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ABSTRACT 

 

In this thesis, photodetector based on the zinc oxide and cesium lead bromide hetero 

structure were fabricated and characterized. Zinc oxide (ZnO) nanoparticles were synthesized 

using solution processing and cesium lead bromide (CsPbBr3) thin film was synthesized using 

two step deposition method. Three phonon modes were obtained by the Raman spectroscopy of 

ZnO nanoparticles. X-ray diffraction spectra of ZnO exhibits five exciton peaks which denotes 

that the synthesized ZnO structure was of good crystallinity with wurtzite hexagonal phase. The 

absorbance spectrum of ZnO shows the bandgap (Eg) in the order of 3.5 eV that aligns with 

reported results. The photoluminescence and the absorbance technique were used to measure the 

Eg of CsPbBr3 in the order of 2.33 eV and 2.37 eV respectively which means the results are in 

good agreement. The current voltage (I-V) graph exhibits that due to the electron transfer from 

CsPbBr3 to ZnO under illuminated light, the photocurrent was increased by a factor 2 greater 

than the dark current under the bias voltage of 6 V. Impulse time response of the photodetector 

was observed by measuring the current under light on and light off condition with an interval of 

10 seconds. The photodetector was fabricated using the conventional wet etching lithography. 

Interdigital metallization structures were used with Au electrodes having 10µm gaps. The 

detectivity of the photodetector was measured to be 3.8 × 1011 cm / Hz2 W from the I-V 

measurement. Under 10 µW light illumination the device showed good photo responsivity of 

14.99 A/W. The fabricated photo detectors demonstrated excellent stability. This project explains 

that ZnO/CsPbBr3 hetero structure is a promising candidate for high performance photodetector. 
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1.   INTRODUCTION 

Organic and inorganic perovskite materials are receiving considerable attention in 

optoelectronic applications recently because of their unique physical properties. Perovskite 

materials exhibit long carrier diffusion lengths, high light absorption coefficients, long carrier 

lifetime and high carrier mobility [1], [2]. For these exceptional properties, photodetectors based 

on perovskite materials show excellent detectivity, responsivity and switching response [3], [4]. 

Lead halide perovskites, which is an inorganic perovskite material, CsPbX3 (X = I, Br, Cl) 

showed less degradation and better stability in atmospheric conditions compared to organic 

perovskites [5]. Among the inorganic perovskites, cesium lead bromide (CsPbBr3) has large 

carrier mobility (1000 cm2/ Vs) and high absorption coefficient which are suitable for better 

performance of photodetectors [6]. However, hybrid inorganic-organic perovskites showed better 

performance then photodetectors based on single inorganic perovskite layer [6], [7]. By 

fabricating a hetero-structure of the perovskite layer with another material is one possible 

method to increase the performance of fabricated photodetectors. Due to high electron mobility, 

tunable conductivity, Zinc oxide (ZnO) is an encouraging material for the fabrication of hetero-

structure perovskite photodetectors [7]. An effective design for high performance photodetector 

is interdigital metallization. Conventional photolithography technique is a better method to get 

interdigital metallization pattern on the device [8], [9]. This thesis will discuss about the 

fabrication process of ZnO nanoparticles and CsPbBr3 thin film hetero-structure on photodetector 

with interdigital metallization for better performance.   
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1.1   Thesis overview 

 The motivation behind this thesis is to fabricate a photodetector that has hetero-structure 

of zinc oxide nanoparticles and perovskite material. Zinc oxide nanoparticles work as electron 

transport layer which increase the photocurrent and carrier recombination time. Due to that the 

device becomes faster and exhibits higher detectivity. In chapter one, the device structure and 

formation will be discussed. Chapter 2 discusses about the synthesis of materials and fabrication 

process of the photodetector device. Chapter 3 explains the characterization methods and 

modules used in this project. Chapter 4 analyses the characterized materials and the efficiency of 

the ZnO/CsPbBr3 photodetector. This chapter also discusses the results and the effect of ZnO 

nanoparticles in the photodetector. Finally, chapter 5 concludes the thesis with the proposal of 

possible future work.  

1.2     Zinc oxide nanoparticles as electron transport layer 

 In this thesis, we will see that after introducing the ZnO layer as an electron transport 

layer with CsPbBr3, the responsivity, detectivity and switching speed of the fabricated 

photodetector increases compare to photodetector with only CsPbBr3 photodetector. In the 

photodetector device with only CsPbBr3, photo generated electron hole pair recombine in few 

picoseconds. It also depends on the life time of the photo excited electrons. Due to this reason, 

there is significant photocurrent loss. But, after introducing the ZnO nanoparticles layer as an 

electron transport layer, the photocurrent increases. The reason behind is the band alignment of 

the ZnO, perovskite and metal. The electron affinity of ZnO is 3.4 eV, electron affinity of 

perovskite (CsPbBr3) is 4.4 eV and the work function of gold is 5 eV [10]. So, when light is 

incident on the device, photo excited electrons travel from perovskite to ZnO layer. And the 

holes in CsPbBr3 moves to the metal. Due to the transfer of electrons from perovskite to ZnO, 
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the recombination process in the perovskite is very limited, which eventually increases the 

photocurrent. Zinc oxide has higher mobility so the electrons can move faster in the ZnO layer 

which is another reason of higher photocurrent [7].  

  

Figure. 1.1. The schematic is illustrating the electron transfer from perovskite to ZnO and hole 

transfer from perovskite to metal under light illumination. 

 

1.3     Interdigital metallization 

 One of the challenges in hetero-structure photodetector is to maintain low dark current. 

Zinc oxide has good band alignment and stability with CsPbBr3 [10]. For these reasons, ZnO and 

perovskite hetero-structure is used in perovskite solar cells and photodetectors [11], [12]. 

Interdigital metallization technique is an excellent design for photodetectors to maintain low dark 

current and high detectivity. Channel spacing of 10µm between two electrodes provides narrow 
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channels. The narrow channel allows the device to collect photo generated electron and holes 

before they get the chance to recombine. In several reported works, it is found that the reaction 

between metal and perovskite materials is one of the major reasons for the degradation of 

perovskite materials [13]. Copper, silver, gold and chromium electrodes are mostly used and 

there chemical reactions were investigated [13], [14]. Copper (Cu) electrodes are not very 

corrosive, but the direct contact between perovskite and Cu can create chemical reactions which 

might degrade the active perovskite material [13]. The high work function of Gold (Au) which is 

5 eV, is most favorable with the fermi level of inorganic perovskite materials [14]. For this 

reason, Au electrodes were used for metallization to evaluate the performance of the device. Due 

to the work function of Au and the fermi level of CsPbBr3, Au electrodes create a schottky 

barrier with ZnO/CsPbBr3 hetero-structure. Due to good adhesion properties of glass and Au 

[15], the possibility of Au electrode getting removed during the depositions is very low. 

1.4 Device structure 

 The fabricated device has a hetero structure of ZnO and CsPbBr3. The substrate of the 

device was glass. First the glass substrates or the samples were cleaned. Then photolithography 

process was done to get the interdigital pattern. After that, metal was deposited on the patterned 

glass substrate to get the electrodes. When the device was fully patterned with electrodes, ZnO 

nanoparticles were deposited on the top of the fabricated device. On the top of the ZnO layer, 

CsPbBr3 thin film was created to get the ZnO/CsPbBr3 structure.  
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The fabrication process of CsPbBr3 and ZnO photodetector is illustrated in the flow chart below: 

 

Figure. 1.2. A flowchart is shown to explain the step by step fabrication process of the 

ZnO/CsPbBr3 device.  

 

1.5     Working principle of ZnO/CsPbBr3 photodetector 

In this thesis, the optical characterization of ZnO nanoparticles and CsPbBr3 thin films 

are reported and the applications   ZnO/CsPbBr3heterostructure in photodetectors are 

investigated. Perovskite materials have high absorption coefficient and larger carrier mobility 

which transports the photo induced electron hole pairs to the interface of CsPbBr3/ZnO. Then 

due to the electric field, the electron hole pairs are separated thus creating photocurrent. The 

device here is fabricated using gold interdigital metallization for better performance. Figure 1.3 
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explains the working principle of the fabricated device. When light is incident on the device, the 

electron and hole pair are created. Due to the bandgap alignment, the electron moves to ZnO and 

the hole moves to perovskites. Thus the recombination in CsPbBr3 is reduced and due this 

phenomenon, higher photocurrent can be observed. The absorption, Raman and 

photoluminescence spectra of the ZnO and CsPbBr3 were measured to characterize. The devices 

were measured for higher photocurrent by using the I-V characteristic measurement. The time 

response of the photodetector was shown. In addition, the detectivity, responsivity and time 

response of the photodetector were measured from the I-V measurement.    

 

 

Figure. 1.3. The working principle of ZnO/CsPbBr3 photodetector under light illumination is 

expressed by a simplified schematic. 
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2.   SYNTHESIS OF MATERIALS AND DEVICE FABRICATION 

2.1 Introduction 

 This chapter will briefly discuss about the synthesis process of ZnO nanoparticles and 

CsPbBr3 thin film. This chapter will also discuss about all the procedures of device fabrication. 

2.2  Synthesis of zinc oxide nanoparticles 

 Zinc oxide nanoparticles were used as an electron transport layer in the photodetector. 

For ZnO nanoparticles synthesis, 1.23g of zinc acetate di-hydrate was dissolved in 55ml of 

methanol and 0.48g of potassium hydroxide was dissolved in 25ml methanol. Then, potassium 

hydroxide solution was added dropwise in zinc acetate di-hydrate solution with magnetic stirring 

at 60oC temperature and kept for 2 hours. After 2 hours, the product turned out to be a white 

precipitate which was washed with methanol. The purification process was done by 

centrifugation. Then nanoparticle were dried under N2 vacuum to form powder. Finally, the dried 

nanoparticles of ZnO was dispersed in butanol (20mg / ml) for experimental use [16]. Figure 2.1 

explains the whole process.  

 

     

 

 

 

Figure. 2.1. Zinc Oxide nanoparticle synthesis process is illustrated through the flowchart. 

0.48g of potassium hydroxide was 

dissolved in 25ml methanol  

1.23g of zinc acetate di-hydrate 

was dissolved in 55ml of methanol  

Added 

Dropwise 

at 60oC 

White precipitate washed with 

methanol 

 After 2 hours 

Dispersed in butanol for 

experimental use  



8 
 

 

Figure. 2.2. ZnO nanoparticles were smashed into powder form for measurement and 

characterization. “Photo by Tanveer Ahmed Siddique” 

 

 

Figure. 2.3. ZnO nanoparticles were dispersed in Butanol for experimental use. “Photo by 

Tanveer Ahmed Siddique” 
 

2.3 Synthesis of cesium lead bromide thin film 

 For the synthesis of cesium lead bromide (CsPbBr3) thin film, two step deposition method 

was used [12]. 1 molar concentration of  lead bromide (PbBr2) in a  mixture  of  

dimethylformamide  was  kept  5  hours  to  form  a  clear  solution. To create 1M PbBr2, 367 mg 

of PbBr2 merged in 10 ml of dimethylformamide. Then,  0.03M  concentration  of  cesium  
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bromide (CsBr)  in  a  mixture  of  methanol  was  created. To create this concentration, 30 mg of 

CsBr were dissolved in 2ml of methanol.  

 

  

   

 

 

 

 

Figure 2.4. The step by step process of two step deposition method of CsPbBr3 thin film is 

explained through the flowchart.  

 

2.4  Fabrication of ZnO/CsPbBr3 photodetector 

 The photodetector was fabricated in a class 100 clean room. Standard photolithography 

process was used to fabricate the device. The entire fabrication process can be divided into 

following major steps.  

2.4.1 Sample cleaning 

 Acetone, methanol and isopropanol were used to clean the samples as these are strong 

organic solvents which remove impurities from the surface of the sample. First the samples were 

merged in acetone using ultra-sonication for 3 minutes. Then the samples were cleaned with de-

ionized (DI) water and dried with N2. After that, the cleaned samples were merged in methanol 

and ultra-sonication was used for 3 minutes. Then the samples were rinsed with DI water and 

dried with N2. Same procedure was done with isopropanol. After these steps, samples were 

cleaned and ready to use.  

 

367 mg of PbBr2 merged in 10 ml 

of dimethylformamide for 5 hours. 

30 mg of CsBr were dissolved in 

2ml of methanol. 

Sample was first spin coated with 

CsBr 

 Spin coated sample was merged in 

PbBr2 for 10-15 minutes 
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2.4.2 Photolithography 

 The samples were patterned using positive photoresist and photomask in order to form 

3mm X 3 mm mesas. The interdigital structure was used to patter the device. First, the cleaned 

samples were spin coated with AZ®P4330 positive photoresist with 3000 rpm for 60s. After 

completion of the spin coating, the samples were baked at 110oC for 3 minutes. Then, the 

samples were carefully exposed to the UV light to create interdigital pattern of 10µm on the 

samples. After exposing to the UV light, the samples were developed in AZ® 400K developer 

for 45-50 seconds and then immediately dipped into DI water to stop the developing. After 

developing the pattern, the samples were loaded into the sample holder of the electron beam 

evaporator.  

 

Figure 2.5.  The microscopic view of the sample is showing the 10µm interdigital pattern on the 

samples after photolithography. “Photo by Tanveer Ahmed Siddique” 
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2.4.3 Metallization 

 To get the contact metals in the photodetector, the Angstrom Nexdep electron beam 

evaporator was used. Gold was deposited at the rate of 0.3nm/second. The total thickness of gold 

was 50 nm. The samples were heated a little during metallization process so that we can avoid 

the thermal stress which occurs because of rapid thermal annealing done to form ohmic contacts.  

2.4.4 Lift off  

 After the metallization process, the samples were merged into acetone and kept in ultra-

sonication to remove the excess metal. By this lift off process, the desired patter on the samples 

were created.  

 

Figure 2.6. The microscopic view of the fabricated device is displaying 10µm interdigital pattern 

on the samples after lift-off process. “Photo by Tanveer Ahmed Siddique” 
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3.   CHARACTERIZATION TECHNIQUES  

3.1 Material characterization 

 This chapter describes the characterization techniques for synthesized materials. The 

absorbance spectra was measured using Cary 500 UV-Vis spectrophotometer. The Raman 

spectra and photoluminescence were measured using Horiba LabRam Micro-Raman 

spectrometer. The XRD measurement was taken by Rigaku Miniflex X-ray diffractometer. The 

current voltage characteristics of the fabricated device were measured with Keithley 4200 

semiconductor characterization system.  

3.1.1 Absorbance measurement   

 If light strikes on a semiconductor surface, photons with higher energy than the 

semiconductor band gap gets absorbed. Incident photons with lower energy than the bandgap 

gets transmitted. The Uv-Vis spectrophotometer measures the absorbance and transmittance. In 

the project, this device is used to measure the absorbance of ZnO nanoparticles and CsPbBr3 thin 

film. The bandgap of the materials were observed from the absorbance spectra. The peak of the 

absorbance spectra of these materials indicated the approximate band gap of the material. From 

the Beer-Lambert law, the following equation was used to calculate the absorbance [12], 

                                                                       𝐼 = 𝐼𝑜𝑒−𝛼𝑑                                                           (3.1) 

Where, I is the intensity of transmitted light through the material, 𝐼𝑜 is the incident light. 𝛼 is the 

absorbance coefficient and d is the optical path length of the material. The spectrometer can 

measure wavelength range of 175 nm – 3300 nm.  
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(a) 

 

(b) 

Figure 3.1. (a) The schematic explains the working principle of the absorbance spectroscopy 

[18].  (b) A photo of Cary 500 UV-Vis spectrophotometer situated in the lab. “Photo by Tanveer 

Ahmed Siddique” 

 

 



14 
 

3.1.2 Raman spectroscopy 

 Raman spectroscopy is a common characterization method which provides information of 

structural properties of a material. The structural orientation, chemical composition, crystallinity 

of a material is characterized through Raman spectroscopy. Inelastic Raman scattering process 

and phonon vibration mechanism are showed the Figure 3.2. By using the concept of electronic 

states, the Stokes and anti-Stokes are explained in the energy diagram. The Raman shift is 

plotted verses the intensity. Raman spectroscopy gives information regarding the molecular 

structure in the material, the orientation of the molecules and chemical composition. The 

scattered radiation from the molecules of the sample provides sufficient information about the 

energy increase or decrease. From this vibrational energy, Raman shift is measured. In this 

project, the Raman spectroscopy was used to characterized ZnO nanoparticles and the fabricated 

device by using Horiba LabRAM Micro-Raman spectomter.  

 

Figure 3.2. The schematic diagram of the energy bands are shown to explain the Raman 

scattering. 
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3.1.3 Luminescence 

 When laser is incident on semiconductor, the excited carriers forms radiative 

recombination of excitons. This is known as luminescence. To produce considerable 

luminescence, the radiative recombination must dominate non-radiative recombination. Non-

equilibrium carrier concentration is produced by optical excitation and it is called 

photoluminescence. All the materials used in this project was characterized through the 

photoluminescence.  By changing the filters in Horiba LabRAM Micro-Raman spectrometer, 

photoluminescence characterization method was used. By using the photoluminescence method, 

approximate bandgap were measured from the excitation peak of the synthesized materials.  

 

Figure 3.3. Horiba LabRAM Micro-Raman spectrometer located in the lab was used to 

characterize the materials. “Photo by Tanveer Ahmed Siddique” 
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3.1.4 X-ray diffraction 

 X-ray Diffraction (XRD) is a known characterization technique to get information about 

the crystallinity of the materials. In a crystal, atoms are organized in lattice in different patterns. 

The length between two lattice points is known as the lattice constant. There are different planes 

in the crystal structure and when x-ray is incident on any crystal structure, they scatter elastically 

from different planes in crystal which is known as Thompson scattering. And the scattered 

electron oscillates as the same frequency as the incident x-ray. The x-ray beams are scattered 

differently in plays from which different diffraction pattern. By analyzing the diffraction spacing 

and pattern, the crystal structure gets defined. Bragg’s law is the pattern analyzing equation to 

determine the crystal structure. The equation is given below. 

                                                                        2dsin𝜃 = 𝑛𝜆                                                      (3.2) 

Where, d is the distance or length between lattice planes, n is an integer, 𝜃 is the scattering angle 

and 𝜆 is the wavelength. In Figure 3.4, the Bragg’s law is explained properly. 

 

Figure 3.4. The schematic is representing the working principle of X-ray based on the 

mechanism of Bragg’s law [26]. 
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 In lab, Rigaku Miniflex X-ray diffractometer is used to get the XRD patterns for ZnO 

nanoparticles and CsPbBr3 thin film. 

 

Figure 3.5. Rigaku Miniflex X-ray diffractometer was used to measure the XRD patters of the 

synthesized materials. “Photo by Tanveer Ahmed Siddique” 
 

3.2 Device characterization 

 This section briefly discusses about the characterization techniques for the fabricated 

device. A Keithley 4200 semiconductor characterization module was used for measuring the I-V 

characteristics curves using 0.2 sun to 1 sun AM 1.5 solar simulator.  
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3.2.1  I-V characteristics measurement 

 Keithley 4200 semiconductor characterization system was used to measure the I-V 

characteristics curves of fabricated photodetector. The system is equipped with two source 

measure units (SMU). In this project, I-V characteristics curve of the fabricated devices with 

ZnO/CsPbBr3 and CsPbBr3 materials were measured. Built-in 2-wire forward bias diode test 

module was used to take the measurements. The anode voltage was swept from -6 V to 6 V. 

Photocurrent and dark current were measured. The impulse response of the photodetector was 

measured with Keithley 4200 semiconductor characterization system.  

4.  RESULTS AND DISCUSSION 

4.1 Introduction 

 This chapter briefly discusses about the obtained results from synthesized materials and 

fabricated device. The Raman and XRD confirms about the pristine ZnO nanoparticles quality. 

The Photoluminescence and absorbance of both ZnO nanoparticles and CsPbBr3 thin films are in 

good agreement with the reported results. The I-V characteristics curve proves that fabricated 

photodetector with ZnO/CsPbBr3 has higher detectivity and photo response compare to 

photodetector with CsPbBr3.   

4.1.1  Device fabrication 

 To fabricate the device, first glass samples were cleaned thoroughly. Then 

photolithography and metallization process was done to create interdigitated pattern. After that, 

first ZnO nanoparticles were deposited on the interdigitated substrate and was annealed at 1000C 

for 30 minutes. Then, lead bromide was spin coated on the substrate with ZnO and was annealed 

at 900C for 30 minutes. After that the device was merged in cesium bromide for 5 – 15 minutes 
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at 500C to form the heterostucture device. The device was kept on 1800C for 10 minutes to 

remove all solvents. 

4.1.2 Zinc oxide nanoparticles characterization 

The absorbance spectra of ZnO nanoparticles are shown in figure. 4.1. Synthesized 

nanoparticles of ZnO were dispersed in butanol (20 mg/ml). The red line in the figure represents 

the absorbance of ZnO nanoparticles dispersed in butanol. The peak was observed at 350 nm. 

The band gap calculated from the peak is 3.5 eV form 350 nm. The nanoparticle dispersed in 

butanol showed a bit higher bandgap with less wider peak. The reason behind is the size of the 

nanoparticle.  
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Figure. 4.1. The absorbance of ZnO nanoparticles was measured as a function of wavelength. 
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The Raman spectra of ZnO nanoparticles are shown in figure 4.2 with 632 nm laser light 

as an excitation source. ZnO has wurtzite crystal structure and ZnO has eight sets of optical 

phonon modes according to the group theory. The sharp and dominant peak was observed at 445 

nm which is labeled as E2H. E2H is the higher frequency of the E2 optical phonon mode and this 

mode is characteristic of wurtzite hexagonal phase of ZnO nanoparticles. E2 optical phonon 

modes has to peak usually known as E2L phonon mode which is found in lower frequency and 

E2H phonon mode found at higher frequency.  
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Figure. 4.2. The Raman spectroscopy of ZnO nanoparticles was measured as a function of 

wavenumber. 
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Other phonon modes are also observed at 330 nm and 615 nm which is labeled in the figure as 

E2H – E2L and E1L. But the dominant peak at 445 nm compared to other peaks demonstrates that 

synthesized ZnO structure was of good crystallinity with wurtzite hexagonal phase [10].         

Figure 4.3 shows five XRD peaks of ZnO nanoparticles. The angles at 26.3O, 34.4 O, 54 O, 59.8 O 

and at 70 O. At high intensity of X-ray, planes (hkl) for the ZnO are (100) at 26.3O, (101) at 34.4 

O, (110) at 54 O, (103) at 59.8 O and (201) at 70 O. The peaks demonstrates that synthesized ZnO 

structure was of good crystallinity with wurtzite hexagonal phase [10]. 
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Figure. 4.3. The XRD pattern of ZnO nanoparticles as a function of angle validates the 

crystallinity of ZnO. 
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4.1.3 Cesium lead bromide thin film characterization 

Cesium lead bromide (CsPbBr3) thin film was synthesized on a glass substrate to 

characterize. The absorbance spectra and the photoluminescence spectra of CsPbBr3 thin film on 

glass substrate are shown in figure 4.4. The peak in the photoluminescence spectra was observed 

at 530nm. The bandgap of CsPbBr3 was calculated to be 2.33 eV from the photoluminescence 

spectra. The peak was observed at 522 nm in the absorbance spectra and the bandgap was 

calculated to be 2.37 eV from the peak and it is in good agreement with the literatures [12].  
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Figure. 4.4. The photoluminescence and the absorbance of CsPbBr3 thin film were measured as a 

function of wavelength. 
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The wavelength of the blue laser used in the measurement was 472 nm and the intensity 

was 12 nW which is very low. It indicates that at low laser power, the CsPbBr3 thin film 

generates high carrier density. Which means that the synthesized CsPbBr3 thin film is good 

quality material.  

Figure 4.5 shows four XRD peaks of CsPbBr3 thin film. The peaks at 23O, 32.4O, 38O and 45.8O 

proves that synthesized CsPbBr3 thin film structure was of good crystallinity with orthorhombic 

phase [17]. 
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Figure. 4.5. The measured XRD pattern of CsPbBr3 thin film as a function of angle was used to 

validate the crystallinity of CsPbBr3. 
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4.2 Characterization of the fabricated device  

 Figure 4.6 shows the absorbance of ZnO/CsPbBr3 as a function of wavelength. The 

absorbance is identical with the absorbance of CsPbBr3. The reason behind is the top layer of the 

fabricated device is the perovskite. And due to that reason the incoming light is absorbed by the 

perovskite. The absorbance spectra of ZnO/CsPbBr3 exhibits peak intensity at 515 nm. 
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Figure. 4.6 The measured absorbance spectra of ZnO/CsPbBr3 as a function of wavelength 

validates the presence of ZnO. 

 

 Figure 4.7 is the photoluminescence spectra of CsPbBr3 thin film and ZnO/CsPbBr3 as a 

function of wavelength. The maximum photoluminescence intensity of the fabricated device is 
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518 nm. From the figure, it is clear that the photoluminescence intensity is low for the fabricated 

device. ZnO layer reduces the recombination of the generated electron hole pair. So, when light 

illuminates on the device, the recombination is less for ZnO/CsPbBr3 compare to CsPbBr3. And 

the photoluminescence depends of the radiative recombination of generated electron and hole. 

So, due to the presence of ZnO layer, the photoluminescence intensity is lower for the fabricated 

device. There is also a small shift in photoluminescence for the fabricated device that is due the 

presence of ZnO layer. 
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Figure. 4.7 The photoluminescence spectra of CsPbBr3 thin film and ZnO/CsPbBr3 as a function 

of wavelength were measured. 
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4.3 ZnO/CsPbBr3 based photodetector I-V measurements and discussion 

The I-V curve of the fabricated device is shown in Fig. 4.5 with sweeping voltage from 

6V to -6V under dark and light condition. From the figure it is observed that the photocurrent of 

the device was enhanced by a factor of 2 greater than the dark current. Due to the unique optical 

properties of CsPbBr3 and ZnO, the incident light produces excess amount of electron hole pair 

at 6V bias voltage. Due to this reason the photo current was higher in   ZnO/CsPbBr3 

photodetector than CsPbBr3 photodetector.  
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Figure. 4.8. The I-V curve of both CsPbBr3 and fabricated photodetectors were measured under 

dark and light conditions. 
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In figure 4.8, the  blue  and black lines represents  I-V  curve  of  the ZnO/CsPbBr3    

photodetector  under  illuminated  light  condition and dark  condition  respectively.  The  green  

and  violet  line  denotes  the  I-V  curve  of  the  CsPbBr3  photodetector  under  illuminated  

light  condition  and  dark  condition  respectively. The dark current with ZnO is higher than the 

dark current without ZnO. The reason behind this is due to the band tilt of the semiconductors 

and metals. When we change the polarity the band tilts, and thus there is difference between the 

6V and -6V bias voltage.  

To understand the effect of ZnO layer introduced in the fabricated device, the optical 

properties of   ZnO/CsPbBr3 and CsPbBr3 devices were investigated. I-V curve shown in figure 

4.5 represents the photo current and dark current of both ZnO/CsPbBr3 and CsPbBr3 

photodetectors. It can be seen that the photocurrent of the ZnO/CsPbBr3 device was enhanced by 

a factor of 2 greater than the dark current whereas photocurrent of the CsPbBr3 device was 

enhanced by a factor of 1.5 greater than the dark current. The detectivity and responsivity of the 

both photodetectors were measured from the I-V curve. The following equations are for 

detectivity and responsivity [21, 25] 

                                                           𝐷∗ =
𝐼𝑃ℎ√𝐴

𝑃√2𝑞𝐼𝑑
                                                                         (4.1) 

                                                               𝑅 =
𝐼𝑝ℎ

𝑃×𝐴
                                                                            (4.2) 

In equation (4.1), D* is the detectivity given in cm/Hz2 W, A is the area of photodetector, 

P is the power of incident light, IPh and Id are photo and dark current respectively, q is the 

electron charge. The incident power of the light was swept from 10 µW cm-2 to 100 mW cm-2, at 

100 mW cm-2 photo current and dark current were measured 10-3 A and 10-5 A respectively for   

ZnO/CsPbBr3 photodetector. So from the equation the detectivity was measured. The measured 



28 
 

detectivity was 3.8 × 1011 cm / Hz2 W at 100 mW cm-2.  For 10 µW cm-2, measured detectivity 

was 5.25 × 1012 cm / Hz2 W.  For CsPbBr3, photo current and dark current were measured   

3×10-4 A and 8×10-5 A respectively at 100 mW cm-2. From which the detectivity was measured 

5.7 × 1010 cm / Hz2 W. It can be inferred that in presence of the ZnO nanoparticles, the photo 

excited electrons in the perovskite moved to ZnO layer. Due to that the reason photocurrent is 

higher in ZnO/CsPbBr3 photodetector [7-9], [16]. ZnO also has higher mobility compared to 

perovskite, so the photocurrent is higher in ZnO/CsPbBr3 photodetector and has higher 

detectivity and responsivity. Reported works show that the detectivity of photodetectors based on 

CsPbBr3 thin films are about 3.6 × 1011 cm / Hz2 W [2-5], [17]. So, by introducing ZnO layer, 

the detectivity was increased due to higher photocurrent.  

In equation (4.2), R is the responsivity, A is the area of photodetector, P is the power of 

incident light, IPh is photo current. The incident power of the light was swept from 10 µW cm-2 to 

100 mW cm-2, at 100 mW cm-2 incident power intensity, the responsivity was 0.09 (A/W). But at 

10 µW, the responsivity was around 14.99 (A/W). 

Table 4.1. The detectivity and the responsivity of fabricated CsPbBr3 and ZnO/CsPbBr3 

photodetectors are compared based on different power intensity. 

 

 

Power Intensity (mW cm-2) Detectivity (cm / Hz2 W) Responsivity (A/W) 

 CsPbBr3 ZnO/CsPbBr3 CsPbBr3 ZnO/CsPbBr3 

0.01 7.1× 1011 5.25 × 1012 6.24 14.99 

20 6.41 × 1010 4.5 × 1011 0.06 0.072 

40 6.26 × 1010 4.25 × 1011 0.051 0.061 

60 6.16 × 1010 4 × 1011 0.044 0.0612 

80 5.9 × 1010 3.92 × 1011 0.045 0.063 

100 5.7 × 1010 3.8 × 1011 0.039 0.09 

 



29 
 

  From the table 4.1, it is evident that by introducing the ZnO layer, the detectivity and the 

responsivity of the fabricated device were increased. 
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Figure. 4.9. The current of ZnO/CsPbBr3 photodetector was calculated as a function of time 

under light  on  and  light  off  condition  with  an  interval  of  10  seconds to compute switching 

response of the device. 

 

The time response of the photodetector was observed and investigated in figure 4.9 by 

switching on and off the light source at 5V bias voltage. The current of the photodetector was 

measured as a function of time. Current was measured under light on and light off condition with 

an interval of 10 seconds. The rise time was 0.3 seconds and the fall time was 0.5 seconds. The 

time response was measured under light simulator with 100 mWcm-2 power intensity.     
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In figure 4.9, there are some spikes in between on and off interval of ZnO/CsPbBr3 

photodetector. The spikes are due to the high rate of generated photo excited electrons and 

carrier drift velocity [21], [22]. The intensity of the light source used in this experiment was one 

sun which covers the spectral range from 300 to 1800 nm. Other reported works show that the 

rise time and fall time for CsPbBr3  based photodetectors are 0.4 seconds and 0.5 seconds 

respectively [22-24], [25]. 
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Figure. 4.10. The detectivity and responsivity data of the fabricated ZnO/CsPbBr3 photodetector 

over time was taken to observe the stability of the device. 
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Figure. 4.11. The detectivity and responsivity of the fabricated device were measured as a 

function of light intensity. 

 

Figure. 4.10 and Figure. 4.11 shows the detectivity and responsivity of the fabricated 

device. The detectivity of the photodetector was measured to be 5.25 × 1012 cm / Hz2 W from the 

I-V measurement. Under 10 µW light illumination the device showed good photo responsivity of 

14.99 A/W. The fabricated photo detectors demonstrated excellent stability compare to other 

devices fabricated with organic perovskite. The detectivity is usually stable for 3 to 4 weeks for 

organic perovskite photodetectors [23-26].  From the measurements of   ZnO/CsPbBr3 

photodetector, it can be seen that the rise time and fall time are less which means that the 

fabricated device was faster. Higher and stable detectivity and faster switching speed was 

observed in ZnO/CsPbBr3 photodetector due to the introduction of ZnO layer. 
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Table. 4.2. The responsivity and the rise/fall time of ZnO/CsPbBr3 photodetector are compared 

with reported works on perovskite photodetectors. 

 

 

Device Pattern Material Responsivity (A/W) Rise/Fall time (s) Ref 

Cr/ CsPbBr3/Cr Thin film 0.2 0.7/0.9 [2] 

Carbon/CsPbBr3/FTO Thin film 0.127 0.2/0.2 [27] 

Ag/ CsPbBr3/ITO Nanowire 11.2 <3/<2 [28] 

Ag/CsPbBr3/Ag Nanocrystal 1.8 1.8/1.2 [29] 

Au/ZnO- CsPbBr3/Au Thin film 14.99 0.3/0.5 This work 

 

From table 4.2, it is evident that by using ZnO layer with CsPbBr3, the responsivity was 

higher than reported single layer CsPbBr3 photodetectors. The rise and the fall time of the 

fabricated device is better than most of the reported CsPbBr3 photodetector.  

5.   CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

In conclusion, photodetectors based on the ZnO/ CsPbBr3 hetero structure were 

investigated and characterized. ZnO nanoparticles were synthesized using solution process and 

the CsPbBr3 was synthesized using two step deposition method.  The ZnO layer worked as an 

electron transport layer in the device. Owing  to  the  unique  optical  properties  of  CsPbBr3  thin  

film  and  ZnO  nanoparticles as electron transport layer,  the  photocurrent  was  enhanced  after  

introducing  ZnO  layer  in  the  CsPbBr3  photodetector. The results obtained in this project 

indicate that ZnO/CsPbBr3 hetero structure photodetectors exhibit excellent detectivity, 

responsivity and faster time response due to the electron transfer from CsPbBr3 to the ZnO layer. 

The bandgap of both materials measured from the absorbance and photoluminescence are all in 

good agreements. The Raman spectra and XRD of the synthesized nanoparticle proved that ZnO 

nanoparticles were in wurtzite hexagonal phase. The fabricated photodetector’s detectivity and 
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responsivity graphs explained that the devices were stable and shows high detectivity. The 

presented work shows that by introducing ZnO layer in CsPbBr3 photodetector with interdigital 

metallization increases the photocurrent. The detectivity was also enhanced along with higher 

responsivity. These results indicate that photodetectors based on ZnO/CsPbBr3 hetero structure  

fabricated  with  solution  processing  method  show  great  potential  in  optical  applications.   

 5.2 Future work 

 In this project, ZnO nanoparticles were used as an electron transport layer along with 

CsPbBr3 thin films which enhanced the photocurrent. The structure showed better performance 

and stability. The ZnO layer can be exchanged with other n type material such as titanium oxide 

(TiO2). This structure might work and might show better results in detectivity and responsivity. 

In that case, the bandgap of the material should be compatible with the perovskite material. The 

perovskite material can also be changed with halides or mixed halides (I, Cl etc.). In that case, 

we have to keep in mind about the stability of the mixed halide perovskite with the deposited n 

type layer. By replacing organic perovskite with inorganic perovskite might give better result. 

The metal used as anode and cathode can be replaced with chromium while using organic 

perovskite. Also, ZnO nanorods can be a promising candidate along with the organic perovskite 

materials for high performance photodetector. 
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