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Abstract 

Nanomaterials have revolutionized science and technology. Their unique properties can 

be exploited, and nanoparticles are being used as catalysts, antimicrobials, drug delivery 

vehicles, sensors, and more. However, the fundamental properties of nanomaterials and their 

interactions with their surrounding environments are still poorly understood. In this work, a 

single-particle approach was used to observe the effects of capping ligand, surrounding solution, 

and particle shape on the oxidative process to gain deeper understanding of silver nanoparticle 

properties. When allowed the opportunity, the particles will adsorb to the electrode surface then 

oxidize in rapid succession upon electrode activation, regardless of capping ligand as long as the 

electrolyte and applied potential are appropriate. The presence of potassium chloride encourages 

the oxidation of polyethylene glycol capped particles at an increasing rate over time, but rarely 

allows oxidation poly-vinylpyrrolidone capped particles. Instead, these particles are better 

oxidized to silver oxide either in potassium nitrate at high potentials or under alkaline conditions 

at lower potentials. Successful oxidation of poly-vinylpyrrolidone capped particles enabled the 

work to be expanded from spheres to cubes and plates, the shape of which bore no effect on the 

rate of oxidation to silver chloride. Furthermore, a new method of single particle characterization 

was developed to improve the accuracy and precision of nanoparticle characterization. By 

combining redox magnetohydrodynamics with dark field microscopy, silver and gold coated 

silica particles were successfully sized from a flowing mixture in both forward and reverse 

directions.  
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Introduction 

While nanoparticle research has only occurred for a few decades, the incorporation of 

metallic nanoparticles into objects dates back centuries due to the vibrant colors exhibited by 

metals such as silver and gold while in the nano phase.1 However, color is not the only property 

in which nanoparticles differ from bulk phase materials. And as with centuries ago, today’s 

nanoparticles are incorporated into consumer goods even though their chemical properties and 

reactivity are poorly understood.2-4 The number of nanomaterial-containing products has been 

increasing for the past few decades, so that now thousands of commercial products contain 

nanomaterials. Of the many types of nanomaterials in use, silver nanoparticles are in more 

commercially available goods than any other nanomaterial.2, 5 

Silver nanoparticles are widely available in bandages, medical equipment, cosmetics, and 

clothing  due to its antimicrobial properties,6-8  For more industrial purposes, catalytic properties 

of silver nanoparticles are also of interest 9-11 due to  its ability to catalyze reactions attractive for 

alternative fuel cells, such as water splitting and alcohol oxidation, while being much cheaper 

than platinum.12-15 Because nanoparticles have more surface sites on which catalysis can occur 

for less total metal mass than bulk materials, the cost is drastically decreased.  

As a single aspect (e.g. size, shape, capping ligand) of the nanoparticle changes, 

properties such as catalytic abilities and toxicity also change.3, 4, 16, 17 This means that alteration 

of the shape, size, capping ligand, and/or surrounding environment of a silver nanoparticle can 

lead to different behaviors and properties.16, 18, 19 16, 20, 21 For example, cubes have been shown to 

better catalyze the oxygen reduction reaction than spheres of the same size by nearly 25%.22 

Because silver nanoparticles are produced using a wide variety of capping ligands, shapes, and 

sizes, it is imperative to understand the fundamentals of how and why morphology and surface 
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functionalization changes lead to behavior changes. Citrate capped particles are the most 

common due to their ease of synthesis and uninhibited surfaces. When biological applications are 

being considered, polyethylene glycol (PEG) capped particles are often used instead due to the 

low toxicity and ease of functionalization of the PEG.23, 24 If shapes other than spheres are of 

interest, poly-vinylpyrrolidone (PVP) is often the default capping ligand due to its required 

presence during the synthesis.25   Experiments described herein were performed on particles 

containing a citrate, PEG, or PVP capping ligand for the purpose of characterizing the particles 

themselves and understanding their interactions with their surroundings.  

Most commercial methods of characterizing silver nanoparticles, such as dynamic light 

scattering for particle sizing, inductively coupled plasmon spectroscopy and atomic absorption 

spectroscopy for metal content determination, and UV-vis spectroscopy for optical property 

determination and monitoring suspension stability over time provide only an average over the 

entire sample, instead of information about the individual particles. However, unlike molecules 

in a solution, nanoparticles in suspension are analogous to a population of people - each particle 

in the sample is unique. Transmission electron spectroscopy and atomic force microscopy 

individual particle sizing information, and single particle inductively coupled plasmon 

spectroscopy the silver content of individual particles but give little-to-no insight into the 

properties of the particles. Electrochemical methods have been utilized to analyze the catalytic 

efficiency of materials for decades and can be used to probe several properties of individual 

nanoparticles - size, catalytic abilities, oxidative mechanism, particle stability, etc. - providing 

more overall information than any of the previously listed methods of particle characterization.  

To investigate how changing the morphology and/or environment of silver nanomaterials 

affects their properties, electrochemical methods were employed. Electrochemical properties of 
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individual silver nanoparticles can be observed using chronoamperometry via non-destructive 

electrocatalytic amplification26, 27 or by destructive oxidation of the particle itself.28, 29 

Experiments herein utilized the destructive method of particle oxidation to investigate the size 

and oxidizability of individual polyethylene glycol capped silver nanoparticles (PEG-AgNS), as 

the destructive method provides both characteristic information about the particle itself and 

insight into the mechanism of silver nanoparticle oxidation.30-33 When the silver particle 

encounters an electrode held at an adequate potential (chronoamperometry), oxidation can occur, 

which results in a brief spike in the measured current (Figure 1). The current spike is directly 

indicative of how much silver was oxidized during the contact with the electrode and can be used 

to determine the size of the particle or the extent of particle oxidation. Three routes of particle 

oxidation are possible; complete oxidation in a one-step manner, complete oxidation in a multi-

step manner,29, 34 or partial oxidation followed by diffusion from the surface. Knowing the 

particle size beforehand allows for the development of methods that will promote complete one-

step oxidation. The electrode material, surrounding electrolyte, and method of sample 

preparation all affect the extent of particle oxidation. 

 Simply holding the electrode at a potential kinetically capable of oxidizing the particle 

will not necessarily result in oxidation upon contact with the electrode. The barrier imposed by 

the capping ligand is one of the factors hindering oxidation. Electron tunneling distances 

generally are on the scale of angstroms35 but nanoparticle capping ligands are generally 

nanometers thick. Once the oxidation method is refined, electrochemistry can provide a cheap 

method of sizing single nanoparticles and observing their catalytic effects on an individual level. 

Additionally, the conditions which promote partial vs. complete oxidation can be investigated, 

providing valuable insight into the interactions of particles with their surroundings.  
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 Because a single nanoparticle contains 104-106 atoms of silver depending on the particle 

size and material, particle oxidation generally occurs within a few milliseconds and the 

maximum current achieved is usually in the picoampere or low nanoampere regions. 

Consequently, potentiostats must be capable of collecting thousands of data points per seconds 

while simultaneously having very low background electronic noise, and peak distortion must be 

carefully monitored. Until very recently, the instrumentation and electronics has been incapable 

of reliably detecting signals from the oxidation of individual particles due to the rapid oxidation 

and low currents pushing the limits of instrument capabilities because most instruments were not 

built for rapid sub-nanoampere measurements, and the first single particle oxidation papers were 

published in 2011. Additionally, early papers were published at a temporal resolution that only 

collected fewer than 10 data points per particle. Data published more recently has been collected 

with much greater temporal resolution, which provides much more information about the particle 

oxidation, but it has been largely limited to citrate-capped particles. As a result, how 

modifications to the particle surface, environment, electrode, etc. affect the signal produced are 

very poorly understood and require further investigation. 

Further complicating matters, particle oxidation does not always occur upon contact with 

the electrode, and the multitude of factors which can hinder oxidation are still being discovered 

and investigated.36, 37 It has been observed that the presence of capping ligands and/or 

electrolytes which form soluble silver complexes can hinder oxidation.32, 33, 38 However, 

oxidation of citrate-capped particles in the appropriate electrolytes often still show evidence of a 

barrier to oxidation, and these barriers are not well understood. Surface fouling of the electrode 

is one culprit that hinders oxidation of the electrode, which is difficult to control, especially on 

the microdisk electrodes required for these types of experiments. Other methods of 
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understanding barriers to electrooxidation, which will provide more reproducible results, must be 

further researched and developed.  

Overview of the studies described herein 

The following work describes in-depth single particle analysis of several types of silver 

nanoparticles. Because single particle analysis pushes the limits of commercial instrumentation, 

data analysis must be approached with caution, as described in Chapter 1. Inadequate data 

transfer rates of older instruments resulted in “long” time gaps between the ending of one 

experiment and beginning of another. The oxidation frequency on each chronoamperogram (CA) 

was analyzed in 0.1 s intervals. The results initially indicated an apparent Cottrellian-like pattern 

of particle oxidation. However, this was found to actually be the result of particle adsorption to 

the electrode surface during the data transfer time. The absorbed particles oxidized in a rapid 

succession during the first second after the electrode was stepped to an oxidizing potential.  

 The work was then expanded to the relationship between time and oxidation frequency of 

PEG-AgNS in KCl over several CAs. When placed into groups of 10, it was observed that the 

first groups contained fewer particle oxidations than the later groups of 10.  This relationship was 

determined to not be also due to absorption, but rather due to the chemistry between PEG and 

KCl. 

Successful oxidations of the PEG-AgNS in KCl and unsuccessful oxidation of PVP-

AgNS in KCl created curiosity as to why KCl allows the oxidation of one polymer capped 

particle but not the other. Literature indicated that KCl is a “salting-in” electrolyte to PEG, but 

“salting-out” to PVP. 39  Chapter 2 explores the effect of “salting-in” electrolytes on PVP-AgNS 

and concluded that “salting-in” properties do not inherently encourage particle oxidation.  

Therefore, methods of PVP-AgNP oxidation still needed to be developed. 
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Chapter 3 outlines not only the successful oxidation of PVP-AgNP, but also explores the 

effect of particle shape on the oxidation rate. Oxidation of PVP silver nanospheres (AgNS), 

nanocubes (AgNC), and nanoplates (AgNPl) indicated that particle shape, and thus particle 

surface area, does not affect the oxidation rate of silver to silver oxide. Chapter 4 expands the 

exploration to alkaline conditions, where the mechanism of oxidation to silver oxide is different 

than in the absence of added acid or base. Under these conditions, the oxidation rate remained 

independent of particle shape. 

The methods described so far involve destructive characterization of the particles. A non-

destructive method of particle characterization was developed and is described in Chapter 5. 

Redox magnetohydrodynamics was paired with dark field microscopy for the simultaneous 

sizing of gold coated silica and silver nanoparticles. One-dimensional mean square displacement 

was used to extract the diffusion coefficients (and therefore sizes) of the individual particles in 

the flowing suspension. Pumping was performed in two directions, allowing for reanalysis of 

particles to occur.  
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Figure 1: Basic mechanism of individual silver nanoparticle oxidation (right), and the spike-

shaped signal produced upon oxidation (left).  
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Chapter 1: Dependance of PEG-capped silver nanoparticle oxidation frequency on the time 

between electrode immersion and activation, and the exposure time to KCl 

1.1 Abstract  

The frequency of single-particle oxidation in particles∙s-1, analogous to coulombs∙s-1, was 

compared to the Cottrell model of chronoamperometric oxidation and reduction of a redox 

species. Previously, a Fickian-like diffusion process for single particle oxidation has been 

reported, but further exploration is required to fully understand the dynamics of particle-

electrode interaction. Initial experiments depicted a linear relationship between the frequency of 

particle oxidation and time-1/2 during the mathematically determined “Cottrell region” of 1.7 

seconds, indicating that a Cottrellian relationship could exist. However, when using improved 

instrumentation the relationship shifted towards a more “steady-state” pattern, indicating that no 

significant particle concentration gradient is formed at the electrode; at least in the concentration 

ranges normally employed for single-particle oxidation. Instead, forced time between subsequent 

chronoamperograms allowed for pre-concentration of particles at the electrode to occur. 

Furthermore, consecutive chronoamperograms revealed that over longer timescales, the particle 

oxidation frequency slowly increased. This relationship was attributed to an interaction between 

the polyethylene glycol capping ligand and the potassium chloride electrolyte instead of an 

interaction between the particle and the electrode.   

1.2 Introduction 

The extent to which nano-electrochemistry can be compared with classic electrochemical 

models was investigated.1-5 In general, oxidation or reduction of molecules occurs when the 

potential (or overpotential) is kinetically suitable and the molecule is close enough to the 

electrode surface, and the signal produced upon oxidation or reduction is predictable.6 Each 



12 

 

subsequent chronoamperometry (CA) responses at a microdisk electrode for both the non-

faradaic double-layer charging current and the faradaic current are nearly identical. The 

thickness of the electrical double layer is inversely proportional to the electrolyte concentration. 

Using Gouy-Chapmen theory,6 the estimated double layer thickness in 20, 50, and 100 mM KCl 

is 2.15, 1.36, and 0.96 nm, respectively, which is more than ten times smaller than the diameter 

of the nanoparticles used. The charging current discharges exponentially and is generally 

discharged in a matter of microseconds when using a microelectrode. The Faradaic current, 

however, decreases over millisecond or second timescales in the Cottrell region due to the 

formation of a concentration gradient before reaching steady-state, where it can remain at a 

stable current for seemingly unlimited time until the redox species is depleted.7 Single particle 

oxidation, however, produces CAs which contain particle spikes at irregular frequencies.8-12 

Understanding the frequency at which particles oxidize at the electrode over time provides 

insight into the aggregation and agglomeration kinetics of particles in suspension.10, 13-15  

 Nanoparticles possess several barriers to oxidation.1, 13, 15-17 The extent to which they can 

be compared to the classic models is poorly understood, and the barrier to each particle in the 

suspension is unique. Particles are often coated with a polymer capping ligand, which results in 

more stable suspensions. They can be functionalized and tailored for targeted uses such as cancer 

imaging 18, 19 and treatment.20 For live biological research, the capping ligand can determine the 

compatibility and toxicity within the cell, 21, 22 as well as the effectiveness of drug delivery to the 

cell.23 In particular, polyethylene glycol (PEG) is a popular capping ligand due to its high 

solubility in water and non-toxic nature in biological systems.23, 24 Adding a polymer capping 

ligand further hinders electron tunneling between the electrode and the particle’s core. The 

estimated capping ligand thickness of the 5 kDa PEG capped AgNS is approximately 10 nm, yet 
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electron tunneling occurs on angstrom distances.12 Consequently, consecutive 

chronoamperograms of a nanoparticle suspension are also each unique, unlike those from a 

classic redox species. Investigations into the overall pattern of single particle oxidation can 

reveal how parallel a nanoparticle redox system is to a classic redox system and provide insight 

into the particle-electrode interface. Additionally, it cannot be assumed that results obtained in 

one electrolyte will be applicable to a different electrolyte, even when the exact same type of 

nanoparticle is being investigated.1, 14, 25-27 Each nanoparticle-electrolyte suspension 

agglomerates at a unique rate,27-31 further changing the dynamics of the particle with the 

electrode over time. 

Furthermore, a polymer-gated mechanism of PEG-AgNP oxidation in a room 

temperature ionic liquid (RTIL) has been reported by the Compton group32, 33 but detailed 

investigation of the mechanism of PEG-AgNP oxidation under aqueous conditions has not 

previously been reported to the best of our knowledge. To ensure the observations are due solely 

to the particles, flux of the electrolyte species must be considered, especially when the electrolyte 

doubles as a reactant, to ensure mitigation of limitations due to diffusion and migration.  

Although the chosen electrolyte concentrations are ~9-10x larger than the nanoparticle 

concentration, the localized silver concentration upon oxidation is much higher. A perfectly 

spherical 40 nm AgNP contains approximately 2 million atoms of Ag+. With a diffusion 

coefficient of ~1.5x10-5 cm2∙s-1 34 and an average time of 1 ms required for oxidation of a silver 

ion,35 the approximate concentration of Ag+ can be calculated using the diffusion length 

Equation (1.1)6 to be approximately 0.3 mM. This is 2 orders of magnitude smaller than the 

electrolyte concentration, thus migration of the electrolyte should not be a limiting factor for 

oxidation of a single particle. 
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 l= √2Dt
2

 (1.1) 

Each individual CA from a nanoparticle suspension contains varying numbers of oxidative 

events and times at which they occur. As a result, experiments containing numerous CAs are 

required to understand the overall pattern of oxidation. Furthermore, the capping ligand present 

played a significant role as to when the maximum particle oxidation frequency was achieved.  

1.3 Experimental 

1.3.1: Materials and Chemicals 

 Experiments were performed using 0.02 mg∙mL-1 40 nm PEG-capped silver nanospheres 

suspended in water, potassium chloride (99.9% purity), and potassium nitrate (99.9% purity) 

purchased from Sigma Aldrich. The working electrodes were 2 mm Pt, 10 μm Pt, and 10 μm Au 

purchased from CH Instruments. The reference electrode was a home-made Ag/AgCl (sat’d KCl) 

electrode, and a platinum flag was used as the counter electrode. All solutions and suspensions 

were made using RICCA reagent grade bottled water and all rinsing was performed using 

Ultrapure filtered water with a resistance of 18.2 MΩ. 

1.3.2: Stripping Potential Determination 

 The 2 mm Pt working electrode was polished and dried prior to use. Linear sweep 

voltammetry (LSV) was first performed in 20 mM KCl to obtain a background. The electrode 

was then rinsed, dried, and 2 μL PEG-AgNP were drop-cast onto the surface. The cast was 

allowed to dry under a slow nitrogen flow. Once dry, LSV was performed from 0 V to 0.8 V vs. 

Ag/AgCl (sat’d KCl) at a scan rate of 50 mV∙s-1. 

1.3.3: Instrumentation Parameters  

For single particle experiments, three different potentiostats were used; a CHI 650A 

(CHInstruments, San Antonio, TX), a PalmSens4 (BASi, West Lafayette IN), and an NPI VA-
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10X (NPI Electronics, Tamm, Germany. For single particle experiments, three different 

potentiostats were used; a CHI 650A, a PalmSens4, and an NPI VA-10X. Table 1.1 summarizes 

the data collection settings utilized for each potentiostat.  

Initial experiments were performed using a CHI 650 A potentiostat at a sampling interval 

of 0.2 ms. The CHI 650 A is only capable of collecting at this sampling rate for three seconds 

due to limited internal storage and the inability to transfer data in real-time. Instead, data is 

stored first internally then transferred to the computer upon experiment completion, which takes 

approximately 15 seconds. During this time, the cell is at open circuit potential and undisturbed. 

Using repetitive runs, the next experiment began automatically upon data transfer completion. 

Thus, collection of 60 s of data at three-second intervals actually occurs over ~320 s. 

The experiments were repeated using a PalmSens4 and an NPI VA-10x. The PalmSens4 

sampling rate was half that of the CHI but performed chronoamperometry for 10 s and needed 

only ~5 s for data transfer upon experiment completion, improving the collection of 60 seconds 

of data to occur over ~110 s. The NPI VA-10x transferred the data in real-time, thus allowing for 

more in-depth analysis of the relationship between particle, electrolyte, and electrode. For each 

instrument, at least 20 consecutive CAs were performed at 450 mV and 650 mV, and the times at 

which oxidation began was charted and compared.  

1.4 Results and Discussion 

1.4.1: Investigating oxidation frequency over individual chronoamperograms 

 The LSV contained a stripping peak at 150 mV (Figure 1.1), indicating oxidation of the 

drop-cast silver. To promote oxidation upon single particle interaction, 450 mV and 650 mV 

were chosen as the experimental potentials. KCl was chosen because it has been previously 

reported to allow for complete oxidation of C-AgNPs 26, 36 During the initial experiments, 40 nm 
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PEG-AgNPs in 20 mM KCl were oxidized using the CHI 650 A and a 10 µm platinum working 

electrode, it was noted that most anodic spikes occurred during the first second of the three-

second CA, leading to the suspicion of a Cottrell-like behavior. Figure 1.2 combines the time at 

which oxidation began for each particle during 200 three-second chronoamperometric 

measurements. Approximately 60% of the particles were oxidized during the first second of each 

three-second CA, and the remaining ~40% occurred during the last 2/3 of the CAs. These initial 

experiments suggested that a Fickian-like model was indeed occurring as previously reported.37 

The oxidation frequency vs t-1/2 was plotted to further investigate the applicability of the Cottrell 

equation to destructive oxidative analysis of silver nanoparticles (Figure 1.3, left). The Cottrell 

Equation (1.2) was modified to account for the frequency of single particle oxidation (Equation 

1.3) where C‡ represents particles per cm3 instead of moles per cm3, represented by C* in the 

original Cottrell equation. 

 i(t)= 
nFAD

1
2⁄
C*

π
1

2⁄
t
1

2⁄
   (1.2) 

 ƒ
SPO

= 
AD

1
2⁄
C‡

π
1

2⁄
t
1

2⁄
   (1.3) 

The diffusion coefficient of the 40 nm AgNSs estimated by the Stokes-Einstein equation was 

8x10-8 cm2∙s-1. Because data from multiple CAs was combined, the slope was divided by the total 

number of CAs performed to provide a normalized average of the diffusion coefficient for the 

total data set. Analysis of the slope of Figure 1.3 (a) resulted in a diffusion coefficient of 2x10-6 

cm2∙s-1, a 2,400% error.  

The experiments repeated using a PalmSens4 and 10 μm diameter gold working electrode 

are plotted in Figure1.4 (right), and the anticipated slope is indicated by the dashed line. Analysis 

resulted in a diffusion coefficient of 4x10-7 cm2∙s-1, a slightly improved percent error of 400%. 
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Although several groups of experiments performed with both instruments showed a Cottrellian-

like relationship, the large diffusion coefficients, coupled with the statistically different results 

from the two instruments, indicated that an unaccounted variable remained. The primary 

difference between the two instruments was the amount of time between each CA. The 

PalmSens4 began the subsequent CA experiments approximately 3x faster than the CHI, and the 

estimated diffusion coefficient was 5 times smaller. This indicates that particles could be sticking 

to the electrode surface during the data transfer time, which would cause C‡
 at the electrode 

surface to be larger than the assumed C‡ of the bulk solution. Furthermore, the sampling interval 

of the PalmSens4 per CA was half that of the CHI 650A, which could contribute to the scaling 

discrepancy of 3:5.  

Oxidation of PEG-AgNPs in 2 mM, 50 mM, and 100 mM KCl was also performed using 

the PalmSens4 to investigate the effect of electrolyte concentration on Cottrell-like relationship, 

and to investigate the possibility of counter-ion limitation. Figure 1.4 depicts 10 consecutive CAs 

at each electrolyte concentration under otherwise identical experimental conditions. Using 2 mM 

KCl, no oxidative events were observed, though 2M is an order of magnitude larger than the 

estimated localized Ag+ concentration. Using 50 mM KCl, the apparent Cottrellian relationship 

was present, as with the 20 mM KCl. However, the relationship was non-existent when 100 mM 

KCl was used. There were also more oxidative events in the 100 mM KCl, indicating that 

oxidation can occur more easily in the higher electrolyte concentrations.  

 To overcome temporal resolution limitations, subsequent experiments in 20 mM KCl 

were performed using an NPI VA-10x voltage amplifier coupled to the NanoDAQ2, an analog-

to-digital converter and potentiostat built at Ruhr Universität Bochum by Kannasoot 

Kanokkanchana in the lab of Dr. Professor Kristina Tschulik. This instrumentation allowed for a 
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more accurate depiction of the real-time behavior of particles in a suspension. For these 

experiments, citrate capped particles were first used to eliminate the additional oxidation barrier 

incurred from a polymer capping ligand, and then PVP capped particles were employed to 

observe if particles of both capping ligands followed similar trends. PEG-capped particles were 

unfortunately unavailable at the time these experiments were performed. At time t = 0 of the first 

chronoamperogram, the concentration of both the particles and electrolyte at the electrode 

surface (x = 0) is the same as that of the bulk suspension. To let C0 of the electrolyte to 

equilibrate with Cbulk, there was a 2 second pause between each CA. 

 The NPI VA-10x is incapable of holding an open circuit, which was automatically 

maintained by the previously discussed potentiostats, during the data transfer time. Instead, the 

potential automatically switched to 110 mV after the programmed chronoamperometric 

measurement was complete. 110 mV was chosen because a cyclic voltammogram (CV) of 

particles which have been drop-cast onto a macrodisk electrode indicates that no oxidation or 

reduction occurs at this potential for all used electrolytes. At this time, it is unclear if the 

presence of an applied potential during the instrument quiet time could prevent the adsorption of 

particles (citrate or polymer capped) to the electrode.  

 Experiments using the NPI reveal a different pattern of oxidation from the experiments 

that performed using the CHI 650A and PalmSens4, as shown in Figure 1.5. The oxidative spikes 

occurred in a more steady-state pattern throughout the entire CA, as opposed the previously 

observed larger number of spikes at the beginning of the CA. This confirms the suspicion that 

some particles adsorbed to the electrode surface between subsequent chronoamperograms of 

earlier experiments, and that the initially observed pattern of oxidation was misleading. Instead, 

the primary contributors to oxidation patterns are electrode fouling and particle agglomeration, 
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and a Cottrellian-like relationship does not exist for pM concentrations of particles in mM 

concentrations of electrolyte when temporal resolution is sufficient. It is hypothesized that the 

observed Cottrellian-like relationship was due to a “preconcentration” of the particles at the 

electrode during the data transfer time. This opens the opportunity for a concentration gradient, 

which then allows for oxidation to occur with a t-1/2 relationship. Since the concentration gradient 

is not formed solely due to the particles’ diffusion coefficients, the Cottrell model is invalid for 

the analysis of this dependency, as evidenced by the large slopes observed in Figure 1.3. 

1.4.1: Investigating the oxidation frequency over longer time-scales 

Initial experiments in 20 mM KCl revealed that the second series of experiments 

performed at 450 mV contained significantly more spikes than the first (Figure 1.6). For this to 

occur, it was hypothesized that either the particles were losing their capping ligands by 

“walking” on the electrode surface and surrounding insulator, thus making oxidation easier, or 

there was an interaction between the PEG and KCl that allowed for electron tunneling through 

the capping ligand once a sufficient amount of electrolyte was incorporated into the PEG, which 

requires a “soaking time”. To test this hypothesis, experiments were designed to probe the 

“soaking time” hypothesis. One suspension of 20 mM KCl and 30 pM PEG AgNP was tested 

immediately upon creation, and another suspension was allowed to equilibrate for five minutes 

before the insertion of the electrodes.  

Figure 1.7 depicts a histogram of the time at which oxidation began (bin = 0.1 s) for the 

first 10 CAs performed at 450 mV without (top) and with (bottom) the pre-treatment in KCl. 

Without the five-minute pretreatment, only two particles were electrooxidized over the first 10 

ten-second CAs. In contrast, there were nearly 100 particle oxidative events during the first 10 

CAs after the five-minute pretreatment, indicating that there was an interaction between the PEG 
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and KCl which allows for the electron tunneling between the electrode and the particle surface. 

The polymer-gated mechanism of PEG-AgNP oxidation described by Compton et. Al32, 33 was 

based on an increased oxidation frequency with increased exposure to the electrode. However, 

these experiments revealed a higher oxidation frequency with subjection to electrolyte instead of 

exposure to the electrode surface, indicating that an interaction between the electrolyte and 

capping ligand occurs instead of polymer-gating. For oxidation of a particle to occur, electrons 

must travel from the particle to the electrode surface. Electron tunneling generally occurs over 

distances on the order of 10 Å, shorter than the ~6 nm length of 5 kDa PEG.12, 38, 39 

At present, the hypothesis is the addition of electrolyte into the PEG lowers the band-gap 

enough so that PEG allows long-range electron tunneling at 450 and 650 mV.40-42 Long range 

electron tunneling occurs when band-gaps are close enough together to allow the electron 

hopping to occur.41 Band-gaps of PEG have been shown to decrease in the presence of 

electrolyte,43-45 and can be attributed to the presence K+.45 The solubility of PEG mixed with 

salts in methanol,43, 45 aqueous,46-48 biologic,23, 49 and ionic solid electrolytes4, 50 have been 

studied in relation to a variety of applications. These results were consistent across multiple 

experiments performed in 20 mM and 50 mM KCl. When the KCl concentration was increased 

to 100 mM, however, oxidation began immediately upon creation of the suspension. The results 

were also consistent between a 10 μm platinum working electrode and a 10 µm gold working 

electrode, further confirming that interaction with the electrode was not the limiting step in the 

oxidation of PEG-capped AgNP in 20 or 50 mM KCl. The findings of these studies can help 

explain the specific chemistry occurring during the oxidation of PEG-AgNP. 

 Furthermore, analysis of the charge passed during each current spike indicates that at 450 

mV and 650 mV, complete oxidation occurred, with an average size of 32 nm being calculated at 
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both 450 mV and 650 mV for the TEM-calculated 42 nm PEG-AgNP (Table 1.2). The 

possibility of incomplete oxidation or multi-step oxidation must be considered in each system, 13, 

51, 52 and the charge passed during each current spike is a valuable indication of the interaction 

between the electrode and particle during oxidation. Citrate-capped AgNPs in halide electrolytes 

generally fully oxidize in one current spike,26, 35, 36 and the presence of PEG did not alter that 

relationship. 

 In 100 mM KCl, oxidation began during the first 10 CAs at 450 mV, but the oxidation 

frequency increased over the full 40 CAs. The average oxidation frequency in 20 mM KCl 

without “soaking time” was 0.24 ± 0.23 particles∙s-1, whereas the average oxidation frequency in 

100 mM KCl was 1.11 ± 0.66 particles∙s-1. Based on the Stokes-Einstein calculated diffusion 

coefficients and the particle concentrations, 2.8 particles∙s-1 was expected. Furthermore, the total 

number of particles oxidized during each group of 10 CAs is summarized in Table 1.3. Over the 

course of the first 40 CAs, the total number of particles oxidized increased regardless of the 

potential, indicating that even at 100 mM an integration of the electrolyte into the capping ligand 

which increases oxidation frequency occurs.  

1.5 Conclusion 

 Instrument limitations can provide misleading information and must be considered during 

the analysis. PEG-capped AgNPs in 20 mM and 50 mM KCl adsorb to the electrode or 

surrounding insulator of Au and Pt microdisk electrodes, forming a concentration gradient that 

gives the appearance of a t-1/2 dependence of oxidation frequency from CA to CA when given the 

opportunity. Without this opportunity, particle concentrations on the order of pM do not form a 

significant concentration gradient and the oxidation frequency remains, on average, unchanged 

throughout the CA. Furthermore, the presence of even 20 mM KCl is sufficient to prevent 
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oxidation barriers that would occur due to unavailability of chloride. The 20 mM KCl interacts 

with the PEG capping ligand, leading to an increase in oxidation frequency over longer time 

scales. 
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Tables 

Table 1.1: Data collection settings for the three potentiostats 

 

Table 1.2: Electrochemically calculated size and total particles oxidized of 40 nm PEG-AgNP in 

20 mM electrolyte 

 650 mV 750 mV 

Electrolyte Diameter N Diameter  N 

 KCl 31 ± 13.8 nm 315 32 ± 14.6 nm 329 

KNO3 29 ± 3.9 nm 34 32 ± 11.1 nm 27 

 

Table 1.3: Number of particles oxidized in 100 mM KCl during consecutive 10-second CAs 

CA number N Frequency (particles∙s-1) 

1-10 (450 mV) 57 0.57 

11-20 (650 mV) 60 0.60 

21-30 (450 mV) 158 1.58 

31-40 (650 mV) 162 1.62 

Potentiostat Sampling Interval (s) Data Collection Time (s) Data Transfer Time (s) 

CHI 650 A 0.0002 3 ~15 

PalmSens4 0.0004 10 ~5-7 

NPI VA-10x 0.000033 10 Real-time 
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Figures 

 

Figure 1.1: Linear sweep of drop-cast 40 nm PEG-AgNP in KCl at 0.5 V∙s-1, beginning at 0 V 

and ending at 0.8 V vs Ag/AgCl (sat’d KCl). The working electrode was a 2mM Pt disk.   

 

0.0 0.2 0.4 0.6 0.8
-0.5

0.0

0.5

1.0

1.5

C
u
rr

e
n
t 
(m

A
)

Potential (V)



30 

 

 

Figure 1.2: The time at the beginning of oxidation of PEG capped AgNPs in 20 mM electrolyte. 

For each pie chart, an entire experiment of 50 CAs was combined into a single chart.   All 

potentials are vs Ag/AgCl (sat’d KCl) 

 
Figure 1.3: Particles per second vs. time at particle oxidation of 30 pM PEG capped AgNP in 

20 mM KCl at 450 mV and 650 mV vs Ag/AgCl (sat’d KCl). The dashed line indicates the 

theoretical plot for a 30 pM suspension of 40 nm AgNP at a diameter = 10 μm electrode. 
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Figure 1.4: 30 pM PEG-AgNP at 450 mV vs Ag/AgCl (sat’d KCl) at varying KCl 

concentrations. Ten consecutive CAs are overlaid for each plot. 

 

 
Figure 1.5: Time at which oxidation of PVP capped particles began in 41 mM KOH, using the 

NPI VA-10x. Potentials are vs. Ag/AgCl (sat’d KCl). 
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Figure 1.6: Oxidative events during chronoamperograms 1-10 (top) and 31-40 (bottom) of a 

suspension of 40 nm PEG-AgNP in 20 mM KCl. The potential used for plot (a) was 450 mV vs. 

Ag/AgCl (sat’d KCl), and the potential for plot (b) was 650 mV vs Ag/AgCl (sat’d KCl) 

 

 

 Figure 1.7: PEG capped AgNP in 20 mM KCl at 450 mV vs Ag/AgCl (sat’d KCl) immediately 

upon mixture with the KCl (a) and after letting the suspension equilibrate for five minutes (b). 
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Chapter 2: The Salting-In Effect and Silver Particle Oxidation 

2.1: Abstract 

This work explores the connection between salting-in, salting-out, and the oxidation of 

polymer capped silver nanoparticles in a suspension upon contact with an electrode.  

Investigating single particle oxidation is often attached with a trial-and-error approach, requiring 

large amounts of time and money before progress is achieved. Polymer capping ligands can 

prevent electron tunneling between the electrode and particle, and methodically improving the 

probability of oxidation is necessary for timely investigation into the mechanism of single 

particle oxidation. The salting-in and salting-out effect of polyethylene glycol and poly-

vinylpyrrolidone has been previously investigated for biological research, and salting-in 

electrolytes were investigated to determine if they would improve the particle connection to the 

electrode, promoting oxidation. Lithium perchlorate, potassium chloride, and calcium chloride 

were mixed with poly-vinylpyrrolidone capped silver nanoparticles and drop-cast onto an 

electrode, then linear sweep voltammetry was used to determine if salting-in would promote 

oxidation. Although these electrolytes have been shown to salt-in to poly-vinylpyrrolidone, they 

did not promote oxidation of the PVP capped AgNP.  

2.2: Introduction 

 Poly-vinylpyrrolidone (PVP) and other polymers commonly used for capping and 

stabilizing nanoparticles are often used specifically for insulating the particle from its 

surrounding environment.1-4 While protecting the particle from aggregating or agglomerating, 

PVP also inhibits particle oxidation due to the insulating properties.5-7 PVP capped particles have 

been notoriously difficult to oxidize,8 but is required for the synthesis of several shapes including 

cubes and wires.1 Experimentation on PEG and PVP particles revealed that in KCl, the area 
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produced by drop-cast 5kDa PEG capped particles was almost double the area produced by 45 

kDa PVP capped particles. It has been reported that KCl salts in to PEG, but salts out of PVP.7, 

9The larger stripping peak from the PEG-capped AgNP and ability to obtain oxidative single-

particle events after some equilibration time (discussed further in  Chapter 1) were involved in 

the formation of the hypothesis connecting salting-in and particle oxidation Herein, salting-in 

properties were explored as an avenue to overcome the poor electrode contact induced by 

polymers. 

 Salts can either increase (salting-in) or decrease (salting-out) the solubility of proteins or 

polymers in solvents. Frank Hofmeister determined that anions have a larger effect on protein 

solubility than cations, and developed the Hofmeister Series which orders cations and anions in 

the order of greatest to least promotion of protein solubility in water.10 When salting-in occurs, it 

is hypothesized that an ionic interaction occurs between the ion(s) and localized dipoles or lone 

pairs of electrons in the polymer. PVP has been previously investigated to understand its salting-

in and out behaviors, and how they compare to proteins.5, 9 

The interaction of PVP with ions was first investigated using aromatic ions6, 11, 12 and 

later expanded to inorganic salts with salting-in and salting-out studies.7, 9 When salting-in 

occurs, conductivity generally increases.13 Additionally, studies on long-range electron tunneling 

have revealed that incorporation of salts into polymers can lower their band-gaps,14, 15 increasing 

the likelihood of electron tunneling through the ligand. While KCl promotes salting-out of PVP, 

LiCl and CaCl2 were not found to do so.9 Additionally, perchlorates are not found to induce 

salting-out of polymers.16 Using salting-in electrolytes (LiCl and CaCl2) and comparing with a 

salting out electrolyte (KCl), the effect of salting-in on single particle oxidation of polymer-

capped nanoparticles was explored. Chloride-containing electrolytes were chosen due to relative 
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ease of oxidizing silver nanospheres (AgNS) in halides17-19 to minimize the barriers to oxidation.  

2.3: Experimental 

2.3.1: Chemicals and materials 

The 40 nm PVP, citrate, and polyethylene glycol (PEG) capped AgNS were purchased from 

Nanocomposix (San Diego, CA). The LiCl, CaCl2∙2H2O (98%), and KCl (99%) were purchased 

from Sigma Aldrich (St. Louis, MO). The 2 mm Pt working electrode was purchased from CH 

Instruments (Austin, Tx). Polycrystalline diamond suspension polish of 1 μm, 0.05 μm non-

crystallizing alumina polish, nylon PSA polishing cloths, and MasterText2 polishing cloths were 

purchased from Buehler (Lake Bluff, IL). The potentiostat used was a PalmSens4, purchased 

through BASinc. 

2.3.2 Methods 

 Prior to all experiments, the 2 mm Pt electrode was polished per BASi protocol20 in 1 μm 

polycrystalline diamond suspension polish, followed by 0.05 μm non-crystallizing alumina 

polish. To ensure proper electrode function, the electrodes were characterized in 1 mM 

K3Fe(CN)6 via cyclic voltammetry each day that experiments were performed. Next, blank 

chronoamperograms were obtained in the aqueous electrolyte of interest, sans nanoparticles. 

Afterwards, AgNS were mixed to produce a suspension of 50 pM AgNP in 50 mM electrolyte, 

mixed, and immediately drop-cast onto the electrode. The electrode was dried under a nitrogen 

flow in a dark environment. After drying for at least 30 minutes, the electrode was immediately 

immersed into 50 mM electrolyte and linear sweep performed at 25 mV∙s-1. To compare, the 

procedure was also performed using citrate capped AgNS.  

2.4: Results and Discussion 

AgNS capped with citrate, PVP, and PEG were drop-cast onto macrodisk electrodes and 
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analyzed via anodic stripping voltammetry (ASV) to examine the extent of particle oxidation. If 

little-to-no oxidation occurs from drop-cast and subsequent ASV, then single particle oxidation 

in said electrolyte will not occur. Thus, ASV is suitable for rapidly pre-screening electrolytes to 

avoid investing time in electrolytes that will not be sufficient for SPO. Figure 2.1 depicts the 

resulting anodic stripping voltammetry (ASV) of 40 nm PVP, citrate, and PEG capped AgNPs in 

50 mM KCl. For each experiment, the same mass of AgNS (and thus silver) was drop-cast to the 

electrode. As such, the stripping peaks should be of similar area (~10 nC), even considering the 

possibility of uncontrolled detachment of particles from the electrode upon immersion in the 

electrolyte. However, only the citrate capped particles produced a significant stripping peak. The 

PEG capped particles produced a peak of approximately 2% the area of the citrate AgNS peak, 

and the PVP capped particles produced a peak of about 1% of the area produced by the citrate 

capped AgNS. The peak area from the citrate-capped particles, served as a baseline for the 

expected stripping peak size. Though it causes salting-out of PVP, KCl has been shown to cause 

salting-in of PEG.21  

 Figure 2.2 depicts the ASV of 40 nm PVP-AgNP in three different electrolytes – 50 mM 

KCl, LiCl, and CaCl2. By using 50 mM, the extent of oxidation of silver should not be limited by 

availability of the compensatory anion. The salting-in CaCl2 and the salting-out KCl produced 

the same size peaks. Interestingly, ASV in the LiCl solution did not produce a peak at all, 

suggesting that if it does salt in, it does not affect the electrochemical oxidation. One salting in 

electrolyte (CaCl2) and one salting out electrolyte (KCl) produced similarly sized small peaks, 

and another salting in electrolyte (LiCl) not resulting in any particle oxidation indicates that 

salting-in of the cation does not improve electrical conductivity of the capping ligand, and that a 

disconnection between the electrode and the metal core remained. The concentration of the anion 
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in each of these experiments was identical, as was the ionic strength of KCl (salting-out 

electrolyte) and LiCl (salting-in electrolyte). The similar stripping peaks exhibited by KCl 

having an ionic strength of 0.050 M and CaCl2 with an ionic strength of 0.150 M suggest that the 

ionic strength of LiCl (0.05 M) was not the reason for lack of anodic stripping in the LiCl 

electrolyte. 

2.5: Conclusion 

Salting-in electrolytes do not inherently promote electron tunneling through PVP to the AgNS 

core, which is required for particle oxidation upon contact with the electrode. Efforts to improve 

the electrical conductivity of PVP, thus increasing the connection between particle and electrode, 

require further exploration. 
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Figures 

 

Figure 2.1: Anodic stripping voltammetry vs Ag/AgCl (sat’d KCl) at 50 V/s of electrodes 

modified with 40 nm AgNPs having different ligands that were drop cast onto the surface, and 

evaluated in 50 mM KCl 

 

 

Figure 2.2: Anodic stripping voltammetry vs Ag/AgCl (sat’d KCl) at 0.05 V/s of electrodes 

modified with 40 nm PVP-AgNPs in different 50 mM LiCl, KCl, and CaCl2 
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Chapter 3: Investigations into the dependance of the shape silver nanospheres, nanocubes, 

and nanoplates on the signal produced upon single particle oxidation 

3.1 Abstract 

 The shape of a silver nanoparticle (AgNP) greatly affects its physical, catalytic, and 

antimicrobial properties. Oxidation of polyvinyl pyrrolidone capped silver nanospheres (AgNSs), 

nanocubes (AgNCs), and nanoplates (AgNPls) was investigated to gain a deeper understanding 

of their oxidative mechanisms. Upon oxidation of AgNP in potassium nitrate (KNO3), silver 

oxide is formed, which readily catalyzes water oxidation. The resulting signal is a current spike 

followed by a step in the baseline current. The duration, integrated charge, and step height of the 

spike-step were analyzed for each particle shape. The time required to oxidize a particle at an 

anodically polarized electrode was used to probe the effect of particle shape on the mechanism in 

a chloride-free environment. It was discovered that oxidation rate of silver in the particle to silver 

oxide is dependent only on the silver content, not the available surface area, regardless of particle 

shape. Additionally, integration under the current spike indicates that the particles likely oxidized 

primarily to Ag (I) in a mixed-valance complex, even though the Pourbaix diagram indicates 

oxidation to Ag (II) is likely under the experimental conditions. 

3.2 Introduction 

 Nanoparticles are synthesized in a variety of shapes, as differently shaped particles 

exhibit different catalytic abilities,1 antimicrobial properties,2, 3 optical characteristics,4 and other 

behaviors.4-6 The effect of conversion of Ag in the nanoparticle to Ag+ and other oxidative 

products on nanoparticle behavior is of considerable interest. For example, the release of Ag+ has 

been considered as one reason for the toxicity of AgNPs to microorganisms,3, 7, 8 and therefore, 

understanding the oxidation mechanism is vital to control this phenomenon. 
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Managing the growth of a specific silver particle shape is often accomplished with poly-

vinyl pyrrolidone (PVP),9, 10 which also serves as the capping ligand on these particles, thus PVP 

was chosen as the particle capping ligand for the investigation into varying shape. Along with 

using the integrated charge to estimate particle size,11 the peak width and height have been 

previously used to explore the oxidation kinetics.12-15 The step in the baseline current 

immediately following a current spike has been observed,16, 17 but not examined in-depth. 

Herein, the peak integration method of particle sizing is used in attempt to understand the 

chemistry occurring within the current spike and to what degree it can be separated from the 

subsequent step in the background current. Exploration into the effect of particle shape on the 

oxidation kinetics is performed using the total duration of the current spike. 

To understand the effect of particle shape, PVP-capped silver nanospheres, nanocubes, 

and nanoplates were oxidized and the peak widths, heights, and charge passed were analyzed to 

investigate the mechanism of oxidation. It is hypothesized that if particles oxidize from the 

outside-in, a higher surface-area-to-volume ratio would result in a faster oxidation rate. If, 

however, the particles were to have a lattice mismatch large enough to induce breaking of the 

particle, the oxidation rate would not be largely affected by the surface-area-to-volume ratio.   

As discussed in Chapter 2, PVP-capped particles often do not oxidize under the same 

conditions which citrate or even PEG-capped particles oxidize.18 Citrate-capped particles have 

been shown to oxidize at ~350 mV in the presence of potassium nitrate (KNO3) and ~150 mV in 

the presence of potassium chloride.12, 18, 19 However, the oxidation frequency in KNO3 is 

significantly lower than in KCl, even at potentials up to 700 mV.15, 20 Drop-cast and linear sweep 

voltammetry (LSV) is often used to estimate the potential at which single particles will oxidize. 

When a drop-cast and LSV is performed using PVP-capped particles in KNO3 or KCl at 
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potentials in which citrate-capped particles oxidize, only a small stripping peak is observed, 

indicating that much of the silver remains unoxidized and that there is a poor connection between 

the electrode and particle core. Because oxidation of PVP capped particles in halide salts has not 

been successful, KNO3 was explored as a promising electrolyte. Previous work has reported the 

oxidation of citrate capped particles in KNO3,
11

 albeit with slower kinetics than in KCl or other 

halides.14, 15 In halides, insoluble silver halides are formed which promotes the rapid oxidation. 

In contrast, multi-peak oxidation has been observed in nitrate electrolytes, which is generally 

attributed to the formation of Ag+ causing particle repulsion from the electrode.21, 22 Furthermore, 

single particle oxidation is most often explored using citrate as a capping ligand11, 15, 22-24 To 

ensure the observations were in fact due to the shape of the particle without any contribution 

from PVP, citrate capped spheres were also investigated and compared to those of PVP capped 

spheres. 

For these reasons, new experimental procedures compatible with PVP had to be 

developed. Oxidation of PVP capped AgNS, AgNC, and AgNPl was performed in 50 mM KNO3 

at 1500 and 1650 mV. The effect of particle shape on the oxidation kinetics was explored by 

comparing the duration of the current spike for each shape. The integration of the current spike 

revealed the total charge passed, and particle sizes were calculated assuming an electron transfer 

of 1, 10/7, and 2 per atom of Ag oxidized in attempt to understand the chemistry occurring during 

particle oxidation. Finally, the step in the baseline current was evaluated to determine if 

formation of the AgOx species had any correlation with the original particle shape. 

3.3 Experimental 

3.3.1: Chemicals and materials 

 PVP capped AgNPls, PVP capped AgNS, and citrate capped AgNS, were purchased from 
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Nanocomposix (Prague, CZ), and PVP-capped silver nanocubes were synthesized in the lab of 

Dr. Jingyi Chen at the University of Arkansas.25 Figure 3.1 shows an example of a transmission 

electron micrograph of the AgNCs. Agar powder and Potassium nitrate (99.99%) were purchased 

from Sigma Aldrich (Germany). MasterMet2 0.2 μm silica polish and the MasterTex Polishing 

pad were purchased from BASinc (West Lafayette, IN). Ultrapure water with resistance 

measuring 18.2 MΩ was used for the sample preparation. All electrochemical experiments were 

performed using an NPI VA-10X voltage amplifier with frequency booster (NPI Electronic, 

Tamm, Germany) which had been calibrated for low-current high-frequency data collection.26 

The chronoamperograms (CAs) were performed with current sampling at 30,000 points per 

second, and a 5 kHz low pass 8-pole Bessel filter was used. A 10 μm diameter platinum working 

electrode (BASi West Lafayette, IN), a homemade Ag/AgCl (3 M KCl) reference electrode 

equipped with an agar junction, and a platinum wire counter electrode were used. 

 Transmission electron microscopy (TEM) images were captured using a TEM 

microscope (JEOL JEM-1011) with an accelerating voltage of 100 kV. The hydrodynamic 

diameters and zeta potentials of nanoconstructs were determined using a dynamic light scattering 

instrument (Brookhaven ZetaPALS). The concentration of metals was determined using a flame 

atomic absorption spectrometer (GBC 932). UV-vis spectra were taken on a UV-vis 

spectrophotometer (Agilent Cary 50). 

3.3.2 Methods 

3.3.2.1 Electrochemical cell preparation 

 Prior to beginning the first CA for each suspension, the working electrode was polished 

for two minutes in 0.02 μm silica polish following BASi protocol then rinsed in a stream of DI 

water. To remove residual polish, the electrode was then polished in DI water on a fresh 
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MasterTex polishing pad. An agar junction made with 50 mM KNO3 in a pasture pipette was 

placed on the end of the reference electrode to prevent unwanted chloride from entering the 

reaction. Background experiments in 50 mM KNO3 at 1500 and 1650 mV to ensure no cross-

contamination was present, observed by the absence of anodic spikes on the 

chronoamperograms.  

3.3.2.2 Solution preparation 

After confirming the absence of contaminant particles, a total 200 μL suspension of 

AgNPs in electrolyte was prepared in a shortened 1.5 mL Eppendorf centrifuge tube and 

immediately used. The spheres and plates were used immediately from the bottle provided by 

Nanocomposix, but the cubes were purified three times via centrifugation for 10 minutes at 

15,000 rcf on an Eppendorf 5424R centrifuge controlled at 23°C prior to usage because their 

post-synthesis procedure involved only one wash. DI water was used for the re-suspension of the 

pellet after each cleaning. Chronoamperometry (CA) was performed at 1500 mV and 1650 mV 

for 10 s per CA (stepped from 110 mV). Due to the NPI’s inability to hold at open circuit 

potential (OCP), the potential was set to 110 mV after each CA, and one second of data was 

collected at 110 mV prior to the collection at 1500 and 1650 mV.   

3.3.2.2 Signal Processing 

 The peaks were analyzed using Signal Counter. The area integrated was between the 

onset of the current spike (at least three times the magnitude of the background current) and 

when the magnitude of the background noise suddenly changed, indicated by the red line in 

Figure 3.2. The current step was calculated from the y-position at the corresponding beginning 

and ending x-position. Particle size determination via current integration assumed perfect 

geometry in the spheres, cubes, and plates, as well as a silver density of 10.5x106 g∙m3 for each 
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shape. Particle sizes were calculated assuming an electron transfer per Ag atom of n = 1, 10/7, and 

2 and compared to the size indicated by TEM. 

3.4 Results and Discussion 

3.4.1: Oxidation of PVP-capped AgNCs 

Overcoming the barrier to oxidation posed by PVP had to first be achieved. During an 

experiment containing AgNC and 50 mM KNO3 (Figure 3.2), in-situ cleaning of the 10 μm Pt 

working electrode was attempted by cycling the electrode to extremely positive (1500 mV) and 

extremely negative (-300 mV) potentials. These cyclic voltammograms (CVs) revealed that 

oxidative spikes from PVP-capped particles begin appearing at ~1500 mV. CA at 1500 and 1650 

mV was then performed to investigate further.  

 Summarized in Table 3-1, when CA was stepped to 1500 mV the charge passed during 

each event was lower than anticipated for the particle size. Increasing the potential to 1650 mV 

led to an increase in oxidation frequency and allowed for complete particle oxidation under the 

assumption that n is between 1 and 2 per Ag atom. The total charge passed at 1650 mV was 

slightly larger than anticipated for the formation of Ag (I) (Table 3-1), suggesting that there is 

additional chemistry occurring within the integrated current spike; whether that is electron 

transfer beyond n = 1 or concurrent water oxidation atop the newly formed silver oxide is to be 

determined.  

It is known that silver oxide may serve as a catalysis for water oxidation. It has previously 

been hypothesized that the spike-step shape during a single particle impact with the electrode is 

due to the formation of AgOx nanoclusters and water oxidation occurring on the clusters.16, 27 It 

is reasonable to expect that some of the water oxidation also occurs within the milliseconds-long 

current spike that could explain the excess charge under the peak. However, the possibility of 
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forming higher oxidation states of silver cannot be ignored,28 including the possibility of mixed-

valance states in oxysilver nitrate, documented to form an average electron transfer of 11/7 and 

10/7 electrons per atom of Ag.28-30 Furthermore, the Pourbaix diagram indicates the possibility of 

forming Ag (II) at the potentials used.31 To investigate, the electrochemical sizes of the particles 

at 1650 mV were recalculated using number of electrons transferred per Ag atoms as 10/7, and 

2,29, 30 the results of which are summarized in Table 3-2. Without additional characterization of 

the formed product, it is impossible to say definitively what is the true value of n in these 

experiments. The data indicate that the formation of oxysilver complexes is plausible, and that 

formation of Ag(II) (thus AgO) within the current spike is unlikely to be the primary reaction, 

based on the calculated size from the cubes. 

 A t-test performed comparing the electrochemical data and TEM data is summarized in 

Table 3-3. All electrochemically determined sizes of the cubes were statistically different from 

the TEM calculated value of 34 ± 3 nm calculated at the 95% confidence level. At a 99% 

confidence level, the sizes calculated from n = 10/7 were statistically the same as sizing from 

TEM. Careful interpretation of the data is needed because the calculated size distributions are not 

completely Gaussian in nature. Additionally, the estimation of metal content from the TEM 

assumes that the AgNCs are perfect cubes. However, Figure 3.1 shows that the cubes have 

rounded corners and not all have the same length on all six sides. Thus, further considerations 

must be made when determining if the electrochemical data matches the TEM data. Rather, an 

analysis of the calculated t-values and percent errors in Table 3-4 indicate that a value of n = 2 is 

least likely and n = 10/7 is most likely. However, the possibility of n = 2 paired with incomplete 

oxidation within the current spike cannot be omitted using only the present data. 
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3.4.2: Analysis of the oxidative signal produced by citrate and PVP capped particles 

To determine if the initial current spike was due primarily to the direct oxidation of the 

particle, the current spike was integrated and particle size was calculated, assuming the 

formation of Ag(I). When the current step is large, the opportunity for water oxidation contribute 

to some of the current in the prescribed area increases. Additionally, larger particles produced a 

larger step in the background current - supporting a hypothesis proposed Willets and co-

workers17 which states that oxidation of AgNPs in KNO3 at large potentials results in the 

formation of AgOx nanoclusters. A larger step in the current response can only be caused by a 

larger catalytic surface area. It is reasonable to assume that larger particles would form more 

nanoclusters, leading to a larger catalytic surface area.  

Though pH was not controlled during these experiments, the local pH was estimated from 

the electrode size and average current step height to be around 6.8 nA. The Pourbaix diagram 

indicates the formation of AgO under these experimental conditions.32 Integration under the 

spike indicated that Ag (I) was the primary product formed within the current spike, contrary to 

the Ag (II) indicated by the Pourbaix diagram.  It is hypothetically possible that Ag (I) is initially 

formed. Then, once the AgOx nanoclusters form and the CA is within the step-portion of the 

region, the higher-ordered complexes are formed. Regardless of what occurs after the current 

spike, the data indicate that the PVP-capped particles are fully oxidized in the initial spike in 

current. Thus, it is the features of the spike that were used (i.e., spike width and quantity of 

charge under the spike) to investigate further the effects of particle shape on the oxidation. 

3.4.3: Effect of particle shape on the time required for particle oxidation 

Several research groups have shown that the observing the total duration or maximum 

height of current spikes is a powerful tool for analyzing the kinetics of single particle oxidation 
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when other conditions remain constant and the potential is set so that diffusion is not a limiting 

factor and the peak shape is properly preserved.12, 15, 33 Additionally, the peak duration can also 

be affected by multi-step oxidation, wherein the particle partially or completely loses and 

restores contact with the electrode at a rapid pace, often faster than the sampling interval of the 

instrumentation.22, 24, 34   

The peak durations for PVP capped particles at 1500 and 1650 mV were evaluated to 

determine how potential affects the oxidation kinetics. As the potential increased, the average 

peak duration decreased. At 1650 mV, the peak duration was 0.95 ± 0.450 ms and 1.32 ± 0.751 

ms for the spheres and cubes, respectively. At 1500 mV the peak durations were slightly longer, 

at 1.20 ± 0.73 and 2.38 ± 1.69 ms for the spheres and cubes, respectively. Previous work by 

Tschulik and co-workers report an increase in peak duration of oxidized citrate capped AgNPs 

with an increase in potential between 500 mV and 660 mV in KNO3 and absence of chloride. 

They attribute this behavior to the release of Ag+ that causes repulsion of the particle from the 

electrode surface that results in a rapid multi-step oxidation.15 In contrast, a decrease in peak 

duration with an increase potential between 1500 and 1650 mV in the same electrolyte was 

observed here. This result further supports the hypothesis that silver oxide species form rapidly 

under these conditions, diminishing the availability of Ag+ and repulsion from the electrode 

surface, thereby decreasing the occurrence of multi-part oxidations and allowing more complete 

oxidation in a single event. This is parallel with previous work performed in KCl solutions in 

which solid AgCl is rapidly formed, and increasing chloride concentration decreases the time 

required for particle oxidation.33, 35, 36 With this “rapid reaction mechanism” at large oxidizing 

potentials, spike widths were analyzed to determine if changing the particle shape influences the 

duration of the anodic spike in 50 mM KNO3, providing insight into the oxidation mechanism. 
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Equation 3.112 relates the anticipated peak duration, tmax, that can be measured as the 

width at the spike’s base, to the radius of a AgNS at overpotentials large enough that the 

dissolution is solubility limited,22, 37  where ro represents the particle’s radius, ρ represents the 

atomic density, NA is Avogadro’s number, D is the diffusion coefficient, and Cmax is the 

maximum solubility-allowed concentration. 

  (3.1) 

Equation 3.1 can be reconfigured to relate tmax to the integrated charge, Q, under an anodic spike 

by substituting Equation 3.2 for r0. Equation 3.2 is obtained by assuming the particle is a perfect 

sphere of volume 4/3  ro
3 and that n = 1.11  

  (3.2) 

  

The resulting relationship in Equation 3.3 shows that tmax is proportional to Q2/3,  

  (3.3) 

where a is a generic factor based on the particle geometry, Q the integrated charge of a single 

spike, ρ2 the atomic density of silver, D the diffusion coefficient of silver oxide, NA Avogadro’s 

number, and Cmax the saturation concentration of silver oxide. Comparing Equations 3.2 and 3.4, 

it is apparent that solving for r2 from the equation for radius of a sphere and l2 of a cube would 

result in different equations for tmax. 

  (3.4) 
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To investigate the effect of particle shape, six types of particles were oxidized at 1650 

mV. Citrate-capped 30 nm, 50 nm, and 70 nm AgNS, and PVP-capped 30 nm AgNS, 34 nm 

AgNCs, and ~ 53 nm AgNPls were analyzed and compared. Figure 3.4 depicts the peak width 

for each particle type vs charge, Q2/3, for all particles (a), the PVP-capped particles (b), and the 

citrate-capped particles (c). The degree of linearity exhibited by the PVP-capped particles of 

differing shapes demonstrates that at 1650 mV, the peak duration is dependent on the total 

charge passed during oxidation, independent of the particle shape, meaning that a in Equation 

3.3 is equal to 1. This suggests that shape and surface area are less important in the mechanism 

of oxidation than total charge at 1650 mV. The high degree of linearity also further supports the 

hypothesis that water oxidation is less likely to occur within the spike of a PVP-capped particle 

than a citrate-capped particle. As a result, oxidation of PVP-capped particles at the electrode 

surface is easier to reproduce. It is suggested that the rapid formation of AgOx particles and 

subsequent water oxidation occurring during the ~1 ms current spike contributes to the deviation 

from linearity exhibited by the citrate capped AgNPs, as other groups have suggested that the 

pattern of new AgOx nanocluster formation is poorly controlled.17 To ensure the observed 

relationship was real and not due to instrument limitations, the NPI VA-10X NanoDAQ2 

combination was characterized with a function generator to ensure the response time of the 

instrument matched the program signal duration from the function generator.26 

The peak height, duration, and charge for each particle oxidized at 1650 mV is 

summarized in Table 3-3. In general, as the particle size increased, both the peak height and peak 

width increased. It has been hypothesized previously that surface area is a factor in the time 

needed for particle oxidation. Equation 3.4 having identical values for a indicates that shape and 

surface area are less important in the mechanism of oxidation than total charge at 1650 mV. To 
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investigate further, the relationship between the surface-area-to-volume ratio and peak height-to-

area ratio of the particles was plotted (Figure 3.5). The spheres and cubes exhibit a strong linear 

relationship, which is expected because the surface-area-to-volume relationship is proportional to 

charge for these shapes. 

In contrast, the data from analysis of the plates did not on the same line as the other 

particles.  The nanoplates have a significantly different surface-area-to-volume ratio compared to 

the other particles. If access to counter ions were the factor controlling particle oxidation rate at 

1650 mV, then the spikes produced upon nanoplate oxidation would contain a much larger peak 

height and much smaller peak width. The plates contained the smallest average peak width at 

0.65 ms, compared to that for all particle groups. Because the sampling interval was ~19x faster 

than the average peak width, instrument limitation was not the cause of this deviation and the 

relationship is assumed to be genuine. This further supports the substitution of Q2/3 into the tmax 

relationship, regardless of particle shape, as the linear relationship with charge passed is not an 

instrument artifact.  

3.4.4: Analysis of the step in the background current 

 The separate analysis of the current spike formed initially upon oxidation and the 

increase in step height further supports this hypothesis of AgOx nanoclusters forming 

immediately after the production of Ag+ has been previously described by the Willetts group. As 

silver content increased, the step height produced immediately after particle oxidation also 

increased. Figure 3.5 depicts the area normalized step heights, and suggests the size of the step 

height was generally related to the amount of silver oxidized. Assuming that the step height is 

primarily caused by water oxidation catalyzed by the newly formed AgOx, larger AgNPs are 

likely to form more AgOx nanoclusters. The process Figure 3.3 shows that the current within the 
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step attempts to approach the baseline immediately prior to the spike, not quite reaching its 

original projected current. The drift towards the original baseline is attributed to the subsequent 

agglomeration of AgOx nanoclusters decreasing the active surface area for water oxidation 

catalysis.  

To determine if this increase was directly related to the amount of Ag oxidized, the ratio 

of step height:charge passed was plotted (Figure 3.6). Interestingly, the greater the surface-area-

to-volume ratio, the larger the step height in proportion to the total charge passed within the 

current spike. Additionally, the 30 nm spheres and 34 nm cubes have very similar histogram 

shapes (Figure 3.7). These particles contain on average similar surface-area-to-volume ratios, but 

different amounts of silver. This suggests that the random formation of AgOx nanoclusters after 

particle oxidation is influenced by the surface area available during the initial particle oxidation. 

3.5 Conclusion 

Various citrate and PVP capped particles were analyzed via single particle oxidation in 

KNO3 at very large over potentials (1500 and 1650 mV). Analysis of the anodic peaks produced 

by each particle group indicated that within the current spike, the primary electrochemical 

reaction involves the oxidation of Ag to Ag(I), with the possibility of some higher-ordered AgOx 

complexes and catalysis of water occurring during the current spike. The time for particle 

oxidation was dependent on the total charge passed during oxidation, independent of the particle 

shape, indicating that the available surface area has little-to-no influence on the reaction kinetics 

at 1650 mV. The step height in baseline current immediately upon particle oxidation is due to 

water oxidation on AgOx nanoclusters, and larger particles form more active AgOx sites for 

catalysis. The current of the step diminishes with time, suggesting a decrease in water oxidation 

that might be explained by subsequent AgOx aggregation. Additionally, the ratio of the step 



54 

 

height to the charge passed during particle oxidation is proportional to the surface-area-to-

volume ratio of the particles.  
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Tables 

Table 3.1: Sizing of capped AgNP in 50 mM KNO3 at 1500 mV and 1650 mV, assuming 

particles oxidize to Ag(I). (± = one standard deviation, N = 30-126). 

Particle TEM 1500 mV 1650 mV 

Citrate Spheresa 51 ± 6 nm na 57 ± 10.8 nm 

Citrate Spheresa 29 ± 3 nm na 39 ± 9.5 nm 

Citrate Spheresa 73 ± 8 nm 27 ± 3.4 nm 83 ± 15.0 nm 

PVP Spheresa 29 ± 3 nm 25 nm ± 7.2 35 ± 7.0 nm 

PVP Cubesb 34 ± 3 nm 27 nm ± 5.4 38 ± 6.2 nm 

a Sizes for spheres are expressed in diameter. 

b Sizes for cubes are expressed in length of a side. 
 

Table 3.2: Calculated sizes of AgNPs analyzed in 50 mM KNO3 at 1650 mV, and assuming 

different numbers of electrons transferred per silver atom. (± = one standard deviation, N = 30-

126). 

Size from 

TEM (nm) 

Particle 

Shape and 

Ligand 

1650 mV (n=1) 1650 (n = 10/7) 1650 (n = 2) 

51 ± 6  C-spheresa 57 ± 10.8 nm 51 ± 10 nm 45 ± 9 nm 

29 ± 3  C-spheres a 39 ± 9.5 nm 35 ± 8 nm 31 ± 7 nm 

73 ± 8  C-spheres a 83 ± 15.0 nm 74 ± 13 nm 66 ± 16 nm 

29 ± 3  PVP spheres a 35 ± 7.0 nm 31 ± 5 nm 28 ± 6 nm 

34 ± 3  PVP Cubesb 38 ± 6.2 nm 32 ± 5 nm 29 ± 5 nm 

a Sizes for spheres are expressed in diameter. 

b Sizes for cubes are expressed in length of a side. 
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Table 3.3: Peak heights and durations for particles in 50 mM KNO3 (± = one standard deviation, 

N = 30-126). 

Particle 

Shape with 

Size from 

TEM (ligand) 

Surface 

area:volume  

Peak 

Height 

(nA) 

Peak 

Duration 

(ms) 

Charge 

(pC) 

peak height / 

charge (s-1) 

29 nm spheres 

(citrate) 

0.21 

 

1.21 ±0.65 1.03 ±0.41 0.34 ± 0.25 4068.6 ± 1360 

50 nm spheres 

(citrate) 

0.12 2.12 ± 1.33 2.62 ± 1.29 1.04 ± 0.63 2408.0 ± 1258.2 

70 nm spheres 

(citrate) 

0.09 5.03 ± 2.53 3.94 ± 3.37 3.08 ± 1.69 1745.2 ± 705.2 

 

29 nm spheres 

(PVP) 

0.21 0.79 ±0.37 0.94 ± 0.45 0.24 ± 0.24 3726.9 ± 1330.6 

34 nm cubes 

(PVP) 

0.18 1.39 ±0.79 1.32 ± 0.75 0.46 ± 2.65 3159.4 ± 1318 

Plates (PVP) 

 

~1.8 0.37 ± 0.24 0.65 ± 0.41 0.09 ± 0.21 6773.9 ± 3228.2 

 

 

Table 3.4: Calculated t-values for number of electrons transferred per Ag atom, n, for 

experiments at 1650 mV in KNO3. 

nelectrons spooled x̄ 1 % error x̄ 1- x̄ 2 tcalc 

1 5.34 38 11.8 4 4.07 

10/7 4.79 32 -5.9 -2 2.27 

11/7 4.67 31 -8.8 -3 3.49 

2 4.32 29 -14.7 -5 6.29 
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Figures 

 

Figure 3.1: TEM of PVP-capped AgNCs  

 

Figure 3.2: In-situ cleaning of the 10 μm Pt working electrode via cyclic voltammetry in 50 mM 

KNO3 from 0.6 V to 1.5V, then to -0.3V and back to 1.5 V vs Ag/AgCl (sat’d KCl). The scan 

rate was 0.05 V∙s-1. 
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Figure 3.3: CA of a solution containing ~20 pM AgNCs in 50 mM KNO3 at 1650 mV vs 

Ag/AgCl (sat’d KCl). The step in the baseline current is indicated by a red line. 

 

Figure 3.4: Charge vs. time of oxidation of (a) all particles, (b) all PVP-capped particles, and (c) 

all citrate-capped particles in 50 mM KNO3 at 1650 mV. The shapes of the markers on the plots 

represent the particle shapes. Plot (a) combines the data from plots (b) and (c). 
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Figure 3.5: Step height divided by peak area of PVP AgNC and citrate AgNS at 1650 mV vs 

Ag/AgCl (sat’d KCl) in 50 mM KNO3. 

 

 

Figure 3.6: The left plot is of the raw data. The plot on the right includes the least squares linear 

regression for the spheres and cubes, to show where the data for plates would land if they 

followed the same dependence. 
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Figure 3.7: Peak duration of PVP capped spheres (gray) and cubes (blue) in 50 mM KNO3. At 

1650 mV, the spheres peak duration was 0.95 ± 0.450 ms for the spheres and 1.32 ± 0.751 ms for 

the cubes. All potentials are vs Ag/AgCl (sat’d KCl). 
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Chapter 4: Obtaining single particle oxidation of polymer-capped particles at lower 

potentials  

4.1 Abstract 

 The single particle oxidations of poly-vinyl pyrrolidone (PVP) capped silver 

nanoparticles at potentials lower than 1 V vs. Ag/AgCl (sat’d KCl) were obtained in an alkaline 

environment (pH ~ 12.5). The shape and area of the current spike produced upon oxidation were 

analyzed to estimate the oxidation state of silver formed within the current spike. The previously 

observed oxidation of polyethylene glycol (PEG)-capped particles after they conditioned in KCl 

has not been effective for PVP capped particles. Using 50 mM KOH, the PVP-capped particles 

oxidized at the electrode immediately after mixing. The results were compared to those obtained 

from citrate-capped particles to determine the contribution of the polymer capping ligand to the 

kinetic barrier to oxidation compared to those from less-protective citrate-capped particles. It 

was determined that the shape of the particle has no effect on the rate of particle oxidation under 

these alkaline conditions. 

4.2 Introduction 

Silver nanomaterials are of interest because they are present in more commercially-

available products than any other nanomaterial,1 usually for their antimicrobial properties.2, 3 

Furthermore, they are ideal candidates for catalytic applications.4-6 The increasing usage of silver 

nanoparticles (AgNPs) in commercial1 and industrial7, 8 applications has created a further need to 

understand the mechanism of silver oxidation. Predicting the behaviors of nanoparticles is 

complex because their properties change as their morphologies (size and shape)9-13 and capping 

ligands14-16 change. Further complicating the matter, metals in the nanophase often exhibit 

different properties than in the bulk phase. 17-19 
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Due to the heterogenous nature of nanoparticle suspension, single particle 

characterization provides vital detail that bulk analysis overlooks. Single particle electrochemical 

oxidation of nanoparticles in suspension has been used to investigate the AgNP dissolution 

process.20-25 However, most of the single particle electrochemistry studies have focused on silver 

nanospheres (AgNSs) capped with citrate due to the relative simplicity of the synthesis and 

therefore the availability of this particle shape and capping agent. Tailoring the shape of the 

particle can enhance its performance for specific jobs while minimizing unwanted side effects.26 

Controlling the shape of the particle, for example, can increase the catalytic properties towards 

the hydrogen evolution and oxygen reduction reactions.5, 27, 28 Silver nanocubes (AgNCs) and 

silver nanoplates (AgNPls),6, 11, 29  can exhibit enhanced electrocatalytic activity when compared 

to AgNSs5, 6 while simultaneously being less toxic to their surrounding environment.11 However, 

there are fewer investigations with non-spherical than spherical nanoparticles largely because of 

the greater complexity of the synthesis and the high cost of purchasing from a manufacturer. 

Polymer capping ligands can stabilize the particle suspension, and the polymer be chosen 

for a specific function. Investigating the effect of particle shape often involves using ligands 

capped with PVP due to its required presence in the synthesis process.30, 31 Citrate and 

polyethylene glycol (PEG) capped particles electrochemically oxidize in the presence of 

potassium chloride (KCl).32-34 However, PVP-capped AgNPs (PVP-AgNPs) are notoriously 

difficult to electrochemically oxidize.15 This lack of reactivity is a hindrance in investigating 

anodic processes of single AgNPs, thus alternative conditions in which PVP-capped AgNPs can 

also be studied using the single entity electrochemical method must be explored. An impediment 

to oxidation through the PVP is the inability of surrounding ions to compensate for the change in 

charge upon formation of silver ions. We propose that because potassium hydroxide (KOH) is 
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known to increase the conductivity of PVP,35 it also serves as a suitable electrolyte for single 

particle oxidation of PVP-AgNPs within an accessible electrode potential window. It also stands 

to reason that the kinetics of the single oxidation process will also change with the alkaline 

conditions. Thus, a dependence on different particle shapes is of interest.  Other chemical 

processes, such as water oxidation, whose potential depends on pH, are expected to play a role in 

the single AgNP oxidations under alkaline conditions, as well.36-39  

Herein we explore the signals produced by single particle oxidation of PVP capped 

AgNCs, AgNPls, and AgNS to further understand the oxidative processes in alkaline solution, 

which is expected to of nano silver to silver oxides (AgOx). The peak integration, height, and 

duration for each shape were dissected and compared to each other to explore the effect of 

particle shape of on the shape of the signal, as well as the chemistry occurring during AgNP 

oxidation under alkaline conditions. The results were then compared to citrate capped AgNS (C-

AgNS) to ensure the observations were truly due to shape and not the added capping ligand. 

4.3: Experimental 

4.3.1: Chemicals and Materials 

The 40 nm PVP-AgNS and citrate-AgNS were purchased from Nanocomposix (San Diego, CA). 

The PVP-AgNC and PVP-AgNPl were synthesized by the group of Dr. Jingyi Chen (University 

of Arkansas).40, 41 KOH pellets were of ACS grade and purchased from Macron. Agar powder 

was purchased from Alfa Aesar (Ward Hill, MA). Working electrodes with a diameter of 2 mm 

Pt, 10 μm Pt, and 10 μm Au were purchased from CHInstruments (San Antonio, Tx). MasterTex 

polishing pads, 0.05 μm aluminum oxide polish, and a 10 μm Pt working electrode were 

purchased from BASi (West Lafayette, IN). A PalmSens4 purchased from BASinc was used for 
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drop-cast linear sweep experiments, an NPI VA-10x (Tamm, Germany) paired with NanoDaq2 

was used for single particle chronoamperometric (CA) experiments.  

4.3.2: Experimental Procedures 

4.3.2.1 Drop-cast studies 

Drop-cast and linear sweep voltammetry was performed on a freshly polished 2 mm Pt 

working electrode, Pt flag counter electrode, and homemade Ag/AgCl (Sat’d KCl) reference 

electrode equipped with a conductive agar junction. Initially, a 2 μL aliquot containing 50 pM 

PVP-AgNP and 35 mM KOH was drop-cast onto the 2 mm electrode and dried under a nitrogen 

flow at room temperature. Once visibly dry after 30 minutes passed, the electrode was immersed 

into an electrochemical cell containing 35 mM KOH and cyclic voltammetry (CV) was 

performed at 0.025 V∙s-1 from 0 V to 1 V, then from 1V to -0.3 V, then to 0 V. Separate 

experiments were performed with a 2 μL aliquot containing 50 pM PVP AgNP in 50 mM KCl, 

and one with a 2 μL aliquot containing 50 pM C-AgNS in 50 mM KOH.  

4.3.2.2 Single Particle Oxidation Experiments 

Single particle experiments were performed using a freshly diluted particle mixture of 50 

pM PVP capped particles in 50 mM KOH. CAs were performed at 0.700 V, 0.900 V, and 

1.000 V for 10 seconds, and 10 runs were performed at each potential. Experiments were all 

performed using a freshly cleaned 10 μm Pt microdisk electrode to maximize the probability of 

particle oxidation upon electrode contact. To ensure there would be no current spikes from a 

previously made particle suspension or experiment, CAs were collected in 50 mM KOH alone 

(without nanoparticles) prior to all experiments. The experiment was only allowed to proceed if 

no stray current spikes were observed during these blank experiments. If stray spikes occurred, 

the working electrode was re-polished and the counter electrode was scrubbed with a kimwipe 
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before repeating the CAs in fresh KOH. 

4.3.2.2 Analysis of Single Particle Anodic Spikes 

All current spikes with a magnitude of at least three times the background current were 

integrated, chosen manually. The current spike was determined to end when it reached the 

extrapolated baseline level. If a step in current was present as observed1.0 V in KOH and 1.650 

V in KNO3
42, the current spike was determined to have ended when the baseline noise returned 

to the level observed prior to the spike in current. 

4.4: Results and Discussion 

4.4.1. Drop-cast AgNSs in KOH and KCl 

 Drop-cast and anodic stripping voltammetry was used to quickly assess the suitability of 

an electrolyte. Figure 4.1 compares CV responses in 50 mM KOH and 50 mM KCl for drop-cast 

films of PVP-capped and citrate-capped AgNS. The drop-cast PVP-AgNSs in KCl did not result 

in a stripping peak for the silver metal, consistent with previous observations. The drop-cast 

PVP-AgNSs in KOH showed a small stripping peak at ~0.3 V and a larger peak at ~0.7 V, 

indicating oxidation of the particles. Prior work on the oxidation of silver electrodes in KOH has 

revealed that during CV, Ag (II) forms through a multi-step mechanism, first forming Ag (I) 

before proceeding to Ag (II),36, 43, 44 matching the observations from drop-cast AgNS.  

In the initial anodic sweep for the drop-cast C-AgNS, the formation of Ag (I) occurs at 

0.289 V followed by the formation of Ag (II) at 0.810 V During the following cathodic sweep 

Ag (II) is first reduced to Ag (I) at 0.468 V, and then Ag (I) is further reduced to Ag at 0.017 V. 

For the PVP capped particles, the initial oxidation to Ag (I) occurred at 0.383 V, nearly 0.10 V 

higher than the C-AgNS. However, the formation of Ag (II) occurred at 0.714 V, a potential 

nearly 0.10 V lower than the C-AgNS. The subsequent reduction of Ag (II) to Ag (I) occurred at 
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0.407 V, then was further reduced to Ag at 0.107 V. All potentials are vs. a Ag/AgCl (sat’d 

KCL) reference electrode. Opposite of the forward sweep, the reduction of Ag (II) for PVP-

AgNS occurred at a lower potential than the C-AgNS, but the reduction of Ag (I) occurred at a 

larger potential. It has been documented that formation of Ag (II) is slower than formation of Ag 

(I).45-47 The results suggest that the presence of PVP increases the rate, possibly due to localized 

trapping of hydroxide within the polymer. The same appears to occur during the formation of Ag 

from Ag (I). 

4.4.2. Characteristics of single particle oxidation of AgNSs, AgNPs, and AgNCs in KOH  

Figure 4.3 depicts representative examples of single particle oxidations for the different 

PVP-capped AgNPs in 50 mM KOH and stepped to 900 mV. Particles containing more silver 

produce larger current spikes. Anodic peaks appear in the first full CA response for a given 

experiment, as in Figure 4.4, immediately upon immersion of the microelectrode and the 

oxidation frequency remains overall stable, indicated by the overlay of the first and fifth CA run. 

This behavior is different than our experience with another polymer ligand, PEG-capped AgNSs 

in KCl solution, that required time to equilibrate before the first single particle oxidations were 

observed in Chapter 2. Presently, the hypothesis is that the presence of hydroxide allows electron 

tunneling through PVP more rapidly than the presence of KCl allows electron tunneling through 

citrate. Furthermore, the average magnitude of the peak increases with increased applied 

potential (Figure 4.5) 

4.4.3. Quantitative analysis of single particle oxidation of AgNSs, AgNPs, and AgNCs in KOH  

To determine the size of the particle from integration of the current (the charge) under the 

spike from a single particle oxidation requires knowing the geometry of the particle and the 

number of electrons transferred per atom. Although the cyclic voltammogram in Figure 4.1. 
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exhibits two distinct anodic peaks in the anodic sweep before reaching 0.900 V, which suggests 

the formation of Ag(I) and then Ag (II), the particle dimensions were calculated as if a single-

electron transfer per silver atom (n = 1) occurs within the current spike. Other investigators have 

hypothesized that the formation of Ag (II) occurs in a multistep process, even at high potentials. 

However, higher potentials increase the reaction rate and the initial formation of Ag (I) above 

appx. 0.800 V was previously unresolved.43 Results of electrochemical sizing assuming 

oxidation to Ag(I), summarized in Table 4-1, support the hypothesis of a one-electron transfer 

and allowing visible resolution for the first time. Chronoamperometry was also performed at 

0.750 and 1.000 V. Few significant peaks occurred at 0.750 V (Figure 4.5). Sizing of particles 

oxidized at 1.000 V agreed with the results from 0.900 V. 

Integration of current spikes from PVP-AgNS led to a calculated diameter of 29 ± 4 nm, 

significantly smaller than the manufacturer-reported size of 39 nm based on TEM measurements.  

Typically, sizing NPs via TEM assumes a near-perfect sphere, which leads to an overestimation 

of diameter. Previously, research groups have reported that AgNSs are generally more 

icosahedral in shape, and only approximately 60% of the expected charge assuming a perfect 

sphere, is actually present in the imperfect sphere-like particles.48  

Analysis of the spikes from PVP-AgNCs further confirmed that complete oxidation was 

occurring in 50 mM KOH at 0.900 V. The electrochemical experiments yielded a length of a side 

of the AgNCs to be 32 ± 11 nm. The TEM-determined size was 32 nm. The similarity between 

these two measurements for cubes in comparison to that for spheres can be explained by the 

nanocubes having fewer structural anomalies, and therefore their size as determined by TEM is 

more accurate than those of spheres.  
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For calculation of the size of the AgNPls (depicted in the TEM image in Figure 4.2), they 

were assumed to be cylinders containing a diameter much larger than the height. The thickness 

of the plates is more homogenous than the diameter, so the average thickness of 8.5 nm, based on 

TEM measurements, was used in calculating the plate diameter of 18 ± 5 nm from the integrated 

current of the spikes. Compared to the TEM measured diameter of 22 ± 4 nm, the standard 

deviations slightly overlap.  

The width of the base of a spike is representative of the time scale of the oxidation of the 

AgNP. Figure 4.3 shows that this maximum time (tmax), regardless of the particle shape, is linearly 

dependent on charge2/3 with an R2 value of 0.99.  The relationship between tmax and charge2/3 was 

described previously42, 49 and is shown in Equation 4.1, 

  4.1. 

where a represents the shape-dependent variable, Q represents the integrated charge, ρ the atomic 

density of silver, D the diffusion coefficient of the released AgOx species, NA Avogadro’s number, 

and Cmax the maximum concentration of AgOx. The shape-dependent constant must be unity, 

indicating that the rate of AgNP oxidation is independent of particle shape and surface area, and 

that oxidation is asymmetric.38 If the particles were oxidizing from the outside-in, the time required 

for particle oxidation would be dependent on the surface area. However, the results indicate that 

the outer layers and the inner layers oxidize simultaneously and therefore are independent of shape. 

These results are in agreement with those performed previously in KNO3 at large overpotentials.42 

Furthermore, the slope of the line (3.6x108) is on the same order of magnitude as the theoretical 

slope of 1.8x108, calculated using a theoretical diffusion coefficient of 1.18x10-5 cm2
∙s and Cmax 

of 1.23x10-7 mol∙cm2. The theoretical diffusion coefficient was calculated by estimating the size 

of a single Ag2O molecule from its bond length50 and applying the Stokes-Einstein equation, while 

tmax ∝ 𝑎 ×
Q2/3ρ

2
1/3

2ln(2)Dn2/3F2/3NA
1/3

Cmax
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Cmax was calculated using the reported ksp value, 2x10-8,51 for Ag2O. In the event that diffusion of 

silver through silver oxide (D = 3.7x106 cm2
∙s)52 is limiting the reaction rate, the estimated slope 

of peak duration vs. charge2/3 is then 3.46x108. 

4.5: Conclusions 

 A quantitative analysis of single particle oxidation in KOH solution of PVP-capped 

AgNPs of spheres, cubes, and plates suggests that particle shape is unimportant in dictating the 

rate of the oxidation. This was also found in prior work at large overpotentials in KNO3 solution. 

This knowledge is important in addressing contributions of shape in chemical processes of 

nanoparticles, their reactivity, release, and delivery of their constituent parts. In addition, the 

unique properties of capping ligands and their consequential interactions with electrolyte must be 

considered for different applications. For the purpose of quantifying the number of atoms in and 

estimate size of polymer capped AgNPs, that normally exhibit resistance or slowed oxidation in 

other electrolytes, single particle oxidation in KOH solution can be used within an easily 

accessible potential range to attain that information. Immediate oxidation in an AgNP/KCl 

suspension may not immediately occur for PEG capped particles or at all for PVP-capped 

particles, where hydroxides are more appropriate. A systematic approach for choosing an 

electrolyte based on the capping ligand properties still needs developed in order to obtain particle 

oxidation through all available capping ligands. At this time KOH is a reasonable next step when 

halide electrolytes have failed to produce single particle oxidations, so long as the system can 

tolerate an alkaline environment. 
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Tables 

Table 4-1: Sizing of PVP capped AgNP in 50 mM KOH, N = 112-170 

Particle TEM 900 mV 1000 mV 

Sphere 39 ± 4 nm 29 nm ± 4 31 ± 4 nm 

Cube 32 ± 7 nm 33 nm ± 11 33 ± 10 nm 

Plate 22 ± 4 nm 18 nm ± 5  
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Figures 

 

Figure 4.1: Drop-cast and linear sweep vs Ag/AgCl (sat’d KCl) of citrate and PVP-capped AgNS 

in 50 mM KOH (blue) and KCl (gray). Cyclic voltammetry began at 0 mV for KOH and 100 mV 

for KOH, then was anodically swept to 1000 mV at 25 mV∙s-1 

 

 

Figure 4.2: TEM of PVP Ag nanoplates synthesized by Isabelle Niyonshunti. TEM image was 

also provided by Isabelle Niyunshanti 
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Figure 4.3: Chronoamperograms of PVP capped 32 nm cubes, 40 nm spheres, and 22 nm plates 

at 0.900 V in 50 mM KOH. The magnitude of each y-axis is 1 nA, and the magnitude of each 

x-axis is 0.03 s. 

 

Figure 4.4: Overlay of the first and fifth chronoamperogram of PVP-AgNC in 50 mM KOH. The 

potential was stepped to 900 mV.  
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Figure 4.5: Chronoamperograms of 40 nm PVP-AgNS in 50 mM KOH at 0.750 V, 0.90 V, and 

1.00 V vs Ag/AgCl (sat’d KCl). There was not an offset applied to any of the 

chronoamperograms. 

 

Figure 4.6: Time required for oxidation of varyingly shaped PVP-AgNP in 50 mM KOH at 900 

mV vs. the total charge passed during oxidation. The reference electrode was Ag/AgCl (sat’d 

KCl). 
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Figure 4.7: Histograms of the plate diameters, cube lengths, and sphere diameters from 

electrochemical experiments performed at 900 mV vs Ag/AgCl in 50 mM KOH. 
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Chapter 5: Combined redox magnetohydrodynamics and dark field microscopy for 

high-throughput characterization of a nanoparticle mixture 

5.1 Abstract 

A Flow-DFM system was developed as a method for high-throughput single particle 

differentiation and tracking. Redox magnetohydrodynamics and dark-field microscopy were 

coupled to provide size information from a flowing mixture of 82 ± 8.4 nm silver and 

140 ± 9.9 nm gold-coated silica nanoparticles. Herein we demonstrate the ability to 

bidirectionally move the sample solution across the field of view without the use of a mechanical 

pump, allowing for a miniaturized analysis method absent of physical vibrations within the 

experimental cell. Redox magnetohydrodynamics provides continuous, uniform flow within a 

cell through the use of a body force, allowing for highly controlled fluid movement and resulting 

in easier data analysis. Additionally, the amounts of potentially hazardous nanomaterials 

required for analysis are minimized due to the elimination of the inlet and outlet. Using the 

combined redox magnetohydrodynamics dark field microscopy (RMHD-DFM) approach, a 

group of 365-421 nanoparticles in a flowing suspension were differentiated from each other by 

localized surface plasmon resonance and sized by their Brownian motion. The ability to 

immediately reverse the flow direction allowed for re-analysis of the particles, allowing for 

increased statistical analysis to be performed on the particle population. 

5.2 Introduction 

In recent decades there has been a rising interest in both the commercial and industrial 

usage of nanomaterials that outpaces the understanding of fundamental nanomaterial properties. 

Nanomaterials are being researched and utilized for applications ranging from catalysis in 

alternative fuel cells1-3 to antimicrobials in medical devices.4, 5 It has been observed that the 
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physical properties of materials in the nanophase differ from those in the bulk phase, which is 

primarily attributed to the higher surface energy of the material in the nano-scale.2, 6-8 The 

differences are not only affected by the variation in the particle composition, but are also 

strongly dependent on the particle’s size and shape.7, 9-11 Thus, there is knowledge gap with 

respect to the properties of nanomaterials and their incorporation into products.  

 Characterization of nanoparticles remains challenging. Three commercially available 

methods are transmission electron microscopy (TEM), dynamic light scattering (DLS), and 

nanoparticle tracking analysis (NTA). TEM is generally performed in a vacuum but can achieve 

high spatial resolution and imaging of the structural features of individual nanoparticles. DLS is 

performed in solution, which allows for real-time monitoring of processes taking place in 

suspension, but the measured hydrodynamic radius is an average of the population and individual 

information is lost. Additionally, due to the intensity scaling of 106, the presence of just a few 

larger particles can drastically alter the calculated average size, leading to an inaccurate idea of 

the distribution. NTA, which combines microscopy with light scattering, provides information on 

individual particles but offers no particle differentiation methods. The ability to monitor and 

differentiate individual nanoparticles by localized surface plasmon resonance (LSPR) in-situ and 

in-operando in a relatively inexpensive way remains the advantage of DFM over TEM and DLS.  

The LSPR phenomenon, first described by Michael Faraday in 1857,12 is based on the 

interaction of light with nanostructures and determines the visual color of plasmonic nanoparticle 

suspensions. Because only the scattered light is detected in DFM, it a useful tool for observing 

individual nanoparticles that exhibit strong LSPRs such as silver, gold, and copper, 13-16 as well 

as for monitoring chemical reactions of themselves or on their surfaces.17-20 Although the size of 

nanoparticle cores is well below the spatial resolution limit of a light microscope, the strong 
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LSPR of these particles makes the tracking of them possible. DFM combined with nanoparticle 

tracking analysis has been previously used to determine the diffusion coefficients of 

nanomaterials by tracking a static suspension of single particles.13 In addition to providing 

diffusion coefficients, single particle tracking methods have been developed to monitor the 

behavior of particles in solution21-23 and the uptake of particles into bacterium cells.24  

Because redox-magnetohydrodynamics (RMHD) microfluidics is driven by a body force, 

the fluid being moved can be contained within the sample chamber. Thus an inlet, outlet, and 

reservoir of fluid are not required and nanoparticles in very small sample volumes of a few 

microliters can be analyzed which results in lower overall costs and less waste of nanomaterials, 

of which environmental effects are poorly understood.25-29 The approach of employing dark-field 

microscopy (DFM) for the tracking and analyzing nanoparticles and RMHD for highly 

controlled sample delivery described herein provides a method of tracking and analysis while 

simultaneously minimizing nanoparticulate waste. 

To observe the diffusion of nanomaterials, sources of fluid movement and vibrations 

must be managed. Thus, the usage of mechanical pumps for sample movement and delivery can 

be troublesome, as they create pulsed flow and typically involve a parabolic flow profile.30, 31 

Electroosmotic pumping has been used to overcome the pulsed flow, but requires a high electric 

field.30 As such, diffusion coefficient analysis is often limited to a static suspension. In contrast, 

R-MHD produces a flat flow profile within a given horizontal plane with low electric fields,32 

facilitating data analysis of the particle motion without worry of particle migration. Uniform 

fluid flow is especially important when there are other superimposed forces such as Brownian 

motion.  

MHD microfluidics is propelled by the magnetic portion of the Lorentz force, FB, which 
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is created when a current flux, j (Coul/(s∙m2)) in a fluid (electronic current in a liquid metal or 

ionic current in a gas or solution) passes orthogonally to a magnetic flux, B (T), and follows the 

right hand rule, 32-36 

 FB  =  j × B.     (5.1) 

This relationship gives MHD its unique ability to program microfluidics—to stop, start, reverse, 

and tune flow without requiring valves or retooling a device. To facilitate this pumping approach 

on a small scale, a sample solution containing electrolyte is added to a chip that is patterned with 

individually addressable electrodes and placed on a permanent magnet. Electronic current is 

passed between at least two electrodes, which converts the electronic current to ionic current at 

the electrode/solution interface when a redox species37-42 in solution or immobilized on the 

electrodes32, 43 are oxidized and reduced. 

 Combining microscopy with RMHD has provided key insights into the mechanisms and 

usefulness of the pair. Optical microscopy combined with RMHD microfluidics has 

characterized velocity in horizontal planes as a function of different conditions and geometries. 

In these cases, microspheres with 10 µm diameter were added to the solution to track the fluid 

flow.32, 38, 44  Here, R-MHD microfluidics employing PEDOT is used for sample analysis of the 

smallest particles pumped by this approach to-date, and provides the precise control needed to 

enable Flow-DFM for nanoparticles. Flow-DFM is used to identify, quantify, and size a flowing 

suspension mixture of two types of particles (Ag and Au@Si) in a volume beyond the confines 

of the microscope’s viewing window. The particle groups could be differentiated from each other 

based on their LSPR wavelengths13 and the diffusion coefficients determined from the moving 

suspension. Additionally, the pumping direction was reversed to provide multiple observations 

of the same mixture sample, allowing for more statistically relevant information about the size 
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distribution to be obtained.  

5.3 Experimental 

5.3.1: Chemicals and Materials 

UV-treated ultrapure water (Thermo Scientific Barnstead GenPure xCAD Plus) 

exhibiting a conductivity of 0.055 μS cm−1 (18.2 MΩ) at 23 °C was used. The citrate-capped 

silver nanoparticles (AgNP, reported by the manufacturer to be 70 nm with a zeta potential of -

41 mV) and spherical PVP-capped gold-coated silica particles (Au@SiNP, reported by the 

manufacturer to be 137 nm with a zeta potential of -31 mV) depicted in Figure 5.1 were 

purchased from nanoComposix Inc. (Prague, Czech Republic). Potassium nitrate (KNO3) of 

99.999 % purity and the propylene carbonate (PC) were purchased from Sigma-Aldrich 

(Germany). The 3,4-ethylenedioxythiophene (EDOT) was purchased from Sigma-Aldrich (St. 

Louis, Missouri, USA). Tetra-n-butylammonium hexafluorophosphate (TBAPF6) was of 98 % 

purity obtained from Alfa Aesar by Thermo Fisher (Kandel) GmbH. The edge connector (solder 

contact, 20/40 position, and 0.05 in. pitch) was acquired from Sullins Electronics Corp. (San 

Marcos, CA, USA). Borosilicate glass wafers (Borofloat 33, 125 mm ± 0.2 mm outer diameter, 

700 μm ± 100 μm thickness) were obtained from Mark Optics, Inc. (Santa Ana, CA, USA). The 

NdFeB ring magnet was purchased from Conrad Electronic SE. The cover slip (Menzel-Glas) 

with a dimension of 20 x 20 mm was purchased from Thermo Fischer Scientific. 

5.3.2: Preparation of PEDOT-modified chip electrodes 

Gold band electrodes with a chromium adhesion layer (nominally, 650 µm wide, 1.5 cm 

long, and 0.25 µm thick) were patterned onto a borosilicate glass wafer via conventional 

photolithography, similar to that previously described for silicon wafers.45 The patterned wafer 

was then diced into 2.54 cm x 5.08 cm (1 in x 2 in) chips. The separation of the inner pair of 
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electrodes which were activated for R-MHD pumping measures 0.47 cm. The outermost band 

electrodes and other smaller electrodes on the chip were not used in the studies reported here. 

Prior to electropolymerization of PEDOT, the chip was gently cleaned with a Kim Wipe 

in a sequence of solvents (acetone, ethanol, isopropyl alcohol, and water), rinsed with water, 

plasma cleaned (Model 1070 NanoClean, Fischione Instruments, Inc.) for 7 min in 25 % O2 and 

75 % Ar at 2 x 10-2 torr, 46 W with 1.31 W reflected, and then immediately immersed into the 

electropolymerization solution of 0.01 M EDOT and 0.10 M TBAPF6 in PC. When ready for 

deposition, the chip was removed from the solution and contact pads quickly wiped with a 

PC-soaked Kimwipe, then water and wiped dry. The contact pads were inserted into the edge 

connector and the chip was re-immersed sufficiently for the solution to cover the band 

electrodes. A thick film of PEDOT was electropolymerized onto each band electrode based on a 

previously described procedure32 using cyclic voltammetry (CV). A PalmSens4 (Palmsens, 

Houten, Netherlands), Ag/AgCl (3M KCl) reference electrode, and a platinum counter electrode 

were used for the deposition. There were 24 sequential CV cycles performed at 0.050 V/s 

between -0.4 V and 1.6 V vs. Ag/AgCl (3M KCl). The deep purple PEDOT films were further 

stabilized in a solution of 0.10 M TBAPF6 in PC by shorting them together and cycling ten times 

from 0 V to 0.5 V and back vs. Ag/AgCl (3M KCl) at 0.010 V/s, yielding the typical shape with 

charging current usually associated with a capacitor.43 The chip was then rinsed with PC and 

water, and stored in water until use for R-MHD pumping studies. 

5.3.3: The R-MHD Flow-DFM Experimental Setup 

Optical tracking of the NPs with DFM while interfaced to R-MHD microfluidics was 

achieved by the assembly depicted in Figure 5.2-a. DFM was performed using an Olympus 

BX43 Microscope equipped with an infinity corrected 10X Plan n Achromat Objective (0.25 
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aperture, no defined cover slip thickness, field number 22), a CytoVita Optical Illuminator 

incorporated with a halogen lamp and liquid light guide, and a Retiga RI OEM CCD camera. 

Light generated by the halogen lamp was focused and aligned by the illuminator towards the 

sample. In DFM, non-scattered light is blocked by apertures while light specifically scattered by 

the sample reaches the objective. Due to this, only light which interacts with the sample is 

detected, and all else appears black under the DFM.  

The RMHD apparatus (Figure 5.2-b) containing the suspension of nanoparticles was 

placed in a 3D-printed polylactic acid (PLA) holder on the stage of the DFM microscope. This 

apparatus consisted of a transparent electrochemical cell that was coupled with the NdFeB 

permanent magnet to provide B and connected to a galvanostat/potentiostat to allow activation of 

the pumping electrodes on the chip for controlling j, therefore engage R-MHD microfluidics. A 

700 µm thick poly(dimethylsiloxane) (PDMS) film was first placed on the chip, then 700 μL of a 

nanoparticle suspension was pipetted into it and topped with a cover slip and excess particle 

suspension carefully blotted with a Kimwipe. The PDMS served as a gasket between the 

electrode chip and cover slip to prevent leakage and its opening formed the shape and height of 

the solution chamber.  Leads from the galvanostat/potentiostat were connected to the contact 

pads through silver wires that were adhered to the contact pads on the chip with conductive 

copper tape.  

A ring magnet with outer diameter of 24.75 mm, and thickness of 2.5 with a 5-mm wide 

hole was placed on top of the cover slip. The hole in the center of the magnet is necessary for 

transmission of light. The outer dimensions of the magnet were chosen to be as large as possible 

to maximize the magnetic flux but would be small enough for the assembly to fit on the stage 

between the objective lens and the light source when combined with the electrochemical 
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chamber. The magnetic flux measured 270 mT at the center of the hole in the location which was 

in contact with the assembly’s cover slip.  

5.4.4: Operation and characterization for RMHD-DFM pumped nanoparticles 

Three different nanoparticle suspensions were evaluated by DFM. One contained 140 nm 

Au@SiNP in 50 mM KNO3, another contained 82 nm AgNP in 50 mM KNO3, and the other was 

prepared as a 50/50 mixture of the AgNPs and Au@SiNPs in 50 mM KNO3. The separate 

suspensions of Au@SiNPs and AgNPs were used to confirm the LSPR color associated with 

each particle, and to confirm that the particles would not agglomerate significantly in the 50 mM 

KNO3 electrolyte during the studies. All suspensions were sonicated for approximately 7 s 

immediately prior to use.  

For R-MHD pumping studies, one PEDOT-modified gold electrode was used as the 

working electrode (WE), and another was used as a combined counter and reference electrode 

(CE/RE). The PalmSens4 was used to perform chronopotentiometry (CP) with three sequential, 

15-s current steps, starting at +50 µA, switching to -50 µA, and then repeating +50 µA.  This 

sequence was carried out both in the presence and in the absence of the magnet. The latter served 

as a control experiment to determine underlying motion that is independent of R-MHD 

microfluidics  

Characterization of nanoparticles 

Scanning transmission electron microscopy (STEM) images of nanoparticles to 

determine size were recorded on a JEOL JEM-2800 electron microscope equipped with Schottky 

electron gun working at 200 kV. Point-to-point resolution is 0.14 nm. Elemental mapping by 

energy dispersive X-ray spectroscopy (EDS) was obtained with JEOL double SDD X-ray 

detectors, with a 133 eV spectral resolution, a solid angle of 0.98 sr and a detection area of 
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100 mm2. The EDS results confirmed the manufacturer’s stated composition of the nanoparticles. 

Each sample was prepared by drop casting the nanoparticle suspensions on a PLANO S-160 

TEM grid (carbon film on 200 mesh copper grid). The particles measured 82 ± 8.4 nm and 

140 ± 9.9 nm for the AgNP and Au@SiNP, respectively. The EDS confirmed the elemental 

composition of the particles. Dynamic light scattering was performed with a Zetasizer Ultra 

purchased from Malvern Panalytical GmbH.  The nanoparticle suspension was measured in a 

polystyrol/polystyrene with a HE-Ne Laser of 633 nm.  

 To determine the color assignments for the two kinds of nanoparticles used here, a pure 

suspension of Au@SiNPs in 50 mM KNO3 was analyzed using ImageJ. Using the color 

threshold tool in ImageJ, the red/orange group (hues 0-55) were assigned to Au@SiNPs and the 

blue/green group (hues 56-255) were assigned to AgNPs. The video for the mixed particle 

suspension was then converted to individual frames, imported as an image sequence, and filtered 

to produce two sets of images using the appropriate settings by adjusting the color threshold. 

Black was chosen to replace all “filtered” colors. After color separation, the MosaicSuite plugin46 

for Image J was used to track the particles and provide the (x,y) coordinates of each particle 

track. 

5.4 Results and Discussion 

R-MHD-DFM tracking of AgNPs and Au@SiNPs and comparison to TEM results 

Figure 5.1 depicts the TEM images of the AgNPs and Au@SiNPs. The shapes are semi-

spherical, and the diameters measure of 82 ± 8.4 nm and 140 ± 9.9 nm, respectively.  The 

standard deviation around the average diameter for the Au@SiNPs brackets the manufacturer’s 

reported diameter of 137 nm.  However, that for the AgNPs is higher than and does not include 

the source’s 70 nm specification.  The LSPR of these particles appears blue/green for the AgNPs 
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and red/orange for the Au@SiNPs. Figure 5.3 is a still image taken by DFM of a mixture in the 

R-MHD apparatus without pumping. The count of particles belonging to the two different 

populations based on the color differentiation yields a measured ratio of AgNPs to Au@SiNPs in 

the suspension of 58 ± 6 % to 42 ± 6 %, respectively.  

Due to physical limitations, only the lowest objective fit with the experimental cell and 

thus the LSPR images have relatively low resolution.  A pixel is 653 nm, which is ~10x larger 

than the smaller particles.  This is primarily a result of the 10X objective needed to clear the 

height of the R-MHD apparatus. Other microscope components could be considered for DFM to 

improve the resolution. However, as is demonstrated later, DFM coupled with R-MHD flow is 

more forgiving so that higher spatial resolution is not as important in obtaining accurate mean 

squared displacements. 

5.4.1: The effect of R-MHD on nanoparticle motion 

To engage RMHD fluid flow of the nanoparticle suspension, an electronic current of 50 

µA was applied between the two PEDOT-modified electrodes in the presence of the magnet. The 

oxidation of PEDOT attracts anions from solution to compensate charge (and repels cations) and 

the opposite process occurs at the cathode, thus creating an ionic current between them.  The 

small ratio of 0.15 for the height of the chamber to the separation between the active band 

electrodes is expected to produce a relatively parallel ionic current distribution between the 

electrodes and across the gap (in the y-direction). The MHD force that the ions experience in the 

presence of the magnetic field (in the z-direction), which is primarily orthogonal to the ionic 

current, moves them along the length of the gap between the electrodes (in the x-direction).  A 

momentum transfer occurs to the surrounding fluid around those ions, resulting in “pumping” of 

fluid in that direction.  Because PEDOT holds a finite amount of charge, its pumping duration is 
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also finite.34 However, it can be recharged by reversing the current, which reverses flow in the 

presence of a fixed magnetic field. This causes the reversibility of pumping that was used for the 

multiple analysis of the same particles.  

Video of LSPR of the mixture of nanoparticles obtained by the DFM in the presence of a 

magnet depicts what appears to be random particle movement, presumably due to Brownian 

motion, when the pumping electrodes are off. A net translation in the x-direction is superimposed 

on the random movement when the electrodes are activated with 50 µA, a quick change to 

translation in the –x-direction occurs when the current is switched to -50 µA, and a reversal of 

direction again in the +x-direction happens when the current goes back to +50 µA.  Figure 5.4 

shows the tracks over the course of 74 frames in the (a) absence of a magnet and (b) presence of 

a magnet during one direction of R-MHD flow. When the current returns to zero, translation in 

the x-direction ends and random movement remains. The R-MHD creates an easily reversible 

“pump” by merely switching the polarity of the electrode to reverse the direction of the fluid 

movement, so long as the magnet orientation remains unchanged. 

The particles do not translate in a true x-direction during R-MHD pumping. One possible 

reason for this is a longer portion of one of the electrodes (designated as the CE/RE electrode) is 

covered with PEDOT than the other, which can skew the direction of the ionic current across the 

gap and therefore skew the fluid flow off the central axis. Another possible reason is migration 

of the slightly negatively charged particles toward the positive electrode. However, there is no 

measurable net motion in the direction of the anode or cathode. To determine whether migration 

is affecting the particles, the same type of experiment was performed but without the magnet. 

Figure 5.4-a illustrates that there is no discernable translation upward or downward toward the 

electrodes during the application of current. This is indicative that the electric field has little 
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effect on the motion of the particles, if at all. 

  One video depicted, however, a global movement of particles to the left regardless of 

the application and direction of current, but is much slower than the speed of the R-MHD flow 

attained in the presence of the magnet. The global drift in the absence of a magnet and applied 

current is depicted in Figure 5.6, where the crosshairs are placed at (0,0). With normal Brownian 

motion, it is expected that the net change of the particle population would be 0 μm, given a large 

enough population and Δt. There is no confirmed explanation for this slow drift at this time, but 

it may be related to a slow leak in the PDMS cell. The particles also remain within the focal 

plane for the duration of the experiment. Because the materials contained in the particles are not 

paramagnetic, we do not expect any motion toward higher magnetic field gradients and flux 

densities, which would be upward (in the z-direction) toward the magnet and sideways toward 

the edges of the hole when the magnet is in place, and not the indicated x-direction. 

To observe the Brownian motion of nanoparticles in a moving suspension, the fluid 

velocity must be slow enough for several random steps to be visible while the nanoparticles 

remain in the field of view. The average speed of the RMHD flow under our conditions was 

measured to be 13.9 ± 1.48 μm∙s-1 for the blue/green particles and 13.8 ± 1.36 μm∙s-1 for the 

red/orange particles, assuming that a measurement of the translation of the nanoparticles is a 

good reflection of the fluid speed. Analysis of individual video portions is summarized in Table 

X. The pumping speeds were determined by dividing the distance between the first and last point 

of the particle tracks by the time between those positions and then averaged. Previous R-MHD 

microfluidics at the same current of 50 µA, and a similar electrode design and chamber height 

attained speeds of 50 µm/s, but with a 370 mT disk magnet and ionic strength of 0.16 M, and a 

gap between pumping electrodes of 3.0 mm.43 Accounting for the lower magnetic flux and ionic 
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strength reported here, which should scale the speed proportionally, the predicted fluid speed is 

11 µm/s. The decreased viscosity increases the expected speed45, which is consistent with the 

observed value here. 

The velocity within individual particle tracks varied significantly due to the contribution 

from the particles’ random motion, which is most noticeable by sideways deviations from a line 

connecting the starting and ending position. Because Brownian motion along the R-MHD-driven 

translation is expected to be random (equal displacements in forward and reverse directions), it 

should not affect the measurement of the fluid speed. The R-MHD fluid speed is consistent with 

expectations for the conditions used here.  

5.4.2: Determination of diffusion coefficients and size of nanoparticles in the absence of R-MHD 

flow 

Diffusion coefficients and sizes of the different populations of AgNPs and Au@SiNPs in 

the mixture were determined first in the absence of R-MHD flow, under conditions without a 

magnet but with the current engaged. This exercise sets a baseline for obtaining information and 

provides insight into whether migration is of significance or not. Mean square displacement 

(MSD) plots, which have been previously used for the sizing of individual particles,13, 19, 47, 48 

were generated for each particle. Each individual frame was treated as a different time step, and 

the average MSD value for each step one through five were used to create the plots (Figure 5.7). 

From these plots, the diffusion coefficients for each particle can be extracted from the slope, then 

the size can be estimated using the Stokes-Einstein equation49 (Equation (5.2)). Note that the 

scale needed for the smaller blue-green particles is 10x larger than that of the larger red-orange 

particles, which was to be expected. Any lines with an r2 of < 0.8 were not included in further 

analysis. 
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     D =
kB∙T

6π∙μ∙r
   (5.2) 

The particles were analyzed with NanoTrackJ,13 the results of which are depicted in 

Figure 5.8.The size distributions (Walker’s Method) were centered at 105 nm and 135/139 nm 

for the blue/green and red/orange groups, respectively. The total number of particles tracked in 

the mixture was 733. The blue/green group contained 384 particles and the red/orange group 

contained 389 particles, indicating that the color analysis built into ImageJ was sufficient for the 

microscope and camera settings required for paring with the magnet, though only a low 

magnification objective was used. Using our 1-dimensional MSD method, 417 blue/green and 

360 red/orange particles were tracked. The histograms were centered at 82.5 nm and 165 nm for 

the blue/green and red/orange groups, respectively. This method agrees with the TEM 

determined sizes of 82 ± 8.4 nm and 140 ± 9.9 nm. The similarity of the sizes determined by 

MSD under an applied current and the TEM provides further support that migration is not 

playing a significant role in the mass transport of the nanoparticles. Table 1 lists the particle sizes 

for both nanoparticle populations. 

5.4.3: Determination of diffusion coefficients and size of nanoparticles in the presence of R-

MHD flow 

Analysis of the sizes of particles and their diffusion coefficients in the presence of R-MHD flow 

was carried out in a similar way as for the case without flow, with a few notable exceptions and 

benefits that arise when there is flow. Because the motion of nanoparticles during R-MHD flow 

was slightly skewed, the video images were all rotated 12° to align the fluid pumping with the x-

axis. Since the movement in the x direction was assumed to be dominated by R-MHD, only the y 

dimension was used to create the plots of MSD vs. Time Step (τ). This approach also has the 

advantage that the large displacement in x arising from the fluid flow more than offsets the low 
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resolution and facilitates measurement of displacement due to Brownian motion. One-

dimensional MSD curves were created from displacement along the y-axis with τ = 1-5 (Figure 

5.8). The diffusion coefficients were extracted from the slope, and the Stokes-Einstein equation 

was used to estimate the particle sizes. Three pumping excursions were performed by switching 

the applied current: forward 1, reverse, and forward 2. For each color associated with the 

nanoparticles, the forward 1, reverse, forward 2 segments of the video were analyzed separately. 

The size distributions are shown in Figures 5.9 for the AgNPs and Au@SiNPs. The results are 

also summarized in Table 1, alongside the results in the absence of the magnet. Particles larger 

than 500nm were filtered from the histograms. As depicted in Figure 5.9 (left), with the magnet 

in place the blue/green group had histograms centered around 87.5 and 67.5 nm for the pumped 

suspension, and 82.5 nm for the non-pumped suspension. Figure 5.9 (right) depicts that the 

red/orange groups were centered at 127.5 and 117.5 nm for the pumped suspensions, and 165 nm 

for the non-pumped suspension. These results are consistent with those obtained in the absence 

of R-MHD pumping, and compare similarly with the sizes obtained by TEM, validating the 

method of using 1D MSD curves to size nanomaterials in a pumped suspension.  

5.5 Conclusion 

Combining dark field microscopy with Redox-magnetohydrodynamics allows for 

high-throughput analysis of nanoparticle mixtures. The adaptations made to previously used R-

MHD systems still allow for the precisely controlled motion of fluid within the DFM field of 

view, allowing for the pumpless movement of nanoparticles. Figure 5.10 indicates that measured 

sizes are similar to the TEM and DLS data when compared to the respective pure suspensions. 

Hence it can be concluded that R-MHD-DFM is a strong method to efficiently obtain size, LSPR 

information, and particle behaviors in situ and operando of non-paramagnetic nanoparticles 
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particles during precisely controlled fluid motion, leading to an increase in the sampling 

capabilities. Additionally, the sizes of the particles can be estimated while they are in motion by 

calculating their respective 1-diminsional mean square displacements.  
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Tables 

Table 5-1: RMHD pumping speeds determined from a mixture of Ag and Au@Si nanoparticles 

in 50 mM KNO3. The distance traveled for each particle between the first and last frame in the 

track was assumed to be the distance contributed by the RMHD flow. The speed was calculated 

by dividing this distance by the amount of time in which the particle track was visible. 

Video Pumping Speed (μm∙s-1) 

 Blue/Green 

Forward 1 13.5 ± 1.41 

Reverse 14.7 ± 1.38 

Forward 2 13.5 ± 1.65 

 Red/Orange 

Forward 1 13.3 ± 1.52  

Reverse 14.5 ± 1.22 

Forward 2 13.3 ± 1.52  

 

Table 5-2: Sizes of the particles determined from a mixture of Ag and Au@Si nanoparticles in 

50 mM KNO3 in the presence and absence of RMHD flow. Each particle was first identified by 

its localized surface plasmon resonance (LSPR) color and its diffusion coefficient determined by 

the MSD analysis of its motion during RMHD in forward 1, reverse, and forward 2 passes (in the 

presence of the magnet) and in the absence of the magnet, but with current applied.  

Video Particle size (nm) # particles analyzed 

Blue/Green 

Forward 1 Average 153; Peak max 87.5; Median 116 207 

Reverse Average 123; Peak max 87.5; Median 80 230 

Forward 2 Average 163; Peak max 67.5; Median 99 240 

No magnet Average 232; Peak max 82.5; Median 150.3 385 

Red/Orange 

Forward 1 Average 144; Peak max 127.5; Median 143 186 

Reverse Average 144; Peak max 127.5; Median 110 164 

Forward 2 Average 185; Peak max 117.5; Median 161 125 

No magnet Average 246; Peak max 165; Median 194 335 
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Figures  

 
Figure 5.1: STEM and EDX images of the (a and c) 82 ± 8.4 nm AgNPs and (b and d) 

140 ± 9.9 nm Au@SiNPs 

 

 

 
Figure 5.2: The RMHD-DFM setup. (a) The electrochemical cell/magnet assembly used for 

RMHD-DFM, located between the illuminating system and the microscope objective, the right 

coordinate system assignments and the directions of applied j, B from the magnet, and FB, which 

directs fluid flow between the activated electrodes (b) Top-down view of the electrochemical 

portion of the RMHD assembly showing the innermost band electrodes that are activated. The 

region inside the PDMS gasket contains the nanoparticle suspension. The DFM viewing field of 

the microscope is indicated in the dashed circle. 
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Figure 5.3: DFM image of the mixed Ag and Au@Si particle suspension in 50 mM KNO3. The 

image is taken from a video recorded during the application of a 50 µA current and in the absence 

of the magnet (non-pumped). 

 

 

Figure 5.4: Particle tracks of the mixed particle suspension in 50 mM KNO3 over 74 frames during 

an applied current of 50 µA and in the (a) absence and (b) presence of the magnet.  
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Figure 5.6: Global drift in the beginning and ending positions of the particle mixture over 20 

frames in the absence of an ionic current or a magnet. 
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Figure 5.7: 1-D MSD plots generated by time steps 1-5 of each particle in the mixture. Plots 

were generated from the video recording of RMHD pumping in the forward 1 direction of (A) 

AgNPs and (B) Au@SiNPs. Note the diffusion coefficient (calculated from the slope of the least 

squares fit to a line) is approximately 10x larger for the blue/green AgNP when compared to that 

of the red Au@SiNP. Of the particles tracked for Ag, 213 tracks produced an R2 ≥ 0.9, and 77 

gave an R2 ≥ 0.985. Lines with negative slopes from some of the particles were due to tracking 

errors and removed and are not reflected in the histogram of Figure 6. The blue-colored LSPR 

was not as intense as the red, making tracking more difficult. Of the particles tracked for Au@Si, 

141 tracks produced an R2 ≥ 0.9, and 93 gave an R2 ≥ 0.985. 

  



109 

 

 

 
Figure 5.8: The size distributions of the Ag (blue) and Au@Si (red) nanoparticles in the mixture 

in 50 mM KNO3 in the absence of a magnetic field and presence of an ionic current 

(non-pumped), analyzed in NanoTrackJ.50 For clarity, the inset indicates the maximum peak 

locations for the Au@Si particles. 
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Figure 5.9: Size distributions of the particles with LSPR having hues 56-255, assigned to AgNPs 

in the mixture and calculated from the 1D mean square displacement of the RMHD-pumped 

(forward 1, reverse, and forward 2) and of the static suspension. 
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Figure 5.10: Comparison of size determination from several methods. A mixed suspension in 50 

mM KNO3 was used for the static and MHD pumped method, and pure nanoparticle suspensions 

in the absence of KNO3 were used for DLS and TEM. 
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Chapter 6: Conclusions and future direction 

 Detection and characterization of individual nanoparticles is important for understanding 

their fundamental properties, and for predicting the behavior resulting from a change in 

environment, capping ligand, size, or shape. Electrochemical oxidation allows for a relatively 

cost-effective method of assessing the electroactive activity of single particles in a suspension 

and for probing the electrode-particle interface.1-4 Oxidation through polymer capping ligands 

adds additional barriers to oxidation of the particle at the electrode,5 thus the experimental 

environment needs tailored to the capping ligand in addition to the core particle material. Single 

particle tracking is an alternative method of single particle characterization, but the system must 

be carefully controlled and at this time, electrochemical information cannot be obtained from the 

individual particles during this process.6-9 

 Herein we explored the oxidation of polyethylene glycol (PEG) and poly 

vinylpyrrolidone (PVP) capped silver nanoparticles and observed the single particle oxidation of 

silver nanospheres (AgNS), nanocubes (AgNC), and nanoplates (AgNPl). In the presence of 

KCl, PEG capped particles require a “conditioning time” before particle oxidation occurs upon 

electrode interaction. Once the particles have conditioned, oxidation and formation of AgCl 

occurs to completion within a single current spike. Furthermore, higher concentrations of KCl 

required less conditioning time, indicating that an interaction between the electrolyte and PEG 

occurs that allows for tunneling through the ligand. 

 The same procedure is ineffective for oxidation of particles containing PVP as the 

capping ligand. While performing in-situ cyclic voltametric cleaning of the working electrode in 

KNO3, preliminary signs of single particle oxidation of PVP-AgNP appeared when the potential 

reached around 1500 mV. Chronoamperometric experiments performed at 1500 mV and 1650 
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mV resulted in single particle oxidative events, but the possible formation of silver superoxide 

structures10 and oxidation of water on top of the newly formed silver oxides11, 12 complicates 

analysis of the particle spikes. Integration of the spikes occurring at 1500 mV indicated that 

incomplete particle oxidation was occurring. Integration of the spikes at 1650 mV revealed that 

oxidation to Ag (I) was likely occurring, but additional chemistry was also present. Further 

experimentation is needed to determine whether formation of silver superoxides or water 

oxidation was the contributor to the increased charge passed within the current spike.  

 Using KOH instead of KNO3 proved successful in lowering the potential at which single 

particle oxidation occurs. Not only does the presence of hydroxides lower the potential at which 

silver oxide is formed,13, 14 but it also has been documented to increase the conductivity of 

PVP.15 Integration of current spikes produced at 900 mV indicated total oxidation of the particles 

due to formation of Ag (I) occurred within the current spike. Subsequent oxidation to Ag (II) 

likely occurs,16 but not at rates detectable in the existing experimental setup and should be 

confirmed with additional tests. 

 Both methods of oxidizing PVP capped AgNP allowed for the investigation of particle 

shape on the current spike produced upon oxidation. Under both sets of conditions, the rate of 

oxidation was dependent on the total amount of silver present, regardless of particle shape. One 

explanation is a lattice mismatch which allows the inner layers of silver to oxidize 

simultaneously with the outer layers, but further experimentation is required. Observation of the 

shape of the particle immediately prior to and following oxidation could give insight into the 

morphology changes which occur during the oxidative process.  

 When it is not ideal to monitor the electrochemical properties of individual particles, 

single particle tracking can be utilized for observation of particle size.7 Pairing of dark field 
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microscopy (DFM) with redox magnetohydrodynamics (RMHD) allowed for the simultaneous 

pumping and sizing of a mixture of silver and gold shelled silica nanoparticles. However, RMHD 

requires the presence of an ionic current and magnetic flux.17 Observation of the particles in the 

ionic current (j) confirmed that the particles motion was not noticeably affected; tracking 

revealed that migration did not occur towards either electrode. If characterizing smaller particles, 

quantum dots, or particles containing a higher zeta potential is desired, the effect of the ionic 

current on the Brownian motion would need to be reobserved. Additionally, the magnetic flux 

would likely affect paramagnetic particles.  
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