rotational mode with different symmetry
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lead to the appearance of the spontaneous polarization, which is consistent with the existence of

HIF in a superlattice.

1.3.5 Antiferroelectrics

Another class of materials known as antiferroelectrics (AFE) possesses zero polarization because

adjacent dipoles are arranged in such a way that they cancel out each other. Like in ferroelectrics,

the properties of antiferroelectrics also depend on temperature. Above a certain temperature, the

antiferroelectricity vanishes and the systems are centrosymmetric. The temperature at which the

antiferroelectricity disappears is known as the antiferroelectric Curie temperature [30]. Due to a

variety of attractive functionalities offered by these materials, there is an increased interest in their

use in technological applications which include high-density energy storage [12, 31, 32, 33, 34].

The energy storage application in antiferroelectric materials comes from the double hysteresis

loop shown in Figure (1.5).
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Figure 1.5: Relationship between polarization and electricity in the (a) dielectric, (b) ferroelectric,
and (c) antiferroelectric materials and the electric energy density in these materials under electric
field. The dashed area is proportional to this energy.

More precisely, Figure (1.5) shows the polarization - electric field (P-E) loop for typical dielec-

tric, ferroelectric, and antiferroelectric materials. The shaded areas enclosed by the polarization
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and electric field represent the discharging energy. As seen from Figure (1.5), for the ferroelectric

materials, the shaded area is small, compared to the dielectric and antiferroelectric materials. So,

the antiferroelectric materials have superior discharging ability. This can be seen from as the area

enclosed under the P-E loop for antiferroelectrics.

1.4 Materials studied

I studied different complex antiferroelectric materials to reveal and investigate the effect of the

bilinear and trilinear energetic coupling between the antiferroelectric displacement of the cation

and two oxygen octahedral tiltings. In particular, the bilinear coupling explains the improper (due

to softening of the rotational degrees of freedom) emergence, at some conditions, of soft antipolar

phonons characterizing prototypical antiferroelectric PbZrO3. It also provides us with a unified

description of the complex antipolar structures of a variety of perovskites, including possible

occurrence of incommensurate phases. The trilinear coupling involving in-phase and anti-phase

oxygen octahedral tilting along with the antiferroelectric displacement helps us to understands the

dynamics of BiFeO3 under hydrostatic pressure. Trilinear energetic couplings can also give rise to

the formation of electrical polarization in the so-called hybrid improper ferroelectrics (HIF) which

can be realized by creating superlattices (SLs) made of two perovskite compounds, each adopting

the Pnma space group. Here we study the effect of finite temperature-dependence of dynamical

properties of (BiFeO3)/(NdFeO3) 1:1 superlattice. Since the physical properties of epitaxial thin

films substantially differ from those in bulk and layered materials, the compressive or tensile stress

may change the phase-transition sequence in thin films with respect to the bulk material and, apart

from a shift in the temperature of the ferroelectric transition, changes the entire phase diagram,

creating new phases that are not present in bulk crystals. We thus also studied here the phase
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transitions of the antiferroelectric NaNbO3 system under epitaxial strain.

1.4.1 Lead Zirconate

The first AFE material discovered is lead zirconate PbZrO3 (PZO), and the ground state is having

Pbam symmetry below ∼505K [35, 36, 37]. There are two strongly stable soft phonon modes

in the PZO ground state with Pbam symmetry [38, 39, 40, 41, 42, 43]. The first mode is called

as R+4 by its symmetry and is associated with the zone boundary 2π
alat
(12,

1
2,

1
2 ) k-point of the cubic

Brillouin zone, where alat is the lattice constant of the five-atom cubic perovskite cell. This mode

is typically an anti-phase tilting of the oxygen octahedral in the perovskite lattice. The second

mode is known as Σ2 mode and is associated with the 2π
alat
(14,

1
4, 0) k-point. The Σ2 mode consists

of the lead ion antipolar displacement (antipolar displacement) and oxygen displacement. There

is also a third soft mode which is very weak with S4 symmetry and this mode is associated with

the 2π
alat
(14,

1
4,

1
2 ) k-point [30]. Some recent works [38, 39, 40] suggested that the trilinear coupling

between R+4 , Σ2, and weaker S4 modes plays an important role to stabilize the Pbam ground state

of PZO. However, this trilinear energy only amounts to 27 meV per formula unit (f.u.) out of the

392 meV/fu gain of the ground state with respect to the cubic paraelectric phase, according to first-

principles calculations[38], and does not explain why the unusual Σ2 and S4 modes are strongly

unstable by themselves in PZO. One may, therefore, wonder if another energy plays a crucial

role in PZO, and what is the analytical form of such energy in terms of elemental interatomic

couplings (if any). One can also ask if such hypothetical energy can further describe other complex

antipolar states, that many materials are known to exhibit, and may also be of relevance to the

formation of incommensurate phases in perovskites. In chapter 3, we report the discovery of a

novel atomistic energy (analytically derived) that bi-linearly couples the A-cation displacements
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and oxygen octahedral tilting in ABO3 perovskites and which provides an unified description of

many antiferroelectric and incommensurate perovskites. In particular, this new coupling explains

the improper (due to softening of the rotational degrees of freedom) emergence, at some conditions,

of soft antipolar phonons characterizing prototypical antiferroelectric PbZrO3. It also provides us

with a unified description of the complex antipolar structures of a variety of perovskites, including

possible occurrence of incommensurate phases. The results of this study have been published in

Ref. [44].

1.4.2 Bismuth ferrite.

BiFeO3 (BFO) is the most studied perovskite oxide because of it special properties and potential

applications. The bulk BFO crystal has a rhombohedral ground state with R3c phase and it remains

stable till ferroelectric transition temperature TC=1100 K. BFO is known to adopt Pnma symmetry

at high pressure [45, 46, 47]. The Pnma structure consists of two oxygen octahedral tilting patterns

a−a−c0 and a0a0c+. The tilt a−a−c0 pattern corresponds to R+4 phonon mode while the tilt a0a0c+

pattern corresponds to M+3 phonon mode. Along with these modes, the Pnma symmetry is also

stabilized by the antiferroelectric displacement of cation in BFO. Here these two oxygen octahedral

tiltings are coupled with the antiferroelectric displacement of the Bi cation and this coupling is

known as a trilinear energetic coupling. Interestingly, several works on trilinear energetic couplings

have been done to understand the static properties but the effect of trilinear coupling on dynamics

have not been studied so far.

In chapter 4, we report the results of the study of the dynamics of antiferroelectric distortion

BiFeO3 bulk under hydrostatic pressure using atomistic simulations. Under high hydrostatic pres-

sure, BFO is antiferroelectric. The problem we wanted to resolve is if BFO has an antiferroelectric
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soft mode. This is a fundamental problem. Actually, we found that the antiferroelectric mode does

not soften itself on cooling, but rather the phase transition is improper, due to coupling of this mode

to two other soft structural (tilting) modes. The following phase transition sequence is found on

cooling from high temperature: the cubic paraelectric Pm3m state at high temperature and is fol-

lowed by an intermediate phase possessing long-range-ordered in-phase oxygen octahedral tilting,

and then the Pnma phase. The Pnma phase is known to possess antipolar cation displacements in

addition to in-phase and antiphase oxygen octahedral tilting. In the paraelectric phase, the antipolar

cation modes are found to have high phonon frequencies that are independent of temperature. On

the other hand, some phonons possessing oxygen octahedral behavior are rather soft in the inter-

mediate phase and Pnma states. Analysis of the data combined with an analytical model reveals

that such features originate from a dynamical mixing between pure antipolar cation phonons and

fluctuations of oxygen octahedral tilting, as a result of a specific trilinear energy coupling involving

in-phase and anti-phase oxygen octahedral tilting. The model developed can be easily applied to

predict the dynamics of antipolar cation motions for other possible structural paths bridging Pm3m

and Pnma states. The results of this study have been published in Ref. [48].

1.4.3 Layered perovskites: (BiFeO3)/(NdFeO3) 1:1 superlattice.

Superlattice is a periodic structure of layers of two or more materials. In fact, HIF systems can be

realized by creating superlattices (SLs) made of two perovskite compounds, where each compound

adopts the Pnma symmetry, which possesses in-phase and antiphase oxygen octahedral tiltings as

well as antipolarmotions. It is understood that, in suchHIF stacking, ferroelectricity originates from

a trilinear coupling between polarization and these two octahedral tilting modes of oxygen. Several

works based on density-functional calculations have been done to understand and characterize HIF
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materials [1, 2, 4, 5, 49] and an atomistic theory has even been proposed to further understand them

[7, 8]. Interestingly, all of these works have focused on static HIF properties , especially at 0 K.

Finite-temperature dynamic properties of HIFs therefore remain mostly unexplored.

Chapter 5 reports results of our study of polar, antipolar, and antiferrodistortive phonons at finite

temperatures in a hybrid improper ferroelectric (HIF). The prototypical HIF (BiFeO3)/(NdFeO3)

[abbreviated as (BFO)1/(NFO)1] 1:1 superlattice is studied using an atomistic effective Hamiltonian

approach along with a developed analytical model. This system possesses a tetragonal paraelectric

P4/mmm state at high temperatures and polar Pmc21 phase at low temperature. The later phase

has hybrid improper ferroelectricity (HIF) character. In the high-temperature paraelectric phase,

the polar and antipolar phonons modes exist due to a bilinear coupling between different cations

displacements. The frequencies of these phonons (both polar and antipolar) are nearly independent

of temperature in the paraelectric phase. At the same time, in the same phase, the in-phase and

and anti-phase tiltings of the oxygen octahedron are soft in this high-temperature phase. Below

some critical temperature, these tilting modes condense and result in the emergence of the low-

temperature phase. On the other hand, the polar and antipolar modes abruptly condense at this

temperature too in the low-temperature Pmc21 phase near the ferroelectric-to-paraelectric transition.

As we will show, this happens because of very specific trilinear energetic couplings between polar

and antipolar distortions with the soft oxygen octahedral tilting modes. Such mixing increases the

number of peaks of polar and antipolar phonons in the corresponding correlators, which we have

calculated. And each possesses not only polar and antipolar but also antiferrodistortive characters

in the dielectric responses corresponding to these modes when passing through the phase transition

from the P4/mmm to Pmc21 phase. The different temperature behaviors of polar modes at high

versus low temperatures emphasize the uniqueness of hybrid improper ferroelectrics. The results
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of this study have been published in Ref. [50].

1.4.4 NaNbO3 thin film.

It is found that the ferroelectric properties of thin films typically differ from those of the bulk

materials and provide a route for property tuning. Many factors contribute to these differences.

The perovskite thin film properties have been strongly influenced by the magnitude of the epitaxial

strain. The strain due to latticemis-matching of the film to the substrate is known as epitaxial strain or

misfit strain. In thin films, due to the misfit strain, one can control the piezoelectric and ferroelectric

properties. Experimental study byHaeni et. al [51] used epitaxial strain to have a ferroelectric phase

at room temperature in normally-paraelectric SrTiO3. The use of biaxial compressive strain was

also stated by Cheo et. al [52] to greatly improve the ferroelectric properties of BaTiO3. At present,

NaNbO3 (NNO) bulks is known to have seven phase transitions sequence at different temperatures:

U (Cubic Pm3m) → 913K→ T2 phase (Tetragonal P4/mbm) → 848K → T1 phase (Orthorhombic

Cmcm)→ 793K→ S phase (Orthorhombic Pmmm)→ 753K→R phase (Orthorhombic Pmmn)→

633K → P phase (Orthorhombic Pbcm) → 173K → N phase (Rhombohedral R3c). In some NNO

samples an additional room temperature Q phase of Pmc21 symmetry coexists with the P phase

[53, 54, 55]. The Q phase was not found in ceramics [54, 56], powders [56], and some crystals [54]

as this phase is triggered by a small electric field. The temperature-versus-strain phase diagram

of NNO films is not known to the best of our knowledge. In this work, I will study the influence

of epitaxial strain on ferroelectric, antiferroelectric or antiferrodistortive properties within a given

phase as a function of strain on NNO film using density functional theory. Our results will help to

understand the phase transitions sequence with the change in the misfit strain.

16



1.5 Structure of this dissertation is as follows

This dissertation has six other parts in addition to the introduction :

(1) Effective Hamiltonian Method and First-Principles Methods (Chapter 2),

(2) Atomistic mechanism leading to complex antiferroelectric and incommensurate phases (Chapter

3),

(3) Dynamics of antipolar distortions of BiFeO3 (Chapter 4),

(4) Temperature dependence of polarmodes in hybrid improper ferroelectrics for (BiFeO3)/(NdFeO3)

1:1 superlattice (Chapter 5),

(5) Properties of (001) NaNbO3 films under epitaxial strain: A first-principles study (Chapter 6),

(6) Conclusion (Chapter 7).
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Chapter 2

BACKGROUND

2.1 Introduction

To investigate the properties of materials, it is important to fully understand the methodology and

techniques employed for theoretical and experimental studies of these properties. In this dissertation

I use the computational methods described below.

The computational methods can be divided into two main categories: (1) classical and (2)

quantum mechanical approaches. The key difference between these two methods is whether the

algorithm used is based on classical or quantum mechanical laws. The effective Hamiltonian

method applied in the present work is based on first-principles approaches and can handle large

systems as well as finite-temperature calculations. Density Functional Theory (DFT) is a quantum

mechanical approach. The DFT method solves time-independent Scrödinger equation for multi-

body systems. The Effective Hamiltonian Method can be implemented on the basis of whether

Monte Carlo (MC) or Molecular Dynamics (MD) algorithms. MC approach is based on random

walk algorithm, whereasMD approach employs Newtonian-type dynamical equations applied to all

degrees of freedom of the selected Hamiltonian and are based on the classical theories of Newtonian

and statistical mechanics.

2.1.1 Density Functional Theory

DFT is a computational quantum mechanical method used for determining the ground state (0

Kelvin) properties of atoms, molecules, and condensed phases of matter. This method determines

properties of multi-electron systems by the use of a Kohn-Sham functional of the electron density

n(r) [59]. Specific form of this functional has now several approximations. Below, I will give more
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details about DFT.

2.1.2 Schrödinger Equation

Many-body Schrödinger equation can be written as:

ĤΨ = EΨ (2.1)

where Ĥ is the Hamiltonian operator; Ψ and E are the many-body wave function and energy

of the system. Hamiltonian Ĥ depends on the electronic and nuclear coordinates and on spin

variables. The so-called Born-Oppenheimer (BO) approximation is used to separate the nuclear

and electronics degrees of freedomwhen the electronic mass is much smaller than that of the nuclei.

One has to consider the nuclei at rest when considering electronic degrees of freedom. Then the

electronic Hamiltonian is written in the following form:

Ĥe = T̂e + V̂ee + V̂en (2.2)

where Ĥe is the Hamiltonian of the electrons, T̂e is the kinetic energy of the electrons, V̂en is the

external potential that electrons feel due to the nuclei, and V̂ee is the electron-electron interaction

energy. These three operators are defined as follows:

T̂e = −
1
2

NE∑
n

∇2 (2.3)

V̂ee =
1
2

∑
n<m

1
|rn − rm |

(2.4)

V̂en =

NE∑
n=1

NN∑
i=1

Zi

|rn − Ri |
(2.5)

where NE and NN are the numbers of the electrons and nuclei, rn is the position of the nth electron

and Ri and Zi are the position and charge of the ith nucleus, respectively, and ∇2 is the Laplacian
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operator. Solving equation (2) is highly difficult due to two reasons: (1) operators are represented

by a 3N × 3N matrix, where N ∼ 1023 for materials, (ii) the ground state wave function cannot

be broken into individual electron’s wave functions due to the electron electron interaction energy.

The solution to this problem was provided by Hohenberg and Kohn [60]. The Hohenberg-Kohn

theorems are the foundation of DFT. I will review these theorems below. By using DFT, one can

use electron density n(r) as a basis which reduces the number of variables from 3N to 3 variables.

2.1.3 Hohenberg-Kohn theorem

The Hohenberg-Kohn (HK) theorems state that:

Theorem I: the ground state property of the system can be determined in terms of the ground state

electron density n0(r) by considering n0(r) as basic variable. The external potential V̂en is written

as a functional of n0(r) [61]. It proves one-to-one mapping between the external potential and the

ground state densities in many electron systems.

Theorem II: It is possible to describe the energy functional E[n] in such a way that minimizing

E[n] with respect to variations of n(r) gives the ground state density n0(r). This energy functional

can be written as

E[n] = F[n(r)] +
∫

V̂en · n(r)dr (2.6)

where F[n(r)] is the universal functional of the ground-state electronic density. The universal

functional contains the individual contributions of kinetic energy, classical Coulomb interaction,

and the non-classical self-interaction correction.
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2.1.4 The Kohn-Sham theorem

In 1965, Kohn and Sham proved that the many-body Schrödinger wave function is separable into

a product of individual electronic wave functions [62]. The Kohn-Sham (KS) theory suggests that

there exists a set of wave-functions which corresponds to the ground-state density of interacting

electrons,

n0(r) =
N∑

i=1
|ψi(r)|2 (2.7)

The total KS wave function is not equal to the true wave function of the Hamiltonian. The KS

system is auxiliary to the true system, but can describe the ground state properties because of the

first HK theorem. The loss of the true wave functions is compensated for benefit of a simplified

type of HK-energy functionality. One can rewrite the energy functional using the KS approach as:

E[n] = TKE [n] + EHartree[n] +
∫

V̂enn(r)dr + EXC[n] (2.8)

where EHartree[n] is the classical Hartree energy, EXC[n] is the exchange-correlation energy, and

TKE [n] is the total kinetic energy of the non-interacting auxiliary system and is defined as follows:

TKE [n] =
1
2

∑
i

|∇ψi(r)|2 (2.9)

The classical Hartree energy is as follows:

EHartree[n] =
1
2

∫
n(r)n(r′)

r − r′
dr (2.10)

If an EXC[n] is known explicitly then E[n] can be minimized and one can determine the full many

body Hamitonian’s ground state density, and hence all ground state properties.

The goal is to obtain the ground state electron density, n0(r), which minimizes the KS energy
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functional given in Equation (8). In practice, a self-consistency loop strategy is used. The self-

consistent minimization method is as follows: write Equation (8) in a simple form by setting the

functional derivative of E[n] with respect to the KS wave functions to vanish,

(−
1
2
∇2 + Ven +

δEHartree

δn
+
δEXC

δn
− εi)ψi = 0 (2.11)

Here, Hartree potential is defined as:

δEHartree

δn
=

∫
n(r′)
|r − r′ |

(2.12)

ψi is the KS eigenfunctions and εi are their’s eigenvalues. Equation (11) is a nonlinear Schrödinger

equation. These nonlinear equations are solved by the following steps:

(1) provide an initial guess for the electron density n(r)

(2) compute δEHartree

δn and δEXC

δn

(3) solve Equation (11) for KS wave function and eigenvalues

(4) use the result of step (3) to obtain the new ground state density

(5) compare initial n(r) and n(r)new, if n(r)=n(r)new, then calculate the total ground state energy

E[n]. Normally we have some deviation which is smaller a given number.

(6) otherwise set n(r)new as an input for n(r) and repeat steps (2) through (5).

2.1.5 Local Density Approximation and Generalized Gradient Approximation

The exact form of the exchange-correlation energy (EXC[n]) is not known and therefore its functional

derivatives are unknown. Approximate versions of this interface are used in realistic calculations.

The exchange-correlation energy is a linear combination of exchange and correlation energy terms
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and is given as follows:

EXC = EX + EC (2.13)

Local Density Approximation (LDA) assumes that the exchange-correlation energy per electron at

point r in the electron gas is simply what it would be in a homogeneous electron gas of the same

density at r [63].

E LDA
XC [n] =

∫
n(r)ε LDA

XC dr (2.14)

where ε LDA
XC is the exchange-correlation energy of a homogeneous electron gas per electron.

Another method uses gradient of electron density along with the local density at that point

in order to include more physical information. This method is termed the generalized gradient

approximation (GGA).

EGGA
XC [n] =

∫
n(r)εGGA

XC (n(r),∇n(r))dr (2.15)

Themost commonly usedGeneralizedGradientApproximation (GGA) functionals, includeBecke’s

1988 exchange functional combined with the correlation functional of Lee, Yang, and Parr (BLYP)

[64, 65] and Perdew–Burke-Ernzerhof (PBE) [66, 67]. PBE functional belongs to the GGA func-

tional for exchange correlation energy while BLYP approach belongs to the hybrid approximation

for the exchange-hybrid correlation functional.

2.1.6 Pseudopotential Method

One can obtain numerical solutions of the KS equations by expanding the KS orbitals with respect

to the appropriate basis sets. KS orbitals that satisfy the Bloch theorem can be expanded in plane

waves. The Bloch theorem states that the wave function in a crystal can be expressed as a product
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of the plane wave and a lattice periodic function:

ψ®k(®r) = ei®kru®k(®r) (2.16)

where ψ®k is the bloch wave, u®k(®r)=u®k(®r + a) is the lattice periodic function, and ei®kr is the plane

wave. According to the Bloch theorem, the KS orbitals, i.e. single body wave function Ψn,k , can

be expanded in the plane wave basis [68].

Ψn =
∑

G

Cn(k, ®G)ei( ®G+®k).®r (2.17)

where k is a k-vector in the first Brillouin zone of the unit cell or supercell used in the calculation,

n is a band index, G is the reciprocal lattice vector, and Cn, ®G is a coefficient. Here the summation

over ®G is truncated at G = Gcut , where Gcut is the largest value satisfying the following condition:

1
2 |k + G|2 < Ecut . Ecut is the cut-off energy. The KS orbitals expansion using plane waves can

give slow convergence if the core electrons are included in the basis set because Ψn(r) is rapidly

varying near atomic nuclei. To overcome this slow convergence, it is often smart to use a pseudo

potential in combination with the plane waves. Below, I will describe the main pseudo-potentials

in use now.

Different types of pseudo-potentials have been developed. The effect of core electrons on the

properties of solids is ignored in pseudo-potential theory as the core electrons are chemically inert

and independent of the chemical environment surrounding them. Pseudopotential approximation

substitutes the ionic ion potential with a hypothetical potential. This approximation helps to obtain

a much smoother potential as valence electrons are screened by the core electrons.

The work reported in Chapter (5) uses Perdew-Burke-Ernzerhof-PBEsol (PS) functional. These

functional are intended for the solid state and surface systems. They are based on a gradient
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expansion of the exchange energy. The technical details of PBEsol are given in references [66, 67].

The PBEsol functional [69] is a modified version of PBE [66]. The PBEsol lattice constants are

more accurate and lower than PBE by about 1%-2%, but the drawback with PBEsol is that it is less

accurate for cohesive energies than PBE [70, 71, 72, 73, 74].

2.2 Structural and electronic properties

DFT allows calculations of different physical quantities. In this section, we will see how DFT helps

us to calculate the polarization.

Structural phase transition from a reference to distorted structure can be determined by identi-

fying unstable phonon modes in the reference structure. The phonon modes can be obtained in the

harmonic approximation. Within the theory of lattice dynamics, a crystal’s potential energy is a

function of the atomic positions. The potential energy of a crystal can be expanded in by Taylor’s

series with respect to the atomic displacements:

Φ = Φ0 +
∑
iα

Φiαuiα +
∑
iα, jβ

Φiα, jβu jβ + .......... (2.18)

Here, Φ0 is the potential energy at equilibrium (when all atoms are at equilibrium positions), uiα is

the displacement of the ith atom in α direction. The coefficients Φiα, Φiα, jβ, ....etc are derivatives

of the potential energy with respect to the atomic displacements. At equilibrium, the first order

derivative of the Φiα is zero with respect to displacements, as the forces on all atoms at equilibrium

are zeros. The second derivatives Φiα, jβ is a symmetric matrix and is called Hessian matrix. When

the eigenvalues of the Hessian matrix are positive or zero indicating that the system has stable

minimum it constitute the force constant matrix. The phonon modes are determined from this
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force-constant matrix as follows:

Φiα, jβ =
∂2E

∂uiα∂u jβ
(2.19)

Within harmonic approximation, the equations of motion for the lattice ions can be obtained as

follows:

Fα = mi Üuiα = −
∑
iα, jβ

Φiα, jβu jβ (2.20)

We look for the solutions in a form of the following product:

uα =
1
√

mi
eαexp[i( ®q · ®x − ωt)] (2.21)

where mi is the mass of the ith atom, eα are the eigenvectors which determines the relative motion

of the ith atom in a phonon at wave vector ®q, and ω is the frequency. Plugging Eqn. (2.21) into

Eqn. (2.20), one gets

ω2eα( ®q;α) =
∑
iα, jβ

Diα, jβeβ( ®q; jβ) (2.22)

Here,

Diα, jβ =
1

√mim j

∑
jβ

Φiα, jβexp[−i ®q · ®x j] (2.23)

Diα, jβ is known as dynamical matrix and, by diagonalizing equation (2.23), one will obtain eigen-

vectors and eigenvalues. The eigenvalues of the above equation are the phonon mode frequencies.

If the mode frequency is real then the mode is stable with respect to the atomic displacements while

if the mode’s frequency is imaginary, the mode is unstable and, as a result, a symmetry breaking

and a low-symmetry distorted structure will stabilize the phonons. For the distorted structure, the
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atomic charges are the Born dynamical charges. The Born effective charge matrix is defined as:

Zi,αβ =
Ω

e
∂Pα
∂uiβ

(2.24)

where Ω is the volume of the unit cell, Pα is the polarization in α direction, e is the electric charge

The total polarization of the material is a combination of the ionic polarization Pion and

electronic polarization Pele contribution [75]:

P = Pion + Pele (2.25)

The ionic part of polarization is defined as:

Pion =
e
Ω

∑
i

Z ion
i ri (2.26)

where eZion
i is the positive point charge located at the atomic position ri. The electronic part of the

polarization is obtained as [75]:

Pele =
2|e|i
(2π)3

∫
A

dk⊥
M∑

n=1

∫ G‖

0

〈
uk,n |

∂

∂k‖
|uk,n

〉
dk‖ (2.27)

where the sum runs over the occupied bands, the k‖ wave vectors are parallel to the direction of

polarization, and G‖ is a reciprocal lattice vector in the same direction. The states |uk,n〉 are the

cell periodic parts of the Bloch functions. The last integral is known as the Berry phase.

In Chapter 5, I report a study of the effect of epitaxial strain on a thin film in terms of phase

diagram and polarization. Let us now understand the concept of epitaxial strain. The epitaxial

strain plays an important role in the determination of the ferroelectric properties of thin films and

superlattices. The epitaxial strain can be realized by lattice mismatch between the sample and

substrate. If the in-plane cell dimensions are fixed to match that of substrate while the out-of-plane
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dimensions are allowed to relax, then an epitaxial growth occurs.

In the first principles calculations, the epitaxial strain is determined by imposing that in-plane

lattice vectors are fixed while out-of-plane lattice vectors are allowed to relax. Experimental and

theoretical studies have shown that epitaxial strain plays an important role in stabilization of the

ferroelectricity in thin films [76]. The effect of epitaxial strain on NNO film will be the subject of

Chapter 5.

2.3 Effective Hamiltonian Method

The study of ferroelectrics and associated perovskite oxides has been a subject of a variety of

atomic-scale theoretical and numerical studies for at least twenty seven years [77, 78]. Ab initio

simulations have been well developed and employed to get values of parameters of microscopic

models used to explain and forecast thermodynamics of phase transitions in perovskite oxides,

which can be very complicated [77, 78].

In 1994, Zhong, Vanderbilt and Rabe suggested a new paradigm how to perform calculations

of temperature-dependent properties of ferroelectrics by using MC or MD methods. This method

was named the Effective Hamiltonian is viewed in terms of the potential energy surface containing

specific degrees of freedom, such as local modes, the inhomogeneous strain tensor, and the ho-

mogenous strain tensor. The Effective Hamiltonian parameters are determined from first principles

DFT calculations. Once we have these parameters, one can perform MC or MD simulations to

predict various physical quantities which are obtained as statistical averages at given condition

(temperature, pressure, or stress tensor).

We use this Effective Hamiltonian approach in MD simulation to study the dynamics of BiFeO3

under pressure (Chapter 4) and (BiFeO3)1/(NdFeO3)1 1:1 superlattice (Chapter 5).
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2.3.1 Theoretical Background of the Effective Hamiltonian

The Effective Hamiltonian, He f f , approach used here serves the following advantages: (1) It offers

a broad picture from microscopic views of the properties of investigated ferroelectric systems

by the decomposition of the energetic contributions of such Hamiltonian; (2) It models finite-

temperature-dependent static or dynamic properties of ferroelectric systems by combining this

efficient Hamiltonian with Monte Carlo algorithms or molecular dynamics simulations; (3) It is

able to simulate large supercells by significantly decreasing the degrees of freedom, which is

very important in the analysis of complex systems and complicated phenomena. This makes it

feasible to study the finite-temperature properties of large complex perovskite systems. In the

case of perovskite ABO3 compounds, the highest symmetry is obtained by centering the local

mode either on A or B atoms. If a lattice contains n atoms per basis, there will be 3n phonon

modes for each reciprocal k-point: three acoustic and 3(n-1) optical phonon modes. But only the

lowest transverse optical (TO) mode-soft phonon and the strain variables (long-wavelength acoustic

phonons) contribute to the low energy distortion structure. In the case of perovskite with 5 atoms

per primitive unit cell, there are 15 normal-modes, (3 acoustics and 12 optical) per k-point [79].

The main idea of the Effective Hamiltonian method is to reduce the number of the degrees of

freedom.

Degrees of Freedom

The Effective Hamiltonian method reduces the number of the degrees of freedom to:

(i) the local mode ui, which is a polar displacement of the atoms in the ith unit cell. This polar

displacement induces electric dipole in each unit cell.

(ii) the inhomogenous displacement mode, which describes the local inhomogeneous strain in unit
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cell i and is associated with long-wavelength acoustic modes. One can find inhomogenous (ηI
l (i))

strain tensor from this displacement.

(iii) the homogeneous strain tensor ηH
l is a six-component local strain tensor in Voigt notation

The total strain in unit cell is defined as ηl(i) = ηH
l +η

I
l (i), here η

H
l is the homogeneous strain tensor

and ηI
l is the inhomogeneous strain tensor.

(iv) the pseudo-vector ωi, which is centered on B ions and characterizes oxygen octahedral tiltings

[80] (also known as antiferrodistortive (AFD) distortions) in unit cell i. For instance, ωi = 0.1z,

where z is the unit vector along the z-axis, indicates that the oxygen octahedron centered around

the B site i tilts by 0.1 radians about the z-axis.

(v) the magnetic dipole moment mi. In case of BiFeO3, it will be Fe-centered and its magnitude is

equal to 4µB, as consistent with first principles [81] and measurements [82].

Effective Hamiltonian

Considering only local modes and strain, the Effective Hamiltonian consists of five parts: a local

mode self energy, a long range dipole-dipole interaction, a short-range interaction between soft

modes, an elastic energy, and an interaction between the local modes and local strain [78]. The

total energy of the Effective Hamiltonian is as follows:

Etot = E sel f + Edipole + E short + Eelastic + E int (2.28)

(1) Local Mode Self Energy:

This is the first contribution to the Effective Hamiltonian energy associated with the local modes

in the unit cell. The local self energy terms is defines as:

E sel f =
∑

i

(κ2u2
i + αu4

i + γ(u
2
ixu2

iy + u2
ixu2

iz + u2
iyu

2
iz)) (2.29)
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where i is the unit cell index, ui is the local soft-mode amplitude vector in the unit cell i, κ, α,

and γ are coefficients that are determined from first principles methods. In order to describe the

ferroelectric (FE) process, Esel f must contain both anharmonic and harmonic contributions. Here

only terms containing even powers survives as the reference structure is cubic.

(2) Dipole-Dipole Interaction:

This contribution to the energy comes from the long range interactions between the local modes at

different sites. The dipole-dipole interaction energy is computed as follows:

Edpl =
1
2

N∑
i j,αβ

Qi j,αβuiαuiβ (2.30)

where i and j run over the cell’s numbers, α and β denote Cartesian components. The matrix Qi j,αβ

is given by the following equation:

Qi j,αβ =
4Z∗

2

ε∞
[
π

Ωc

∑
G,0

exp(−
|G |2

4λ2 )cos(G · (Ri − Rj))GαGβ −
λ3

3
√
(π)

δαβδi j] (2.31)

HereΩc is the unit cell volume, G are reciprocal lattice vectors, α and β are Cartesian components,

ε∞ is the optical dielectric constant. Since this dipole-dipole interaction is a long-range interaction,

it takes a very long time to calculate it. To reduce computational time, the simple hunch is to fix

the position of vectors Ri, Rj , and G. The Z∗ is the Born effective charge for the soft mode, and is

obtained as follows:

Z∗ = ζAZ∗A + ζBZ∗B + ζO1Z∗O1 + ζO2Z∗O2 + ζO3Z∗O3 (2.32)

where ζ are the soft mode eigenvectors.

(3) Short-range energy:

The short-range energy is due to the interaction between the neighbouring local modes up to the
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third nearest neighbours. The short-range energy is given as:

E short =
1
2

∑
i j,αβ

Ji j,αβuiαu jβ (2.33)

The i and j are the unit cell indices and i , j; α and β are Cartesian components. Here Ji j,αβ is the

interaction matrix. Only seven distinct Ji j,αβ parameters are possible as the reference structure has

cubic symmetry. The interaction matrix for the cubic reference structure is to be determined from

first principles calculation [78] as follows:

First nearest neighbors (NN) : Ji j,αβ = ( j1 + ( j2 − j1)|R̂i jαβ |)δαβ

Second NN : Ji j,αβ = ( j4 + 2( j3 − j4)|R̂i jαβ |)δαβ

T hird NN : Ji j,αβ = j6δαβ + 3 j7R̂i jα R̂i jβ(1 − δαβ)

(2.34)

Where Ri j,α is a α component of Ri j

|Ri j |
.

(4) Elastic Energy:

The elastic energy is a linear combination of two different energy terms corresponding to two

different strains: (1) homogenous and (2) inhomogenous strain [78].

Eelastic = Eelastic
H + Eelastic

I (2.35)

Here, Eelastic
H and Eelastic

I are the homogenous and inhomogeneous elastic energies and these energy

are associated with strain tensors ηil , l=1,...,6 in Voight notations. The homogenous strain energy

is given by

Eelastic
H =

N
2

B11(η
2
H,1 + η

2
H,2 + η

2
H,3) + NB12(ηH,1ηH,2 + ηH,2ηH,3 + ηH,3ηH,1)

+
N
2

B44(η
2
H,4 + η

2
H,5 + η

2
H,6)

(2.36)

Where B11, B12, and B44 are elastic constants expressed in energy units and N is the number of

32



primitive cells in the supercell. The inhomogeneous energy is given by:

Eelastic
I =

∑
i

{
B11
4
[vx(Ri − vx(Ri ± vx)]

2 +
B12
8
[vx(Ri) − vx(Ri ± x)][vy(Ri) − (Ri ± y)]

+
B44
8
[vx(Ri) − vx(Ri ± y) + vy(Ri) − vy(Ri ± x)]2

+cyclicpermutation}

(2.37)

where v(Ri) is the dimensionless local acoustic displacement which is related to the inhomogeneous

strain.

(5) Elastic soft mode energy:

The on-site interaction is used to describe the relation between elastic deformations and local modes

and is given as

E int =
1
2

∑
i,lαβ

Blαβηl(Ri)uα(Ri)uβ(Ri) (2.38)

Where ηlαβ(Ri) is the total strain variable and it contains both homogenous and inhomogenous

parts of the unit cell i. Blαβ are parameters which are determined from first principles calcualtions.

For cubic symmtery, only three coupling parameters are obtained: They are as follows:

B1xx = B2yy = B3zz

B1yy = B1zz = B2xx = B2zz = B3yxx = B3yy

B4yz = B4zy = B5xz = B5zx = B6xy = B6yx

(2.39)

The inhomogeneous strain is given by

ηI,1(Ri) =
1
4

∑
d=0,y,z,y+z

[vx(Ri − d − x − vx(Ri − d)] (2.40)

ηI,4(Ri) =
1
4

∑
d=0,y,z,y+z

[vx(Ri − d − x − vx(Ri − d) + vy(Ri − d − x − vy(Ri − d)] (2.41)
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Here, v(Ri) is associated with position Ri+(
a
2,

a
2,

a
2 ).

All above discussions of effective Hamiltonian are intended for pure structures using the local

soft mode in unit cell i, the homogeneous and inhomogeneous strain tensors as degree of freedoms.

Additionally, we use pseudo-vectorωi andmagnetic dipolemomentmi degrees of freedoms to study

pure BiFeO3 (BFO) under pressure (Chapter 4) and (BiFeO3)1/(NdFeO3)1 ((BFO)1)/(NFO1)) 1:1

superlattice (Chapter 5).

The effective Hamiltonian approach of Refs. [26-29] is used to investigate properties of BFO

at finite temperature and under hydrostatic pressure, with the total energy being the sum of the

following three terms:

EBFO = EFE ({ui}, {η}) + E AFD({ui}, {ηl}, {ωi}) + E M AG({µi}, {ui}, {ηl}, {ωi}) (2.42)

EFE represents the energy associated with the local modes, elastic strain interactions, and couplings

between the local modes and strain; EAFD ensembles the energies correlatedwith local mode, elastic

deformations and AFD motions degrees of freedom and their couplings with the local modes,

strains and AFD distortions; and EM AG describes the energetics involving the magnetic and AFD

interactions degrees of freedom and their couplings with the local modes and strains. Here {ηl}

is the total strain. The term EFE contains the five terms described in Eq. (22). The second term
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EAFD in Eq. (2.42) is expressed as follows:

EAFD =
∑

i

[κAω
2
i + αAω

4
i + γA(ω

2
ixω

2
iy + ω

2
iyω

2
iz + ω

2
ixω

2
iz)]

+
∑

i j

∑
αβ

Di jαβωiαω jβ +
∑

i

∑
α

D′ω3
i,α(ωi+α,α + ωi−α,α)

+
∑

i

∑
αβ

Clαβηl(i)ωiαωiβ +
∑

i j

∑
αβ

Ki j,αβu j,αωi,αωi,β

+
∑

i

∑
αβγδ

Eαβγδωiαωiβuiγuiδ

(2.43)

Here the sum over i is for all the Fe sites, and α, β, γ, and δ are Cartesian components along the

pseudo-cubic [100], [010] and [001] directions, respectively. The first term of E AFD represents the

onsite contributions associated with the oxygen octahedral tilting. The second and third terms are

associated with the short-range interactions between AFD motions, and sum over j for the Fe ions

being first nearest neighbors of the Fe site i. The ωi+α,α in the third term is the α− component of

the AFD mode at the site shifted from the Fe site i to its nearest Fe neighbors along the α-axis. The

fourth term represents the coupling between strain and AFD motions. The fifth and sixth terms of

Equation (2.43) characterize couplings between AFD distortions and local modes via trilinear and

biquadratic energetic contributions, respectively.
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The term EMAG in Eq. (2.42) is as follows[83]:

EMAG =
∑
i jαγ

Qi jαγmiαm jγ +
∑
i jαγ

Si jαγmiαm jγ

+
∑

i j,αγνδ

Ei j,αγνδmiαm jγuiνuiδ

+
∑

i j,αγνδ

Fi j,αγνδmiαm jγωiνωiδ

+
∑

i jl,αγ

Gi jl,αγηl(i)miαm jγ

+
∑

i j

Li j(ωi − ω j) · (mi ×m j) (2.44)

Here α, γ, ν, δ denote the Cartesian components, and the indices i and j runs over all the Fe

sites. The first term is the dipolar interactions between the magnetic moments, the second term is

the short-range exchange coupling, the third, fourth, and fifth terms are the coupling between the

magnetic moments with local modes, AFD motions and strains, and sixth term is a Dzyaloshinskii-

Moriya (DM) interaction involving oxygen octahedral tiltings.

The effective Hamiltonian used to study the dynamics of the polar and antipolar modes in

(BFO)1/(NFO3)1 1:1 superlattice is as follows:

EBFO/NFO = EBFO({ui}, {ηH}, {ηI}, {ωi}, { mi}) + Ealloy({ui}, {ωi}, {mi}, {ηloc}) (2.45)

where EBFO represents the effective Hamiltonian of pure BFO and is given in above subsection,

while Ealloy characterizes the effect of substituting Bi ions by Nd ions and is associated with the

local modes, strain, magnetic moment mi, and pseudovector ωi. The local quantity ηloc is also

defined which is centered on Fe-site i as ηloc(i) =
δRionic

8
∑

j σj , where the over j runs over the eight

A nearest neighbors of eight Fe-site i and δRionic is the relative difference of ionic radius between
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Nd and Bi ions. The analytical expression for EBFO is defined above and for Ealloy is expressed as

follows:

Ealloy =
∑

i

ηloc(i)

{
∆κu

∑
j

u2
j +

∑
j,α,β

KNd
i j,αβωi,αωi,βu j,α

}
(2.46)

Here the sum over i runs over all the Fe-sites and the sums over j and k run over the eight Bi (or Nd)

ions nearest neighbors and over the six Fe nearest neighbors of the Fe-site i, respectively. α and

β denotes Cartesian components, with the x-, y-, and z-axis being along the pseudo-cubic [100],

[010], and [001] directions, respectively. The quantity ∆κu quantifies how the Nd-induced chemical

pressure affects the harmonic energy of the local modes while KNd
i j,αβ quantifies the trilinear coupling

induced by the existence of Nd ions on the A-sublattice.

The details regarding the effective hamiltonian parameters used in this dissertation are available

in Appendix A.
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Chapter 3

UNIVERSAL ATOMISTIC MECHANISM LEADING TO COMPLEX ANTIFERROELECTRIC

AND INCOMMENSURATE STRUCTURAL PATTERNS IN PEROVSKITES

The goal of this study is to reveal and investigate a novel elemental interatomic coupling in

perovskite materials that bilinearly couples the antiferroelectric (AFE, see Chapter 1 for definition)

displacement patterns of cations with the rotations of the oxygen octahedra. In particular, this

new coupling explains a very complex crystal structure of prototypical antiferroelectric PbZrO3

(PZO). It also provides a unified description of the complex antipolar structures of a variety of other

perovskites, including the possible occurrence in them of incommensurate phases. Incommensurate

phases are found in aperiodic crystals in which the periodic crystal structure is incommensurate

with the displacement pattern.

3.1 Background

PZO’s ground state displays the Pbam symmetry and is characterized by three significant phonon

modes [38, 39, 40, 41, 43]. The first of these modes is labeled R+4 according to its symmetry

and is rather simple in the sense that it corresponds to typical antiphase tilting. This mode is

associated with the zone boundary 2π
alat

(1
2 ,

1
2 ,

1
2 ) k-point of the cubic first-Brillouin zone, where alat is

the lattice constant of the five atom cubic perovskite unit cell. The other two modes are much more

complex and are Σ2 and S4 modes. These modes are associated with the 2π
alat

(1
4 ,

1
4 ,0) and

2π
alat

(1
4 ,

1
4 ,

1
2 )

wave vectors, respectively. Some recent works [38, 39, 40] suggested that a trilinear coupling

between R+4 , Σ2, and weaker S4 modes plays an important role to stabilize the Pbam ground state
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of PZO. However, this trilinear energy only amounts to 27 meV per formula unit (f.u.) out of

the 392 meV/fu gain of the ground state with respect to the cubic paraelectric phase, according

to first-principles calculations [40], and does not explain why the unusual Σ2 and S4 modes are

strongly unstable in PZO. One may, therefore, wonder if another energy plays a crucial role in the

stability of the complex structural modes in PZO. One can also ask if such hypothetical energy can

further describe other complex antipolar states that many materials are known to exhibit and may

also be of relevance to the formation of incommensurate phases in perovskites. Here, we report

the discovery of a novel atomistic energy that bi-linearly couples the A-cation displacements and

oxygen octahedral tilting in ABO3 perovskites and which provides a unified description of many

antiferroelectric and incommensurate structures of perovskites.

3.2 Microscopic description of the new interaction

Let us start with the convention that B-cations of the perovskite system are at the corners (i.e. at

(1
2,

1
2,

1
2 ) coordinate) of the reference five-atom cell and the A-cations are at the cell center (i.e.

at (0,0,0) coordinate). Let ui be the off-center displacement of A-site cation at cell i. ωi is the

pseudovector that characterizes the tilting of the oxygen octahedron centered on the B-site at unit

cell i. The direction of the ωi gives the axis about which the oxygen octahedral rotates and its

magnitude is the rotation angle [80]. Different types of coupling between {ui} and {ωi} have been

reported in literature as follows:

(1) bi-quadratic couplings which are quadratic in both u andω explains the repulsion between polar
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and O6-rotational distortions [80].

(2) coupling between u and ω when u is linear and ω is quadratic or cubic in ω has been shown

to achieve collaborative effects involving both types of variables [8], as in the case of the so-called

hybrid improper ferroelectrics [2, 7, 84].

(3) when the coupling is of the form u2ω, it is shown to have the origin of inhomogeneous states

and novel magneto-electric effects [85].

I found that above mentioned interaction terms cannot explain the occurrence of PZO’s Σ2 mode.

Then I decided to investigate the possibility that the polar and rotational variables linearly couple,

a question that, as far as I know, has never been discussed in literature.

The simplest atomistic bilinear energy that we found has the (analytical) form :

∆E = K
∑

i

∑
l,m,n=0,1

∑
α,β,γ=x,y,z

εαβγui,α ωilmn,β(−1)(lx+my+nz)γ (3.1)

where K is a material-dependent constant that characterizes the strength of this coupling. The

sum over i runs over all the five-atom cells of the perovskite structure, and α=x, y,z subscripts

denote the Cartesian components of the ui vectors and ωi pseudo-vectors – with the x, y and

z-axes being chosen along the pseudo-cubic [100], [010] and [001] directions, respectively. ωilmn

(with l,m,n = 0 or 1) represents the i − th component of the tilting pseudo-vector located at lattice

vector Rlmn = alat(lx + my + nz). Moreover, (lx + my + nz)γ is the γ component of the vector

in parenthesis. εαβγ is the Levi-Civita symbol, it is equal to 1 when the ordered triad αβγ forms

a right-handed system, −1 when left-handed, and 0 when there are repeated indexes. The energy
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of Eqn. (3.1) is scalar as it should be, and, physically, it couples rotations of the tilting modes

with the displacements of cations. Such coupling has not been considered yet and may have a

strong potential for the description of the ground state of ferroelectrics having a complex structure.

We will show below that this coupling can also explain incommensurate phases of ferroelectrics.

Such coupling also implies that the atomic displacements in antiferroelectrics are not independent

of the tiltings. There is an intimate connection between the oxygen octahedra tiltings and atomic

displacements. For example, Eqn. (3.1) implies that a very complex pattern of the shift of lead

ions in PZO can be triggered by the antiferrodistortive phase transition related to the condensation

of the oxygen octahedral tilting below some temperature. In this case, the bilinear coupling of Eqn.

(3.1) plays the role of an external conjugate field on the lead ions, due to the appearance of a finite

average 〈ωi〉. To show the dependence of this energy on the wave vector k let us now consider

distortions given by:

ui,α =Aα{exp[i(kα · Ri + φα)] + c.c.},

ωi,α =A′α{exp[i(k′α · Ri + φ
′
α)] + c.c.},

(3.2)

where Ri is the lattice vector corresponding to cell i and α = x, y, z. The kα wave vectors

characterize the spatial modulation of each of the components of the ui vectors. Similarly, the

k′α vectors define, in direction and length, the modulated distortions of the Cartesian components

of the ωi pseudo-vectors. The Aα and A′α scalars quantify the magnitude of u and ω distortions,

respectively. The φα and φ′α angles are phases characterizing specific u andω patterns, respectively.

By inserting Eqn. (3.2) into Eqn. (3.1), we can identify which combinations of kα and k′α wave
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vectors result in the interaction via this new coupling. So, if we know the modes in a material,

we can check if they give a finite contribution to the novel energy term. Figure 3.1 schematizes

coupling terms inherent to Eqn. (3.1). Equation (3.1) for the energy can be rewritten as now:

∆E
K
=

∑
α,β=x,y,z

AαA′β
∑

G
[ fαβδ(G − kα − k′β) + f ∗αβδ(G + kα + k′β)

+ gαβδ(G + kα − k′β) + g
∗
αβδ(G − kα + k′β)]

(3.3)

where δ is the Dirac delta function and G runs over the reciprocal lattice vectors corresponding to

the 5-atom cubic perovskite structure. The fαβ and gαβ coefficients are given by

fαβ = exp [i(φα + φ′β)]aαβ (3.4)

and

gαβ = exp [i(−φα + φ′β)]aαβ, (3.5)

where

aαβ =
∑

η=x,y,z

εαβη
∏

γ=x,y,z

[1 + (−1)δγη exp (ik′β,γalat)] (3.6)

with δγη being the delta function and k′β,γ the γ-component of the k′β vector.
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Here, we set up to identify the simplest O(uω) couplings
that may potentially lead to hybrid phonons as PZO’s "2 and
S4 modes. The simplest (in the sense that it involves relatively
close neighbors) interaction that we found has the form:

#E = K
∑

i

∑

l,m,n=0,1

∑

α,β,γ = x,y,z

× ϵαβγ ui,αωilmn,β(−1)(lx+my+nz)γ , (1)

where K is a material-dependent constant that characterizes
the strength of this coupling. The sum over i runs over all
the five-atom cells of the perovskite structure, and the x,
y, and z subscripts denote the Cartesian components of the
ui vectors and ωi pseudovectors—with the x, y, and z axes
being chosen along the pseudocubic [100], [010], and [001]
directions, respectively. ωilmn (with l,m,n = 0 or 1) represents
the rotation of the O6 group in the cell that is reached from i by
following the lattice vector Rlmn = alat(lx + my + nz). (lx +
my + nz)γ is the γ component of the vector in parenthesis.
Finally, ϵαβγ is the Levi-Civita symbol, i.e., it equals 1 when
the ordered triad αβγ forms a right-handed system, −1 when
left-handed, and 0 when there are repeated indexes. Figure 2
schematizes coupling terms inherent to Eq. (1).

Let us now consider distortions given by

ui,α = Aα{exp[i(kα · Ri + φα)] + c.c.},
(2)

ωi,α = A′
α{exp[i(k′

α · Ri + φ′
α)] + c.c.},

where Ri is the lattice vector corresponding to cell i and
α = x,y,z. The kα wave vectors characterize the spatial
modulation of each of the components of the ui vectors.
Similarly, the k′

α vectors define, in direction and length, the
modulated distortions of the Cartesian components of the ωi

pseudovectors. The Aα and A′
α scalars quantify the magnitude

of the u and ω distortions, respectively, and are taken to be
real. The φα and φ′

α angles are phases characterizing specific
u and ω patterns, respectively.

FIG. 2. Sketch of representative coupling terms in #E of Eq. (1).
Only the couplings involving ui,z are schematized here, since the
remaining terms can be straightforwardly derived from the ones
shown by applying the symmetry elements of the cubic Pm3̄m

space group. The blue arrow on the central A cation stands for
the ui,z displacement. The green and red arrows on the corner B

cations represent the x and y components, respectively, of the ω

pseudovectors.

By inserting Eqs. (2) into Eq. (1), we can identify which
combinations of kα and k′

α wave vectors result in an interaction
via this new coupling. Hence the expression for the energy can
be rewritten as

#E

K =
∑

α,β=x,y,z

AαA′
β

∑

G

[fαβδ(G − kα − k′
β)

+ f ∗
αβδ(G + kα + k′

β)

+ gαβδ(G + kα − k′
β) + g∗

αβδ(G − kα + k′
β)], (3)

where δ is the Dirac delta function and G runs over the
reciprocal lattice vectors corresponding to the five-atom cubic
perovskite structure. The fαβ and gαβ coefficients are given by

fαβ = exp [i(φα + φ′
β)]aαβ (4)

and

gαβ = exp [i(−φα + φ′
β)]aαβ , (5)

where

aαβ =
∑

η=x,y,z

ϵαβη

∏

γ=x,y,z

[1 + (−1)δγ η exp (ik′
β,γ alat)] (6)

with δγη being the Kronecker δ and k′
β,γ the γ component of

the k′
β vector.

III. APPLICATIONS OF THE INTERATOMIC COUPLINGS

Having introduced the basic equations for this new coupling
energy, let us inspect what the implications are as regards the
possible occurrence of AFE and other complex instabilities in
perovskite lattices. More precisely, we will consider a number
of complex distortion patterns and show that they lead to
reduction of the energy of the cubic perovskite phase via the
new interaction term.

A. The "2 antiferroelectric mode

Let us first consider the case of kx = ky = π
2alat

(x + y).
The Dirac functions of the type δ(G − kα − k′

β) in Eq. (3)
imply that for k′

β = −kx = −ky , we can, in principle, have
interactions contributing to #E

K . Now, it is immediate to see
from Eq. (6) that axy = ayx = 0 for this choice of wave vectors.
(We also trivially have axx = ayy = 0.) Nevertheless, we do
have a nonvanishing result when we consider k′

z = −kx =
−ky . For such a k′ point we can prove that axz and ayz are
finite and Eq. (3) becomes

#E("2)
K = −8AxA

′
z cos(φx + φ′

z) + 8AyA
′
z cos(φy + φ′

z).

(7)
Further, it is clear from Eq. (7) that the interaction is maximized
in specific cases; for example, when both φx + φ′

z and φy + φ′
z

take values of the form πn, with n ∈ Z, provided Ax and Ay

have opposite signs.
For instance, we get a maximum coupling for φx = φy =

− 3π
4 and φ′

z = −π
4 . In that case, the A-cation displacements

are out-of-phase with respect to the AFD distortions by 90◦

(since φ′
z − φx = π

2 ), and the resulting patterns for the u and
ω distortions are exactly those shown in Figs. 1(a) and 1(c),
respectively, which correspond to the soft "2 phonon mode

054107-3

Figure 3.1: Schematic representation of coupling terms in ∆E of Eqn. (1). Only the couplings
involving ui,z are shown here. The blue arrow on the central A cation stands for the ui,z displacement.
The green and Red arrows on the corner B cations represent the x and y components, respectively
of the ω pseudovectors.

In the next section, we will see how the investigated atomic interaction helps us to understands

the complex displacement patterns caused by this bilinear coupling in some perovskites.

3.3 Applications of the Model

We investigated several complex distortion patterns for possible occurrence of AFE and other

complex instabilities in perovskite lattices.

3.3.1 Σ2 antiferroelectric mode

Σ2 is a frozen structural mode in PZO ground state and it possesses antipolar Pb motions (which are

also referred as AFE displacements) along with oxygen octahedral rotations. The k-point associated

with the Σ2 AFE mode is the 2π
alat

(1
4 ,

1
4 ,0) k-point. Let us start with the kx = ky =

π
2alat
(x + y) wave

vectors. For these k-vectors, the Dirac functions of the type δ(G − kα − k′β) in Eqn. (3.3) imply
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that for k′β = −kx = −ky, we have a finite interaction contributing to ∆E/K. For this choice of the

wave vectors, one can see from Eqn. (3.6) that axy = ayx = 0. When k′z = −kx = −ky, axz and ayz

in Eq. (3.6) are finite and Eq. (3.3) becomes:

∆E(Σ2)

K
= −8Ax A′z cos(φx + φ

′
z) + 8AyA′z cos(φy + φ′z) (3.7)

Here we discuss two different cases when this interaction is maximum.

Case (I):

The interaction is maximum when φx + φ
′
z = φy + φ′z = πn, with n ∈ Z, provided that Ax and Ay

have opposite signs. For instance, when φx = φy = −
3π
4 and φ′z = − π4 , the coupling is maximum.

Since φ′z −φx =
π
2 , the A-cation displacements are out-of-phase with respect to the AFD distortions

by 90◦ and the resulting patterns are shown in Figure 3.2(a) and 3.2(b), respectively. The pattern of

Pb displacements, i.e ui vectors, are either parallel or antiparallel to pseudocubic [1̄10] direction.

The ui’s in the Σ2 phonon mode follows a “++- -” sequence, when lead ions move along [100] or

[010] pseudocubic direction in (001) planes. Pseudovector ωi characterizes the oxygen octahedron

tilting at B site in unit cell i. Figure 3.2(c) displays the oxygen motions associated with the tilting

of the oxygen octahedra in the Σ2 phonon mode. One can see that out of the four in-plane oxygen

ions surrounding any B cation, only two move. Such distortion arises when the individual ωi,z

rotation about z axis displays a “++- -” modulation pattern along in-plane [100] or [001] directions.

These AFD modes are qualitatively different from the Glazer rotational patterns [15] which always

involve “+-+-" (zone-boundary) modulations in the plane perpendicular to the rotation axis. Both

AFE and AFD modes interact at harmonic level and such bilinear coupling can be explained by the
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investigated atomic interaction. Therefore, the coupling in Eq.(3.1) naturally explains the exotic

character of the AFE order in PZO and other materials that share similar features (e.g., PbHfO3,

which is denoted below as PHO[43, 86]).

45



KINNARY PATEL et al. PHYSICAL REVIEW B 94, 054107 (2016)

FIG. 1. Patterns of the A-cation distortions, ui (a), oxygen displacements (b) and corresponding B-centered oxygen octahedra rotation
pseudovectors, ωi (c) for the !2 mode of ABO3 perovskites. (d)–(f) show the corresponding patterns but for the S4 mode. The A, B, and O
ions are shown by black, green, and red spheres, respectively. The different colors used for the arrows in each panel emphasize the different
directions of the corresponding vectors.

one moves along the [100] or [010] pseudocubic directions in
the (001) plane.

Let us also introduce a pseudovector ωi that characterizes
the tilting of the oxygen octahedron centered at the B site in
unit cell i. [Modes characterized by long-range ordered ωi

tiltings are usually termed antiferrodistortive (AFD).] More
precisely, the direction of ωi gives the axis about which
the oxygen octahedron rotates and its magnitude yields the
rotation angle [19]. It is important to realize that, by using
the rotations of individual octahedra as independent variables,
we can reproduce any rotational pattern, including cases in
which the tiltings are truncated and the octahedra distort. To
emphasize this point, Figure 1(b) displays the oxygen motions
associated with the tilting of the oxygen octahedra in the !2
mode characterizing PZO’s AFE; one can see that, out the
four in-plane oxygen ions surrounding any B cation, only
two move. Such distortions arise when the individual ωi,z

rotations (about the z or [001] axis) display a “+ + −−”
modulation pattern as we move along the in-plane [100] or
[001] directions. Note that these AFD modes are qualitatively
different from the Glazer rotational patterns [20] that are
most usual in perovskites, which always involve “+ − +−”
(zone-boundary) modulations in the plane perpendicular to the
rotation axis.

Interestingly, different types of energies coupling the {ui}
and {ωi} variables have been reported in the literature. For
example, biquadratic couplings (i.e., quadratic in both u and
ω variables) account for the well-known repulsion between
polar and O6-rotational distortions [19]. Additionally, coupling
terms linear in u and either quadratic or cubic in ω have
been shown to yield collaborative effects involving both types
of variables [21], as, e.g., in the so-called hybrid improper
ferroelectrics [22–24]. Further, interactions that go as u2ω have
been shown to be at the origin of inhomogeneous states and
novel magnetoelectric effects [25]. However, none of these
interaction terms can account for the occurrence of hybrid
soft phonons like PZO’s !2 mode. Indeed, in that case, we
need to explore the possibility that the polar and rotational
variables couple at the harmonic level, a question that, as far
as we know, has never been discussed in the literature on
perovskites. Notably, model studies for perovskites in which
both distortion types are relevant have either focused on the
effects associated with the anharmonic couplings [26] or even
assumed that local dipoles and O6 rotations are decoupled
harmonically [27]. It is thus worth to emphasize that there is no
fundamental (symmetry) reason for such modes to not interact
at the harmonic level, and that such a feature constitutes an
approximation in most existing models.
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directions of the corresponding vectors.

one moves along the [100] or [010] pseudocubic directions in
the (001) plane.

Let us also introduce a pseudovector ωi that characterizes
the tilting of the oxygen octahedron centered at the B site in
unit cell i. [Modes characterized by long-range ordered ωi

tiltings are usually termed antiferrodistortive (AFD).] More
precisely, the direction of ωi gives the axis about which
the oxygen octahedron rotates and its magnitude yields the
rotation angle [19]. It is important to realize that, by using
the rotations of individual octahedra as independent variables,
we can reproduce any rotational pattern, including cases in
which the tiltings are truncated and the octahedra distort. To
emphasize this point, Figure 1(b) displays the oxygen motions
associated with the tilting of the oxygen octahedra in the !2
mode characterizing PZO’s AFE; one can see that, out the
four in-plane oxygen ions surrounding any B cation, only
two move. Such distortions arise when the individual ωi,z

rotations (about the z or [001] axis) display a “+ + −−”
modulation pattern as we move along the in-plane [100] or
[001] directions. Note that these AFD modes are qualitatively
different from the Glazer rotational patterns [20] that are
most usual in perovskites, which always involve “+ − +−”
(zone-boundary) modulations in the plane perpendicular to the
rotation axis.

Interestingly, different types of energies coupling the {ui}
and {ωi} variables have been reported in the literature. For
example, biquadratic couplings (i.e., quadratic in both u and
ω variables) account for the well-known repulsion between
polar and O6-rotational distortions [19]. Additionally, coupling
terms linear in u and either quadratic or cubic in ω have
been shown to yield collaborative effects involving both types
of variables [21], as, e.g., in the so-called hybrid improper
ferroelectrics [22–24]. Further, interactions that go as u2ω have
been shown to be at the origin of inhomogeneous states and
novel magnetoelectric effects [25]. However, none of these
interaction terms can account for the occurrence of hybrid
soft phonons like PZO’s !2 mode. Indeed, in that case, we
need to explore the possibility that the polar and rotational
variables couple at the harmonic level, a question that, as far
as we know, has never been discussed in the literature on
perovskites. Notably, model studies for perovskites in which
both distortion types are relevant have either focused on the
effects associated with the anharmonic couplings [26] or even
assumed that local dipoles and O6 rotations are decoupled
harmonically [27]. It is thus worth to emphasize that there is no
fundamental (symmetry) reason for such modes to not interact
at the harmonic level, and that such a feature constitutes an
approximation in most existing models.
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one moves along the [100] or [010] pseudocubic directions in
the (001) plane.

Let us also introduce a pseudovector ωi that characterizes
the tilting of the oxygen octahedron centered at the B site in
unit cell i. [Modes characterized by long-range ordered ωi

tiltings are usually termed antiferrodistortive (AFD).] More
precisely, the direction of ωi gives the axis about which
the oxygen octahedron rotates and its magnitude yields the
rotation angle [19]. It is important to realize that, by using
the rotations of individual octahedra as independent variables,
we can reproduce any rotational pattern, including cases in
which the tiltings are truncated and the octahedra distort. To
emphasize this point, Figure 1(b) displays the oxygen motions
associated with the tilting of the oxygen octahedra in the !2
mode characterizing PZO’s AFE; one can see that, out the
four in-plane oxygen ions surrounding any B cation, only
two move. Such distortions arise when the individual ωi,z

rotations (about the z or [001] axis) display a “+ + −−”
modulation pattern as we move along the in-plane [100] or
[001] directions. Note that these AFD modes are qualitatively
different from the Glazer rotational patterns [20] that are
most usual in perovskites, which always involve “+ − +−”
(zone-boundary) modulations in the plane perpendicular to the
rotation axis.

Interestingly, different types of energies coupling the {ui}
and {ωi} variables have been reported in the literature. For
example, biquadratic couplings (i.e., quadratic in both u and
ω variables) account for the well-known repulsion between
polar and O6-rotational distortions [19]. Additionally, coupling
terms linear in u and either quadratic or cubic in ω have
been shown to yield collaborative effects involving both types
of variables [21], as, e.g., in the so-called hybrid improper
ferroelectrics [22–24]. Further, interactions that go as u2ω have
been shown to be at the origin of inhomogeneous states and
novel magnetoelectric effects [25]. However, none of these
interaction terms can account for the occurrence of hybrid
soft phonons like PZO’s !2 mode. Indeed, in that case, we
need to explore the possibility that the polar and rotational
variables couple at the harmonic level, a question that, as far
as we know, has never been discussed in the literature on
perovskites. Notably, model studies for perovskites in which
both distortion types are relevant have either focused on the
effects associated with the anharmonic couplings [26] or even
assumed that local dipoles and O6 rotations are decoupled
harmonically [27]. It is thus worth to emphasize that there is no
fundamental (symmetry) reason for such modes to not interact
at the harmonic level, and that such a feature constitutes an
approximation in most existing models.
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Figure 3.2: (a) A-cation distortion (ui) patterns, (b) B-centered oxygen octahedra rotation pseu-
dovectors ωi, and (c) Oxygen displacements. The A, B, and O ions are shown in black, green, and
red spheres respectively. The different colors used for the arrows in each panel emphasize different
directions of the corresponding vectors.
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Case II:

Let us consider the case of interaction (Eqn. (3.7)) that can also lead to solutions that are not

associated with the PZO’s AFE patterns. For example, if we choose φx = φy = φ
′

z = −
π
2 , we get:

∆E(Σ2)

K
= (8Ax A′z − 8AyA′z) (3.8)

This leads to a different pattern for the A-cation displacements and oxygen octahedral tiltings.

Specifically, Eqn. (3.2) gives “0+0-” modulations.

Both cases discussed above give perfectly degenerate patterns at harmonic level. PZO and PHO

adopt the former case due to anharmonic coupling between local dipoles and tiltings. The energies

associated with anharmonic coupling for pattern “0+0-" are higher than in pattern “++- -” due to

the fact that “+" and “-" displacements in “0+0-" modulations are larger by the factor of
√

2 in

magnitude than in “++- -”.

3.3.2 S4 symmetry antiferroelectric mode

S4 is another structural mode in the antiferroelectric Pbam phase of PZO. The modes which

contribute to Pbam ground state of PZO and PHO. The k-point associated with S4 mode is 2π
alat

(1
4 ,

1
4 ,

1
2 ). The investigated bilinear coupling gives ui(AFE) and O6 (AFD) patterns as shown in

Figures 3.3(a), 3.3(b), and 3.3(c) for the following case:

Let us choose kx = ky =
π

2alat
(x+ y)+ π

alat
z in Eqn. (3.2). For k′x = k′y = −kx = −ky, we have non

vanishing interactions terms in Eqn. (3.3) via the δ(G− kα − k′β) term. One can find that only axy
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and ayx terms are finite and resulting Eqn. (3.1) for S4 mode becomes:

∆E(S4)

K
= 8Ax A′y sin(φx + φ

′
y) − 8AyA′x sin(φy + φ′x) (3.9)

The interaction of S4 mode will be maximized when φx + φ
′
y = φy + φ

′
x =

π
2 + πn, where n ∈ Z,

provided that Ax A′y and AyA′x have opposite signs. Let φx = φy = −
π
4 and φ′x = φ′y =

3π
4 , then

the interaction in Eqn. (3.9) yields patterns for A-cation displacements and tiltings shown in Figs.

3.3(a) and 3.3(c), respectively. Thus S4 mode is also stabilized by interaction Eqn. (3.1). Hence,

the investigated atomic interaction explains all complex patterns of atomic distortions associated

with the Pbam ground state of PZO and PHO.
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FIG. 1. Patterns of the A-cation distortions, ui (a), oxygen displacements (b) and corresponding B-centered oxygen octahedra rotation
pseudovectors, ωi (c) for the !2 mode of ABO3 perovskites. (d)–(f) show the corresponding patterns but for the S4 mode. The A, B, and O
ions are shown by black, green, and red spheres, respectively. The different colors used for the arrows in each panel emphasize the different
directions of the corresponding vectors.

one moves along the [100] or [010] pseudocubic directions in
the (001) plane.

Let us also introduce a pseudovector ωi that characterizes
the tilting of the oxygen octahedron centered at the B site in
unit cell i. [Modes characterized by long-range ordered ωi

tiltings are usually termed antiferrodistortive (AFD).] More
precisely, the direction of ωi gives the axis about which
the oxygen octahedron rotates and its magnitude yields the
rotation angle [19]. It is important to realize that, by using
the rotations of individual octahedra as independent variables,
we can reproduce any rotational pattern, including cases in
which the tiltings are truncated and the octahedra distort. To
emphasize this point, Figure 1(b) displays the oxygen motions
associated with the tilting of the oxygen octahedra in the !2
mode characterizing PZO’s AFE; one can see that, out the
four in-plane oxygen ions surrounding any B cation, only
two move. Such distortions arise when the individual ωi,z

rotations (about the z or [001] axis) display a “+ + −−”
modulation pattern as we move along the in-plane [100] or
[001] directions. Note that these AFD modes are qualitatively
different from the Glazer rotational patterns [20] that are
most usual in perovskites, which always involve “+ − +−”
(zone-boundary) modulations in the plane perpendicular to the
rotation axis.

Interestingly, different types of energies coupling the {ui}
and {ωi} variables have been reported in the literature. For
example, biquadratic couplings (i.e., quadratic in both u and
ω variables) account for the well-known repulsion between
polar and O6-rotational distortions [19]. Additionally, coupling
terms linear in u and either quadratic or cubic in ω have
been shown to yield collaborative effects involving both types
of variables [21], as, e.g., in the so-called hybrid improper
ferroelectrics [22–24]. Further, interactions that go as u2ω have
been shown to be at the origin of inhomogeneous states and
novel magnetoelectric effects [25]. However, none of these
interaction terms can account for the occurrence of hybrid
soft phonons like PZO’s !2 mode. Indeed, in that case, we
need to explore the possibility that the polar and rotational
variables couple at the harmonic level, a question that, as far
as we know, has never been discussed in the literature on
perovskites. Notably, model studies for perovskites in which
both distortion types are relevant have either focused on the
effects associated with the anharmonic couplings [26] or even
assumed that local dipoles and O6 rotations are decoupled
harmonically [27]. It is thus worth to emphasize that there is no
fundamental (symmetry) reason for such modes to not interact
at the harmonic level, and that such a feature constitutes an
approximation in most existing models.
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FIG. 1. Patterns of the A-cation distortions, ui (a), oxygen displacements (b) and corresponding B-centered oxygen octahedra rotation
pseudovectors, ωi (c) for the !2 mode of ABO3 perovskites. (d)–(f) show the corresponding patterns but for the S4 mode. The A, B, and O
ions are shown by black, green, and red spheres, respectively. The different colors used for the arrows in each panel emphasize the different
directions of the corresponding vectors.

one moves along the [100] or [010] pseudocubic directions in
the (001) plane.

Let us also introduce a pseudovector ωi that characterizes
the tilting of the oxygen octahedron centered at the B site in
unit cell i. [Modes characterized by long-range ordered ωi

tiltings are usually termed antiferrodistortive (AFD).] More
precisely, the direction of ωi gives the axis about which
the oxygen octahedron rotates and its magnitude yields the
rotation angle [19]. It is important to realize that, by using
the rotations of individual octahedra as independent variables,
we can reproduce any rotational pattern, including cases in
which the tiltings are truncated and the octahedra distort. To
emphasize this point, Figure 1(b) displays the oxygen motions
associated with the tilting of the oxygen octahedra in the !2
mode characterizing PZO’s AFE; one can see that, out the
four in-plane oxygen ions surrounding any B cation, only
two move. Such distortions arise when the individual ωi,z

rotations (about the z or [001] axis) display a “+ + −−”
modulation pattern as we move along the in-plane [100] or
[001] directions. Note that these AFD modes are qualitatively
different from the Glazer rotational patterns [20] that are
most usual in perovskites, which always involve “+ − +−”
(zone-boundary) modulations in the plane perpendicular to the
rotation axis.

Interestingly, different types of energies coupling the {ui}
and {ωi} variables have been reported in the literature. For
example, biquadratic couplings (i.e., quadratic in both u and
ω variables) account for the well-known repulsion between
polar and O6-rotational distortions [19]. Additionally, coupling
terms linear in u and either quadratic or cubic in ω have
been shown to yield collaborative effects involving both types
of variables [21], as, e.g., in the so-called hybrid improper
ferroelectrics [22–24]. Further, interactions that go as u2ω have
been shown to be at the origin of inhomogeneous states and
novel magnetoelectric effects [25]. However, none of these
interaction terms can account for the occurrence of hybrid
soft phonons like PZO’s !2 mode. Indeed, in that case, we
need to explore the possibility that the polar and rotational
variables couple at the harmonic level, a question that, as far
as we know, has never been discussed in the literature on
perovskites. Notably, model studies for perovskites in which
both distortion types are relevant have either focused on the
effects associated with the anharmonic couplings [26] or even
assumed that local dipoles and O6 rotations are decoupled
harmonically [27]. It is thus worth to emphasize that there is no
fundamental (symmetry) reason for such modes to not interact
at the harmonic level, and that such a feature constitutes an
approximation in most existing models.
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FIG. 1. Patterns of the A-cation distortions, ui (a), oxygen displacements (b) and corresponding B-centered oxygen octahedra rotation
pseudovectors, ωi (c) for the !2 mode of ABO3 perovskites. (d)–(f) show the corresponding patterns but for the S4 mode. The A, B, and O
ions are shown by black, green, and red spheres, respectively. The different colors used for the arrows in each panel emphasize the different
directions of the corresponding vectors.

one moves along the [100] or [010] pseudocubic directions in
the (001) plane.

Let us also introduce a pseudovector ωi that characterizes
the tilting of the oxygen octahedron centered at the B site in
unit cell i. [Modes characterized by long-range ordered ωi

tiltings are usually termed antiferrodistortive (AFD).] More
precisely, the direction of ωi gives the axis about which
the oxygen octahedron rotates and its magnitude yields the
rotation angle [19]. It is important to realize that, by using
the rotations of individual octahedra as independent variables,
we can reproduce any rotational pattern, including cases in
which the tiltings are truncated and the octahedra distort. To
emphasize this point, Figure 1(b) displays the oxygen motions
associated with the tilting of the oxygen octahedra in the !2
mode characterizing PZO’s AFE; one can see that, out the
four in-plane oxygen ions surrounding any B cation, only
two move. Such distortions arise when the individual ωi,z

rotations (about the z or [001] axis) display a “+ + −−”
modulation pattern as we move along the in-plane [100] or
[001] directions. Note that these AFD modes are qualitatively
different from the Glazer rotational patterns [20] that are
most usual in perovskites, which always involve “+ − +−”
(zone-boundary) modulations in the plane perpendicular to the
rotation axis.

Interestingly, different types of energies coupling the {ui}
and {ωi} variables have been reported in the literature. For
example, biquadratic couplings (i.e., quadratic in both u and
ω variables) account for the well-known repulsion between
polar and O6-rotational distortions [19]. Additionally, coupling
terms linear in u and either quadratic or cubic in ω have
been shown to yield collaborative effects involving both types
of variables [21], as, e.g., in the so-called hybrid improper
ferroelectrics [22–24]. Further, interactions that go as u2ω have
been shown to be at the origin of inhomogeneous states and
novel magnetoelectric effects [25]. However, none of these
interaction terms can account for the occurrence of hybrid
soft phonons like PZO’s !2 mode. Indeed, in that case, we
need to explore the possibility that the polar and rotational
variables couple at the harmonic level, a question that, as far
as we know, has never been discussed in the literature on
perovskites. Notably, model studies for perovskites in which
both distortion types are relevant have either focused on the
effects associated with the anharmonic couplings [26] or even
assumed that local dipoles and O6 rotations are decoupled
harmonically [27]. It is thus worth to emphasize that there is no
fundamental (symmetry) reason for such modes to not interact
at the harmonic level, and that such a feature constitutes an
approximation in most existing models.
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FIG. 1. Patterns of the A-cation distortions, ui (a), oxygen displacements (b) and corresponding B-centered oxygen octahedra rotation
pseudovectors, ωi (c) for the !2 mode of ABO3 perovskites. (d)–(f) show the corresponding patterns but for the S4 mode. The A, B, and O
ions are shown by black, green, and red spheres, respectively. The different colors used for the arrows in each panel emphasize the different
directions of the corresponding vectors.

one moves along the [100] or [010] pseudocubic directions in
the (001) plane.

Let us also introduce a pseudovector ωi that characterizes
the tilting of the oxygen octahedron centered at the B site in
unit cell i. [Modes characterized by long-range ordered ωi

tiltings are usually termed antiferrodistortive (AFD).] More
precisely, the direction of ωi gives the axis about which
the oxygen octahedron rotates and its magnitude yields the
rotation angle [19]. It is important to realize that, by using
the rotations of individual octahedra as independent variables,
we can reproduce any rotational pattern, including cases in
which the tiltings are truncated and the octahedra distort. To
emphasize this point, Figure 1(b) displays the oxygen motions
associated with the tilting of the oxygen octahedra in the !2
mode characterizing PZO’s AFE; one can see that, out the
four in-plane oxygen ions surrounding any B cation, only
two move. Such distortions arise when the individual ωi,z

rotations (about the z or [001] axis) display a “+ + −−”
modulation pattern as we move along the in-plane [100] or
[001] directions. Note that these AFD modes are qualitatively
different from the Glazer rotational patterns [20] that are
most usual in perovskites, which always involve “+ − +−”
(zone-boundary) modulations in the plane perpendicular to the
rotation axis.

Interestingly, different types of energies coupling the {ui}
and {ωi} variables have been reported in the literature. For
example, biquadratic couplings (i.e., quadratic in both u and
ω variables) account for the well-known repulsion between
polar and O6-rotational distortions [19]. Additionally, coupling
terms linear in u and either quadratic or cubic in ω have
been shown to yield collaborative effects involving both types
of variables [21], as, e.g., in the so-called hybrid improper
ferroelectrics [22–24]. Further, interactions that go as u2ω have
been shown to be at the origin of inhomogeneous states and
novel magnetoelectric effects [25]. However, none of these
interaction terms can account for the occurrence of hybrid
soft phonons like PZO’s !2 mode. Indeed, in that case, we
need to explore the possibility that the polar and rotational
variables couple at the harmonic level, a question that, as far
as we know, has never been discussed in the literature on
perovskites. Notably, model studies for perovskites in which
both distortion types are relevant have either focused on the
effects associated with the anharmonic couplings [26] or even
assumed that local dipoles and O6 rotations are decoupled
harmonically [27]. It is thus worth to emphasize that there is no
fundamental (symmetry) reason for such modes to not interact
at the harmonic level, and that such a feature constitutes an
approximation in most existing models.
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FIG. 1. Patterns of the A-cation distortions, ui (a), oxygen displacements (b) and corresponding B-centered oxygen octahedra rotation
pseudovectors, ωi (c) for the !2 mode of ABO3 perovskites. (d)–(f) show the corresponding patterns but for the S4 mode. The A, B, and O
ions are shown by black, green, and red spheres, respectively. The different colors used for the arrows in each panel emphasize the different
directions of the corresponding vectors.

one moves along the [100] or [010] pseudocubic directions in
the (001) plane.

Let us also introduce a pseudovector ωi that characterizes
the tilting of the oxygen octahedron centered at the B site in
unit cell i. [Modes characterized by long-range ordered ωi

tiltings are usually termed antiferrodistortive (AFD).] More
precisely, the direction of ωi gives the axis about which
the oxygen octahedron rotates and its magnitude yields the
rotation angle [19]. It is important to realize that, by using
the rotations of individual octahedra as independent variables,
we can reproduce any rotational pattern, including cases in
which the tiltings are truncated and the octahedra distort. To
emphasize this point, Figure 1(b) displays the oxygen motions
associated with the tilting of the oxygen octahedra in the !2
mode characterizing PZO’s AFE; one can see that, out the
four in-plane oxygen ions surrounding any B cation, only
two move. Such distortions arise when the individual ωi,z

rotations (about the z or [001] axis) display a “+ + −−”
modulation pattern as we move along the in-plane [100] or
[001] directions. Note that these AFD modes are qualitatively
different from the Glazer rotational patterns [20] that are
most usual in perovskites, which always involve “+ − +−”
(zone-boundary) modulations in the plane perpendicular to the
rotation axis.

Interestingly, different types of energies coupling the {ui}
and {ωi} variables have been reported in the literature. For
example, biquadratic couplings (i.e., quadratic in both u and
ω variables) account for the well-known repulsion between
polar and O6-rotational distortions [19]. Additionally, coupling
terms linear in u and either quadratic or cubic in ω have
been shown to yield collaborative effects involving both types
of variables [21], as, e.g., in the so-called hybrid improper
ferroelectrics [22–24]. Further, interactions that go as u2ω have
been shown to be at the origin of inhomogeneous states and
novel magnetoelectric effects [25]. However, none of these
interaction terms can account for the occurrence of hybrid
soft phonons like PZO’s !2 mode. Indeed, in that case, we
need to explore the possibility that the polar and rotational
variables couple at the harmonic level, a question that, as far
as we know, has never been discussed in the literature on
perovskites. Notably, model studies for perovskites in which
both distortion types are relevant have either focused on the
effects associated with the anharmonic couplings [26] or even
assumed that local dipoles and O6 rotations are decoupled
harmonically [27]. It is thus worth to emphasize that there is no
fundamental (symmetry) reason for such modes to not interact
at the harmonic level, and that such a feature constitutes an
approximation in most existing models.
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FIG. 1. Patterns of the A-cation distortions, ui (a), oxygen displacements (b) and corresponding B-centered oxygen octahedra rotation
pseudovectors, ωi (c) for the !2 mode of ABO3 perovskites. (d)–(f) show the corresponding patterns but for the S4 mode. The A, B, and O
ions are shown by black, green, and red spheres, respectively. The different colors used for the arrows in each panel emphasize the different
directions of the corresponding vectors.

one moves along the [100] or [010] pseudocubic directions in
the (001) plane.

Let us also introduce a pseudovector ωi that characterizes
the tilting of the oxygen octahedron centered at the B site in
unit cell i. [Modes characterized by long-range ordered ωi

tiltings are usually termed antiferrodistortive (AFD).] More
precisely, the direction of ωi gives the axis about which
the oxygen octahedron rotates and its magnitude yields the
rotation angle [19]. It is important to realize that, by using
the rotations of individual octahedra as independent variables,
we can reproduce any rotational pattern, including cases in
which the tiltings are truncated and the octahedra distort. To
emphasize this point, Figure 1(b) displays the oxygen motions
associated with the tilting of the oxygen octahedra in the !2
mode characterizing PZO’s AFE; one can see that, out the
four in-plane oxygen ions surrounding any B cation, only
two move. Such distortions arise when the individual ωi,z

rotations (about the z or [001] axis) display a “+ + −−”
modulation pattern as we move along the in-plane [100] or
[001] directions. Note that these AFD modes are qualitatively
different from the Glazer rotational patterns [20] that are
most usual in perovskites, which always involve “+ − +−”
(zone-boundary) modulations in the plane perpendicular to the
rotation axis.

Interestingly, different types of energies coupling the {ui}
and {ωi} variables have been reported in the literature. For
example, biquadratic couplings (i.e., quadratic in both u and
ω variables) account for the well-known repulsion between
polar and O6-rotational distortions [19]. Additionally, coupling
terms linear in u and either quadratic or cubic in ω have
been shown to yield collaborative effects involving both types
of variables [21], as, e.g., in the so-called hybrid improper
ferroelectrics [22–24]. Further, interactions that go as u2ω have
been shown to be at the origin of inhomogeneous states and
novel magnetoelectric effects [25]. However, none of these
interaction terms can account for the occurrence of hybrid
soft phonons like PZO’s !2 mode. Indeed, in that case, we
need to explore the possibility that the polar and rotational
variables couple at the harmonic level, a question that, as far
as we know, has never been discussed in the literature on
perovskites. Notably, model studies for perovskites in which
both distortion types are relevant have either focused on the
effects associated with the anharmonic couplings [26] or even
assumed that local dipoles and O6 rotations are decoupled
harmonically [27]. It is thus worth to emphasize that there is no
fundamental (symmetry) reason for such modes to not interact
at the harmonic level, and that such a feature constitutes an
approximation in most existing models.

054107-2

Figure 3.3: (a) A-cation distortion (ui) patterns, (b) B-centered oxygen octahedra displacements,
and (c) B-centered oxygen rotation pseudovectors ωi for S4. The A, B, and O ions are shown in
black, green, and red spheres respectively. The different colors used for the arrows in each panel
emphasize different directions of the corresponding vectors.
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3.3.3 Λ3 antiferroelectric mode

In BiFeO3 and BiFe1/2Sc1/2O3 complex atomic patterns which contribute to antipolar Pnma struc-

ture [87, 88] can be also explained by the bi-linear coupling of Eq. (3.1). TheΛ3 mode is associated

with 2π/alat (1/4,1/4,1/4) k-points. Let the x and y components of the A-cation displacements be

described by ui,x = ui,y = A cos({k1x · Ri + φx}) + A cos({k2x · Ri + φx}), where φx =
π
4 , k1x =

π
2alat
(x+ y+ z) and k2x = π

2alat
(x+ y− z) are the different k-vectors associated with the Λ3 mode as

shown in Figure 3.4(a). Figure 3.4(a) shows that ui,z = C cos({k1x ·Ri+φz})−C cos({k2x ·Ri+φz}),

with φz = −
3π
4 . The x and y components of the tilting ω’s are active in this mode while the z-

components is null; thus we haveωi,x = −ωi,y = A′ cos({−k1x ·Ri+φ
′
1x})+A′ cos({−k2x ·Ri+φ

′
2x}),

with φ′1x = 0 and φ′2x =
π
2 (see Figure 3.4(c)). We obtain ∆E by inserting two different k-vectors

in Eq. (3.1).

∆E(Λ3)

K
= 8CA′[cos(φz + φ

′
1x) + sin(φz + φ

′
1x) − cos(φz + φ

′
2x) + sin(φz + φ

′
2x)]

− 8AA′[cos(φx + φ
′
1x) + sin(φx + φ

′
1x) − cos(φx + φ

′
2x) + sin(φx + φ

′
2x)]

= − 16
√

2(CA′ + AA′)

(3.10)

This contribution is finite. Thus, our discovered bi-linear coupling of Eq. (3.1) can also explain

the occurrence of the atomic patterns displayed in Figure (3.4).
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in PZO, i.e. they are of the form “+ + −−”. Therefore the
coupling in Eq. (1) naturally explains the exotic character of
the AFE order in PZO and other materials that share similar
features (e.g., PbHfO3 or PHO [12,28]).

It is also interesting to realize that maximizing the in-
teraction in Eq. (7) can also lead to solutions that are not
those associated with PZO’s AFE pattern. For example, if
we choose φx = φy = φ′

z = −π
2 , we have a second solution

that has exactly the same energy, K(8AxA
′
z − 8AyA

′
z), as the

first case discussed above. However, this alternative choice
yields a rather different pattern for the A-cation displacements
and oxygen octahedral tiltings. More specifically, Eqs. (2)
correspond to “0 + 0−” modulations in which positive and
negative values of the u and ω vectors intercalate with null
distortions as we move along any of the three Cartesian
axis. Note that these two “+ + −−” and “0 + 0−” cases are
indistinguishable (i.e., perfectly degenerate) at the harmonic
level. The fact that materials like PZO and PHO adopt
the former pattern over the latter is, in fact, related to
anharmonic couplings involving local dipoles and tiltings, and
in particular to energies of the form αu

∑
i(u

2
i,x + u2

i,y + u2
i,z)

2

and αω

∑
i(ω

2
i,x + ω2

i,y + ω2
i,z)

2, where αu and αω are positive
constants and where i runs over all the sites. As a matter of fact,
such energies are higher in the “0 + 0−” pattern than in the
“+ + −−” case because the “+” and “−” displacements in the
“0 + 0−” modulation are larger by a factor of

√
2 in magnitude

than the “+” and “−” displacements in the “+ + −−” pattern
(when the “+ + −−” and “0 + 0−” waves of Eq. (2) have the
same Aα and A′

α amplitudes).

B. The S4 antiferroelectric mode

Let us now consider the case of the S4 mode, which is
also known to contribute to the Pbam ground state of PZO
and PHO [6– 9,12]. The corresponding patterns for the u’s,
oxygen atomic motions and ω’s are shown in Figs. 1(d), 1(e),
and 1(f), respectively. For such mode, we choose kx = ky =

π
2alat

(x + y) + π
alat

z in Eq. (2). Then, it can be checked that in
this case we have nonvanishing interactions for k′

x = k′
y =

−kx = −ky via the δ(G − kα − k′
β) in Eq. (3). The resulting

'E/K solely involves the axy and ayx terms defined in Eq. (6)
and becomes

'E(S4)
K = 8AxA

′
y sin(φx + φ′

y) − 8AyA
′
x sin(φy + φ′

x).

(8)
The magnitude of the interaction is thus maximized for φx +
φ′

y = φy + φ′
x = π

2 + πn, where n ∈ Z, if AxA
′
y and AyA

′
x

have opposite signs. One such solution is φx = φy = −π
4

and φ′
x = φ′

y = 3π
4 , which yields the patterns of f A-cation

displacements and tiltings shown in Figs. 1(d) and 1(f),
respectively. Hence, the coupling of Eq. (1) can also explain
the complex atomic distortion associated with the soft S4 mode
of PZO and PHO.

C. The !3 symmetry antiferroelectric mode

Let us now consider other complex atomic patterns as those
displayed in Fig. 3. Such patterns have been demonstrated to
contribute to a stable and complex antipolar Pnma structure
in BiFeO3 and BiFe1/2Sc1/2O3 [15,16], involving a cell that

FIG. 3. Same as Figs. 1(a)– 1(c) but for the (3 modes of ABO3

perovskites.

is a
√

2 × 4 × 2
√

2 multiple of the five-atom perovskite unit,
and are associated with (3 modes. As shown in Fig. 3(a),
the x and y components of the A-cation displacements
can be described by ui,x = ui,y = A cos({k1x · Ri + φx}) +
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FIG. 1. Patterns of the A-cation distortions, ui (a), oxygen displacements (b) and corresponding B-centered oxygen octahedra rotation
pseudovectors, ωi (c) for the !2 mode of ABO3 perovskites. (d)–(f) show the corresponding patterns but for the S4 mode. The A, B, and O
ions are shown by black, green, and red spheres, respectively. The different colors used for the arrows in each panel emphasize the different
directions of the corresponding vectors.

one moves along the [100] or [010] pseudocubic directions in
the (001) plane.

Let us also introduce a pseudovector ωi that characterizes
the tilting of the oxygen octahedron centered at the B site in
unit cell i. [Modes characterized by long-range ordered ωi

tiltings are usually termed antiferrodistortive (AFD).] More
precisely, the direction of ωi gives the axis about which
the oxygen octahedron rotates and its magnitude yields the
rotation angle [19]. It is important to realize that, by using
the rotations of individual octahedra as independent variables,
we can reproduce any rotational pattern, including cases in
which the tiltings are truncated and the octahedra distort. To
emphasize this point, Figure 1(b) displays the oxygen motions
associated with the tilting of the oxygen octahedra in the !2
mode characterizing PZO’s AFE; one can see that, out the
four in-plane oxygen ions surrounding any B cation, only
two move. Such distortions arise when the individual ωi,z

rotations (about the z or [001] axis) display a “+ + −−”
modulation pattern as we move along the in-plane [100] or
[001] directions. Note that these AFD modes are qualitatively
different from the Glazer rotational patterns [20] that are
most usual in perovskites, which always involve “+ − +−”
(zone-boundary) modulations in the plane perpendicular to the
rotation axis.

Interestingly, different types of energies coupling the {ui}
and {ωi} variables have been reported in the literature. For
example, biquadratic couplings (i.e., quadratic in both u and
ω variables) account for the well-known repulsion between
polar and O6-rotational distortions [19]. Additionally, coupling
terms linear in u and either quadratic or cubic in ω have
been shown to yield collaborative effects involving both types
of variables [21], as, e.g., in the so-called hybrid improper
ferroelectrics [22–24]. Further, interactions that go as u2ω have
been shown to be at the origin of inhomogeneous states and
novel magnetoelectric effects [25]. However, none of these
interaction terms can account for the occurrence of hybrid
soft phonons like PZO’s !2 mode. Indeed, in that case, we
need to explore the possibility that the polar and rotational
variables couple at the harmonic level, a question that, as far
as we know, has never been discussed in the literature on
perovskites. Notably, model studies for perovskites in which
both distortion types are relevant have either focused on the
effects associated with the anharmonic couplings [26] or even
assumed that local dipoles and O6 rotations are decoupled
harmonically [27]. It is thus worth to emphasize that there is no
fundamental (symmetry) reason for such modes to not interact
at the harmonic level, and that such a feature constitutes an
approximation in most existing models.
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in PZO, i.e. they are of the form “+ + −−”. Therefore the
coupling in Eq. (1) naturally explains the exotic character of
the AFE order in PZO and other materials that share similar
features (e.g., PbHfO3 or PHO [12,28]).

It is also interesting to realize that maximizing the in-
teraction in Eq. (7) can also lead to solutions that are not
those associated with PZO’s AFE pattern. For example, if
we choose φx = φy = φ′

z = −π
2 , we have a second solution

that has exactly the same energy, K(8AxA
′
z − 8AyA

′
z), as the

first case discussed above. However, this alternative choice
yields a rather different pattern for the A-cation displacements
and oxygen octahedral tiltings. More specifically, Eqs. (2)
correspond to “0 + 0−” modulations in which positive and
negative values of the u and ω vectors intercalate with null
distortions as we move along any of the three Cartesian
axis. Note that these two “+ + −−” and “0 + 0−” cases are
indistinguishable (i.e., perfectly degenerate) at the harmonic
level. The fact that materials like PZO and PHO adopt
the former pattern over the latter is, in fact, related to
anharmonic couplings involving local dipoles and tiltings, and
in particular to energies of the form αu

∑
i(u

2
i,x + u2

i,y + u2
i,z)

2

and αω

∑
i(ω

2
i,x + ω2

i,y + ω2
i,z)

2, where αu and αω are positive
constants and where i runs over all the sites. As a matter of fact,
such energies are higher in the “0 + 0−” pattern than in the
“+ + −−” case because the “+” and “−” displacements in the
“0 + 0−” modulation are larger by a factor of

√
2 in magnitude

than the “+” and “−” displacements in the “+ + −−” pattern
(when the “+ + −−” and “0 + 0−” waves of Eq. (2) have the
same Aα and A′

α amplitudes).

B. The S4 antiferroelectric mode

Let us now consider the case of the S4 mode, which is
also known to contribute to the Pbam ground state of PZO
and PHO [6– 9,12]. The corresponding patterns for the u’s,
oxygen atomic motions and ω’s are shown in Figs. 1(d), 1(e),
and 1(f), respectively. For such mode, we choose kx = ky =

π
2alat

(x + y) + π
alat

z in Eq. (2). Then, it can be checked that in
this case we have nonvanishing interactions for k′

x = k′
y =

−kx = −ky via the δ(G − kα − k′
β) in Eq. (3). The resulting

'E/K solely involves the axy and ayx terms defined in Eq. (6)
and becomes

'E(S4)
K = 8AxA

′
y sin(φx + φ′

y) − 8AyA
′
x sin(φy + φ′

x).

(8)
The magnitude of the interaction is thus maximized for φx +
φ′

y = φy + φ′
x = π

2 + πn, where n ∈ Z, if AxA
′
y and AyA

′
x

have opposite signs. One such solution is φx = φy = −π
4

and φ′
x = φ′

y = 3π
4 , which yields the patterns of f A-cation

displacements and tiltings shown in Figs. 1(d) and 1(f),
respectively. Hence, the coupling of Eq. (1) can also explain
the complex atomic distortion associated with the soft S4 mode
of PZO and PHO.

C. The !3 symmetry antiferroelectric mode

Let us now consider other complex atomic patterns as those
displayed in Fig. 3. Such patterns have been demonstrated to
contribute to a stable and complex antipolar Pnma structure
in BiFeO3 and BiFe1/2Sc1/2O3 [15,16], involving a cell that

FIG. 3. Same as Figs. 1(a)– 1(c) but for the (3 modes of ABO3

perovskites.

is a
√

2 × 4 × 2
√

2 multiple of the five-atom perovskite unit,
and are associated with (3 modes. As shown in Fig. 3(a),
the x and y components of the A-cation displacements
can be described by ui,x = ui,y = A cos({k1x · Ri + φx}) +
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FIG. 1. Patterns of the A-cation distortions, ui (a), oxygen displacements (b) and corresponding B-centered oxygen octahedra rotation
pseudovectors, ωi (c) for the !2 mode of ABO3 perovskites. (d)–(f) show the corresponding patterns but for the S4 mode. The A, B, and O
ions are shown by black, green, and red spheres, respectively. The different colors used for the arrows in each panel emphasize the different
directions of the corresponding vectors.

one moves along the [100] or [010] pseudocubic directions in
the (001) plane.

Let us also introduce a pseudovector ωi that characterizes
the tilting of the oxygen octahedron centered at the B site in
unit cell i. [Modes characterized by long-range ordered ωi

tiltings are usually termed antiferrodistortive (AFD).] More
precisely, the direction of ωi gives the axis about which
the oxygen octahedron rotates and its magnitude yields the
rotation angle [19]. It is important to realize that, by using
the rotations of individual octahedra as independent variables,
we can reproduce any rotational pattern, including cases in
which the tiltings are truncated and the octahedra distort. To
emphasize this point, Figure 1(b) displays the oxygen motions
associated with the tilting of the oxygen octahedra in the !2
mode characterizing PZO’s AFE; one can see that, out the
four in-plane oxygen ions surrounding any B cation, only
two move. Such distortions arise when the individual ωi,z

rotations (about the z or [001] axis) display a “+ + −−”
modulation pattern as we move along the in-plane [100] or
[001] directions. Note that these AFD modes are qualitatively
different from the Glazer rotational patterns [20] that are
most usual in perovskites, which always involve “+ − +−”
(zone-boundary) modulations in the plane perpendicular to the
rotation axis.

Interestingly, different types of energies coupling the {ui}
and {ωi} variables have been reported in the literature. For
example, biquadratic couplings (i.e., quadratic in both u and
ω variables) account for the well-known repulsion between
polar and O6-rotational distortions [19]. Additionally, coupling
terms linear in u and either quadratic or cubic in ω have
been shown to yield collaborative effects involving both types
of variables [21], as, e.g., in the so-called hybrid improper
ferroelectrics [22–24]. Further, interactions that go as u2ω have
been shown to be at the origin of inhomogeneous states and
novel magnetoelectric effects [25]. However, none of these
interaction terms can account for the occurrence of hybrid
soft phonons like PZO’s !2 mode. Indeed, in that case, we
need to explore the possibility that the polar and rotational
variables couple at the harmonic level, a question that, as far
as we know, has never been discussed in the literature on
perovskites. Notably, model studies for perovskites in which
both distortion types are relevant have either focused on the
effects associated with the anharmonic couplings [26] or even
assumed that local dipoles and O6 rotations are decoupled
harmonically [27]. It is thus worth to emphasize that there is no
fundamental (symmetry) reason for such modes to not interact
at the harmonic level, and that such a feature constitutes an
approximation in most existing models.
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in PZO, i.e. they are of the form “+ + −−”. Therefore the
coupling in Eq. (1) naturally explains the exotic character of
the AFE order in PZO and other materials that share similar
features (e.g., PbHfO3 or PHO [12,28]).

It is also interesting to realize that maximizing the in-
teraction in Eq. (7) can also lead to solutions that are not
those associated with PZO’s AFE pattern. For example, if
we choose φx = φy = φ′

z = −π
2 , we have a second solution

that has exactly the same energy, K(8AxA
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z − 8AyA

′
z), as the
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yields a rather different pattern for the A-cation displacements
and oxygen octahedral tiltings. More specifically, Eqs. (2)
correspond to “0 + 0−” modulations in which positive and
negative values of the u and ω vectors intercalate with null
distortions as we move along any of the three Cartesian
axis. Note that these two “+ + −−” and “0 + 0−” cases are
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such energies are higher in the “0 + 0−” pattern than in the
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“0 + 0−” modulation are larger by a factor of
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2 in magnitude

than the “+” and “−” displacements in the “+ + −−” pattern
(when the “+ + −−” and “0 + 0−” waves of Eq. (2) have the
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α amplitudes).

B. The S4 antiferroelectric mode

Let us now consider the case of the S4 mode, which is
also known to contribute to the Pbam ground state of PZO
and PHO [6– 9,12]. The corresponding patterns for the u’s,
oxygen atomic motions and ω’s are shown in Figs. 1(d), 1(e),
and 1(f), respectively. For such mode, we choose kx = ky =
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z in Eq. (2). Then, it can be checked that in
this case we have nonvanishing interactions for k′
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y =

−kx = −ky via the δ(G − kα − k′
β) in Eq. (3). The resulting

'E/K solely involves the axy and ayx terms defined in Eq. (6)
and becomes

'E(S4)
K = 8AxA

′
y sin(φx + φ′

y) − 8AyA
′
x sin(φy + φ′

x).

(8)
The magnitude of the interaction is thus maximized for φx +
φ′

y = φy + φ′
x = π

2 + πn, where n ∈ Z, if AxA
′
y and AyA

′
x

have opposite signs. One such solution is φx = φy = −π
4

and φ′
x = φ′

y = 3π
4 , which yields the patterns of f A-cation

displacements and tiltings shown in Figs. 1(d) and 1(f),
respectively. Hence, the coupling of Eq. (1) can also explain
the complex atomic distortion associated with the soft S4 mode
of PZO and PHO.

C. The !3 symmetry antiferroelectric mode

Let us now consider other complex atomic patterns as those
displayed in Fig. 3. Such patterns have been demonstrated to
contribute to a stable and complex antipolar Pnma structure
in BiFeO3 and BiFe1/2Sc1/2O3 [15,16], involving a cell that
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FIG. 1. Patterns of the A-cation distortions, ui (a), oxygen displacements (b) and corresponding B-centered oxygen octahedra rotation
pseudovectors, ωi (c) for the !2 mode of ABO3 perovskites. (d)–(f) show the corresponding patterns but for the S4 mode. The A, B, and O
ions are shown by black, green, and red spheres, respectively. The different colors used for the arrows in each panel emphasize the different
directions of the corresponding vectors.

one moves along the [100] or [010] pseudocubic directions in
the (001) plane.

Let us also introduce a pseudovector ωi that characterizes
the tilting of the oxygen octahedron centered at the B site in
unit cell i. [Modes characterized by long-range ordered ωi

tiltings are usually termed antiferrodistortive (AFD).] More
precisely, the direction of ωi gives the axis about which
the oxygen octahedron rotates and its magnitude yields the
rotation angle [19]. It is important to realize that, by using
the rotations of individual octahedra as independent variables,
we can reproduce any rotational pattern, including cases in
which the tiltings are truncated and the octahedra distort. To
emphasize this point, Figure 1(b) displays the oxygen motions
associated with the tilting of the oxygen octahedra in the !2
mode characterizing PZO’s AFE; one can see that, out the
four in-plane oxygen ions surrounding any B cation, only
two move. Such distortions arise when the individual ωi,z

rotations (about the z or [001] axis) display a “+ + −−”
modulation pattern as we move along the in-plane [100] or
[001] directions. Note that these AFD modes are qualitatively
different from the Glazer rotational patterns [20] that are
most usual in perovskites, which always involve “+ − +−”
(zone-boundary) modulations in the plane perpendicular to the
rotation axis.

Interestingly, different types of energies coupling the {ui}
and {ωi} variables have been reported in the literature. For
example, biquadratic couplings (i.e., quadratic in both u and
ω variables) account for the well-known repulsion between
polar and O6-rotational distortions [19]. Additionally, coupling
terms linear in u and either quadratic or cubic in ω have
been shown to yield collaborative effects involving both types
of variables [21], as, e.g., in the so-called hybrid improper
ferroelectrics [22–24]. Further, interactions that go as u2ω have
been shown to be at the origin of inhomogeneous states and
novel magnetoelectric effects [25]. However, none of these
interaction terms can account for the occurrence of hybrid
soft phonons like PZO’s !2 mode. Indeed, in that case, we
need to explore the possibility that the polar and rotational
variables couple at the harmonic level, a question that, as far
as we know, has never been discussed in the literature on
perovskites. Notably, model studies for perovskites in which
both distortion types are relevant have either focused on the
effects associated with the anharmonic couplings [26] or even
assumed that local dipoles and O6 rotations are decoupled
harmonically [27]. It is thus worth to emphasize that there is no
fundamental (symmetry) reason for such modes to not interact
at the harmonic level, and that such a feature constitutes an
approximation in most existing models.
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Figure 3.4: (a) A-cation distortion (ui) patterns, (b) oxygen displacements, and (b) B-centered
oxygen octahedra rotation pseudovectors ωi for Λ3 mode. The A, B, and O ions are shown in
black, green, and red spheres respectively. The different colors used for the arrows in each panel
emphasize different directions of the corresponding vectors.
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3.3.4 Modes along the Σ line

The Σ line is the line joining the center and boundary M-point of the Brillouin zone. Let us start

with the wave vectors, which correspond to the center, i.e Γ point, and M-point, which is given by

( πalat
)(x̂ + ŷ) point in the reciprocal space. We thus have kx = ky = (

λπ
alat
)(x̂ + ŷ), where λ is a real

number between 0 and 1. Inserting these k-vectors in Eq. (3.1) via Eq. (3.2), we get

∆E(Σ)
K

= 8 sin(λπ)[Ax A′z sin(φx + φ
′
z − λπ) − AyA′z sin(φy + φ′z − λπ)]. (3.11)

Several important conclusions can be drawn from this result:

(1) when λ = 0 or λ = 1, sin(πλ)=0, which implies that the effect of the discovered coupling is null

at the center i.e Γ (λ = 0) and M (λ = 1) points. In contrast, the intermediate k points along the Σ

line are affected by the new coupling. For example, such coupling explains modulations of the O6

rotations when material has A-cation displacements in Li-doped NdTiO3 [89].

(2) for any selected k point in the Σ line, the magnitude of the coupling is maximum when φx + φ
′
z

and φx + φ
′
z take values of the form π/2 + λπ + πn, where n ∈ Z. The magnitude of the coupling

is maximum for any k-point provided that Ax and Ay have opposite signs.

(3) For non-rational values of λ, we get the finite coupling energy. This indicates that our new

interaction can be responsible for the formation of incommensurate perovskite phases.

3.3.5 Phonon spectra and incommensurability

The proposed coupling energy also explains the phonon bands of some perovskite materials. As

a matter of fact, taking the second derivative of the energy with respect to the modulated polar
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distortions and octahedral rotations gives:

E′′u (λ) =
∂2E
∂u(λ)2

= Fu + Gucos(λπ)

E′′ω(λ) =
∂2E
∂ω(λ)2

= Fω + Gωcos(λπ)

E′′uω(λ) =
∂2E

∂u(λ)∂ω(λ)
= Huωsin(λπ) ,

(3.12)

The F and G parameters characterize energetics of the u and ω variables. The Huω is a coupling

parameter which is derived from Eqn.(3.11) by taking sin(φx + φ
′
z − λπ) = sin(φy + φ′z − λπ) = 1.

The diagonal terms of this k-dependent Hessian matrix along the Σ line represent typical energetics

of polar and AFD bands. Eigenvalues of this two-state Hamiltonian can be obtained analytically:

κ−(λ) =
E′′u (λ) + E′′ω(λ)

2
−

√
(E′′u (λ) + E′′ω(λ))2 − 4(E′′u (λ) E′′ω(λ) − H2

uω sin2(λπ))

2

κ+(λ) =
E′′u (λ) + E′′ω(λ)

2
+

√
(E′′u (λ) + E′′ω(λ))2 − 4(E′′u (λ) E′′ω(λ) − H2

uω sin2(λπ))

2
,

(3.13)

Note that, whenever we have negative eigenvalues κ− or κ+, the corresponding k-points constitute

an instability of the cubic perovskite structure.

Let us consider two choices of the parameters of this model and discuss the phenomenology

that our simple model can yield:

case I:

Let us consider three different increasing values for the Huω coupling parameters: 31.6, 54.8,

and 316.2. Figures 3.5(a), 3.5(b) and 3.5(c) display the results of E′′u (λ) = −75 − 75cos(πλ) and

E′′ω(λ) = −75 + 125cos(πλ) along with κ±(λ).
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(a) Huω=31.6

Figure 3.5(a) displays that E′′u (λ) is the lowest at Γ and rapidly increases with λ. This is the

indication of strong ferroelectric instability of displacive character. One should note that small

value of coupling parameter Huω results in a small gap between the κ−(λ) and κ+(λ) bands and the

associated eigenvectors change character as a function of λ. Thus, for example, the distortion mode

associated with the smaller eigenvalue κ− is strongly polar close to Γ (with κ−(λ ≈ 0) ∼ E′′u (λ ≈ 0)),

but it is rotational-like close to M (with κ−(λ ≈ 1) ∼ E′′ω(λ ≈ 1)). Such features are typical of an

avoided crossing (anticrosssing) between bands, as we have in this case.

(b) Huω=54.8

Figure 3.5(b) shows that E′′u (λ) increases with λ: it is minimum for λ = 0 and maximum at λ = 1.

E′′ω(λ) is minimal at the M-point indicating that there is strong AFD instability and rapidly increases

for decreasing λ. As Huω grows (Fig. 3.5(b)), the κ−(λ) is rather insensitive to λ for a wide interval

around λ = 1/2.

(c) Huω=316.2

Figure 3.5(c) demonstrate that the minimum of E′′ω(λ) is lower than the minimum of E′′u (λ) which

indicates that the AFD instability is stronger than the ferroelectric one. For Huω above a critical

value (Fig. 3.5(c)), the minimal value of κ− is obtained at λ = 1/2, i.e., the unstable mode has a

hybrid u − ω character in that case.

54



KINNARY PATEL et al. PHYSICAL REVIEW B 94 , 054107 (2016)

FIG. 4. Dependencies of E′′
u(λ), E′′

ω(λ), κ−(λ), and κ+(λ) along the $ line, choosing here (in arbitrary units) E′′
u(λ) = −75 − 75 cos(πλ)

and E′′
ω(λ) = −75 + 125 cos(πλ). κ−(λ) and κ+(λ) are given by Eq. (12) for three different cases: Huω = 31.6 (a), 54.8 (b), and 316.2 (c). (d)

further displays the λmin value of λ at which κ−(λ) is minimum, as a function of Huω.

the smaller eigenvalue κ− is strongly polar close to & [with
κ−(λ ≈ 0) ∼ E′′

u(λ ≈ 0)], but it is rotational-like close to M
[with κ−(λ ≈ 1) ∼ E′′

ω(λ ≈ 1)]. Such features are typical of an
avoided crossing (anticrosssing) between bands, as we have in
this case. As Huω grows [Fig. 4(b)], we find that κ−(λ) is rather
insensitive to λ for a large region around λ = 1/2. Furthermore
and as shown in Fig. 4(d), λmin moves away from the value of
1 when Huω is above a critical value [as it is straightforward
to analytically prove when considering Eqs. (11) and (12)].
It then rapidly converges to λmin = 1/2 [see Fig. 4(c)] when
further increasing Huω, i.e., the dominant instability is a mode
with hybrid u − ω character for large enough Huω.

These results are reminiscent of what was found for the
phonons of cubic PZO along the $ line, as computed from first
principles [32]. More specifically, PZO seems to correspond
to the case shown in Fig. 4(b), for intermediate values of the
u − ω coupling. Indeed, PZO presents soft $ modes with a
hybrid character, associated with a very flat band; yet, the
dominant instability of the cubic phase is the AFD one at the
boundary of the Brillouin zone. (More precisely, PZO displays
a very flat branch of AFD-like phonons connecting the M and
R k points [6], where kR = π/alat(x + y + z)). Hence, at the
harmonic level, we would predict PZO to present a regular
AFD ground state, as opposed to the AFE one it actually
displays. Indeed, as demonstrated in Ref. [6], the additional
factor that permits the stabilization of PZO’s AFE phase is the
trilinear coupling between R+

4 , $2, and S4.

Let us now tackle case (2) that corresponds to a different
choice of parameters and yields the results shown in Fig. 5.
In case (2), the E′′

u(λ) still has a minimum at λ = 0 but its
dependence with λ is relatively weak (i.e., we have a ferro-
electric instability that tends to be of the order-disorder type).
Further, this minimum of E′′

u(λ) is only slightly higher than the
M-point minimum of E′′

ω(λ). Figures 5(a)– 5(c) depict E′′
u(λ)

and E′′
ω(λ), along with the coupled κ− and κ+ eigenvalues, for

increasing magnitude of the coupling coefficient Huω. One can
see that the minimum of κ−(λ) = κ−(λmin) is displaced from
the M point towards λ = 1/2 as Huω increases above a certain
value. This is because the minimum of κ−(λ) corresponds
to the minimum of E′′

ω(λ), that is λ = 1, for small Huω,
while the cross-coupling E′′

uω(λ) of Eq. (11) always favors
the minimum of κ−(λ) to be at λ = 1/2 for arbitrarily large
Huω. λmin therefore possesses different values, depending on
the strength of Huω, with these values being not necessarily
inverse of integers. For instance, as also seen in Fig. 5(b),
λmin is equal to 0.69 for Huω = 54.8 (note that this value
of Huω rather yields, in Fig. 4(b) [i.e., in case (1)], a κ−(λ)
having a minimum at the M point, i.e., at λ = 1). In other
words, the dominant instability of our model may correspond
to arbitrary long-range, even incommensurate, distortions of
the perovskite lattice [33], with the period of incommensurate
distortions being dependent on the coupling coefficient K
of Eq. (1). Let us stress that the incommensurate distortion
involves both the A-cation displacements and AFD motions,
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Figure 3.5: Dependencies of E′′u (λ), E′′ω(λ), κ−(λ) and κ+(λ) along the Σ line for three different
cases, in arbitrary units: (a) Huω = 31.6, (b) Huω = 54.8, (c) Huω = 316.2, and (d) display the λmin
value of λ at which κ−(λ) is minimum, as a function of Huω.

The phonons along the Σ line in cubic PZO computed from first principles [90] seem to

correspond to the case in Fig. 3.5(b). The soft Σ mode of PZO has hybrid character and displays

a very flat branch of AFE-like phonons connecting the M and R k-points [38], where kR =

π
alat
(x + y + z). The dominant instability of the cubic phase is the AFD one at the boundary of

the Brillouin zone. Cubic PZO has AFD-type instability at the boundary of the Brillouin zone.

Hence, at the harmonic level, PZO has a regular AFD-type ground state, as opposed to the AFE

one it actually displays. The work of Ref. [38] demonstrates that the PZO’s AFE phase is further
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stabilized by a trilinear coupling between R+4 , Σ2, and S4 structural modes.

Case II:

This case corresponds to three different increasing values of Huω coupling parameters: 31.6, 54.8,

and 438.2 for the diagonal elements given by the following formulas E′′u (λ) = −192.5−2.5cos(πλ)

and E′′ω(λ) = −75 + 125cos(πλ) along with coupled κ±(λ) eigenvalues.

(a) Huω=31.6

Figure 3.6(a) displays that E′′u (λ) is still the lowest at λ = 0 but its dependence on λ is relatively weak

compared to E′′ω(λ). This minimum of E′′u (λ) is only slightly higher than the M-point minimum of

E′′ω(λ).

(b) Huω=54.8

Figure 3.6(b) demonstrates that with increase of Huω, the minimum of κ−(λ)= κ−(λmin) is displaced

in the direction fromMpoint towards λ = 1
2 . E′′u (λ) and E′′ω(λ) have the same trend at Huω=31.6:λmin

equals 0.69.

(c) Huω=438.2

From Figure 3.6(c), one can see that the minimum of κ−(λ) corresponds to the minimum of E′′ω(λ)

at λ = 1. The cross-coupling E′′uω(λ) in Eqn.(3.12) favors the minimum at λ = 1
2 for any large value

of Huω. Hence, λmin possesses different values depending on the strength of Huω and this value can

be arbitrary.

Figure 3.6(d) shows that λmin is a continuous function of Huω, which implies that the dominant

instability of our model may correspond to arbitrary long-range, even incommensurate, distortions
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of the perovskite lattice. Incommensurate solutions with 0 < λmin <
1
2 can be obtained for other

choices of the model parameters. Moreover, here we chose to focus on the Σ line, but it would be

straightforward to extend our analysis to other lines joining the center and other boundary points

of the Brillouin zone. This might permit an explanation of incommensurate phases reported in

literature, as e.g. those in Ref. [91]. Let us stress that the incommensurate distortion involves

both the A-cation displacements and AFD motions, since the eigenvector corresponding to κ−(λ)

combines both features. The results of this analysis are thus reminiscent of the Neutron Rietveld

refinement of the incommensurate phase of the Pb(Co,W)O3 compound, revealing mixing of

significant shifts of the Pb atoms and rather complex tilts of oxygen octahedra [92].
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FIG. 5. Dependencies of E′′
u(λ), E′′

ω(λ), κ−(λ), and κ+(λ) along the $ line, choosing here (in arbitrary units) E′′
u(λ) = −192.5 − 2.5 cos(πλ)

and E′′
ω(λ) = −75 + 125 cos(πλ). κ−(λ) and κ+(λ) are given by Eq. (12) for three different cases: Huω = 31.6 (a), 54.8 (b), and 438.2 (c). (d)

further displays the λmin value of λ at which κ−(λ) is minimum, as a function of Huω.

since the eigenvector corresponding to κ−(λ) combines both
features. The results of this analysis are thus reminiscent
of the Neutron-Rietveld refinement of the incommensurate
phase of the Pb(Co,W)O3 compound, which was described
as presenting both significant shifts of the Pb atoms and a
rather complex mixing of tilt and deformation of the oxygen
octahedra [17].

IV. DISCUSSION

Our prediction that nonperiodic structures can arise from
the (microscopic) coupling between polar and rotational vari-
ables bears a strong resemblance with the (phenomenological)
theory proposed by Heine and McConnell (HM) [35], which
is based on the coupling between two different modes of
transformation. More precisely, these authors worked with
two modes denoted as ψ and ϕ, which they considered to
be coupled by the interaction energy

(EHM
int = h(ϕ∇ψ − ψ∇ϕ), (13)

where h is a constant and ∇ the gradient operator in one
dimension. Note that the right-hand side of Eq. (13) is a Lifshitz
invariant [36], and has also been used in other phenomenolog-
ical approaches to incommensurate crystals [37].

It is interesting to determine the form that our microscopic
coupling in Eq. (1) takes in the continuum limit, in order to
(i) check whether it is similar to Eq. (13) that was previously
proposed in Refs. [35,37] and (ii) have an expression that can

be used in the development of phenomenological theories.
Indeed, if we focus on the terms involving a certain ui in our
Eq. (1), it is apparent that this quantity is coupled to the spatial
derivatives of ωi . More precisely, if we take u and ω to be the
continuum limit of our local dipoles and O6 rotations, we can
see that Eq. (1) can be rewritten as ∼u · (∇ × ω). Alternatively,
the microscopic Eq. (1) can equally be rewritten by choosing
a specific ωi at a given B-site i and considering its coupling
with the spatial derivatives of the u displacements. In that case,
the continuum limit goes as ∼ω · (∇ × u). It is therefore more
elegant to adopt the following form for the continuum version
of Eq. (1):

(Econt = K
2

[u · (∇ × ω) + ω · (∇ × u)]. (14)

Equation (14) therefore contains a term of the form (ux
∂ωz

∂y
−

ωz
∂ux

∂y
), that is similar to the previously suggested Eq. (13)

when choosing ϕ = ux , ψ = ωz and taking the gradient
to be the partial derivative with respect to y. However,
Eq. (14) is more general than the interaction proposed by
Heine and McConnell, since it contains five other, symmetry-
equivalent terms, namely, (−uy

∂ωz

∂x
+ ωz

∂uy

∂x
), (−ux

∂ωy

∂z
+

ωy
∂ux

∂z
), (uy

∂ωx

∂z
− ωx

∂uy

∂z
), (uz

∂ωy

∂x
− ωy

∂uz

∂x
), and (−uz

∂ωx

∂y
+

ωx
∂uz

∂y
). In fact, the general form of Eq. (14), that involves

the sum of (i) a dot product between a first vector, which
is polar and the curl of the second vector, which is axial,
and (ii) another dot product that is now between the second
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Figure 3.6: Dependencies of E′′u (λ), E′′ω(λ), κ−(λ) and κ+(λ) along the Σ line for three different
cases, in arbitrary units: (a) Huω = 31.6, (b) Huω = 54.8, (c) Huω = 438.2, and (d) display the λmin
value of λ at which κ−(λ) is minimum, as a function of Huω.

3.4 Discussion

Our prediction that non-periodic structures can arise from investigated bilinear (microscopic)

coupling between polar and rotational variables bears a strong resemblance with the (phenomeno-

logical) theory proposed by Heine and McConnell (HM) [93], which is based on the coupling

between two different structural modes. These two different modes were denoted as ψ and ϕ and
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were coupled by the interaction energy as follows:

∆EHM
int = h(ϕ∇ψ − ψ∇ϕ), (3.14)

where h is a constant and ∇ is the gradient operator in one dimension. The right-hand side of

Eqn. (3.14) represent the Lifshitz invariant [94] and has been used in many phenomenological

descriptions of incommensurate crystals [95].

In Eqn. (3.1), certain ui is coupled to the spatial derivatives ofωi and, in continuum limit, Eqn.

(3.1) can be rewritten as ∼ u · (∇ × ω). Alternatively, the microscopic Eq. (3.1) can equally be

rewritten by choosing a specific ωi at a given B-site i and considering its coupling with the spatial

derivatives of the u-displacements. The continuum limit is ∼ ω · (∇ × u). The combined formula

for the continuum variant of Eqn. (3.1) is therefore:

∆Econt =
K

2
{u · (∇ × ω) + ω · (∇ × u)} (3.15)

Here, Eqn. (3.15) contains a term of the form (ux
∂ωz

∂y − ωz
∂ux

∂y ), which is similar to Eq. (3.14)

when choosing ϕ = ux , ψ = ωz and taking the gradient to be the partial derivative with respect

to y. However, Equation (3.15) is more general than the interaction proposed by Heine and

McConnell, since it contains five other, symmetry-equivalent terms, namely (−uy
∂ωz

∂x + ωz
∂uy
∂x ),

(−ux
∂ωy

∂z + ωy
∂ux

∂z ), (uy
∂ωx

∂z − ωx
∂uy
∂z ), (uz

∂ωy

∂x − ωy
∂uz
∂x ), and (−uz

∂ωx

∂y + ωx
∂uz
∂y ). In fact, the general

form of Equation (3.15), that involves the sum of (i) a dot product between a first vector, which is
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polar, and curl of the second vector, which is axial, and (ii) another dot product that is now between

the second vector and the curl of the first vector, constitutes an energy invariant that has never been

previously proposed to the best of our knowledge while being perfectly valid on symmetry and

physical considerations.

Furthermore, the K coefficient of two different materials, namely PbZrO3 and CaTiO3 was

calculated using first-principles calculations. Both materials possesses a similar tolerance factor

introduced by Goldschmidt [96]. For that, we calculated the change of the forces on atoms A

emerging as a result of the change of the amplitudes of oxygen octahedra tiltings illustrated in

Figure 3.2(b). These configurations are associated with the 2π
alat
(14,

1
4, 0) k point. Equation (3.1)

tells us that this force depends linearly on the change of the amplitude of tilting, with the resultant

slope being directly proportional to the K coefficient. Our first-principles calculations confirm such

linearity and yield values for K in PbZrO3 and CaTiO3 equal to 0.013 and 0.011 in atomic units,

respectively. The value of K coefficient is similar, but CaTiO3 does not adopt the the PZO tilting

pattern. This can be understood from first-principles as follows: the computed energy decreases in

PbZrO3 with the increase of the amplitudes of the oxygen octahedral tiltings, but after some point

it starts increasing. This is consistent with the stability of the "bare" tilting mode with k=(14,
1
4, 0) in

PZO. In contrast to this, in CaTiO3, this mode is unstable in favor of tilting with different k-vectors.

To depict such features, Figure 3.7 display the κ−(λ) and κ+(λ) eigenvalues of Eqn. (3.13) for

Huω=54.8, and E′′u (λ) = −192.5 − 2.5cos(πλ) and E′′ω(λ) = +100 + 300cos(πλ) along the Σ line.

One can see that the resulting κ− at λ = 1
2 is away from the minimum of κ− at λ = 1

2 as compared

60



to Figure 3.5(b), which can be thought as representing the situation of PbZrO3. As a results, one

can say based on the investigated atomistic interactions that there is no realistic trilinear coupling

between R+4 , Σ2, and S4 which can make Pbam the ground state of CaTiO3.

KINNARY PATEL et al. PHYSICAL REVIEW B 94, 054107 (2016)

vector and the curl of the first vector, constitutes an energy
invariant that has never been previously proposed to the best
of our knowledge, while being perfectly valid on symmetry
and physical considerations.

We also performed first-principles calculations to extract
the K coefficient of two different materials, namely, PbZrO3
and CaTiO3, that exhibit similar Goldschmidt tolerance factor
[29]. For that, we chose the configurations of oxygen octahe-
dral tiltings depicted in Fig. 1(b) and collected the force acting
on the A atoms as a function of the magnitude of oxygen
octahedral tiltings [these configurations are thus associated
with the 2π/alat (1/4, 1/4, 0) k point and possess A and B
cations sitting at their ideal positions]. Equation (1) tells us that
such force should be linearly dependent on this magnitude,
with the resulting slope being directly proportional to the K
coefficient. These first-principles calculations did confirm such
linearity, and yield values of 0.013 and 0.011 atomic units for
K in PbZrO3 and CaTiO3, respectively. Moreover, the fact that
these two systems possess similar values of their K coefficient,
while CaTiO3, unlike PbZrO3, does not adopt the complex
Pbam phase as ground state, can also be understood thanks
to additional information provided by these first-principles
calculations, namely the computed energy first decreases,
before increasing, with the magnitude of oxygen octahedral
tiltings in PbZrO3 while such energy always increases with
the strength of the oxygen octahedral tiltings in CaTiO3. In
other words, the “bare” octahedral tilting mode [i.e., the one
related to E′′

ω(λ) in Sec. III E] is unstable with respect to the
ideal cubic structure at the 2π/alat (1/4, 1/4, 0) k point in
PbZrO3 while it is stable in CaTiO3. E′′

ω(λ) taken at λ = 1/2
should thus be negative in PbZrO3 while being positive in
CaTiO3. To illustrate the consequence of such features, Fig. 6
displays the κ−(λ) and κ+(λ) eigenvalues of Eq. (12) when
choosing Huω being the same as in Fig. 4(b) as well as E′′

u(λ)
being identical to the one selected for case (1), but now taking
a E′′

ω(λ) that has a positive value at λ = 1/2 [while having the
same value as in case (1) for the M point indexed by λ = 1].
Figure 6 (which can be thought as corresponding to the case

FIG. 6. Dependencies of E′′
u(λ), E′′

ω(λ), κ−(λ), and κ+(λ) along
the % line for Huω = 54.8, choosing here (in arbitrary units) E′′

u(λ) =
−192.5 − 2.5 cos(πλ) and E′′

ω(λ) = +100 + 300 cos(πλ). κ−(λ) and
κ+(λ) are given by Eq. (12).

of CaTiO3) reveals that the resulting κ− at λ = 1/2 is further
away from the (minimum) κ− at λ = 1 than in Fig. 4(b) (which
can be thought as representing the situation for PbZrO3). As
a result and unlike in PbZrO3, no realistic trilinear coupling
between R+

4 , %2, and S4 can make Pbam become the ground
state of CaTiO3.

V. CONCLUSIONS

In summary, we have introduced an elemental atomistic
energy that exists in all ABO3 perovskites, which naturally
explains, in an unified way, a variety of structurally complex
phenomena. This energy couples, in a collaborative fashion,
polar distortions driven by the A-site cations with O6-rotational
modes. Analytical derivations starting from this atomistic
energy allow us to understand the nature and (in)stability of
complex long-period phonons associated with k-points in the
interior of the first Brillouin zone. Examples are the modes
that play a key role in the stabilization of the antiferroelectric
phases of PbZrO3, PbHfO3, BiFeO3, and BiFe1/2Sc1/2O3.

The newly-proposed couplings should be relevant to
explain the behavior of perovskites in which the A-site cations
have a tendency to move off-center (as it is, e.g., the case
of those containing Pb2+ or Bi3+ cations) and also present
oxygen-octahedral rotational instabilities. For instance, the
proposed theory is most likely relevant to explain the unusual
tilting pattern recently discovered in Nd1−xLixTiO3 [30] as
well as the large variety of antiferroelectric structures that are
known to exist in Pb-based compounds (see, e.g., Ref. [14]).
A structural determination of the A-site distortions and O6
tiltings would be required, at the experimental level, to confirm
such a connection.

Finally, we demonstrated that our theory can also natu-
rally explain the occurrence of incommensurate phases in
perovskites. Indeed, we show that our work provides an unified
description that brings together ferroelectric, antiferroelec-
tric, antiferrodistortive (O6-rotational), and incommensurate
structures. Our results thus appear to be critical for deep
understanding of the structural diversity in many perovskites,
making a clear connection between the simplest and most
exotic structures.

The structural instabilities driven by our proposed mech-
anism are hybrid in nature, in the sense that they combine
(anti)polar and octahedra-rotational characters. Moreover, the
coupling tends to favor long-period distortions corresponding
to wave vectors that are away from the center or boundaries
of the first Brillouin zone. In such cases, the pattern of O6
rotations is not perfect (we can say it is truncated ) and
the oxygen octahedra deform. Hence, our newly proposed
coupling is most likely to be relevant in perovskites with
relatively soft O6 groups. The existing examples suggest that
this situation is favored by the presence of relatively large B
cations in the perovskite structure.

Interestingly, it should also be possible to incorporate our
interatomic couplings in atomistic approaches, such as the
so-called effective Hamiltonians [27,38] [with, e.g., the K
coefficient of Eq. (1) being extracted from first-principles
calculations], in order to, e.g., investigate properties of antifer-
roelectrics and incommensurate systems, as a function of tem-
perature, applied electric fields, epitaxial strain, etc. Moreover,
we have shown that it is straightforward to derive a continuum
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Figure 3.7: Dependencies of E′′u (λ), E′′ω(λ), κ−(λ) and κ+(λ) along the Σ line for Huω = 54.8.

3.5 Conclusions

In summary, an elemental atomistic energy is investigated which naturally explains a variety of

structurally complex phenomena inABO3 perovskites. This energy linearly couples polar distortions

driven by A-site cations in collaborative way with O6-rotational modes. Analytical derivations from

this atomistic energy can be used to explain the existence and (in)stability in the first Brillouin zone

of complex long-wave phonons. The investigated atomistic energy plays a crucial role in stabilizing

antiferroelectric phases of PbZrO3, PbHfO3, BiFeO3, (Bi,Nd)FeO3, NaNdO3 and BiFe1/2Sc1/2O3.

The newly-proposed couplings is applicable to perovskites in which the off-center shift of cations
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and oxygen-octahedral rotational instabilities are present. It is possible to explain by the theory

proposed the unusual tilting pattern recently discovered in Nd1−xLixTiO3 [89] as well as the large

variety of antiferroelectric structures that are known to exist in Pb-based compounds (see, e.g., Ref.

[97]). A structural determination of the A-site distortions and O3-tiltings would be required, at the

experimental level to confirm such a connection. The proposed theory can also naturally explain

the occurrence of incommensurate phases in perovskites. A unified overview given in the present

work brings together diversity of the mixed ferroelectric, antiferroelectric, antiferrodistortive (O6-

rotational) and incommensurate structures arising as a result of coupling of the corresponding

structural modes. The development of the Landau type theory by presenting atomistic interactions

in continuum limit seems to be also an important achievement.

The proposed mechanism drives structural instabilities that are hybrid in nature, in the sense

that they combine (anti)polar and octahedra-rotational characteristics. In addition, this coupling

tends to favor long-period distortions for wave vectors away from the center or boundary of the

first Brillouin zone. In such cases, O6 rotations is not perfect and the oxygen octahedra deform.

Therefore in perovskites with relatively soft O6 groups, the newly suggested coupling is most likely

important. The examples discussed in this chapter indicate that the presence of relatively large

B-cations in the perovskite structure favors this condition.

It is also noteworthy that the investigated interatomic couplings should be incorporated with the

help of atomistic methods, for example with the help of the so-called effective Hamiltonian method

[98, 99] (with, e.g., theK coefficient of Eqn. (3.1) being extracted fromfirst-principles calculations)
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to study, properties of antiferroelectrics and incommensurate systems, as a function of temperature,

applied electric fields, epitaxial strains, etc. Furthermore, it is simple to derive a continuum

(original) version of our coupling energy, as needed for the development of phenomenological

Landau-Lifshitz theories. The results obtained here are published in Ref. [100].
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Chapter 4

DYNAMICS OF ANTIFERROELECTRIC STRUCTURES

This section reports the results and analyses of atomistic simulations revealing and explaining the

dynamics of antiferroelectric distortions in BiFeO3 (BFO) bulk under hydrostatic pressure. Under

high hydrostatic pressure, BFO is antiferroelectric [87]. The problem I want to resolve here is if

BFO has an antiferroelectric soft mode or not. This is a fundamental problem. Actually, I found that

the antiferroelectric mode does not soften itself on cooling, but rather it is improper, due to coupling

with two other soft structural (tilting) modes. The following phase transition sequence is found on

cooling from high temperature: the cubic paraelectric Pm3̄m state at high temperature, followed by

an intermediate phase possessing long-range-ordered in-phase oxygen octahedral tiltings, and then

the Pnma state that is known to possess antipolar cation displacement in addition to the in-phase

and antiphase oxygen octahedral tiltings. In the paraelectric phase, I found the antipolar cation

modes to have high frequency phonons that are independent of temperature. On the other hand,

some phonons corresponding to oxygen octahedral tiltings are soft and decrease their frequency on

cooling. Analyses of my data combined with an analytical model, which I will show below, reveal

that the antiferroelectric mode in BFO under pressure originates from a dynamical mixing between

pure antipolar cation phonons and fluctuations of oxygen octahedral tiltings, as a result of a specific

trilinear energy in P4/mbm and Pnma phases. The model developed and described below in detail

can be easily applied to predict dynamics of antipolar cation motions for other possible structural

paths bridging Pm3̄m and Pnma structural phases.
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4.1 Background

This research aims to study the dynamics of antipolar distortions in ABO3 perovskite resulting from

the trilinear energetic couplings that have been recently discovered and intensively investigated

[1, 2, 3, 4, 5, 6, 7]. Some of the trilinear energetic couplings result in the formation of an electrical

polarization P, because of coupling with a rotation pattern that is a combination of two non polar

lattice modes having different symmetries [1, 2, 3, 4, 5, 6, 7]. Trilinear energetic couplings can

also arise in compounds possessing antipolar cation distortions via their coupling with in-phase

and antiphase oxygen octahedral tiltings [85]. Antipolar systems are important compounds on their

own. For instance, the Pnma state in ABO3 perovskites is known to possess antipolar motion

of its A cations, and recent studies found that it may adopt the double polarization vs electric

field hysteresis loop in some materials [101, 102], which characterize antiferroelectrics [103],

suggesting that Pnma states in some perovskites can hold promise towards the design of energy

storage devices with high energy densities and efficiencies [104, 105, 106, 107, 108, 109, 110].

Interestingly, all the above-mentioned works on the trilinear energetic coupling have investigated

static properties and very little is known about dynamical properties of perovskites exhibiting the

trilinear energetic couplings. For instance, one may wonder how the antipolar phonon frequencies

behave with temperature when the material exhibits phase transitions leading to an antipolar states

having antiphase and in-phase oxygen octahedral tiltings. Are they soft in any phase, including the

one(s) for which the antipolar cation motions have not adopted yet a long-range order? Can they

mix with phonons associated with fluctuations of oxygen octahedral tiltings in any of these phases

because of this trilinear energetic coupling, or rather does this hypothetical mixing only occur

when in-phase and/or antiphase tiltings have condensed? The answers to all above aforementioned
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questions are provided in this work by focusing on a specific material, namely (BFO) under pressure

since this system is known to adopt a Pnma structure at high enough pressure, that possesses a

trilinear coupling between antiferroelectricity and two oxygen tilts [45, 46, 47].

4.2 Methods

The effective Hamiltonian approach as mentioned in chapter 2 ([111, 112, 113, 114]) is used to

investigate properties of BFO at finite temperatures and under hydrostatic pressure. The degrees of

freedoms of this Hamiltonian are:

(i) the local soft mode ui centered on the Bi sites (such centering allows, e.g., to reproduce the

Bi-driven antiferroelectricity (AFE) associated with the Pnma phase of BFO [114]); (ii) η is the

homogenous strain tensor; (iii) the pseudo-vectorωi, which is centered on Fe ions and characterizes

oxygen octahedral tiltings (also known as antiferrodistortive (AFD) distortions) in unit cell i [80];

(iv) the magnetic dipole moment mi, which is Fe-centered too and whose magnitude is equal to

4µB, as consistent with first principles [81] and measurements [82]; and (v) the inhomogeneous

strain characterized by dimensionless variable vi [115]. The total energy is the sum of the following

three terms:

Etotal = E1({ui} , {η}, {vi}) + E2({mi} , {ui} , {η}, {vi}, {ωi}) + E3({ui} , {η}, {vi} , {ωi}) , (4.1)

E1 represents the energy associated with the local modes, elastic strain interactions, and coupling

between the local modes and strain; E2 ensembles the energies correlated with the magnetic degrees

of freedom and their couplings with the local modes, strains, and AFD distortions; and E3 describes

the energetics involving the AFD interactions and their couplings with the local modes and strains.

Analytical expressions for E1 and E2 are provided in Ref. [115] and Ref. [111], respectively. Note
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that the last term of E3 is precisely the trilinear energy coupling between the local mode u centered

on Bi sites and two AFD modes centered on Fe sites. The analytical expression for E3 is given in

Ref. [114] and is as follows:

E3({ui} , {η}, {vi}, {ωi}) =
∑

i

[κAω
2
i + αAω

4
i + γA(ω

2
ixω

2
iy + ω

2
iyω

2
iz + ω

2
ixω

2
iz)]

+
∑

i j

∑
αβ

Ki jαβωiαω jβ +
∑

i

∑
α

K′ω3
i,α (ωi+α,α + ωi−α,α)

+
∑

i

∑
αβ

Clαβηl(i)ωiαωiβ

+
∑
i, j

∑
α,β

Di j,αβu j,αωi,αωi,β +
∑
i, j

∑
αβγδ

Eαβγδωiαω jβu jγuiδ

(4.2)

where the sum over i runs over all Fe-sites, and α and β are Cartesian components along the x-, y-,

and z-axes coinciding with the pseudocubic [100], [010], and [001] directions respectively. More-

over, ηl (i) is the l-th component of the total strain (in Voigt notation), including the homogeneous

and inhomogeneous strain, at site i. The first three energies of Eq. (4.2) were proposed and/or used

in Refs.[111, 112, 113, 114] and characterize the onsite interactions of the AFD distortions. The

fourth and fifth energies represent AFD short-range interactions and were provided in Ref. [112]

and Ref. [114], respectively. Note that, in this fifth energy, ωi+α,α is the α-component of the AFD

mode at the site shifted from the Fe site i to its nearest Fe neighbor along the axis α. The sixth

energy describes the coupling between oxygen octahedral tiltings and strains. The seventh energy

was introduced in Ref.[114] and represents an anharmonic (trilinear) interaction energy between

the local mode u centered on a Bi site and two AFD distortions centered on Fe sites. Finally, the

eight energy term of Eqn. (4.2) characterizes bi-quadratic interactions between oxygen octahedral

tiltings and local modes, as given in Ref. [112].
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We first employ this effective Hamiltonian to performMonte-Carlo (MC) simulations, as in Ref.

[114], in order to compute finite-temperature properties of BFO bulk under a simulated hydrostatic

pressure of about 8.2GPa in 12 x 12 x 12 supercells using 40,000 MC sweeps [116]. We then

performMolecular dynamics (MD) calculations by using 4 x 105 MD steps with a time step of 0.5fs

as similar to what was done in Ref. [117], except that the effective Hamiltonian used here has local

modes that are centered on Bi ions (and not on Fe ions like in Ref. [117]). As a result, the fifth and

seventh terms of Equation (4.2) are presently incorporated into the dynamics of BFO. During these

latter MD calculations, we computed different frequency-dependent responses related to different

order parameters, as described by using the general formula [118, 119, 120]

χAA
αβ (ν) =

1
V kBT

[
< Aα(t)Aβ(t) > +i2πν

∞

∫
0

dt ei2πνt < Aα(t)Aβ(0) >
]

(4.3)

where ν is the frequency, α and β define Cartesian components and V is the volume of the chosen

supercell. A(t) is an order parameter at time t, and “ <..>” indicates thermal average.

We focused on the following physical quantities: (i) The order parameter will be chosen to be uX

vector characterizing the X+5 antiferroelectric Bi displacements at the X-point of the Brillouin zone,

and is given by uX =
1
N

∑
i

ui (−1)nz(i), where N is the number of the Fe ions in the supercell and

where nz (i) is an integer locating the cell i along the z-axis[80], (ii) the M+3 mode that characterizes

in-phase oxygen octahedral tilting around Fe sites, and is quantifies by ωM =
1
N

∑
i
ωi (−1)nx(i)+ny(i),

and (iii) the R+4 mode representing antiphase tilting of the oxygen octahedral and for which the

corresponding order parameter is ωR =
1
N

∑
i
ωi (−1)nx(i)+ny(i)+nz(i), where the sum run over the

N site and nx (i), ny (i), and nz (i) are integers locating the cell i[80]. Here ωi is an Fe-centered

pseudo-vector that characterizes the oxygen octahedral tilting in unit cell i. We decided to study
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these three particular modes because their order parameters are all coupled via a trilinear energy

of the form [8]:

Etrilinear = D(uX,xωR,xωM,z + uX,yωR,yωM,z) (4.4)

where D is a coefficient characterizing the strength of the interaction and the second subscript

indicated the physical quantities involved refers backs to the corresponding Cartesian component

of uX, ωR and ωM.

Interestingly, χAA
αβ (ν) can be considered to be a complex “susceptibility” related to order

parameter A, as the response of A is related to its conjugate field. Such “susceptibility” is not

measurable (unlike the dielectric susceptibility) when A is chosen to be uX, ωR or ωM (because

their conjugate fields are staggered fields). However, the peaks of the imaginary part of the

susceptibilities associated with uX, ωR, and ωM, respectively, occur at the natural frequencies of

phonons associated with antipolar motions, antiphase tiltings, and in-phase tiltings, respectively.

Hence computing the χAA
αβ (ν) responses will give the natural phonon frequencies which may be

experimentally obtained by hyper Raman scattering techniques [121].

The computed responses of χAA
αβ (ν) susceptibilities are fitted to sum of Damped Harmonic

Oscillators (DHO), given by the formula:

χ =
S(2πν)2

(2πνr)
2 − (2πν)2 − 2iπνγ

(4.5)

where νr , γ, and S are the resonant frequency, damping constant, and oscillator strength, corre-

spondingly. Note that the number of DHOs involved in this summation precisely corresponds to

the number of the peaks found in the MD simulations of χAA
αβ (ν).
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4.3 Results

Figure 4.1 displays the temperature dependency of uX, ωR, and ωM, when BFO is cooled under

hydrostatic pressure from 1600K to 900K through steps of 20K. The uX, ωR, and ωM all vanish-

ing above 1280K, which is representative of the cubic paraelectric Pm3̄m phase. From 1280K

to 1240K, the z-component of ωM becomes finite, while uX and ωR remain null, and BFO is

predicted to adopt the P4/mbm ground state for this temperature range. On further cooling, the

x- and y-components of uX and ωR becoming finite, while the z-component of ωM continues to

be non-null and enhanced when the temperature is reduced below 1240K which characterized the

Pnma phase, for which uX, ωR or ωM exist and lie along the pseudo-cubic [110], [110] and [001]

directions respectively, below this latter critical temperature. Let us now see the effect of the phase

transitions on the dynamics of order parameters uX, ωR, and ωM.
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determined from ab-initio calculations at atmospheric pressure.
Note that BFO is known to acquire a Pnma space group at high
enough temperature at atmospheric pressure28, 29 while it is R3c
at lower temperatures30 or even to be the ground state of BFO
under high-enough pressure (see refs. 25–27 and references
therein).
We also performed here Molecular Dynamics (MD) calculations

in the frame of the same effective Hamiltonian method (see the
Methods Section and Supplemental Materials), and we used the
results of these calculations to compute frequency-dependent
responses related to different order parameters, as described by
using the following general formula31–33

χAAαβ νð Þ ¼ AαðtÞAβðtÞ
! "

þ i2πν
Z1

0

dt ei2πνt AαðtÞAβð0Þ
! "

(1)

where ν is the frequency, while α and β define Cartesian
components. A(t) is an order parameter at time t, and “ ::h i”
indicates thermal average.
For instance and since we are interested in antipolar phonons, A

will be chosen to be the uX vector characterizing the Xþ
5 antipolar

Bi displacements at the X-point of the Brillouin zone, and that is
given by uX ¼ 1

N

P
i ui %1ð ÞnzðiÞ, where N is the number of the Bi

ions in the supercell, and nz(i) is an integer locating the cell i along
the z-axis34; here ui is the local mode in unit cell i, which is
centered on a Bi site (see Method Section). As we will see below, it
is also worthwhile to investigate χAAαβ νð Þ for which A are the
following two vectors: (i) The antiphase oxygen octahedral tilting
Rþ4 mode, ωR ¼ 1

N

P
i ωi %1ð ÞnxðiÞþnyðiÞþnzðiÞ , where34 nx(i), ny(i), and

nz(i) are integers locating the cell i in x, y, and z directions,
respectively; here ωi is an Fe-centered pseudo-vector that
characterizes the oxygen octahedral tilting in unit cell i (see
Method Section); and (ii) The in-phase oxygen octahedral tilting
around the Fe sites associated with the Mþ

3 mode,
ωM ¼ 1

N

P
i ωi %1ð ÞnxðiÞþnyðiÞ . Note that these three quantities are

coupled via a trilinear energy, which can be inferred from the
seventh atomistic term of Eq. (9) indicated in the Method Section,
and that can take the following form12:

Etrilinear ¼ D uX ;xωR;xωM;z þ uX ;yωR;yωM;z
# $

(2)

where D is a coefficient characterizing the strength of the
interaction and where the second subscript indicated in the
involved physical quantities refers to the corresponding Cartesian
component of uX, ωR and ωM. In the continuous approximation,
this trilinear energetic coupling of Eq. (2) can be expressed as
Etrilinear = D [u ⋅ ∇ × (ωR×ωM) + (ωR×ωM) ⋅ ∇ × u], which can be
used to develop novel phenomenologies incorporating trilinear
couplings. In this equality, ∇ × (ωR×ωM) is the (Bi-sites-centered)
curl of the cross-product of the R- and M-tilting modes’ pseudo
vectors and ∇ × u is the (Fe-sites-centered) curl of the local mode.
These two curls can be computed from atomistic simulations via
finite differences by considering the eight Fe sites nearest to the
Bi-site center of the local mode and the eight Bi sites nearest to
the Fe-site center of the tilting modes, respectively. (note also that
this trilinear energy coupling is finite in, e.g., the Pnma state while
it vanishes in, e.g., the R3c phase).
Interestingly, χAAαβ νð Þ can be considered to be a complex

“susceptibility” related to A, that is it represents the response of
A to its conjugate field. Such “susceptibility” is not measurable
(unlike the dielectric susceptibility) when A is chosen to be uX, ωR
or ωM (because their conjugate fields are staggered fields).
However, the peaks of the imaginary part of the susceptibilities
associated with uX, ωR and ωM, respectively, occur at the natural
frequencies of phonons associated with antipolar motions,
antiphase tiltings, and in-phase tiltings, respectively. It is precisely
the determination of these natural frequencies we are interested
in, which explains why we decided to compute these χAAαβ νð Þ

responses and which also explains why we do not incorporate the
factor31–33 1

ε0VkBT
into Eq. (1), because it is not important in our

problem, where V is the volume of the chosen supercell, kB is the
Boltzmann constant and ε0 defines the vacuum permittivity. Note
that these phonon frequencies may be experimentally obtained
by hyper Raman scattering techniques.35

Moreover, for any investigated temperature, we typically fit the
three different aforementioned types of computed χAAαβ νð Þ
susceptibilities (associated with the dynamics of the Xþ

5 , R
þ
4 and

Mþ
3 modes) by a sum of Damped Harmonic Oscillators (DHO),

given by the formula

χ ¼ S2

ν2r % ν2 % iνγ
(3)

where νr, γ, and S are the resonant frequency, damping constant,
and oscillator strength, correspondingly. Note that the number of
DHOs involved in this summation precisely corresponds to the
number of the peaks found in the MD simulations of χAAαβ νð Þ.
Let us first report and discuss the temperature dependency of

uX, ωR or ωM, as shown in Fig. 1, when cooling BFO under
hydrostatic pressure from 1600 to 900 K by steps of 20 K. One can
see that these three vectors are all vanishing above 1280 K, which
is representative of the cubic paraelectric Pm3m phase. On the
other hand, the z-component of ωM becomes finite and strength-
ens when the temperature is reduced below 1280 K and down to
1240 K, while uX and ωR remain null in this rather small
temperature interval. Such behaviors indicate that our studied
BFO system is predicted to adopt the P4/mbm ground state
between ≃1280 and ≃1240 K. Further cooling the system results in
the x- and y-components of uX becoming finite, equal to each
other and increasing in magnitude when decreasing the
temperature below 1240 K, exactly as the x- and y-components
Cartesian components of ωR also do. Moreover, the z-component
of ωM continues to be non-null and to get enhanced when the
temperature is reduced below 1240 K. Our investigated BFO
system therefore now adopts the Pnma ground, for which
spontaneous uX, ωR or ωM exist and lie along the pseudo-cubic
[110], [110] and [001] directions respectively, below this latter
critical temperature (note that the three lattice vectors of the
Pnma state lie along the pseudo-cubic [110], [110] and [001]
directions, respectively).
In order to determine how these phase transitions affect the

dynamics of antipolar mode, Fig. 2a–c display the imaginary part
of χAAxx νð Þ, χAAyy νð Þ and χAAzz νð Þ respectively, when A = uX, for a
temperature of 1560 K—that is within the Pm3m state. Figure 3a–c
report similar data but for a temperature of 1260 K, that is now for

Fig. 1 Predicted temperature dependence of the antipolar uX vector
a, in-phase tilting ωM pseudo vector b and antiphase tilting ωR
pseudo-vector c in our BFO system subject to hydrostatic pressure.
The dashed vertical lines delimit three different structural phases
(see text)
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Figure 4.1: Predicted temperature dependence of the (a) antipolar uX vector, (b) in-phase tiltingωM
pseudo vector, and (c) antiphase tilting ωR pseudo-vector in our BFO system subject to hydrostatic
pressure. The dashed vertical lines delimit three different structural phases.

Order parameter uX:

Figure 4.2(a, b, c ) display the imaginary part of χAA
xx (ν), χAA

yy (ν) and χAA
zz (ν) respectively, at

a temperature of 1560K when AA = uX . At this temperature, BFO is within the Pm3̄m state.

Further, Fig. 4.3(a, b, c) report similar data at 1260K, that is now for the P4/mbm phase and Fig.

4.4(a, b, c) show these susceptibilities of the AFE degree of freedom at 1040K, i.e. inside the

Pnma state. One can see different narrow peaks at these temperatures for uX.

At a temperature of 1560K , one peak occurs at about 105 cm−1 in both the xx and yy components

of the susceptibility, which is associated with the AFE phonon and they are doubly degenerate and

are associated with oscillations of uX along the x or y-direction. The frequency of oscillations will

be denoted as νX+5 ,x,Pm3̄m, adopting the convention that the three subscripts refer to the type of mode,

the direction of the fluctuations of its order parameter and the macroscopic phase, respectively. The
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zz component of the susceptibility shown in Fig. 4.2(c) has also another peak at a frequency that is

close to 166 cm−1 and that will be coined νX+5 ,z,Pm3̄m (since it is associated with oscillations of uX

along the z axis).

Next, Fig. 4.3(a, b, c) displays the data at a temperature of 1260K , the xx and yy components

of the AFE susceptibility possesses two peaks at frequencies of about 15 and 120 cm−1 and they

are denotes as νX+5 ,x,P4/mbm,LF and νX+5 ,x,P4/mbm,HF respectively, where “LF” and “HF” stand for

low-frequency and high-frequency, respectively. The zz component (see Fig. 4.3(c)) possess a

single peak at about 172 cm−1, and the frequency is denoted as νX+5 ,z,P4/mbm.

At a temperature of 1040K , as shown in Fig. 4.4(a, b, c), the xx and yy components of

the AFE susceptibilities shows increase of the number of peaks in the Pnma state. The three

peaks are centered around 80, 115 and 144 cm−1 and are denoted as νX+5 ,x,Pnma,LF , νX+5 ,x,Pnma,MF ,

and νX+5 ,x,Pnma,HF , respectively. Here “MF” standing for “middle frequency”. νX+5 ,x,Pnma,LF and

νX+5 ,x,Pnma,MF when computed in different basis, which is not shown here, corresponds to the

oscillations of antipolar motion along the direction of spontaneous long-range-ordered uX in the

Pnma state, while νX+5 ,x,Pnma,HF is associated with the fluctuation of antipolar motions along the

in-plane direction i.e perpendicular to this spontaneous uX. The zz component of this AFE

susceptibility (see Fig. 4.4(c)) remains singly peaked at a frequency of about 175 cm−1 and

is denoted as νX+5 ,z,Pnma. Here, νX+5 ,z,Pnma, νX+5 ,z,P4/mbm, and νX+5 ,z,Pm3̄m can be considered to be

continuation of each other within the phase transition sequence since they are all associated with

fluctuations of antipolar motions along the z-axis.

There is an increase in the number of peaks occurring in the xx and yy susceptibilities associated

with the X+5 mode when passing phase transitions. It is not straightforward to understand the

microscopic origin of the increase in the number of peaks. The group theory can predict the
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increase of the number of phonon modes when changing structural phases, but it does not provide

the microscopic origin of such increase. For instance, one may wonder what atomistic feature is

responsible for the occurrence of two peaks of these susceptibilities in the P4/mbm phase (rather

than a single one as in Pm3̄m) while the AFE vector still does not adopt any long-range ordering

there. We will come back to this point later on.

the P4/mbm phase. Figure 4a–c also show these susceptibilities of
the antipolar degree of freedom but at 1040 K, i.e. inside the Pnma
state. Different narrow peaks can be clearly seen at 1560 K: one
peak occurring at around 105 cm−1 in both the xx and yy
components of the susceptibility, which thus corresponds to an
antipolar phonon that is doubly degenerate and associated with
oscillations of uX along the x or y direction. Such frequency will be
denoted as νXþ

5 ;x;Pm3m, adopting the convention that the three
subscripts refer to the type of mode, the direction of the
fluctuations of its order parameter and the macroscopic phase,
respectively. The zz component of the susceptibility shown
in Fig. 2c has also another peak at a frequency that is close to
166 cm−1 and that will be coined νXþ

5 ;z;Pm3m (since it is associated
with oscillations of uX along the z axis).
Furthermore, Fig. 3a–c reveal that, at 1260 K, the antipolar

susceptibility continues to have a zz component possessing a
single peak, and for which the frequency is now denoted as
νXþ

5 ;z;P4=mbm and that is equal to 172 cm−1. On the other hand, its xx
and yy components, while still being very similar to each other,
have now two peaks rather than a single one. These two peaks
occur at frequencies of about 15 and 120 cm−1 at 1260 K and that
are coined νXþ

5 ;x;P4=mbm;LF and νXþ
5 ;x;P4=mbm;HF respectively, where

“LF” and “HF” stand for low-frequency and high-frequency,
respectively.
Interestingly, a further increase of the number of peaks occurs

in the xx and yy components of the antipolar susceptibilities in the
Pnma state. As a matter of fact, Fig. 4a, b now show three peaks
there, that are centered around 80, 115 and 144 cm−1 at 1040 K,

and that will be denoted as νXþ
5 ;x;Pnma;LF , νXþ

5 ;x;Pnma;MF (with “MF”
standing for “middle frequency”) and νXþ

5 ;x;Pnma;HF , respectively.
Note that computing the susceptibility of uX in a different basis
indicates (not shown here) that νXþ

5 ;x;Pnma;LF and νXþ
5 ;x;Pnma;MF both

mostly correspond to oscillations of antipolar motions along the
direction of the spontaneous, long-range-ordered uX in the Pnma
state, while νXþ

5 ;x;Pnma;HF is mostly associated with fluctuations of
antipolar motions along the in-plane direction that is perpendi-
cular to this spontaneous uX. On the other hand, the zz
component of this antipolar susceptibility remains singly peaked
at a frequency of about 175 cm−1 at 1040 K, to be denoted as
νXþ

5 ;z;Pnma .
νXþ

5 ;z;Pnma , νXþ
5 ;z;P4=mbm and νXþ

5 ;z;Pm3m can be considered to be
continuation of each other within the phase transition sequence
since they are all associated with fluctuations of antipolar motions
along the z-axis. On the other hand, it is not straightforward to
understand the microscopic origin of the increase of the number
of peaks occurring in the xx and yy susceptibilities associated with
the Xþ

5 mode when passing phase transitions (note that group
theory can, of course, predict the increase of the number of
phonon modes when changing structural phases, but does not
provide the microscopic origin of such increase). For instance, one
may wonder what atomistic feature is responsible for the
occurrence of two peaks in these susceptibilities in the P4/mbm
phase (rather than a single one as in Pm3m) while the antipolar
vector still does not adopt any long-range ordering there. We will
come back to this point later on.

Fig. 2 Frequency dependence of the imaginary part of the χAAαα νð Þ “susceptibilities” in our BFO system subject to hydrostatic pressure, for A=
uX a–c, ωM d–f and ωR g–i at a temperature of 1560 K (that is, for the Pm3m cubic state). For each physical quantity A, the left, middle and right
panels correspond to α= x, y or z coordinate, respectively. The black line displays the MD data while the red line represents their fit by DHOs
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Figure 4.2: Frequency dependence of the imaginary part of the χAA
αα (ν) “susceptibilities” in our

BFO system subject to hydrostatic pressure (a-c) for A= uX, (d-f) for ωM, and (g-i) for ωR at a
temperature of 1560K that is, for the Pm3̄m cubic state. For each physical quantity A, the left,
middle and right panels correspond to α=x, y or z coordinate, respectively. The black line displays
the MD data while the red line represents their fit by DHOs
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Order parameter ωM:

Figure 4.2(d, e, f) display the imaginary part of χAA
xx (ν), χAA

yy (ν) and χAA
zz (ν) respectively, when

A=ωM for a temperature of 1560K, i.e. within the cubic Pm3̄m state. Fig. 4.3(d, e, f) and Fig.

4.4(d, e,f) provide similar data for the susceptibility associated with the in-phase tiltings at 1260K

and 1040K, respectively, that is for P4/mbm and Pnma states.

At a temperature of 1560K , the xx and yy components of the susceptibilities of the in-phase

octahedral tilting M+3 mode exhibits a single peak in the cubic state and is about 138 cm−1 and is

denoted as νM+3 ,x,Pm3̄m. It is doubly degenerated as the peak appears at the same frequency and is

associated with oscillations of ωM along the x or y-axes. The zz component of the susceptibility

associated with ωM has only one peak at around 38 cm−1 and which corresponds to fluctuations of

ωM along the z-axis.

Let us now pay at a temperature of 1260K which is P4/mbm state. The xx and yy components

of the susceptibilities of the antiphase tiltings have one peak at about 140 cm−1 and is denoted as

νM+3 ,x,Pm3̄m (see Figure 4.3(d,e)) and is associated with oscillations of ωM along the x or y-axes

and it is doubly degenerated. The zz components of the susceptibility continue to have a single

peak in the intermediate P4/mbm state and the frequency is close to 90 cm−1 and corresponds to

fluctuations of ωM along the z-axis. This frequency is denoted as νM+3 ,z,Pm3̄m. νM+3 ,z,Pm3̄m is much

higher then νM+3 ,x,Pm3̄m.

But suddenly there appears three peaks in the Pnma phase at 1040K as evidenced in Fig. 4.4(f).

Very interestingly, these three peaks have the same resonant frequencies as the aforementioned

antipolar νX+5 ,x,Pnma,LF , νX+5 ,x,Pnma,MF , and νX+5 ,x,Pnma,HF frequencies.
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Meanwhile, let us concentrate on Fig. 5a that shows the
temperature dependencies of all aforementioned resonant
frequencies associated with the dynamics of Bi motions within
the Xþ

5 antipolar mode. Several important results can be inferred
from this Figure. First of all, both νXþ

5 ;z;Pm3m and νXþ
5 ;x;Pm3m are

nearly independent on temperature within the entire stability
region of the cubic state. As a result, neither of these two
frequencies softens when approaching the Pm3m—to—P4m/bm
transition from above, implying that this transition is dynamically
driven by a physical quantity that has nothing to do with antipolar
cation motions—as consistent with the sole condensation of the
z-component of ωM below 1280 K (see Fig. 1). On the other hand,
one specific antipolar mode, namely νXþ

5 ;x;P4=mbm;LF , is very soft
within the entire P4/mbm state. Figure 5a also tells us that
νXþ

5 ;x;Pnma;LF significantly softens too when heating the system
within the Pnma state towards the Pnma-to-P4/mbm transition. In
order to understand all these effects, we first decided to turn our
attention to the “susceptibilities” of Eq. (3) that are associated with
the ωRand ωM physical quantities.
For that, Fig. 2d–f (respectively, Fig. 2g–i) display the imaginary

part of χAAxx νð Þ, χAAyy νð Þ and χAAzz νð Þ respectively, when A =ωM
(respectively, A =ωR) for a temperature of 1560 K, i.e. within the
cubic Pm3m state. Figures 3d–f and 4d–f (respectively, Figs. 3g–i
and 4g–i) provide similar data for the susceptibility associated
with the in-phase (respectively, out-of-phase) tiltings at 1260 and
1040 K, respectively, that is for P4/mbm and Pnma states. At 1560 K,
the antiphase octahedral tilting Rþ4 mode presents a single peak in
either the xx, yy or zz susceptibility with the corresponding natural
frequency being identical between the different components of
this susceptibility and being coined νRþ4 ;x;Pm3m here. It is about 43
cm−1 at 1560 K, is therefore triply degenerate and corresponds to
fluctuations of ωRalong the x, y or z axes. On the other hand, the

susceptibilities of the in-phase octahedral tilting Mþ
3 mode exhibits

two different types of peaks in the cubic state: one at a higher
frequency of about 138 cm−1 at 1560 K, to be denoted as
νMþ

3 ;x;Pm3m and that is associated with oscillations of ωM along
the x or y axes (it is doubly degenerated, as evidenced by the peak
occurring at the same frequency in the xx and yy susceptibilities
associated with the in-phase tilting); and a second lowest
frequency, νMþ

3 ;z;Pm3m, close to 38 cm−1 at 1560 K and which
corresponds to fluctuations of ωM along the z axis (since it is
evidenced in the zz component of the susceptibility associated
with ωM). Furthermore, Fig. 5b reports νRþ4 ;x;Pm3m and νMþ

3 ;z;Pm3m, as
a function of temperature in the Pm3m cubic state. These two
frequencies soften when approaching the critical temperature of
1280 K, with νMþ

3 ;z;Pm3mbeing always smaller than νRþ4 ;x;Pm3m for any
temperature. Such features are responsible for the occurrence of
long-range-ordered in-phase tiltings below 1280 K (see Fig. 1), and
therefore to the transition from Pm3m to P4/mbm. It is also
interesting to realize that the facts that νMþ

3 ;z;Pm3m is different from
νRþ4 ;x;Pm3m and that ωM condenses at a slightly higher temperature
than ωR (see Fig. 1) imply that phenomenologies having the same
harmonic coefficient in front of in-phase and anti-phase tiltings
(see, e.g., ref. 3) have to be revised and generalized as mentioned
in the method section.
Let us now pay attention to the peaks of the susceptibilities of

the antiphase and in phase tiltings, but now in the P4/mbm state.
In particular, comparing Fig. 3g, h with Fig. 2g, h tells us that the xx
and yy susceptibilities associated with ωR, while still being similar
to each other, have now two peaks each, in P4/mbm (unlike in the
cubic state), with the corresponding frequencies being close to
the aforementioned antipolar frequencies we denoted as
νXþ

5 ;x;P4=mbm;LF and νXþ
5 ;x;P4=mbm;HF . Such facts strongly hint towards

Fig. 3 Same as Fig. 2 but for a temperature of 1260 K (which corresponds to the P4/mbm state)

Dynamics of antipolar distortions
K Patel et al.

4

npj Computational Materials (2017) ���� Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

Figure 4.3: Same as Fig. 4.2 but for a temperature of 1260K (which corresponds to the P4/mbm
state).

Order parameter ωR:

Figure 4.2(g, h, i) display the imaginary part of χAA
xx (ν), χAA

yy (ν) and χAA
zz (ν) respectively, when

A=ωR at a temperature of 1560K that is forPnma. Fig. 4.3(g, h, i) and Fig. 4.4(g,h,i) provide similar

data for the susceptibility associated with the antiphase tilting at 1260K and 1040K, respectively,

that is for P4/mbm and Pnma states.

At 1560K temperature, as shown in Fig. 4.2(g, h, i), the antiphase octahedral tilting R+4 mode

has a single peak in either the xx, yy, or zz susceptibility with the corresponding natural frequency

being identical between the different components of this susceptibility and being coined νR+4 ,x,Pm3̄m.

It is about 43 cm−1, is therefore triply degenerate and corresponds to fluctuations of ωR along the
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x, y, or z axes.

In intermediate P4/mbm state Figure 4.3(g, h, i) display the results of susceptibilities at 1260K .

The R+4 mode has now two peaks each for the xx and yy susceptibilities in P4/mbm, with the

corresponding frequencies being close to the aforementioned antipolar frequencies and are denoted

as νX+5 ,x,P4/mbm,LF and νX+5 ,x,P4/mbm,HF . Such facts strongly hint towards a very specific dynamical

coupling between the fluctuations of the x- and y-components of uX and ωR within the P4/mbm

state. Such hint is reinforced when realizing that νX+5 ,x,P4/mbm,LF is the weakest peak of χAA
xx (ν)

for A=uX (see Fig. 4.3(a)) while it is the strongest peak for the xx-component of the susceptibility

of ωR (cf Fig. 4.3(g)), while the reverse behavior is seen for νX+5 ,x,P4/mbm,HF . This mixing also

explains why νX+5 ,x−y,Pnma,LF is soft within the P4/mbm state, since the antiphase octahedral tilting

is already very soft in the cubic state (see the temperature behavior of νR+4 ,x,Pm3̄m in Fig. 4.5(b)),

and why a phase transition from P4/mbm to Pnma occurs at around 1240K, below which both the

AFE and antiphase tiltings adopt long-range order.

At 1040K temperature, Fig. 4.4(g, h, i) displays the susceptibility associated with the antiphase

tiltings for Pnma state. We see three peaks and the resonant frequencies are same as antipolar

νX+5 ,x,Pnma,LF , νX+5 ,x,Pnma,MF , and νX+5 ,x,Pnma,HF frequencies. Such mixings of antipolar and AFD

modes in the Pnma state, all involving in-plane fluctuations of both uX and ωR and out-of-plane

oscillations of ωM. This mixing is consistent as the magnitude of the peaks is maximum for sus-

ceptibilities for A=ωR, A=ωM, and A=uX occurs at three different frequencies namely νX+5 ,x,Pnma,LF

(see Fig. 4.4(g)), νX+5 ,x,Pnma,MF (see Fig. 4.4(f)), and νX+5 ,x,Pnma,HF (see Fig. 4.4(a)), respectively.

This mixing also explains why νX+5 ,x,Pnma,LF soften when approaching the Pnma—to—P4/mbm

phase transition since we demonstrated that oxygen octahedral tiltings are very soft above such

transition.
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a very specific dynamical coupling between the fluctuations of the
x- and y-components of uX and ωR within the P4/mbm state. Such
hint is reinforced when realizing that νXþ

5 ;x;P4=mbm;LF corresponds to
the weakest peak of χAAxx νð Þ for A = uX (see Fig. 3a) while being
associated with the strongest peak for the xx-component of the
susceptibility of ωR (cf Fig. 3g), while the reverse behaviors are
seen for νXþ

5 ;x;P4=mbm;HF (i.e., it is now the xx-susceptibility of the
antipolar motions rather than of the antiphase tilting that has the
strongest peak). This mixing also explains why νXþ

5 ;x$y;Pnma;LF is soft
within the P4/mbm state, since the antiphase octahedral tilting is
already very soft in the cubic state (see the temperature behavior
of νRþ4 ;x;Pm3m in Fig. 5b), and why a phase transition from P4/mbm
to Pnma occurs at around 1240 K, below which both the antipolar
motions and antiphase tiltings adopt long-range order (in addition
to the continuous spontaneous value of the in-phase tilting).
It is also interesting to realize that the zz-component of the

susceptibility associated with the in-phase-tilting-related ωM con-
tinues to have a single peak in the intermediate P4/mbm state (to
be denoted as νMþ

3 ;z;P4=mbm which is at a much higher frequency
that the corresponding νMþ

3 ;z;Pm3m of the cubic phase, see Figs. 2f, 3f
and 5b) but suddenly exhibits three peaks in the Pnma phase as
evidenced in Fig. 4f. Very interestingly, these three peaks have
resonant frequencies that are basically identical to the aforemen-
tioned antipolar νXþ

5 ;x;Pnma;LF , νXþ
5 ;x;Pnma;MF and νXþ

5 ;x;Pnma;HF . More-
over, these three resonant frequencies can also be seen within the
Pnma state in the xx and yy susceptibilities of the antiphase-tilting-
related ωR (see Fig. 4g, h). Such features suggest different mixings
of antipolar and AFD modes in the Pnma state, all involving in-plane
fluctuations of both uX and ωR and out-of-plane oscillations of ωM.
This suggestion is also consistent with the magnitude of the peaks,
since, e.g., the maximal peaks of χAAαβ νð Þ susceptibilities for A =ωR,
ωM and uX occur at three different frequencies, namely νXþ

5 ;x;Pnma;LF

(see Fig. 4g), νXþ
5 ;x;Pnma;MF (see Fig. 4f) and νXþ

5 ;x;Pnma;HF (see Fig. 4a),
respectively. This mixing also explains why νXþ

5 ;x;Pnma;LF softens
when approaching the Pnma-to-P4/mbm transition since we
demonstrated that oxygen octahedral titings are very soft above
such transition.
Let us now try to understand why uX and ωR can be dynamically

coupled in the P4/mbm state while the fluctuations of uX, ωR and
ωM can all dynamically mix in the Pnma state, and that no such
dynamical couplings exists in the cubic phase. Let us also explain
why only very specific components of these three order
parameters dynamically couple to each other in the P4/mbm
and Pnma phases.

DISCUSSION
For that, let us first write the equation of motion associated with
the x or y component of uX:

mX d
2uX ;α
dt2

¼ $ dEtotal
duX ;α

þ γXα
duX ;α
dt

(4)

Where α = x or y; mX is the mass of this antipolar mode; γXα is the
damping constant; Etotal is the total energy provided our effective
Hamiltonian; and t is the time. In the harmonic approximation and
using the trilinear energy given by Eq. (2) as well as Equations of
the effective Hamiltonian described in the Method Section, Eq. (4)
becomes:

P
β

2πνXα
! "2 $ ð2πνÞ2 $ 2iΓXαπν þ BXαMβω

2
M;β þ BXαRβω

2
R;β

h i
uX ;α

¼ $DωM;zωR;α

(5)

Fig. 4 Same as Fig. 2 but for a temperature of 1040 K (which corresponds to the Pnma state)
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Figure 4.4: Same as Fig. 4.2 but for a temperature of 1040K (which corresponds to the Pnma
state).

4.3.1 Temperature dependence of resonant natural frequencies

Figure 4.5(a, b) shows the temperature dependencies of all aforementioned resonant frequencies

associated with the dynamics of Bi motions within the X+5 antipolar mode. Several important

results can be inferred from these figures as follows:

(1) Both νX+5 ,z,Pm3̄m and νX+5 ,x,Pm3̄m are nearly independent on the temperature within the entire

stability region of the cubic state. As a result, neither of these two frequencies softens when

approaching the Pm3̄m − to − P4/mbm transition from above. This implies that this transition

is dynamically driven by a physical quantity that has nothing to do with antiferroelectricity – as

consistent with the sole condensation of the z-component of ωM below 1280K (see Fig. 4.1).
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(2) One specific antipolar mode, namely νX+5 ,x,P4/mbm,LF , is very soft within the entire P4/mbm

state.

(3) νX+5 ,x,Pnma,LF significantly softens too when heating the system within the Pnma state towards

the Pnma − to − P4/mbm transition.

(4) Fig. 4.5(b) reports two frequencies, namely νR+4 ,x,Pm3̄m and νM+3 ,z,Pm3̄m in the Pm3̄m cubic state.

These two frequencies soften when approaching the critical temperature of 1280K. νM+3 ,z,Pm3̄m is

always smaller than νR+4 ,x,Pm3̄m for any temperature in the cubic state. Such features are responsible

for the occurrence of long-range-ordered in-phase tilting below 1280K (see Fig. 4.1), and therefore

to the transition from Pm3̄m − to − P4/mbm.

(5) It is interesting to realize that νM+3 ,z,Pm3̄m is different from νR+4 ,x,Pm3̄m and ωM condenses at a

slightly higher temperature than ωR (see Fig. 4.1). This implies that phenomenologies having

the same harmonic coefficient in front of the in-phase and antiphase tiltings (see Ref(3)) has to be

revised and generalized.

(6) The R+4 and M+3 modes are slightly harder when the temperature is decreased in the P4/mbm

state and R+4 and X+5 become strongly correlated. This correlation results in the emergence of an

X+5 mode that is associated with the frequency denoted as νX+5 ,x,Pnma,LF .
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Here νXα is the natural frequency of the antipolar mode,
ΓXα ¼ γXα=m

X , D is the trilinear coupling strength between uX, ωR
and ωM, β runs over the Cartesian components, and B are the
parameters involved in the biquadratic coupling between u2X and
ω2
M and between u2X and ω2

R . D and B here contain a factor of 1/mX.
Neglecting fluctuations of ωM,β and ωR ,β with time on the left-

hand site of Eq. (5) yields

P
β

2πνXα
! "2 " ð2πνÞ2 " 2iΓXαπν þ BXαMβ ω2

M;β

D Eh

þ BXαRβ ω2
R;β

D Ei
uX ;α ¼ "DωM;zωR;α

(6)

where the “ ¼h i” symbol refers to spontaneous values. Note that
the existence of ω2

M;β

D E
and ω2

R;β

D E
on the left-hand side of Eq. (6)

implies that the resonant frequencies of the antipolar modes are
naturally quantitatively affected by the condensation of oxygen
octahedral tiltings because of the aforementioned biquadratic
couplings.
Introducing now the time fluctuations of ωM,z and ωR ,α on the

right hand-side of Eq. (6) gives:

X

β

2πνXα
! "2 " ð2πνÞ2 " 2iΓXαπν þ BXαMβ ω2

M;β

D E
þ BXαRβ ω2

R;β

D Eh i
uX ;α ¼

" D ωM;z
# $

ωR;α
# $

" D ωR;α
# $

δωM;z " D ωM;z
# $

δωR;α

(7)

for α = x or y, and where δωM,z and δωR ,α represent the fluctuations
of ωM,z and ωR ,α with respect to their spontaneous ωM;z

# $
and

ωR;α
# $

values.

Interestingly, averaging over time Eq. (7) will give on the left-
hand side a quantity that is directly proportional to uX ;α

# $
and on

the right-hand side a quantity that is simply "D ωM;z
# $

ωR;α
# $

(since
δωM;z
# $

¼ δωR;α
# $

¼ 0, by definition). As a result, the time-
integration of Eq. (7) explains why, in our simulations depicted
in Fig. 1, uX ;α

# $
becomes finite only after both ωM;z

# $
and ωR;α

# $

are nonzero. Note that if uX ;α
# $

condenses we are to take
into account also the anharmonic contribution to the left part of
Eq. (7).
Moreover, Eq. (7) also successfully explains why the oscillations

of the x (respectively, y) component of uX can couple with the
fluctuations of the z-component of ωM and with the fluctuations of
the x (respectively, y) component of ωR in the Pnma state, because
of the existence of the last two terms on its right-hand side. Such
dynamical mixing gives rise to the three peaks seen in each of
Fig. 4a, f, g, and originates from the trilinear energy coupling since
the D constant is involved in these last two terms. This mixing
exists in Pnma but not in the cubic state because ωR;x

# $
, ωR;y
# $

and ωM;z
# $

are finite in the former while vanishing in the latter
state. In fact, the last two terms of Eq. (7) provide a deep insight
into the mechanism of this mixing: the x-component (respectively,
y-component) of uX is able to dynamically couple with (i) the
fluctuations of the z-component of ωM as soon as ωR;x

# $

(respectively, ωR;y
# $

) is non-zero; and (ii) the oscillations of the
x-component (respectively, y-component) of ωR when ωM;z

# $

adopts a finite spontaneous value. These last two terms of Eq. (7)
therefore also explain the mixing between antipolar and antiphase
tilting modes in the P4/mbm state, for which only in-phase tiltings
have condensed, i.e. even if there are no long-range ordered uX
and ωR. In that case, item (ii) is valid, unlike item (i), which
therefore explains why only two (and not three) peaks can be seen
in Fig. 3a, g. In that situation, two modes, which where denoted as
νX þ

5 ;x;Pm3m and νRþ4 ;x;Pm3m in the cubic phase (that are pure antipolar
and antiphase tilting modes, respectively), now interacts with each
other in the P4/mbm phase to give rise to the mixed νX þ

5 ;x;P4=mbm;LF
and νX þ

5 ;x;P4=mbm;HF modes.
Note that Eq. (7), as well as some of our numerical findings

depicted in Figs. 2, 4 and 5, can also be used to predict the
behavior of the phonon associated with the oscillations of uX
along the x (or y)-axis when the antiphase octahedral tiltings
condense before the in-phase tilting in the structural path
bringing the cubic state to Pnma (that is, if the phase transition
sequence is Pm3m, then Imma and finally Pnma when decreasing
the temperature, which is another possible symmetry-allowed
structural path to connect Pm3m and Pnma, in addition to
Pm3m–P4/mbm–Pnma, according to ref. 36). Equation (7) and our
aforementioned numerical data then suggest that results will be
very similar to those shown in Fig. 5a, that is (1) one hard
νX þ

5 ;x;Pm3m should exist in the cubic state; (2) there will be one soft
phonon (to be denoted here as νX þ

5 ;x;Imma;LF ) and one hard phonon
(to be coined νX þ

5 ;x;Imma;HF ) in the Imma state; and (3) one soft
phonon at νX þ

5 ;x;Pnma;LF and two harder phonons at νX þ
5 ;x;Pnma;MF

and νX þ
5 ;x;Pnma;HF in the Pnma state. The main anticipated

difference between these predicted results and those shown in
Fig. 5a is that νX þ

5 ;x;Imma;LF will arise from the mixing of the
fluctuation of the x-component of uX with the oscillation of the z-
component of ωM that is mediated by the condensation of the x-
component of ωR, while νX þ

5 ;x;P4=mbm;LF of Fig. 5a involves the
dynamical coupling between the x-component of uX and the x-
component of ωR that is allowed when the z-component of ωM
has adopted a long-range-order. Interestingly, symmetry argu-
ments36 further indicate that the Pm3m-to–Imma phase transition
should be of first-order. As a result, we expect that the
susceptibilities measured in the temperature interval for which
these two phases can co-exist will have the features of both of
these phases.

Fig. 5 Temperature dependence of natural frequencies of some
phonon modes that have antipolar cation character a and/or
oxygen octahedral tiltings character b. The vertical dashed lines
delimit the different phases obtained in the calculations for our BFO
system subject to hydrostatic pressure. See text for the notations on
this figure
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Figure 4.5: Temperature dependence of natural frequencies of some phonon modes (a) that have
antipolar character and (b) oxygen octahedral tilting character. The vertical dashed lines delimit the
different phases obtained in the calculations for our BFO system subject to hydrostatic pressure.

Let us now try to understand why uX and ωR can be dynamically coupled in the P4/mbm state

while the fluctuations of uX, ωR and ωM can all dynamically mix in the Pnma state, and that no

such dynamical couplings exist in the cubic phase. Let us also explain why only very specific

components of these three order parameters dynamically couple to each other in the P4/mbm and

Pnma phases.
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4.4 Discussion

For that, let us first write the equation of motion associated with the x or y component of uX:

mX d2uX,α

dt2 = −
dEtotal

duX,α
+ γX

α

duX,α

dt
(4.6)

Where α = x or y; mX is the mass of this antipolar mode; γX
α is the damping constant; Etotal is the

total energy provided our effective Hamiltonian; and t is the time. In the harmonic approximation

and using the energies of Eqns (4.1), (4.2) and (4.4), Eqn. (4.6) becomes:

∑
β

[(
2πνX

α

)2
− (2πν)2 − 2iΓX

α πν + BXαMβω
2
M,β + BXαRβω

2
R,β

]
uX,α = −DωM,zωR,α (4.7)

Here νX
α is the natural frequency of the antipolar mode, ΓX

α = γ
X
α /m

X , D is the trilinear coupling

strength between uX, ωR and ωM, β runs over the Cartesian components, and B are the parameters

involved in the biquadratic coupling between u2
X and ω2

M and between u2
X and ω2

R.

Neglecting fluctuations of ωM,β and ωR,β with time on the left-hand site of Eqn. (4.7) yields

∑
β

[(
2πνX

α

)2
− (2πν)2 − 2iΓX

α πν + BXαMβ

〈
ω2

M,β

〉
+ BXαRβ

〈
ω2

R,β

〉]
uX,α = −DωM,zωR,α (4.8)

where the “<. . . >” symbol refers to spontaneous values. Note that the existence of <ω2
M,β> and

<ω2
R,β> on the left-hand side of Eq. (4.8) implies that the resonant frequencies of the AFE modes

are naturally quantitatively affected by the condensation of oxygen octahedral tiltings because of

the aforementioned biquadratic couplings.

Introducing now the time fluctuations of ωM,z and ωR,α on the right hand-side of Eqn. (4.8)
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gives:∑
β

[(
2πνX

α

)2
− (2πν)2 − 2iΓX

α πν + BXαMβ

〈
ω2

M,β

〉
+ BXαRβ

〈
ω2

R,β

〉]
uX,α =

−D
〈
ωM,z

〉 〈
ωR,α

〉
− D

〈
ωR,α

〉
δωM,z − D

〈
ωM,z

〉
δωR,α

(4.9)

for α=x or y, and where δωM,z and δωR,α represent the fluctuations of ωM,z and ωR,α with respect

to their spontaneous
〈
ωM,z

〉
and

〈
ωR,α

〉
values.

Interestingly, averaging over time of Eqn. (4.9)will give on the left-hand side a quantity that is di-

rectly proportional to <uX,α> and on the right-hand side a quantity that is simply −D
〈
ωM,z

〉 〈
ωR,α

〉
(since

〈
δωM,z

〉
=

〈
δωR,α

〉
= 0, by definition). As a result, the time-integration of Eqn. (4.9) ex-

plains why, in our simulations depicted in Fig. 4.1, <uX,x> and <uX,y> becomes finite only after

both
〈
ωM,z

〉
and

〈
ωR,α

〉
are nonzero.

Equation (4.9) helps us to understand the mechanism of dynamical mixing as follows:

(1) the oscillations of the x and y components of uX couple with the fluctuations of the z-component

of ωM and with the fluctuations of the x and y components of ωR in the Pnma state, due to the last

two terms on its right-hand side. Because of dynamical mixing, there exist three peaks in each of

the uX, ωM, and ωR (see Figs. 4.4(a), 4.4(f), and 4.4(g)). These three peaks originate form the

trilinear energy coupling since the D constant is involved in these last two terms.

(2) In the cubic state, there is no dynamical mixing as < ωR,x >, < ωR,y > and < ωM,z > are zero.

(3) In P4/mbm state, there are two different kinds of dynamical mixing. (a) the x-component and

y components of uX dynamically couples to the fluctuations of the z-component of ωM as soon as

< ωR,x > and < ωR,y > are non-zero; and (b) the x and y components of uX dynamically couples

to the oscillations of the x and y-components of ωR when < ωM,z > adopts a finite spontaneous

value. Hence, the last two terms of Eqn. (4.9) explain the mixing between AFE and antiphase
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tilting modes in the P4/mbm state, even in absences of the long-range ordered of uX and ωR. In

that case, item (b) is valid, and therefore it explains why only two peaks can be in Fig. 4.3(a) and

4.3(g). In that situation, what was denoted as νX+5 ,x,Pm3̄m and νR+4 ,x,Pm3̄m in the cubic phase (that are

pure AFE and antiphase tilting modes, respectively) now interacts with each other in the P4/mbm

phase to give rise to the mixed νX+5 ,x,P4/mbm,LF and νX+5 ,x,P4/mbm,HF modes.

(4) Eqn. (4.9) as well as our numerical findings as shown in Figs. 4.2, 4.4, and 4.5, can also be

used to predict the behavior of the phonon associated with the oscillations of uX along the x and

y-axes when the antiphase octahedral tiltings condense before the in-phase tilting in the structural

path bringing the Pm3̄m to Pnma state.

(5) Eqn. (4.9) and our numerical data implies that the results would be very similar to those seen

in Fig. 4.5(a), i.e. (a) νX+5 ,x,Pm3̄m hard frequency should exist in the cubic state; (b) If the phase

transition sequence Pm3̄m —Imma—Pnma exists in addition to Pm3̄m —P4/mbm—Pnma when

decreasing the temperature, according to ref. [122]. Then there will be one soft phonon (can

be denoted as νX+5 ,x,Imma,LF) and one hard phonon (to be coined νX+5 ,x,Imma,HF) in the Imma state;

(c) for the phase transition sequence Pm3̄m —P4/mbm—Pnma there exists, one soft phonon at

νX+5 ,x,Pnma,LF and two harder phonons at νX+5 ,x,Pnma,MF and νX+5 ,x,Pnma,HF in the Pnma state. The

main difference between these predicted results and those shown in Fig. 4.5(a) is that νX+5 ,x,Imma,LF

will arise from the mixing of the fluctuation of the x-component of uX with the oscillation of

the z-component of ωM that is mediated by the condensation of the x-component of ωR. And

νX+5 ,x,P4/mbm,LF of Fig. 4.5(a) involves the dynamical coupling between the x-component of uX and

the x-component ofωR when the z-component ofωM has adopted a long-range-order. Interestingly,

symmetry arguments [122] further indicate that the Pm3̄m − to− Imma phase transition should be

of first-order. As a result, we expect that the susceptibilities measured in the temperature interval
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for which these two phases can co-exist will have the features of both of these phases.

4.5 Conclusions

Finally, to sum up, BiFeO3 bulk under hydrostatic pressure was studied. We numerically and

analytically found that the system is having the paraelectric cubic Pm3̄m state at high temperature

while adopting the antipolar Pnma phase at a lower temperature. Our simulations show that for

a narrow range of temperature between the temperature stability regions Pm3̄m and Pnma, an

intermediate state having P4/mbm symmetry can occur and is also compatible with the symmetry

analyzes [122]. We also reveal that AFE modes have very high resonant frequencies which

are almost independent of the temperature in the Pm3̄m state, whereas in the intermediate state

and the Pnma state they can be quite small due to very specific dynamical mixings with the

octahedral oxygen tiltings. Such mixing increases the number of antipolar phonon modes when the

system passes through Pm3̄m − P4/mbm and P4/mbm − Pnma phase transition. Also, a simple

model is built to not only clarify all these features but to reveal that they arise due to trilinear

energy coupling between an anti-polar motion, in-phase and anti-phase tiltings. In the case of the

Pm3̄m − Imma − Pnma transition, this model can also be used for the dynamics of AFE modes.

We hope that this study is important to the scientific community, (i) as Pnma state is the most

abundant ground state in perovskites; (ii) for the ability to build high-density storage is of specific

importance to antiferroelectrics systems, and (iii) because trilinear energetic couplings can also

give rise to the formation of electrical polarization in the so-called hybrid improper ferroelectrics

(HIF) (see chapter 1 for definition) [1, 2, 3, 4, 5, 6, 7], implying that the present study is a good

starting point to tackle and understand polarization dynamics in HIF systems. The results obtained

here are published in Ref. [123].
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Chapter 5

ARE THERE SOFT MODES IN HYBRID IMPROPER FERROELECTRICS?

This section reports the results and analyses of atomistic simulations along with an analytical

model developed explaining the dynamics of polar, antipolar, and antiferrodistortive distortions in

(BiFeO3)/(NdFeO3) (abbreviated as (BFO)1/(NFO)1) 1:1 superlattice (SL). As the main result, I

obtained on cooling the paraelectric P4/mmm to ferroelectric Pmc21 phase transition. As I will

show, this phase transition is caused by softening of some antiferrodistortive modes. At the same

time, the antiferroelectric modes in the high-temperarture paraelectric phase are hard and do not

have tendency to soften. However, in the low-temperature Pmc21 phase, they are suddenly soft.

In the low-temperature phase, in the correlators, which I computed, there appear seven peaks due

to a trilinear energetic couplings between two types of octahedral tiltings and Bi and Nd cations

motions. I will show that this leads to the appearance of spontaneous polarization, consistent with

the nature of hybrid improper ferroelectricity.

In addition to these calculations, I will present a model describing the emergence of the hybrid

improper ferroelectricity in our system. The model developed and described below in detail can

be easily applied to predict the dynamics of polar, antipolar cation motions, and antiferrodistortive

motion of anions in (BFO)1/(NFO)1) 1:1 SL in P4/mmm and Pmc21 phases.

5.1 Background

A specific class of materials, namely, the so-called hybrid-improper ferroelectrics (HIF)—are

gaining a lot of attention because of new mechanism of the emergence of ferroelectricity [124].

For example, HIF can be realized in materials called Superlattices which can be formed e.g.

by a perovskite stack as ABO3/A’BO3 where both perovskites have antiferroelectric (AFE) and
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antiferrodistortive displacements. The ferroelectricity in HIF materials arises from a trilinear

coupling of the form PQ1Q2 between the spontaneous polarization known as ferroelectric mode

(P) and two oxygen octahedral rotational modes denoted here as Q1 and Q2 [1, 2, 4, 6, 7, 125].

Up to now several works based on density functional calculations have been done to understand

and characterize HIF [1, 2, 4, 5, 49], and an atomistic theory has been developed to clarify its

microscopic energetic origin [8, 7].

Interestingly, all the aforementioned works on HIF have been aimed to understand static proper-

ties at 0K but finite-temperature dynamical properties of HIF remain uninvestigated. For instance,

onemaywonder how the ferroelectric (polar), antiferroelectric (antipolar), and octahedral rotational

modes evolve with temperature? Do the polar and antipolar modes soften as in proper ferroelectrics,

or are they rather hard at high temperature in the paraelectric phase [126, 127]? Do these phonon

modes mix with phonons associated with fluctuations of oxygen octahedral tiltings in any of these

phases because of PQ1Q2 trilinear energetic coupling, or rather does this hypothetical mixing only

occurs when in-phase and/or antiphase tiltings have condensed?

To answer all these questions, I decided to investigate (BFO)1/(NFO)1 1:1 superlattice (SL) to

study the temperature-driven HIF transition due to the trilinear energetic coupling.

5.2 Method

The effective Hamiltonian (He f f ) scheme as mentioned in chapter 2 is employed to investigate

finite-temperature properties of (BFO)1/(NFO)1 SL. The degree of freedoms of He f f in use are the

following:

(i) the local soft modes {ui} centered on the A sites (i.e., on Bi or Nd ions), which are directly related

to the local electric dipoles on sites i [77, 78]; (2) the homogeneous {ηH} and inhomogeneous {ηI,l}
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strain tensors. This strain tensor is located on Fe site [77, 78]; (3) the pseudo vector {ωi} that

characterizes the oxygen octahedral tilting about the Fe site i [80] and (4) the magnetic moment

{mi} centered on Fe ions at site i. The total energy of this He f f has two main terms:

Etotal = EBFO({ui}, {ηH}, {ηI,l}, {ωi}, {mi}) + Ealloy({ui}, {ωi}, {mi}, {ηloc}) (5.1)

where EBFO is the effective Hamiltonian of pure BFO while Ealloy characterizes the effect of

substituting Bi ions by Nd ions. The analytical expression of EBFO is provided in chapters 2 and

3, while that of Ealloy is provided in chapter 2. Etotal contains trilinear couplings between local

modes and two octahedral tiltings [8],

∆E1 =
∑

i

∑
l,m,m=0,1

∑
α,β=x,y,z
α,β

K1i(−1)(l x+my+nz)αωilmn,αui,βωilmn,β (5.2)

where the summation over i runs over all A sites belonging to 5-atom primitive cell i and the x, y,

and z axes are chosen to lie along the pseudocubic [100], [010], and [001] directions, respectively.

ωilmn,α denotes the octahedral tilting that is centered on the Fe site belonging to the primitive unit

cell shifted from cell i by the vector alat(lx + my + nz) with l,m,n=0 or 1 and where alat is the

5-atom lattice parameter (note that the Fe site i can be reached from A site i through a shift by

−alat
2 (x + y + z)). As shown in Ref. [3], the net HIF polarization arising in the (BFO)1/(NFO)1

superlattice below a certain temperature originates from the difference in the K1i coefficient for the

sites containing Bi versus Nd ions. The difference in the value of K1i coefficient is due to the ionic

radius of the Bi and Nd ions.

First I performedMonte-Carlo (MC) simulation to analyze static finite-temperature properties of

(BFO)1/(NFO)1 SL. This SL is constructed by alternate layers of BFO and NFO within a 12x12x12

supercell along the [001] pseudo-cubic direction. I used 20,000 MC sweeps for equilibration
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and another 20,000 MC sweeps were employed to calculate thermal averages. Then I performed

Molecular Dynamics (MD) simulations on 12x12x12 supercell to investigate dynamical properties

of (BFO)1/(NFO)1 SL. For MD simulations, 4 × 105 steps with a time step of 0.5 fs were used.

To investigate the behavior of frequencies of different structural, ferroelectric, and antiferroelectric

modes, I calculated then the following correlators:

χAA
′

αβ (ν) =

〈
Aα(t)A

′

β(t)
〉
+ i2πν

∫ ∞

0
dtei2πνt

〈
Aα(t)A

′

β(0)
〉
, (5.3)

where ν is frequency, α and β denote Cartesian components, A(t) and A
′

(t) are order parameters

at time t, and “〈..〉′′ indicates thermal averages.

I focused on the following physical quantities: (i) the order parameters A were chosen to be

uNd and uBi vectors that define the averaged vectorial sums of the local modes centered on the

Nd and Bi sites, respectively; (ii) the uΓ and uX vectors that characterize the overall electrical

polarization associated with the Γ point and antiferroelectric (AFE) vector associated with the X

point of the 5-atom cubic Brillouin zone, respectively. Note that the uΓ and uX modes are defined

as 1
2 (uNd + uBi) and 1

2 (uNd − uBi), respectively; and (iii) the angles of the antiphase and inphase

rotations of the oxygen octahedral tiltings also known as antiferrodistortive or AFD motions and

are quantified by the ωR and ωM pseudovectors, respectively. These three different quantities are

energetically coupled to each other by different local trilinear couplings involved in Eqn. (5.2). For

example, the z-component of ωM is involved in the term [8, 7]:

Etrilinear,ωM,z = C{
∑
α=x,y

κNduNd,αωR,αωM,z + κBiuBi,αωR,αωM,z}

= C{
∑
α=x,y

DΓuΓ,αωR,αωM,z + DXuX,αωR,αωM,z}

(5.4)

where C is a coefficient, α is the x and y Cartesian components. κNd and κBi are the κ1i parameters
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of Eq. (5.2) for primitive unit cells containing Nd and Bi ions, respectively. Here, DΓ and DX are

defined as 1
2 (κNd + κBi) and 1

2 (κNd − κBi), correspondingly.

For above mentioned order parameters A, the imaginary part of the complex susceptibilities

computed by Eq. (5.3) are fitted by the following formula for the dielectric response of a sum of

Damped Harmonic Oscillators (DHO):

χ =
S2

ν2
r − ν2 − iνγ

(5.5)

where νr , γ, and S are the resonant frequency, damping constant, and plasma frequency, respec-

tively.

5.3 Results

The system (BFO)1/(NFO)1 1:1 SL was cooled from 1800K to 200K in increments of 50K. Figure

5.1 displays the temperature dependence of different order parameters: panel (a) shows the supercell

average of the uΓ and uX vectors; panel (b) represents the temperature dependence of the supercell

average of the uBi and uNd vectors; and panel (c) reports the temperature evolution of the supercell

average of the axial vectors quantifying the the oxygen octahedral tilting,ωR andωM , corresponding

to the rotations in antiphase and inphase, respectively. Note that all these quantities were obtained

from Monte-Carlo simulations. One can see from Figure 5.1 that above 1520K, all these quantities

vanish which is representative of the P4/mmm phase existing at high enough temperatures [3]. On

further cooling (below 1520K), the x and y components of uΓ, uX, and ωR all become finite, also

the z-component of ωM becoming non-null and the z-component of ωR is finite but rather small.

Thus, below 1520K an electric polarization and an antipolar vector both are enhanced along the

pseudo-cubic [110] direction and both are followed by the antiphase titling along [110] direction

and by the inphase tiltings in the direction [001]. Hence, below 1520K, (BFO)1/(NFO)1 1:1 SL
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acquires the space group Pmc21 [3].

As shown in Figure 5.1(b), below 1520K, the average displacement of Nd ions is positive and,

along [110] direction, is larger in magnitude than the displacements of Bi ions moving in opposite

i.e. [1̄1̄0] direction. As uΓ=1
2 (uNd+uBi) and uX=1

2 (uNd-uBi), uX is finite and larger compared to

uΓ. However, it is important that uΓ is finite which confirms the fact that (BFO)1/(NFO)1 SL does

be a HIF!
TEMPERATURE DEPENDENCE OF POLAR MODES … PHYSICAL REVIEW B 100, 214107 (2019)

,
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ω

ω ω ω

ω ω ω

FIG. 1. Temperature dependence of (a) the supercell averaged
u! and uX vectors characterizing the electrical polarization and
antiferroelectric vector at the X point of the cubic first Brillouin zone,
respectively, (b) the local mode centered on Nd and Bi cations (uNd

and uBi, respectively), and (c) ωR and ωM pseudovectors quantifying
antiphase and in-phase tiltings, respectively, of the oxygen octahedra
in the (BFO)1/(NFO)1 superlattice.

of ωR that is finite but rather small). In other words, below
1520 K, an electrical polarization and an antipolar vector
both develop along the pseudocubic [110] direction, which is
accompanied by oxygen octahedra titling in antiphase fashion
about this same [110] direction and in-phase tiltings about the
out-of-plane [001] direction of the superlattice. Such features
are indicative of ordered Bi0.5Nd0.5FeO3 (BNFO) basically
acquiring the Pmc21 space group below a critical temperature
of 1520 K [16].

Moreover, Fig. 1(b) also reveals that, below 1520 K, the
average displacement of Nd ions along the [110] direction
is positive and larger in magnitude than that of the Bi ions,
which move in the opposite direction (that is, along the [1̄1̄0]
direction). This difference in magnitude explains why u! is
non-null while the opposite motions between Nd and Bi ions
naturally result in uX having a larger strength than u! below
1520 K since u! = 1

2 (uNd + uBi) and uX = 1
2 (uNd-uBi). Note

that the results shown in Fig. 1 are essentially the same as the
ones obtained in Ref. [16] but with a difference in the size
of a supercell. We needed to show those results again here in
order to introduce the overall system behavior. Note also that
Fig. 2 of Ref. [17] demonstrates that transition temperatures
predicted by the presently used effective Hamiltonian can be
accurate in (Bi, Nd)FeO3 systems.

Furthermore, Fig. 2(b) displays the imaginary part of the
susceptibility χAA′

αα (ν) for the order parameter A = A′ = uX
and for αα = x′x′ (where x′ is along the pseudocubic [110]
direction) at a temperature of 1780 K, that is, within the
P4/mmm state. Two narrow peaks can clearly be seen: one
peak occurring at around 116 cm− 1 and the other at 134 cm− 1.

FIG. 2. Frequency dependence of the imaginary part of the
χAA′

αα (ν ) susceptibilities in our (BFO)1/(NFO)1 superlattice for the
following order parameters: (a) u! , (b) uX , (c) uNd, (d) uBi, (e) ωR,
and (f) ωM at a temperature of 1780 K, that is, for the P4/mmm
state. For (a)–(e), α = x′, where x′ is along the pseudocubic [110]
direction, while α = z (which is along [001]) for (f). The black line
displays the calculated data, while the red line represents their fit by
DHOs. Insets zoom the peaks that are difficult to see.

Two peaks also happen at the same frequencies for the order
parameter A = A′ = u! and for αα = x′x′, but the second one
appears as a weak shoulder [see Fig. 2(a) and its inset]. These
peaks in Figs. 2(b) and 2(a) therefore indicate that the lowest
two frequencies of the AFE phonon mode are identical to
those of the ferroelectric (FE) mode and are thus associated
with the coupled oscillations of the uX and u! vectors along
the x′ direction. Such coupled oscillations originate from the
facts that (i) both uX and u! are related to uNd and uBi and
(ii) two peaks can also clearly be seen in Fig. 2(c) at, once
again, 116 and 134 cm− 1 for the oscillations of the uNd vector
along the x′ direction and, to a lesser extent, in Fig. 2(d)
for the oscillations of the uBi mode along such a direction
too. As a matter of fact, as we will discuss later on (see
Sec. IV), uNd and uBi are coupled to each other via a short-
range bilinear energetic interaction of the form JuNd,αuBi,α ,
where J is a coefficient and α = x or y. We will thus call
these two frequencies ν

P4/mmm
cation,1 and ν

P4/mmm
cation,2 in order to

214107-3

Figure 5.1: (BFO)1/(NFO)1 SL: temperature dependence of (a) the supercell averaged uΓ and uX
vectors characterizing the electrical polarization and antiferroelectric vector, respectively; (b) the
local mode centered on Nd and Bi cations (uNd and uBi, respectively), as a function of temperature;
(c) ωR and ωM pseudo vectors quantifying the antiphase and in phase tiltings, respectively.

Let us now see the effect of temperature on the susceptibility of the order parameters uΓ, uX,
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uNd, uBi, ωR, and ωM.

Susceptibility χAA′
αα (ν) at high temperature of 1780K i.e. P4/mmm state:

In a high-temperature range i.e. from1520K to 1800K, the P4/mmm phase contains the ferroelectric

(FE), antiferroelectric (AFE), and antiferrodistortive phonon modes. Figure 5.2(b) reveals the

imaginary part of the susceptibility χAA′
αα (ν) for the order parameter A = A′ = uX and αα = x′x′

where x′ is along the pseudo-cubic [110] direction at temperature 1780K– that is within the

P4/mmm phase. One can clearly see in Figure 5.2(b) two narrow peaks: one peak occurring at

116cm−1 and the other at 134cm−1. For the order parameter A = A′ = uΓ and for αα = x′x′,

two peaks occur at the same frequencies as obtained for uX . Note that the second peak appears

in panel (a) as a week shoulder and it is difficult to see it, see the inset Fig. 5.2(a). The fact

that two frequencies of the antiferroelectric (AFE) phonon mode (see Fig. 5.2(b)) are identical

to those of the ferroelectric (FE) mode (see Fig. 5.2(a)), indicates that the oscillations associated

with the uX and uΓ vectors along the x′ direction are coupled. Indeed, in the effective Hamiltonian

in use, the uNd and uBi modes on the nearest sites (up to the third-neighbors) are coupled via a

short-range interaction of the form JuNd,αuBi,α, where J is a coefficient and α=x or y. Let us denote

the frequencies of these two peaks as νP4/mmm
cation,1 and νP4/mmm

cation,2 . The first subscript, "cation", indicates

the cation, Nd or Bi. The second subscripts indicates frequency: "1" for the low-frequency peak

and "2" for high-frequency one. The superscript indicates the macroscopic phase.

Now let us look at the modes having antiferrodistortive (AFD) characters at high temperature.

Figure 5.2(e) displays the imaginary part of the susceptibility corresponding to the oscillation of

the ωR order parameter along the x′ direction. It possesses a single peak located at 42cm−1 and is

denoted as νP4/mmm
ωR

. Similarly, Figure 5.2(f) displays the zz component of the imaginary part of the

susceptibility corresponding to the oscillation of theωM order parameter. It possesses a single peak
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at 37cm−1 and is denoted as νP4/mmm
ωM

. These two frequencies are different from each other, and

also different from ν
P4/mmm
cation,1 and νP4/mmm

cation,2 . This indicates that ωR and ωM are neither dynamically

coupled to each other nor dynamically coupled with FE and AFE motions in the high-temperature

P4/mmm phase.TEMPERATURE DEPENDENCE OF POLAR MODES … PHYSICAL REVIEW B 100, 214107 (2019)

,
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ω

ω ω ω

ω ω ω

FIG. 1. Temperature dependence of (a) the supercell averaged
u! and uX vectors characterizing the electrical polarization and
antiferroelectric vector at the X point of the cubic first Brillouin zone,
respectively, (b) the local mode centered on Nd and Bi cations (uNd

and uBi, respectively), and (c) ωR and ωM pseudovectors quantifying
antiphase and in-phase tiltings, respectively, of the oxygen octahedra
in the (BFO)1/(NFO)1 superlattice.

of ωR that is finite but rather small). In other words, below
1520 K, an electrical polarization and an antipolar vector
both develop along the pseudocubic [110] direction, which is
accompanied by oxygen octahedra titling in antiphase fashion
about this same [110] direction and in-phase tiltings about the
out-of-plane [001] direction of the superlattice. Such features
are indicative of ordered Bi0.5Nd0.5FeO3 (BNFO) basically
acquiring the Pmc21 space group below a critical temperature
of 1520 K [16].

Moreover, Fig. 1(b) also reveals that, below 1520 K, the
average displacement of Nd ions along the [110] direction
is positive and larger in magnitude than that of the Bi ions,
which move in the opposite direction (that is, along the [1̄1̄0]
direction). This difference in magnitude explains why u! is
non-null while the opposite motions between Nd and Bi ions
naturally result in uX having a larger strength than u! below
1520 K since u! = 1

2 (uNd + uBi) and uX = 1
2 (uNd-uBi). Note

that the results shown in Fig. 1 are essentially the same as the
ones obtained in Ref. [16] but with a difference in the size
of a supercell. We needed to show those results again here in
order to introduce the overall system behavior. Note also that
Fig. 2 of Ref. [17] demonstrates that transition temperatures
predicted by the presently used effective Hamiltonian can be
accurate in (Bi, Nd)FeO3 systems.

Furthermore, Fig. 2(b) displays the imaginary part of the
susceptibility χAA′

αα (ν) for the order parameter A = A′ = uX
and for αα = x′x′ (where x′ is along the pseudocubic [110]
direction) at a temperature of 1780 K, that is, within the
P4/mmm state. Two narrow peaks can clearly be seen: one
peak occurring at around 116 cm− 1 and the other at 134 cm− 1.

FIG. 2. Frequency dependence of the imaginary part of the
χAA′

αα (ν ) susceptibilities in our (BFO)1/(NFO)1 superlattice for the
following order parameters: (a) u! , (b) uX , (c) uNd, (d) uBi, (e) ωR,
and (f) ωM at a temperature of 1780 K, that is, for the P4/mmm
state. For (a)–(e), α = x′, where x′ is along the pseudocubic [110]
direction, while α = z (which is along [001]) for (f). The black line
displays the calculated data, while the red line represents their fit by
DHOs. Insets zoom the peaks that are difficult to see.

Two peaks also happen at the same frequencies for the order
parameter A = A′ = u! and for αα = x′x′, but the second one
appears as a weak shoulder [see Fig. 2(a) and its inset]. These
peaks in Figs. 2(b) and 2(a) therefore indicate that the lowest
two frequencies of the AFE phonon mode are identical to
those of the ferroelectric (FE) mode and are thus associated
with the coupled oscillations of the uX and u! vectors along
the x′ direction. Such coupled oscillations originate from the
facts that (i) both uX and u! are related to uNd and uBi and
(ii) two peaks can also clearly be seen in Fig. 2(c) at, once
again, 116 and 134 cm− 1 for the oscillations of the uNd vector
along the x′ direction and, to a lesser extent, in Fig. 2(d)
for the oscillations of the uBi mode along such a direction
too. As a matter of fact, as we will discuss later on (see
Sec. IV), uNd and uBi are coupled to each other via a short-
range bilinear energetic interaction of the form JuNd,αuBi,α ,
where J is a coefficient and α = x or y. We will thus call
these two frequencies ν

P4/mmm
cation,1 and ν

P4/mmm
cation,2 in order to
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Figure 5.2: (BFO)1/(NFO)1 SL: frequency dependence of the imaginary part of χAA
′

x′x′ (ν) and where x ′ is
along the pseudo-cubic [110] direction (a) uΓ, (b) uX, (c) uNd, (d) uBi, (e) ωR, and (f) ωM . All plots were
calculated at 1780K – that is, for the P4/mmm phase. The black line displays the MD data while the red line
represents their fit by DHOs. Insets zoom over particular peaks that are difficult to see.
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Susceptibility χAA′
αα (ν) at 750K i.e. in Pmc21 phase:

Let us now focus on results at 750K, which is the Pmc21 phase. Figure 5.3 displays the imaginary

part of the susceptibilities of the order parameters A = A′ = uΓ, uX, uNd, uBi, ωR, and ωM for the

αα = x′x′, where x′ is along the pseudo-cubic [110] direction. In each of these susceptibilities there

occurs seven peaks around about 83cm−1, 121cm−1, 134cm−1, 162cm−1, 174cm−1, 211cm−1, and

228cm−1. One can clearly see that when the system undergoes a phase transition from P4/mmm–

to–Pca21 there is an increase in the number of peaks, with respect to the high-temperature phase,

for all these dynamical responses. The number of the peaks increases in low temperature region

due to a specific dynamical coupling mixing cation motions i.e ferroelectric and antipolar motions

on the one hand and the in-phase, and antiphase tiltings, on the other hand in the low-temperature

Pmc21 phase. This specific coupling is the trilinear energetic coupling of Eqn. (5.4) between the

x and y components of uNd and uBi (or the FE mode uΓ and AFE mode uX), with the x and y

components of the antiphase AFD mode, ωR, and the z component of the in-phase AFD mode,

ωM. The resonant phonon frequencies associated with these seven peaks are denoted as νPmc21
i ,

with i being an integer ranging between 1 and 7, and are as shown in Figure 5.3 for all studied order

parameters (see all panels).
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emphasize that they involve cation displacements and occur
in the high-temperature P4/mmm phase.

In addition to the FE and AFE modes let us also look
at the modes with AFD character at high temperatures. For
that, Fig. 2(e) displays the imaginary part of the susceptibility
corresponding to the oscillation of the (antiphase tilting) ωR
order parameter along the x′ direction at the same temperature
of 1780 K, while Fig. 2(f) shows similar information, but for
the zz component of the susceptibility of the (in-phase tilting)
order parameter A = A′ = ωM . Both of these susceptibilities
possess a unique peak, which is located at 42 cm− 1 in Fig. 2(e)
versus 37 cm− 1 in Fig. 2(f) and corresponds to frequencies
we denote ν

P4/mmm
ωR and ν

P4/mmm
ωM , respectively. Since these two

latter frequencies are different from each other and also differ
from ν

P4/mmm
cation,1 and ν

P4/mmm
cation,2 , one can deduce that antiphase

and in-phase tiltings are dynamically coupled neither to each
other nor to the FE and AFE motions in the high-temperature
P4/mmm state.

Let us now focus on results at 750 K, that is, for a rep-
resentative temperature within the Pmc21 state. For that, the
imaginary part of the susceptibilities of the order parameters
A = A′ = u", uX , uNd, uBi, ωR, and ωM are shown in Fig. 3
for the same αα components as in Fig. 2. Seven peaks are seen
around 83, 121, 134, 162, 174, 211, and 228 cm− 1 in all these

FIG. 3. Same as Fig. 2, but for a temperature of 750 K, that is,
for the Pmc21 state.

susceptibilities, therefore revealing an increase in the number
of peaks with respect to the high-temperature phase for all
these dynamical responses and suggesting a specific dynam-
ical coupling mixing cation motions (ferroelectric degrees of
freedom and antipolar motions) and in-phase and antiphase
tiltings in the low-temperature Pmc21 state. As we will see
later, this specific coupling is the trilinear energetic coupling
of Eq. (4) between the x and y components of uNd and uBi (or,
equivalently, of the FE mode u" and AFE mode uX ) with the
x and y components of the antiphase AFD mode ωR and the
z component of the in-phase AFD mode ωM . The frequencies
associated with these seven peaks in Fig. 3 are denoted νPmc21

i ,
with i being an integer ranging from 1 to 7.

Moreover, Fig. 4 displays the temperature evolution of
ν

P4/mmm
cation,1 , ν

P4/mmm
cation,2 , ν

P4/mmm
ωR , and ν

P4/mmm
ωM in the P4/mmm

phase, as well as that of the νPmc21
i ’s in the Pmc21 state.

Several important results can be inferred from Fig. 4. First
of all, the ν

P4/mmm
cation,1 and ν

P4/mmm
cation,2 frequencies remain more or

less constant in the entire range of investigated temperature
within the P4/mmm state and, in particular, do not have any
tendency of softening when approaching the P4/mmm-to-
Pmc21 phase transition under cooling. In fact, this latter phase
transition is driven by the condensation of the z component
of the ωM in-phase oxygen octahedral tiltings and of the x
and y components of the ωR antiphase oxygen octahedral
tiltings below the temperature of 1520 K [see Fig. 1(c)], as
also evidenced by the facts that ν

P4/mmm
ωR and ν

P4/mmm
ωM both

soften dramatically upon approaching the phase transition
from above (i.e., within the P4/mmm state). When decreasing
the temperature further (i.e., below 1520 K), the x and y
components of uNd and uBi (or, equivalently, of u" and uX )
become finite [see Figs 1(a) and 1(b)] because of their trilinear
couplings given in Eq. (4) with the now condensed ωR and ωM
modes [16]. Such couplings also further lead to the emergence
of the seven peaks seen in Fig. 3 for any displayed response,

ν ν

ν

ν

ν

νν

ν νν

ν

FIG. 4. Temperature dependence of natural frequencies of
phonon modes having ferroelectric, antiferroelectric, and antifer-
rodistortive characters. See the text for the notations of these resonant
frequencies. The vertical line delimits the two different phases ob-
tained in our calculations. Error bars for ν

Pmc21
6 arise from the slight

difference in frequency that different responses (see Fig. 3) can have
around this frequency.
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Figure 5.3: Same as Fig. 5.2 but for 750K – that is, for the Pmc21 phase.
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5.3.1 Temperature evolution of the resonant phonon frequencies in P4/mmm and Pmc21

phases

PATEL, PROSANDEEV, XU, AND BELLAICHE PHYSICAL REVIEW B 100, 214107 (2019)

emphasize that they involve cation displacements and occur
in the high-temperature P4/mmm phase.

In addition to the FE and AFE modes let us also look
at the modes with AFD character at high temperatures. For
that, Fig. 2(e) displays the imaginary part of the susceptibility
corresponding to the oscillation of the (antiphase tilting) ωR
order parameter along the x′ direction at the same temperature
of 1780 K, while Fig. 2(f) shows similar information, but for
the zz component of the susceptibility of the (in-phase tilting)
order parameter A = A′ = ωM . Both of these susceptibilities
possess a unique peak, which is located at 42 cm− 1 in Fig. 2(e)
versus 37 cm− 1 in Fig. 2(f) and corresponds to frequencies
we denote ν

P4/mmm
ωR and ν

P4/mmm
ωM , respectively. Since these two

latter frequencies are different from each other and also differ
from ν

P4/mmm
cation,1 and ν

P4/mmm
cation,2 , one can deduce that antiphase

and in-phase tiltings are dynamically coupled neither to each
other nor to the FE and AFE motions in the high-temperature
P4/mmm state.

Let us now focus on results at 750 K, that is, for a rep-
resentative temperature within the Pmc21 state. For that, the
imaginary part of the susceptibilities of the order parameters
A = A′ = u", uX , uNd, uBi, ωR, and ωM are shown in Fig. 3
for the same αα components as in Fig. 2. Seven peaks are seen
around 83, 121, 134, 162, 174, 211, and 228 cm− 1 in all these

FIG. 3. Same as Fig. 2, but for a temperature of 750 K, that is,
for the Pmc21 state.

susceptibilities, therefore revealing an increase in the number
of peaks with respect to the high-temperature phase for all
these dynamical responses and suggesting a specific dynam-
ical coupling mixing cation motions (ferroelectric degrees of
freedom and antipolar motions) and in-phase and antiphase
tiltings in the low-temperature Pmc21 state. As we will see
later, this specific coupling is the trilinear energetic coupling
of Eq. (4) between the x and y components of uNd and uBi (or,
equivalently, of the FE mode u" and AFE mode uX ) with the
x and y components of the antiphase AFD mode ωR and the
z component of the in-phase AFD mode ωM . The frequencies
associated with these seven peaks in Fig. 3 are denoted νPmc21

i ,
with i being an integer ranging from 1 to 7.

Moreover, Fig. 4 displays the temperature evolution of
ν

P4/mmm
cation,1 , ν

P4/mmm
cation,2 , ν

P4/mmm
ωR , and ν

P4/mmm
ωM in the P4/mmm

phase, as well as that of the νPmc21
i ’s in the Pmc21 state.

Several important results can be inferred from Fig. 4. First
of all, the ν

P4/mmm
cation,1 and ν

P4/mmm
cation,2 frequencies remain more or

less constant in the entire range of investigated temperature
within the P4/mmm state and, in particular, do not have any
tendency of softening when approaching the P4/mmm-to-
Pmc21 phase transition under cooling. In fact, this latter phase
transition is driven by the condensation of the z component
of the ωM in-phase oxygen octahedral tiltings and of the x
and y components of the ωR antiphase oxygen octahedral
tiltings below the temperature of 1520 K [see Fig. 1(c)], as
also evidenced by the facts that ν

P4/mmm
ωR and ν

P4/mmm
ωM both

soften dramatically upon approaching the phase transition
from above (i.e., within the P4/mmm state). When decreasing
the temperature further (i.e., below 1520 K), the x and y
components of uNd and uBi (or, equivalently, of u" and uX )
become finite [see Figs 1(a) and 1(b)] because of their trilinear
couplings given in Eq. (4) with the now condensed ωR and ωM
modes [16]. Such couplings also further lead to the emergence
of the seven peaks seen in Fig. 3 for any displayed response,

ν ν

ν

ν

ν

νν

ν νν

ν

FIG. 4. Temperature dependence of natural frequencies of
phonon modes having ferroelectric, antiferroelectric, and antifer-
rodistortive characters. See the text for the notations of these resonant
frequencies. The vertical line delimits the two different phases ob-
tained in our calculations. Error bars for ν

Pmc21
6 arise from the slight

difference in frequency that different responses (see Fig. 3) can have
around this frequency.
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Figure 5.4: Temperature dependence of natural frequencies of phononmodes that have ferroelectric
(FE), antiferroelectric (AFE) and antiferrodistortive(AFD) characters. The vertical dashed lines
delimit the two different phases obtained in the calculations for our (BFO)1/(NFO)1 system. Error
bars for νPmc21

6 arise from the slight difference in frequency that different responses (see Fig. 5.3)
can have around this frequency.

Figure 5.4 displays the temperature dependences of resonant phonon frequencies, νP4/mmm
cation,1 ,

ν
P4/mmm
cation,2 , νP4/mmm

ωR
and νP4/mmm

ωM
in the P4/mmm phase, as well as that of the νPmc21

i ’s in the Pmc21

state.

Several important results can be inferred from this figure.

(1) When the system is cooled from high to low temperature, νP4/mmm
cation,1 and νP4/mmm

cation,2 frequencies

remain hard in the entire range of temperature within the P4/mmm state and, in particular, do not
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have any tendency of softening when approaching the P4/mmm − to − Pmc21 phase transition.

(2) The P4/mmm− to−Pmc21 phase transition is driven by the condensation of the z-component of

theωM in-phase oxygen octahedral tiltings and the x and y components of theωR anti-phase oxygen

octahedral tiltings below the temperature of 1520K (see Fig. 5.1(c)), and as also demonstrated by

the facts that νP4/mmm
ωR

and νP4/mmm
ωM

both soften dramatically on approaching the phase transition

within the P4/mmm state.

(3) On further decreasing the temperature below 1520K, the x and y-components of uNd and uBi

(or, equivalently, of uΓ and uX) become finite (see Figs 5.1(a) and 5.1(b)) and are coupled with the

x and y-components of ωR and ωM modes due to the trilinear coupling given Eqn. (5.4) [3]. Such

couplings lead to the emergence of the seven peaks seen in Figure 5.3 for all responses.

(4) When temperature is increased within the Pmc21 state close to the critical temperature of '

1520K, most of the seven νPmc21
i frequencies soften as they contain AFD characters.

(5) Only one frequency νPmc21
2 is independent of temperature and rather hard within the stability

region of Pmc21. Because this frequency is associated with the mode which mostly involves

motions of Bi ions, and as a result has large FE and AFE characters, along the x′ direction. This

is indicated by the strong peaks seen in Figs. 5.3(a), (b), and (c) at this frequency. Such features

explain why νPmc21
2 is rather close in value to νP4/mmm

cation,1 .

I developed an analytical model to understand the results depicted in Figs 5.2 and 5.3 i.e for

the high and low-temperature phases. This model will help us to understand that the uNd and uBi

modes are bilinearly coupled in P4/mmm state while the fluctuations of uNd, uBi, ωR, and ωM are

all coupled in the Pmc21 state due to the trilinear energetic coupling.
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5.4 Analytical Model

Let us begin with the equation of motion associated with considered degrees of freedom:

MA
d2qA,lα

dt2 = FA,lα (5.6)

where A is one of the structural modes in the system, qA,lα is the α Cartesian component of the

corresponding displacement in the l’s primitive cell, t is time, and M(A) is the mass of mode A.

FA,lα is the force and is defined as:

FA,lα = −
dEtotal

dqA,lα
(5.7)

where Etotal is the total energy of the system. Let us now define the reduced force as:

fA,lα =
FA,lα
√

MA
(5.8)

Correspondingly, the reduced displacement associated with mode A is defined as:

SA,lα =
√

MAqA,lα (5.9)

So Eqn. (5.6) in a symmetrical form that does not contain any mass in an explicit form, can be

rewritten in terms of reduced displacement as:

d2SA,lα

dt2 = fA,lα (5.10)

To simplify this differential equation, the reduced displacements is considered in harmonic way:

SA, jα = e−i[ωt+kA·R( j)]SA,kAα (5.11)
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where kA is a wave vector associated with mode A, R( j) is the vector locating the position of the

j-th primitive cell, and SA,kAα is the Fourier transform of SA, jα. Now Equation (5.11) transforms to

the following form:

−ω2
∆SA,kAα = fA,kAα (5.12)

where ∆SA,kAα is the fluctuation of mode A and fA,kAα is the Fourier transform of the reduced force

and is given as follows:

fA,kAα =
1
N

∑
j

ei[ωt+kA·R( j)] fA, jα (5.13)

with N being the number of sites. Taking the time average of fA,kAα, one obtains the equilibrium

condition of mode A in the following form:

〈
fA,kAα

〉
= 0 (5.14)

Here the angle brackets represent averaging over time.

To simplify Equation (5.12) further on, we can linearize it. As the force at equilibrium is

zero and gets finite only due to the displacements from the ground state, the reduced force is

presented in the form of the expansion with respect to different structural displacements. In the

linear approximation neglecting all higher-order terms we get:

fA,kAα = −
∑
Bβ

DA,kA,α;B,kB,β∆SB,kB,β (5.15)

where DA,kA,α;B,kB,β is the dynamical matrix defined via:

DA,kA,α;B,kB,β = −

〈
∂ fA,kAα

∂SB,kB,β

〉
(5.16)
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Here the angle brackets represent averaging over time. Note that the temperature dependency of

this derivative will only emerge when energy terms are higher than bilinear. For example, the

temperature dependence of this quantity can be related to the trilinear coupling term. By plugging

Equation (5.15) into Equation (5.12), we now get the final form of our equation:

ω2
∆SA,kAα = −

∑
Bβ

DA,kA,α;B,kB,β∆SB,kB,β (5.17)

To find the eigenfrequencies of this linear set of equations, one should find the roots of:

|D̂ − ω2 Î | = 0 (5.18)

where Î is the unity matrix.

Thus the dynamical matrix plays the central role in the model. Based on the dynamical matrix,

the basic structural modes should be in compliance with the results obtained. So, I took seven

modes, qA,kα, that are: uBi,x , uBi,y, uNd,x , uNd,y, ωM,z, ωR,x and ωR,y. Their associated wave vector

k, in 2π/a units, are [12,
1
2,

1
2 ] for ωR,x and ωR,y versus [12,

1
2, 0] for ωM,z.

Table 5.1: Form of the dynamical matrix in our model. For simplification of notations, uBi,x , uBi,y,
uNd,x , uNd,y, ωM,z, ωR,x and ωR,y are simply denoted here as Bix , Biy, Ndx , Ndy, Mz, Rx and Ry,
respectively.

Bix Biy Ndx Ndy Mz Rx Ry

Bix Ω2
Bi,x dxx dBi

xx

〈
SR,x

〉
dBi

xx

〈
SM,z

〉
Biy Ω2

Bi,y dyy dBi
yy

〈
SR,y

〉
dBi
yy

〈
SM,z

〉
Ndx dxx Ω2

Nd,x dNd
xx

〈
SR,x

〉
dNd

xx

〈
SM,z

〉
Ndy dyy Ω2

Nd,y dNd
yy

〈
SR,y

〉
dNd
yy

〈
SM,z

〉
Mz dBi

xx

〈
SR,x

〉
dBi
yy

〈
SR,y

〉
dNd

xx

〈
SR,x

〉
dNd
yy

〈
SR,y

〉
Ω2

M,z dBi
xx

〈
SBi,x

〉
+ dNd

xx

〈
SNd,x

〉
dBi
yy

〈
SBi,y

〉
+ dNd

yy

〈
SNd,y

〉
Rx dBi

xx

〈
SM,z

〉
dNd

xx

〈
SM,z

〉
dBi

xx

〈
SBi,x

〉
+ dNd

xx

〈
SNd,x

〉
Ω2

R,x

Ry dBi
yy

〈
SM,z

〉
dNd
yy

〈
SM,z

〉
dBi
yy

〈
SBi,y

〉
+ dNd

yy

〈
SNd,y

〉
Ω2

R,y

Table 5.1 shows the form of the dynamical matrix obtained in the frame of the model considered
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here. There are seven diagonal elements denoted as Ω2
qA,α (see diagonal terms of Table 5.1), since

the Nd and Bi have different masses as well as different quadratic energy terms for the local modes.

Here the diagonal termsΩ2
R,x andΩ

2
R,y are the same, similarlyΩ2

Nd,x=Ω
2
Nd,y as well asΩ

2
Bi,x=Ω

2
Bi,y.

The non diagonal terms include bilinear and trilinear coupling terms as follows: (i) the elements

dxx and dyy are related to the bilinear coupling between the Bi and Nd displacements. These

non diagonal elements are related to the microscopic effective Hamiltonian short-range bilinear

energetic Ji j,αβ coefficient (see Eqn. (2.33) of chapter 2); and (ii) the product of the elements dBi
xx ,

dBi
yy, dNd

xx or dNd
yy with the corresponding time-average of the appropriate tilting mode are related

to the trilinear terms between local modes and tiltings. These quantities are related to the trilinear

coupling coefficients between local modes and AFD motions which are denoted by κi j,αβ (see Eqn.

2.43 of chapter 2).

Let us now study the solution Equation (5.18) for high temperature and low-temperature phases

of RBFO based on the dynamical matrix of Table 5.1.

Case I: The P4/mmm phase

In this case, the average of ωM,z, ωR,x and ωR,y all vanish and they are all decoupled from each

other and from the local modes centered on Bi and Nd ions. The local modes centered on Bi and

Nd ions are coupled to each other via the dαα terms of Table 5.1. The equations of motions are

then defined as:

(Ω2
Nd,α − ω

2)SNd,α = −dααSBi,α (5.19)

(Ω2
Bi,α − ω

2)SBi,α = −dααSNd,α (5.20)

So we predict here only two peaks in the dielectric response at this temperature and they correspond
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to two modes, which are bilinearly coupled in the x and y directions. Indeed, the responses of the

Nd and Bi ions (see Figs 5.2(c) and 5.2(d)) have only two peaks. On solving Eqns. (5.19) and

(5.20) one gets the eigenvalues that can be found from Equation (5.18):

ω2 =
Ω2

Nd,α +Ω
2
Bi,α

2
±

√√√(
Ω2

Nd,α −Ω
2
Bi,α

2

)2

+ d2
αα (5.21)

It can be seen that these two solutions are both very close to the bare frequencies of the Nd and Bi

modes for α = x′, y′, but because of coupling constant dαα, are shifted from them.

Case II: The Pmc21 phase.
This case is more complex. It is seen from Figure 5.3, each of the responses provides seven lines

because of the above-mentioned seven modes, all coupled by the trilinear terms reported in Table

5.1. These seven modes are coupled via trilinear terms because all averages of ωR,x , ωR,y and ωM,z

are all now finite (see figure 1(a, c)).

Moreover, one can determine the improper polarization by employing Eq. (5.14). Indeed, Eq.

(5.14) takes, for the Nd and Bi modes in Pmc21 phase, the following form:

Ω
2
Nd,α

〈
SNd,α

〉
+ dαα

〈
SBi,α

〉
= −dNd

αα

〈
SM,z

〉〈
SR,α

〉
(5.22)

Ω
2
Bi,α

〈
SBi,α

〉
+ dαα

〈
SNd,α

〉
= −dBi

αα

〈
SM,z

〉〈
SR,α

〉
(5.23)

The solutions of these equations are:

< SNd,α >=
−dNd

ααΩ
2
Bi,α + dBi

ααdαα

Ω2
Nd,αΩ

2
Bi,α − d2

αα

〈
SM,z

〉〈
SR,α

〉
< SBi,α >=

−dBi
ααΩ

2
Nd,α + dNd

αα dαα

Ω2
Bi,αΩ

2
Nd,α − d2

αα

〈
SM,z

〉〈
SR,α

〉 (5.24)

These formulas show that
〈
SNd,α

〉
and

〈
SBi,α

〉
are finite only if

〈
SM,z

〉
and

〈
SR,α

〉
are finite. This

means that it is the condensation of the tilting modes that results in finite cation displacements
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below 1520K. Note that dNd
αα and dBi

αα have different magnitudes and also have opposite signs.

Consequently, and since Ω2
Nd,α is also different from Ω2

Bi,α,
〈
SNd,α

〉
and

〈
SBi,α

〉
have different

amplitudes and have different signs. As a result, one can get a finite electrical polarization, which is

simply related to
〈 SNd,α
√

MNd

〉
+

〈 SBi,α
√

MBi

〉
=

〈
uΓ,α

〉
in our superlattice, which is the essence of HIF. Their

difference will contribute to the antiferroelectric displacement, i.e
〈 SNd,α
√

MNd

〉
-
〈 SBi,α
√

MBi

〉
=

〈
uX,α

〉
.

Moreover, when approaching the transition temperature of 1520 K from below (i.e., within the

Pmc21 phase), the bare frequencies of the ωR and ωM tilting modes should soften, these behavior

can be seen in Figure 5.4 when approaching this transition from above i.e., within the P4/mmm

state. When approaching this transition from below, as seen from Figure 5.4, the coupling of these

tilting modes with the FE and AFE modes within the Pmc21 phase naturally decreases towards

zero, and, finally, after the phase transition, only the hard AFE modes remain visible.

5.5 Conclusion

In summary, I have studied the temperature dependences of the phonon frequencies in (BFO)1/(NFO)1

SL. This system has a tetragonal P4/mmm paraelectric state at high temperatures and a low tem-

perature polar Pmc21 phase.

The resonant frequencies of all polar and antipolar modes are rather hard and nearly independent

of temperature within P4/mmm state, while most of them abruptly become very soft in low-

temperature Pmc21 phase near the phase transition temperature, because of very specific trilinear

mixing of the soft oxygen octahedral tiltingmodes with polar and antipolar distortions. Suchmixing

increases the number of the peaks the correlators of each phonon modes possessing polar, antipolar,

and antiferrodistortive distortions, when passing through the phase transition from P4/mmm phase

to Pmc21 phase on cooling. The behavior of the polar modes is different in the high- and low-
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temperature regions which render hybrid improper ferroelectrics dramatically different from proper

ferroelectrics. In proper ferroelectrics the polar modes soften both in the high- and low-temperature

phases when approaching the transition while in improper ferroelectrics the polar modes are hard

in the high-temperature phase [126, 127].

A simple analytical model developed here explains all these features. This study is of great

importance because it provides a novel mechanism of resulting in HIF. The results obtained here

are published in Ref. [128].
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Chapter 6

PROPERTIES OF (001) NANBO3 FILMS UNDER EPITAXIAL STRAIN: A FIRST-PRINCIPLES

STUDY

6.1 Introduction

Sodium Niobate with the chemical formula NaNbO3 (NNO) is among the most attractive materials

due to its application in optics, electronics, photocatalysis, and as thermoelectrics sensors. NNO

undergoes the largest set of phase transitions (see [129, 130, 131, 132, 133, 134, 135, 136, 137, 138,

139, 140] and references therein). Darlington and Megaw reported a first detailed discussion of

different structural phase transitions inNNO [133]. They suggested that, at high-temperatures, NNO

is paraelectric (PE) and cubic (Pm3̄m). It undergoes a phase transition to PE tetragonal P4/mbm at a

transition temperature of 913K. Next, there appear three distinct phase transitions into orthorhombic

phases: to Cmcm at 848K, Pmmn at 793K, and to Pmmn at 753K. All these three orthorhombic

phases adopt oxygen octahedral tilting patterns (also known as antiferrodistortive distortions). At

633K, NNO undergoes a phase transition adopting the Pbcm phase which is assumed to have a

complex crystal structure at room temperature and is stable over a wide temperature range down

to 173K. The Pbcm phase is antiferroelectric that is particularly promising for energy storage

devices [141]. At 173K, NNO undergoes a next phase transition, to rhombohedral FE R3c phase

which possesses an electrical polarization. Additional phases, including orthorhombic polar Pmc21

[135, 136, 137] or monoclinic Pm [138], were proposed in NNO. Similarly, recent first-principles-

based atomistic simulations [142] predicted that the most stable state near room temperature is not

really the antiferroelectric Pbcm state but rather another orthorhombic state of Pca21 symmetry

that distinguishes itself from Pbcm via the additional occurrence of a small but finite spontaneous
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polarization along a [001] crystallographic direction.

The strain engineering in which a material is deposited on different substrates can dramatically

alter the properties of perovskites. Epitaxial strain in a thin film changes crystal lattice parameters

of the deposited material due to the fit of the in-plane lattice parameters of this material to the

lattice parameters of the substrate. One can tune the epitaxial strain to moderate the properties

of thin films and to induce phase transitions. This is, e.g., evidenced from the stabilization of a

ferroelectric phase in the quantum paraelectric SrTiO3 system when in thin-film form [143], or

from the occurrence of the polar Pmc21 phase at room temperature in NNO thin films [144].

Surprisingly, many questions remain open regarding NNO films, partly due to the fact that

only a few substrates have been used so far to grow NNO thin films [137, 144, 145] and due to

the fact that the pioneering first-principles study of Ref. [146] did not include oxygen octahedral

tilting in their calculations - while such degrees of freedom are important and relevant in NNO

systems (see Ref. [142] and references therein). Consequently, the following questions remain

open: can epitaxial NNO thin films have different ground states depending on the misfit strain they

experience? Are these phases ferroelectric, antiferroelectric, or antiferrodistortive? Can the polar

Pca21 and Pmc21 be such ground states? What happens to the R3c bulk-ground-state phase under

the misfit strain? How do the ferroelectric, antiferroelectric or antiferrodistortive properties evolve

within a given phase as a function of strain? For instance, can one enhance the polarization by

strain-engineering within a polar phase? Can we also increase the difference in energy between

a ferroelectric and antiferroelectric states, which will impact energy-storage properties? The aim

of this chapter is providing the answers to all these questions by performing and analyzing first-

principles calculations on NNO epitaxial (001) thin films.
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6.2 Method

6.2.1 Computational Details.

The results of the present chapter were obtained by means of the density functional theory (DFT)

calculations employing the Vienna ab initio simulation package (VASP) [147] together with the

Projector Augmented Wave [148, 149] (PAW) formalism. For the latter, standard PAW pseudopo-

tentials supplied with VASP were employed: PBEsol PAW for Na (2p63s1) with seven valence

electrons, PBEsol PAW for Nb (4s24p64d45s1) with thirteen valence electrons, and PBEsol PAW

for O (2s22p4) with six valence electrons. Structural relaxations was performed using Generalized

Gradient Approximation (GGA) within the Perdew-Burke-Ernzerhof functional for solids (PBEsol)

[150]. A plane-wave basis with a kinetic energy cutoff of 550 eV is used.

6.2.2 Epitaxial strain.

The epitaxial strain imposed by a cubic substrate is defined as

ηmisfit =
a − a0

a0
× 100% (6.1)

where a represents the in-plane lattice constant of the substrate and a0 is the in-plane lattice constant

resulting from the energy minimization of the Cc phase. Practically, a0 is numerically found here

to be equal to 3.910 Å, which corresponds to a reasonable overestimation of about 0.9% of the

experimental lattice constant of 3.875 Å for the R3c phase of NNO bulk at 12K [151].

To model a perfect epitaxy on a cubic substrate, the strain tensor, in Voigt notation, has three

elements that are frozen during each simulation. They are:

η1 = η2 = ηmisfit, η6 = 0 (6.2)

η3, η4, and η5 are allowed to relax, along with all internal atomic coordinates, until the Hellmann-
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Feynman force on each atom is converged to be less than 0.001eV/Å for each varied misfit strain.

To impose these conditions on the unit cell, we set certain components of the cell forces to zero in

such a way that the respective components of the lattice vectors feel no force and do not change

during the relaxation. Mathematically, the change in the cell shape is expressed as follows (This

method was described inside subroutine constr_cell_relax of VASP code, but has not been officially

documented yet):

anew
i, j = aold

i, j +
∑

k

Ri,k · aold
k, j (6.3)

where aold
k, j and anew

i, j are the lattice vectors before and after each step of relaxation of the cell

respectively. i, j, and k are the Cartesian components of the lattice vector, and Ri,k is the matrix

calculated by VASP on the basis of Hellmann-Feynman forces. At the same time, this matrix

allows imposing additional constraints on the change of the lattice parameters. In the case of NNO

epitaxial film on a (001) substrate Eqn. (6.3) can be written as follows:

∑
k

Ri,k · aold
k, j = anew

i, j − aold
i, j (6.4)

In the equation above, I put all elements R3,i’s equal to the values calculated by VASP, but I vanished

all other elements of this matrix. Applying this condition to equation (6.4), one gets

©«

0 0 0

0 0 0

R31 R32 R33

ª®®®®®®®®®®®®®®®®®¬

©«

aold
11 aold

21 aold
31

aold
12 aold

22 aold
32

aold
13 aold

23 aold
33

ª®®®®®®®®®®®®®®®®®¬

=

©«

a11 − aold
11 a12 − aold

12 a13 − aold
13

a21 − aold
21 a22 − aold

22 a23 − aold
23

a31 − aold
31 a32 − aold

32 a33 − aold
33

ª®®®®®®®®®®®®®®®®®¬

(6.5)
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©«

0 0 0

0 0 0

R11aold
13 + R12aold

23 + R13aold
33 R21aold

13 + R22aold
23 + R23aold

33 R31aold
13 + R32aold

23 + R33aold
33

ª®®®®®®®®®®®®®®®®®¬

=

©«

a11 − aold
11 a12 − aold

12 a13 − aold
13

a21 − aold
21 a22 − aold

22 a23 − aold
23

a31 − aold
31 a32 − aold

32 a33 − aold
33

ª®®®®®®®®®®®®®®®®®¬
(6.6)

One can see that the lattice parameters do not change along the lattice vectors corresponding to

the first two strings of matrix “a", but the lattice parameter changes along the third lattice vector.

This implies that the cell was allowed to relax along the [001] direction, while the cell along the x-

and y- directions was fixed that corresponds to the epitaxial conditions in Eqn. (6.2). Note that I

found the equilibrium for each considered point of the strain in the self-consistent manner provided

by VASP. The epitaxial strain was imposed by selecting the in-plane lattice constant in NaNbO3

in the range from 0.9566a0 to 1.0434 a0. The corresponding misfit strain was calculated by using

Equation (6.1).

I investigated different phases, namely Pna21, Pnma, Pbcm, Pmmm, Imma, P2221, P42nmc,

Pmnn, Cmcm, Cc, Pmc21, Pca21, and Pmn21. I numerically found that Cc, Pca21, and Pmc21
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phases are the three low-energy states compared to all other states. The first phase has monoclinic

symmetry corresponding to space group Cc (No. 9) with a polarization having an in-plane

component along [110] direction and an out-of-plane component, Pz, along [001] direction. This

Cc phase can be thought of as originating from the R3c rhombohedral (polar) ground state of

NNO bulk [151, 152] but subject to epitaxially-induced monoclinic distortions. The second low

energy phase is the Pca21 phase which belongs to the orthorhombic space group (No. 29), with

a polarization Pz being fully along the out-of-plane [001] direction. This Pca21 state is derived

from the antiferroelectric Pbcm state of NNO bulk [153], with additional polarization along [001]

direction. The addition of polarization lowers the energy of Pca21 state as predicted in Ref. [142].

Finally, the third phase is the Pmc21 phase which has an orthorhombic space group (No. 26) and

its polarization is fully in-plane and along [110]. This polar Pmc21 state has been reported for

NNO epitaxial films under electric field [137, 144] and has also been proposed for a candidate of

the so-called Q phase of NNO bulks [145].

The polarization for each of these low-energy structures was calculated using the Berry phase

method [75, 154]. In appendix C, the details of the calculations of polarization using the Berry

Phase Method are included.

6.3 Results and Disucussion

Figure 6.1 shows the ground state energy of (001) NNO epitaxial films as a function of the misfit

strain for the three aforementioned structural phases. The ground-state for the strain ranging from

a compressive strain of -4.34% to a tensile strain of +1.27% is found to be the monoclinic Cc state.
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Figure 1
Figure 6.1: Total energy-versus-misfit strain for theCc, Pca21, and Pmc21 phases of epitaxial (001)
NaNbO3 thin films. The zero of energy corresponds to the minimal energy, which is associated
with the Pmc21 phase at the epitaxial strain of +1.78%.

The orthorhombic Pca21 phase then becomes the ground state in a narrow misfit strain region

varying from +1.27% to +1.50%. For higher misfit tensile strains and up to our largest investigated

value of +4.34%, the lowest energy phase is then Pmc21. Note that the Pca21, Pmc21, and Cc

phases all have similar energy for a tensile strain of +1.27% (see inset of Figure 6.1), implying that

these three phases may all stabilize for strains of this magnitude. The zero of energy is found to

correspond to the Pmc21 state for the tensile strain of 1.78%. With respect to this zero of energy,

the lowest energy of the Cc phase is equal to 0.7 meV/f.u and happens for the strain of 0%. Hence,

Pmc21 has the lowest energy among all computed energies. However, in bulk, I found numerically

that the R3c state (from which Cc is derived) has the lowest energy which is consistent with the

known R3c experimental ground state of NNO bulks (see, e.g., Ref. [151]). Here, different phases
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originate from the misfit conditions freezing η1, η2 but also imposing η6 = 0. We numerically

found that allowing η6 to be finite within Cc will make its energy lower than that of the Pmc21 state

at 1.78% strain.

Next, let us discuss some specific substrates that can help us to check the accuracy of our

prediction. One of the most often employed substrates is SrTiO3 (STO) single crystal for the

growth of epitaxial perovskite films which has a lattice constant of 3.905Å [155]. Our predicated

lattice parameter is 0.9% overestimated and corresponds to a value of 3.940Å and according to

Eq. (6.1) a tensile misfit strain is +0.8% that the NNO films will experience. As a result, Figure

(6.1) shows that an epitaxial film of NNO on STO is supposed to result in a Cc ground state, but

with the Pca21 and Pmc21 phases being very similar in energy and therefore also accessible too

(especially by, e.g., varying temperature). The DyScO3 substrate has lattice parameters equal to

5.442Å and 5.719Å along two different and perpendicular in-plane 〈110〉 directions. Averaging

these two values, dividing by square-root of two, rescaling the resulting number by the explained

above 0.9% overestimation and then inserting it into Eqn. (6.1), I got that our a lattice parameter

corresponds to a tensile strain of 1.81%. At this tensile strain, the ground state hasPmc21 symmetry,

according to Fig. (6.1). This result is precisely what Ref. [140] observed. When considering a

and b lattice parameters different from each other (as consistent with a DyScO3 substrate), I found

that the symmetry is then lowered to Pm (space group #6). To help experimentalists to check this

prediction, Table 6.1 reports the lattice constants and cell angles for the relaxed Cc phase at 0.24%

strain, the Pca21 state under a misfit strain of 1.45%, and the Pmc21 phase subject to an epitaxial

strain of 1.78%, while Tables 6.2, 6.3, and 6.4 display the corresponding atomic coordinates for

these three phases at these selected strains.
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Table 6.1: Crystal structure of the Cc phase at 0.24% strain, Pca21 state at 1.45% strain and Pmc21
phase at 1.78% strain

Phases
Lattice Constants Cell angles

a b c α β γ

Cc 3.920 3.920 3.897 89.34 89.34 90

Pca21 5.610 5.610 15.721 90 90 90

Pmc21 5.628 5.628 7.753 90 90 90

Table 6.2: Atomic Coordinates of Cc Phase at 0.24% strain

Label Symbol Multiplicity
Wyckoff

label

Fractional

Coordinates
Occupancy

x y z

Na1 Na 4 a 0.01555 0.25132 0.29827 1.0

Nb1 Nb 4 a 0.25749 0.25070 0.02621 1.0

O1 O 4 a 0.27645 0.46686 0.73567 1.0

O2 O 4 a 0.71328 0.47034 0.73604 1.0

O3 O 4 a -0.00277 0.31316 0.73381 1.0
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Table 6.3: Atomic Coordinates of Pca21 Phase at 1.45% strain

Label Symbol Multiplicity
Wyckoff

label

Fractional

Coordinates
Occupancy

x y z

Na1 Na 4 a 0.26415 0.25717 0.00524 1.0

Na2 Na 4 a 0.22016 0.25698 0.25443 1.0

Nb1 Nb 4 a 0.74020 0.24300 0.13063 1.0

Nb2 Nb 4 a 0.26290 0.75128 0.88029 1.0

O1 O 4 a -0.03456 0.54048 0.13851 1.0

O2 O 4 a 0.03059 0.46143 0.85740 1.0

O3 O 4 a 0.54517 -0.04153 0.10797 1.0

O4 O 4 a 0.44866 0.04496 0.88772 1.0

O5 O 4 a 0.76999 0.18823 0.24894 1.0

O6 O 4 a 0.74915 0.30923 -0.00113 1.0

Table 6.4: Atomic Coordinates of Pmc21 Phase at 1.78% strain

Label Symbol Multiplicity
Wyckoff

label

Fractional

Coordinates
Occupancy

x y z

Na1 Na 2 a 0.00000 0.26065 0.25465 1.0

Na2 Na 2 b 0.50000 0.25754 0.28324 1.0

Nb1 Nb 4 c 0.74962 0.75532 0.26674 1.0

O1 O 4 c 0.71866 0.46202 0.02624 1.0

O2 O 4 c 0.77997 -0.03843 -0.04759 1.0

O3 O 2 a 0.00000 0.69007 0.24259 1.0

O4 O 2 b 0.50000 0.81096 0.22204 1.0
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Thus, NNO film undergoes the Cc-Pca21-Pmc21 phase transition sequence when epitaxial

strain increases from -4.34% to +4.34% as shown in Fig. (6.1). The phase transitions Cc-Pca21

and Pca21-Pmc21 are first-order in nature since the relevant energy-versus-strain curves cross each

other rather than evolve one into another. I will discuss in detail the effect of strain on some physical

properties during these phase transitions in NNO thin film. Let us define some vectorial quantities

that will help us to understand the evolution of different ground states as a function of strain:

uk,α =
1
N
|
∑

i

ui,αexp(ik · Ri)| (6.7)

where k is a vector of the first cubic Brillouin zone and α denotes x, y, or z Cartesian components,

with the x-, y- and z-axes being along the [100], [010] and [001] pseudo-cubic directions, respec-

tively; symbol |...| represents the magnitude of a complex number; ui is the so-called local mode

of the 5-atom cell i located at a vector Ri from a chosen origin. This local mode is defined as [156]

ui,α =
∑
τ

ζ τα (i, α)v
τ
α (6.8)

where α is a Cartesian direction, τ is the atom’s label, v is the corresponding atomic displacement,

and ζ represents the eigenvectors of the force-constant matrix [156]. This local mode corresponds

to collective displacements of Na, Nb, and oxygen ions associated with the lowest optical phonon

branch of the cubic phase, and is centered on Na ions. The summation is carried over all N 5-atom

cells i present in the supercell. Note that if k=0 then ui in Eqn. (6.7) is related to the electrical

polarization.

Similarly, one can also define a local pseudo-vector, ωi, for which the direction is the axis of

rotation of the oxygen octahedron centered at the Nb-center i and for which the magnitude is the

angle of such rotation [80]. One can then calculate another vectorial quantity, which is the Fourier

113



transform of ωi:

ωk,α =
1
N
|
∑

i

ωi,αexp(ik · Ri)| (6.9)

For our selected Cc, Pca21 and Pmc21 phases, Below, I will analyze the quantities Eqn. (6.7) and

Eqn. (6.9) in each of the three found low-energy phases of NNO-film.

6.3.1 Cc phase in its equilibrium region

The Cc phase possesses two order parameters. The first one is the electrical polarization and the

second one is the antiphase tilting of oxygen octahedra. Let us denote the x-, y-, and z- components

of the polarization as Px , Py, and Pz respectively. The polarization is calculated using the Berry

phase method. The x-, y-, and z- components of the antiphase tiltings of the oxygen octahedra are

denoted as ωR,x , ωR,y, and ωR,z respectively. The antiphase tilting ωR at the R-point of the cubic

first Brillouin zone located at 2π
alat
(12,

1
2,

1
2 ) is calculated by using Eqn. (6.9).

As shown in Fig. 6.2(a), the Px and Py components are identical and increase with the increase

of the strain. Simultaneously Pz in the same range of the strain is reduced and differs from Px=Py.

Hence, the polarization is along a [uuv] crystallographic direction and such direction changes with

strain; from strain of -4.43% towards [110] with an increase of the strain and reaches [111] direction

for nearly vanishing strain. At nearly zero misfit strain total polarization is 0.49 C/m2. This value is

in good agreement with the experimentally measured value of 0.59 C/m2 at 12K in the R3c phase

of NNO bulk [151]. Our computed value of polarization in Cc phase is also in good agreement

with computational results of 0.50 and 0.58 C/m2 reported in Refs. [157] and [158], respectively,

for R3c state of NNO bulk. It follows from Figure 6.2(a) as the magnitude of the polarization in

this Cc phase almost stays constant as a function of strain. This implies that the polarization is

“simply” rotating and not elongating/shrinking during the strain variation.
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Figure 6.2(b) displays the tilting of the oxygen octahedra within Cc symmetry for NNO thin

film as a function of misfit strain. As consistent with the space group, ωR,x is equal to ωR,y, but,

differs from ωR,z. This tilting pattern can be represented as a−a−c− in Glazer notation [15]. Let us

denote, the axis of the oxygen octahedral tilting as [u′u′v′]. This axis evolves from [001] direction

at -4.43% strain and rotates towards [110] direction as strain increases. Such axis of rotation is

precisely along the [111] direction for zero misfit strain. And a resulting total angle of rotation

being 0.23 radian (12.90◦) at 0K at zero misfit strain. This value of angle of rotation is in agreement

with the experimental value of 0.17 radian (10◦) obtained for the R3c phase of NNO bulk at 123K

in Ref. [152]. Moreover, in agreement with my results, the tilting angles are known to increase

when cooling down the system [159].

Very interestingly an inflection point for all the Cartesian components of the polarization and

ωR is observed near a misfit strain of -3%. Such features are signatures of the inherent coupling

between electric dipoles and oxygen octahedral tiltings occurring in many perovskites [160].
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Figure 2

Figure 2
Figure 6.2: Misfit strain dependence of (a) the polarization and (b) oxygen octahedral tilting for the
three low-energy phases of epitaxial (001) NaNbO3 thin films.

116



6.3.2 Pca21 phase in its equilibrium region

The Cc phase is destabilized at a tensile strain of ≈1.27% via a first-order phase transition to a

Pca21 orthorhombic phase. The latter phase remains stable up to a tensile strain of about 1.70%.

For each point of strain, I conducted Fourier transforms of the patterns associated with the local

mode displacements (using Eqn. (6.7)) and the oxygen octahedral tiltings [161] to determine which

order parameters are associated with this phase. I found that the Pca21 phase is characterized by

four order parameters: (1) the polarization which is along the [001] direction and that is thus fully

characterized by Pz; (2) the displacements of the local mode associated with the ∆ k-point located at

π
a (0, 0,

1
4 ) in the cubic first Brillouin zone. Such quantities characterize the antiferroelectric (AFE)

displacements, for which NNO is famous for [132, 151, 162, 163, 164]. These AFE displacements

are along the [110] direction and are denoted as u∆,x and u∆,y. Both u∆,x and u∆,y are the same in

magnitude and are finite, while u∆,z is zero. The associated x- or y- components of the local mode

displacements have the “–++–" pattern in four subsequent (001) Na planes; (3) the antiphase tilting

of oxygen octahedra at R point about the [110] axis and are denoted asωR,x andωR,y; and (4) a more

complex tilting at T point located at πa (
1
2,

1
2,

1
4 ) k-point in the cubic first Brillouin zone about the [001]

axis. This complex tilting at T point is denoted as ωT,z along the [001] direction and is determined

from Eqn. (6.9). It is found that this complex tilting corresponds to periodic series of ‘+0-0’ when

moving along the [001] direction. Hence, the Pca21 phase is a specific nanoscale twin phase of

Refs [8, 114] with a periodicity of 4 lattice constants along z-axis, and adding there a polarization

along the same z-axis. The overall tilting pattern of this Pca21 phase can be expressed in Glazer

notation as a−a−ccomplex,4, where ccomplex,4 represents the 4-lattice-constant-periodic tilting pattern

about the z-axis. As briefly discussed in Ref [142], there is also an energetic coupling of the form
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uz ux ωz ωx (and, equivalently, uz uy ωz ωy and ux uy ωx ωy). It forces uz to have a finite value at

the Γ-point, because of the existence of ux (and uy) at the ∆ point, ωz at the T-point, and ωx (and

ωy) at the R-point. In agreement with this finding, Ref. [142] shows that the Γ mode is unstable

in the Pbcm phase of NNO bulk, but it is stable in the Pca21 phase. This polarization is thus of

improper-type but due to a quadra-linear, rather than a trilinear energy, term.

There is a ' 67% increase of the out-of-plane polarization, i.e Pz, when the system undergoes a

phase transition from Cc–to–Pca21 due to the tensile strain (see Figure 6.2(a)). The Pz component

is finite while the in-plane polarization is annihilated. As a result, the magnitude of the total

polarization decreases from 0.49 C/m2 in the Cc phase to 0.30 C/m2 in the Pca21 state. As shown

in Figure 6.3(a), this annihilation of the in-plane polarization favors the emergence of the in-plane

antipolar displacements of the local mode at ∆ k-point and this antipolar displacement increases

with tensile strain. The antiphase oxygen octahedra tilting at R point along the [110] direction and

complex tilting at T point along the [001] direction remain nearly constant in Pca21 phase when

changing the strain, as seen in Fig. 6.3(b).

It is also interesting to realize that the energy difference between Pca21 andCc phases increases

when strengthening the strain above 1.27% as this is seen from Figure 6.1. Such increase in energy

difference implies that the energy-storage density can be altered by strain since, the electric field

should increase with the strain to make the transition between these two phases.
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Figure 3

Figure 3

Figure 6.3: Misfit strain dependence of antipolar displacements associated with (a) the ∆ and (b) X
points of the cubic first Brillouin zone, for the three low energy phases of epitaxial (001) NaNbO3
thin films.

6.3.3 Pmc21 phase in its equilibrium region

At the tensile strain of ≈1.50%, the Pca21 state is destabilized in favor of a phase transition to an

orthorhombic Pmc21 phase. From Fourier transform of the local mode displacement and tilting

of oxygen octahedra (Eqn. (6.9)), I found that Pmc21 phase has the following order parameters:

119



(1) a polarization lying along the [110] direction, and thus having only Px=Py finite components;

(2) antipolar displacement of the local mode along the [110] direction associated with the X-point

located at q= πa (0, 0,
1
2 ). These AFE displacements are denoted as uX,x and uX,y, and both are equal

in magnitude and are finite, while uX,z is null. This AFE displacement pattern is of the type of

“+–+–" when moving along [001]; (3) antiphase tilting of oxygen octahedra at R k-point is along

the [110] direction. Both ωR,x = ωR,y are finite, while ωR,z is null; and (4) in-phase oxygen

octahedral tilting about the z-axis at M k-point i.e π
a (

1
2,

1
2, 0) of the First Brillouin zone, therefore

leading to non-zero ωM,z, while ωM,x = ωM,y = 0. Hence, the overall tilting pattern in Pmc21

phase is therefore a−a−c+ in Glazer notations [15]. This tilting pattern is most commonly found

in perovskites having Pnma symmetry. Very interestingly, in Pca21, phase according to Ref. [8],

uX,x , ωR,x and ωM,z are coupled to each other by a trilinear energy coupling. In Pmc21 phase, such

coupling also exists, but, as I mentioned above, it has another, quadrolinear coupling leading to the

finite polarization.

Figure 6.2(a) reveals that the phase transition from Pca21-to-Pmc21 is of first-order. In line with

this fact, the in-plane polarization at this phase transition jumps and the out-of-plane polarization

abruptly vanishes, as this is seen from Figure 6.2. Note that the in-plane polarization increases

with the increase of the tensile strain and that Figure 6.3(b) shows that uX,x=uX,y decreases from

0.023Å to 0.007Å when the tensile strain increases from 1.50% to +4.43% within Pmc21 phase.

Let us now compare the computed results in the Pmc21 phase with the experimental study

done by H. Shimizu et al. [157]. The P-E loops of the xCaZrO3-(1-x)NaNbO3 (CZNN) ceramics

at 120◦C and zero electric fields gave a value of the polarization of about 0.40 C/m2 for x=0,

which is remarkably close to our predicted value of 0.41 C/m2 at 1.80% tensile strain. This value

of polarization i.e. 0.41 C/m2 also agrees well with the DFT value of 0.47 C/m2 obtained in
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the generalized gradient approximation for the P21ma phase (which is the Pmc21 phase in our

calculations) of bulk NNO bulk.

As shown in Fig. 6.2(b), in Pmc21 phase, the anti-phase oxygen octahedral tilting quantified by

ωR,x = ωR,y is independent on the strain, while the in-phase tilting (characterized byωM,z) decreases

with strain. The latter decrease of the in-phase tilting can be due to two effects: (1) polarization and

tiltings tend to compete [80] and as a result, the strain-induced polarization increases suppressing

the oxygen octahedral tiltings (see Figure 6.2(a)) and (2) the AFE displacements associated with the

X-point are trilinearly coupled with the antiphase and in-phase tiltings [8]. Therefore, the decrease

of uX,x and uX,y with strain tends to decrease oxygen octahedral tiltings.

6.4 Conclusion

In summary, first-principles calculations were conducted to predict the existence of three different

ground states in epitaxial (001) NNO films, depending on the misfit strain these films experience.

These three states have monoclinic Cc, orthorhombic Pca21 and orthorhombic Pmc21 symmetry,

respectively, and each exhibits a different direction for their electrical polarization, as well as,

a different tilting pattern. The Pca21 and Pmc21 states also possess different antiferroelectric

displacements. These features, as well as the reported strain-induced control of ferroelectric,

antiferrodistortive and antiferroelectric properties within these three states, are promising to design

NNO films with desired characteristics, via strain-engineering.
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Chapter 7

CONCLUSION

In the first part of dissertation, an elemental atomistic energy has been investigated, which

naturally explains a variety of structurally complex ABO3 perovskites. This energy bilinearly

couples the antiferroelectric displacement patterns of cations with the rotations of the oxygen

octahedra. The proposed mechanism drives structural instability that is hybrid in nature, in the

sense that it combines the (anti)polar (antiferroelectric) and octahedral-rotational dynamical modes.

Analytical derivations from this atomistic energy explain the existence of of the very complex

crystal structure of PbZrO3 and some other antiferroelectrics. In the second part of the dissertation,

the dynamics of the antipolar distortion in BiFeO3 under hydrostatic pressure is reported. The

numerical and analytical studies of this system found that, at high temperatures, this system

undergoes a phase transition from the paraelectric cubic Pm3̄m state to intermediate P4/mbm

state followed by Pnma phase at lower temperatures. This study reveals that the AFE modes have

very high resonant frequencies which are almost independent of the temperature in the Pm3̄m

phase, but, in P4/mbm and Pnma phases, these AFE modes are soft. The softening of the AFE

modes is due to a very specific dynamical mixing of the antipolar distortion with octahedral oxygen

tiltings. Such mixing increases the number of the peaks of the antipolar phonon modes, when

the system passes through Pm3̄m-P4/mbm-Pnma phase transition sequence. A simple model

developed revealed that the number of the phonon peaks increases due to the trilinear energy

coupling between the anti-polar motion and in-phase and anti-phase tiltings. In the third part

of the dissertation, the temperature dependence of the phonon frequencies in (BFO)1/(NFO)1 SL

is studied. It undergoes a phase transition from tetragonal P4/mmm paraelectric state at high
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temperatures to a low temperature polar Pmc21 phase. In the high-temperature P4/mmm state, all

polar and antipolar phonon modes are hard, while most of them abruptly become soft in Pmc21

phase at transition temperature. The softening of these modes is due to the very specific trilinear

energetic coupling of the soft oxygen octahedral tilting modes with polar and antipolar distortions.

Because of such mixing, the number of the peaks in each phonon modes possessing polar, antipolar,

and antiferrodistortive distortions increases, when system passes through a phase transition. The

behavior of the polar modes is different in the high- and low-temperature intervals which renders

that hybrid improper ferroelectrics are dramatically different from proper ferroelectrics. In the last

part of the dissertation, first-principles calculations were conducted to predict the existence of three

different ground states in epitaxial (001) NNO films as a function of misfit strain. These three

ground states are: (1) monoclinic Cc phase, (2) orthorhombic Pca21 phase, and (3) orthorhombic

Pmc21 phase. Each of these phases exhibits different electrical polarization and tilting pattern.

The Pca21 and Pmc21 states exhibits different antiferroelectric displacements. The strain-induced

control of the ferroelectric, antiferrodistortive and antiferroelectric properties of these three states

are promising to design NNO films with desired characteristics, via strain-engineering. The results

obtained here are published in Ref. [165].
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Appendix

Appendix A

EFFECTIVE HAMILTONIAN PARAMETERS USED IN THIS DISSERTATION
The parameters which are related to the structural energies (EFE and EAFD) terms in the

effective Hamiltonian explained in detail in Chapters 4 and 5 are listed in Table A1 for BiFeO3

(BFO) and (BiFeO3)1/(NdFeO3)1 ((BFO)1/(NFO)1).

Table A.1: Expansion parameters of the effective Hamiltonian for BiFeO3 and
(BiFeO3)1/(NdFeO3)1. Energies are in hartrees and the reference cubic lattice parameter is
7.02200 Bohr.

Dipole Z∗ 5.868 ε∞ 7.164

u on-site κ2 -0.00244873 α 0.02651 γ 0.007373

u short

j1 -0.008794 j2 0.012442

j3 0.000684 j4 -0.0021228 j5 0.006948

j6 0.0010992 j7 0.0005496

Elastic B11 3.585 B12 2.899 B44 1.151

uηl coup. B1xx -0.49379 B1yy -0.23606 B4yz -0.05358

ω on-site κA -0.25103 αA 4.48968 γA -2.29697

ω short k1 0.06296 k2 0.00210 D
′ -0.159

ωηl coup. C1xx -1.13197 C1yy -0.12311 C4yz 1.90

ωu coup. ((BFO)1/(NFO)1) κBi
i j,xy -0.008 κNd

i j,xy -0.0136

ωu coup. (BFO) Di j,xy -0.008

ωu coup. (bi-quadratic) Exxxx 0.10554 Exxyy 0.12165 Exyxy -0.2882

uu(alloy) ∆κu 0.100
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The analytical expressions for EFE and EAFD were provided in chapters 2, 4, and 5.
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Appendix B

BERRY PHASE METHOD TO CALCULATE THE POLARIZATION

This appendix is aimed at providing details about the Berry Phase Method [75, 154] used to

calculate the polarization for Cc, Pca21, and Pmc21 phases of NaNbO3 thin films.

The polarization is calculated by using Berry phase method. We calculated the differences

in polarization between the cubic (λ = 0) and polar phases (λ=1) for NNO thin films. Here, λ

is the parameter characterizing the symmetry of the structure, λ =0 corresponds to paraelectric

symmetry while λ=1 represents the polar symmetry. Particular attention was paid to have the

Berry-phase values onto the same branch of the polarization lattice, by calculating the polarization

for a number of intermediate structures along the deformation path between the cubic and polar

structures. The calculated polarization branches as a function of the distortion amplitude from

the high-symmetry structure i.e. cubic to the lower-in-symmetry polar phase are plotted to find a

smooth path connecting the two structures.

The results are shown in Fig. S1 for Cc phase for polarization along the z direction at -

0.26% compressive strain. For the specific continuous path connecting the cubic-lattice point

corresponding to 0.27 C/m2 (∆P = P(λ=1)-P(λ=0)) with the Cc lattice point of -0.036 C/m2, the

polarization is seen to evolve smoothly. Subtracting the two end-point values gives a polarization

change of 0.30 C/m2. This value of polarization along the z direction is same as obtained at nearly

zero strain for Cc phase. Similarly we conducted calculations of polarization for the Pca21 and

Pmc21 phases. As shown in Figs. S2 and S3, other polarization evolves smoothly from λ = 0 to

λ = 1 for Pca21 and Pmc21 phases, respectively. In the Pca21 phase at a tensile strain of 1.27%,

the corresponding value of polarization Pz is 0.30 C/m2, while the value of polarization in the
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Pmc21 phase at 2.82% tensile strain is about 0.33 C/m2.

Figure B.1: The z component of polarization as a function of lattice distortion for Cc phase at
compressive strain of -0.26% in the NNO thin film.

Figure B.2: The z component of polarization as a function of lattice distortion for Pca21 phase at
tensile strain of 1.27% in the NNO thin film.
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Figure B.3: The x and y components of polarization as a function of lattice distortion for Pmc21
phase at tensile strain of 2.82% in the NNO thin film.
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Appendix C

LIST OF PUBLISHED PAPERS USED IN THIS DISSERTATION

Large parts of Chapters 3, 4, 5, and 6 as well as appendices A and B were originally published
as:

(1) ‘Atomisticmechanism leading to complex antiferroelectric and incommensurate perovskites’,
Kinnary Patel, Sergey Prosandeev, Yurong Yang, Bin Xu, Jorge Íñiguez and L. Bellaiche, Physical
Review B 94, 054107 (2016).

(2) ‘Dynamics of antipolar distortions’, Kinnary Patel, Sergey Prosandeev and L. Bellaiche, npj
Computational Materials 3, 34 (2017); doi: 10.1038/s41524-017-0033 (Nature).

(3) ‘Temperature dependence of polar modes in hybrid improper ferroelectrics’, Kinnary Patel,
Sergey Prosandeev, Bin Xu and L. Bellaiche, Physical Review B, 100, 212107 (2019).

(4) ‘Properties of (001) NaNbO3 films under epitaxial strain: a first principles study’, Kinnary

Patel, Sergey Prosandeev, Bin, Xu, Changsong Xu, and L. Bellaiche, Physical Review B, 103,

094103 (2021).
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