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ABSTRACT 

 Tributyrin (TB) is a glyceride ester of butyrate that has the potential to improve broiler 

performance and intestinal development. Therefore, to fully evaluate this potential, three 

experiments were conducted to evaluate effect of tributyrin (TB) on broiler growth performance, 

nutrient digestibility, carcass characteristics, intestinal morphology, and gastrointestinal function 

in birds fed diets varying in composition reared in battery cages and floor pens. Experiment 1 

explored the supplementation of graded doses of TB and its impact upon growth performance, 

nutrient digestibility, and carcass characteristics in a step-down program when added to a 

reduced energy and amino acid diet. A linear reduction in body weight gain and a quadratic 

response in feed conversion ratio was observed with increasing amounts of TB up to 5 times the 

recommended dose from d 0 – 35. In addition, a linear increase in fat pad yield and a linear 

reduction in breast meat yield were observed with increasing amounts of TB in the diet. When 

evaluating the 3 TB doses used in Experiment 1, growth performance was not negatively 

affected in birds fed 500 mg/kg of TB when compared to birds fed 3 to 5 times that level. Due to 

the differences between this study and previously published research, diet composition was 

subsequently evaluated as a potential source for differences observed in TB utilization among 

those studies. Therefore, in Experiment 2, TB supplementation, lipid source, lipid concentration, 

and corn particle size and their potential interactive effects on growth performance and nutrient 

digestibility were evaluated in 2 battery trials. Overall, TB efficacy was not consistently affected 

by dietary lipid source and lipid concentration. The same can be inferred regarding corn particle 

size as no differences were observed in broilers growth performance or gizzard function, with or 

without the inclusion of TB. Experiment 3 evaluated TB efficacy on growth performance, 

nutrient digestibility, and gastrointestinal pH in birds fed either animal or vegetable-based 

proteins reared in either battery cages or floor pens. Compared with diets containing animal 



 
 

protein, all vegetable-based diets with elevated soybean meal levels may result in increased non-

starch polysaccharide content leading to increased short chain fatty acid (SCFA) production. 

Therefore, increasing SCFA production may confer a synergistic effect between an exogenous 

source of butyrate and increased production of endogenous butyrate. However, no effects of TB 

or interaction with diet type were observed in growth performance, nutrient digestibility, or ileal 

and cecal pH throughout the experiment in 15 d battery cage trial or a 42 d floor pen trial. 

However, birds fed animal protein-based diets did have improved growth performance compared 

to birds fed vegetable based diets. Additionally, growth performance of birds fed animal protein 

or vegetable protein diets with or without the inclusion of TB, was not significantly different 

between the two rearing environments.  
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CHAPTER I: INTRODUCTION  

In the past 5 years, antibiotic free (ABF) production in broilers has grown by almost 40% 

in the poultry industry (Rennier Associates, Inc, 2020). Therefore, maintaining gut health in the 

absence of in-feed antibiotics has become increasingly important for poultry producers. Several 

alternatives to in-feed antibiotics have been widely researched on their effectiveness of providing 

the same advantages within the bird’s system as antibiotics via increased resistance of 

pathogenic bacteria and improvement in growth performance. Numerous strategies have been 

evaluated including various feed additives and essential oils. One category of promising 

molecules is short chain, or volatile, fatty acids (SCFA) which have been shown to potentially 

alleviate some of the growth performance and gastrointestinal health issues that arise when in-

feed antibiotics are not used (Van Immerseel et al., 2004). Endogenous SCFA are produced in 

the intestinal lumen of the bird by microbial fermentation of carbohydrates, especially 

nondigestible polysaccharides (Tan et al., 2014). The highest levels of SCFA are found in the 

ceca and are either metabolized by or transported across the intestinal epithelium and into the 

bloodstream. Short chain fatty acids have been reported to play a major role in the regulation of 

metabolism, inflammation, and disease (Tan et al., 2014). 

The most abundant SCFA include acetate, butyrate, and propionate. Among these, 

butyrate has been a commonly used feed additive in the poultry industry for several years (Van 

Immerseel et al., 2004). Butyric acid can have a strong odor; therefore, it is often fed in several 

different forms such as anions, salts, or mono-, di-, or tributyrins. However, each form of 

butyrate has unique release characteristics within the bird’s gastrointestinal tract. For example, 

unprotected butyrate has been reported to be active in the bird’s crop and proventriculus where it 

is passively absorbed. On the other hand, coated or esterified forms, such as tributyrin (TB) have 
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been hypothesized to be released in the small intestine (Moquet et al., 2016). In TB, the butyrate 

glycerides are cleaved from the glycerol backbone by pancreatic lipase which primarily functions 

in lipolysis of the gastrointestinal tract (GIT). Therefore, due to the bird’s lack of pre-duodenal 

lipolytic activity (Moreau et al., 1998), the main site of degradation and absorption of TB is 

thought to occur in the small intestine. Although some pancreatic lipase may be found in the 

gizzard due to reverse peristalsis that occurs between the duodenum and gizzard.  

It is well established that lipids provide a concentrated source of energy and supply 

essential fatty acids in a poultry diet. However, the fatty acid profile and free fatty acid content 

can impact lipid digestibility and energy value, while the peroxidation status can influence the 

intestinal integrity of the animal (Mani et al, 2013; Rosero et al., 2015). In the US, soybean oil 

and poultry fat are commonly used as dietary fat sources in broiler diets due to their high 

digestibility and superior fatty acid profile. However, observational evidence from field and 

research trials have reported different effects of TB supplementation on broiler growth 

performance when included in diets containing soy oil or poultry fat. While information is sparse 

on the interaction between TB and lipid digestibility, several mechanisms within lipolysis could 

be responsible including pancreatic lipase activity, age of the bird, and bile acid concentration. 

The use of soybean oil is increasing as the poultry industry adopts more all-vegetable 

based diets at the expense of animal-based products. For example, the elimination in animal 

protein by-products causes ingredients such as soybean meal to increase in the diet. An increase 

in soybean meal can lead to higher concentrations of oligosaccharides and potentially an increase 

in gut viscosity. On the other hand, an increase in fermentability may lead to increased 

fermentation in the ceca by the microbiota. Therefore, higher amounts of endogenous butyrate 
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could be produced, and when coupled with an exogenous butyrate source, may have a synergistic 

effect.  

Moreover, the physical characteristics of the diet may also influence TB efficacy. The 

gizzard is responsible for many digestive functions in the bird’s body but most notable is its role 

in the physical digestion of incoming feed particles (Svihus, 2011). In recent years, the 

importance of dietary particle size has attracted attention due to its effect upon the gizzard 

development and its functionality (Svihus et al., 2004). The physical act of breaking down feed 

particles can lead to secondary effects such as an increase in reverse peristalsis and higher 

enzymatic activity. If enzymatic activity is increased, higher rates of TB cleavage via pancreatic 

lipase activity could occur. However, this may lead to a reduction in gizzard pH due to the 

increase in butyric acid concentration (Moquet et al., 2016; 2018).  

Currently, there is a lack of information on how nutritional factors influence TB efficacy. 

In addition, the optimal inclusion level of TB is inconsistent across previous literature. 

Therefore, in order to understand the complex interactions between nutritional factors and TB, a 

series of studies were conducted. The first experiment aimed to establish the optimal inclusion 

level of TB to achieve improvements in growth performance, carcass characteristics, and nutrient 

digestibility. The second experiments evaluated dietary factors such as lipid source, lipid 

concentration, and corn particle size, and their interactions with TB, on broiler growth 

performance, gastrointestinal parameters, and nutrient digestibility. The third experiment 

explored the differences between animal protein and vegetable-based diets in differing 

environments and its interaction with TB on growth performance, nutrient digestibility, and 

gastrointestinal pH.  
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CHAPTER II: LITERATURE REVIEW 

Short Chain Fatty Acids 

In the ceca of the bird, the production of short chain fatty acids (SCFA) begins by 

bacteria converting a polysaccharide, such as arabinoxylan, pectin, or cellulose, to an 

oligosaccharide (Onrust et al., 2015). These oligosaccharides are then metabolized by Firmicutes 

and some Bacteroidetes species to produce lactic acid, hydrogen, and SCFA (Pryde et al., 2002). 

Acetate, propionate, butyrate, valerate, and isovalerate are produced through the fermentation 

process (Jozefiak et al., 2004). However, in most studies the common SCFA reported are acetate, 

butyrate, and propionate. Due to the low pKa (≤4.8) of SCFA and the neutral pH of the proximal 

small intestine, most SCFA are present as anions rather than free acids (Guilloteau et al., 2010). 

The mechanism by which SCFA are produced is unique and complex. The largest number of 

bacteria within the birds GIT is located within the ceca, most of which are anaerobes. 

Approximately 80% of total bacteria in the ceca belong to the phyla Firmicutes and 

Bacteroidetes (Onrust et al., 2015). In general, the Firmicutes phyla contain many species 

capable of fermenting substrates to butyrate. These can include Ruminococcaceae (Clostridium 

cluster IV) and Lachnospiraceae (Clostridium cluster XIVa) (Onrust et al., 2015). The 

Bacteroidetes phyla contains many polysaccharide-degrading bacteria species. Both Firmicutes 

and Bacteroidetes concentrations appear to be low in the first days of life but continue to 

increase over time and plateau around 15 days post-hatch (van Der Wielen et al., 2001).  

The process in which bacteria convert substrates to products which can subsequently be 

utilized by other bacteria is known as cross-feeding (Duncan et al., 2004b). This can enhance 

certain SCFA, such as butyrate, production through the generation of intermediate metabolites. 

For example, Duncan et al. (2004a) noted that lactic acid is consumed by Clostridium cluster 
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XIV strains to produce butyrate. In rats, this conversion is beneficial due to the toxicity of lactic 

acid to bacteria when present in high concentrations (Hanstock et al., 2010). In addition, there is 

competition between sulfate-reducing bacteria and Clostridium cluster XIVa for lactate and 

butyrate. However, sulfate-reducing produce hydrogen sulfide which can cause cell death-

inducing effects upon the intestinal epithelial cells (Carbonero et al., 2012). Therefore, Onrust et 

al. (2015) concluded that a complex interaction exists between different bacterial population for 

certain substrates, and the outcome of those interactions can determine if beneficial metabolites 

such as SCFA are produced. 

Endogenous Butyrate Production 

Butyric acid is a four-carbon molecule with a molecular weight of 88.12 g/mol, a density 

of 0.958 g/ml, and a pKa of 4.82, and belongs to the class of carboxylic acids known as butanoic 

acid (Ashan et al., 2016). These acids are characterized by both the carbon on the carboxyl group 

(-COOH) and the hydrogen ion of the hydroxyl group (-OH) being weakly bonded and 

replaceable. For example, butyric acid loses its hydrogen ion and forms butyrate when it is in 

solution (CH3CH2CH2COO-) (Ashan et al., 2016). When produced endogenously, the most 

important butyrate producing bacteria belong to Ruminococcaceae and Lachnospiraceae families 

(Pryde et al., 2002) which are found in abundance along the broiler’s small intestine and ceca. 

Clostridium clusters also produce butyrate, with clusters IV and XIVa producing significantly 

more butyrate than clusters I and XVI. The synthesis of butyrate occurs through several different 

pathways; however, the main pathway is known as the pyruvate and acetyl-conezyme A pathway 

(Vital et al., 2014). This occurs through the conversion of acetyl-CoA to the intermediate 

butyryl-CoA in a four-step pathway that resembles the β-oxidation of fatty acids. In the final step 

of this pathway, butryryl-CoA is converted to butyrate by either butyryl-Coa: acetate CoA 
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transferase or butyrate kinase (Vital et al., 2014). As such, the genes coding these 2 enzymes are 

commonly used as biomarkers for the detection of the butyrate producing bacteria communities 

within the distal intestine and ceca. Amino acids can also be used as substrates for butyrate 

production including glutarate and 4-aminobutyrate which are found in Firmicutes and 

Bacteriodetes phyla (Buckel and Barker, 1974, Barker et al., 1981, Gerhardt et al., 2000). 

However, these amino pathways often occur in low abundance and rarely without the presence of 

the acetyl-CoA pathway (Vital et al., 2014).   

Butyrate and Gastrointestinal Health 

  It is well established that long villi and short crypt depths are indicators of a healthy and 

well-functioning gastrointestinal tract (Ferket et al., 2002). However, several other factors also 

play a role in the health status of the GIT such as mucosal enzyme activity, mucus layer and 

thickness, and goblet cell production (Moquet et al., 2018). Most of these indicators are 

influenced by the microbiome and its mutualistic relationship within the hosts GIT (Backhed et 

al., 2005). The intestinal wall is lined with epithelial cells that function to absorb water and 

nutrients for the maintenance and growth of the bird. The membrane of these epithelial cells 

combined with tight junctions make up a semi permeable barrier between the gut lumen and the 

internal tissues (Onrust et al., 2015). The permeability of the intestinal wall is regulated by 

several factors, including immune cells and cytokines, intestinal pathogens, environmental 

factors, and intestinal blood blow. However, any alteration in the factors mentioned previously, 

such as physiological stressors, may lead to an increase in permeability and result in 

gastrointestinal dysbiosis such as “leaky gut” (Stewart et al., 2017)   

 Morphology. Previous research has noted that when butyrate producing bacteria are in 

high abundance, an increase in the proliferation of epithelial cells and villi height occur. This 
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leads to a much stronger epithelial barrier integrity (Onrust et al., 2015). When looking at the 

role of unprotected butyrate in GIT health, Hu and Guo (2007) reported that birds fed 2,000 

mg/kg of unprotected butyrate had a 32.3% improvement in jejunal villi height to crypt depth 

(VH:CD) ratio compared to broilers fed diets absent in butyrate at 21 days post-hatch. Similarly, 

Panda et al. (2009) found that broiler duodenal villi height and crypt depths at day 22 were also 

significantly increased by unprotected butyrate supplementation when included at 2,000, 4,000, 

and 6,000 mg/kg. Furthermore, Jerzsele et al. (2012) found that when butyrate was included at 

1,500 mg/kg in the diet, jejunal villi height was increased by approximately 16% in 21-day old 

broilers but had no effect upon VH:CD. Whereas Smulikowska et al. (2009) reported that in 

broilers fed a fat coated sodium butyrate product at 1,000 mg/kg, no effect on villi height, width, 

or crypt depth in the jejunum or ileum was observed. Therefore, these studies suggest that 

butyrate’s impact upon broilers morphology can depend on the inclusion level of butyrate in the 

diet as well as the form in which it is fed. 

Tight Junctions. Integrity of the gut epithelial barrier can be partly attributed to the 

functioning of tight junctions located between the epithelial cells (Knudsen et al., 2018). Tight 

junctions are maintained by occludins, claudins, ZO-1, and plaque proteins which regulate the 

diffusion of water, ions, and nutrients between the cells. However, if any integrity is lost between 

the tight junctions, ion conductance increases across the paracellular route breaching the 

intestinal barrier and allowing pathogens and endotoxins to enter the bloodstream. Pathogens can 

diminish tight junctions via bacterial derived proteases or biochemical alterations (Awad et al., 

2017). In humans, studies have shown that butyrate can downregulate expression of claudin-2, 

which may improve barrier function as claudin-2 is expressed in tight junctions of leaky 

epithelial cells (Daly et al., 2006).  
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Microbiota interaction. Exogenous butyrate supplementation has been reported in 

numerous studies to reduce the presence of pathogenic bacteria such as Salmonella spp., 

Escherichia coli, and Campylobacter jejuni in the ceca and proximal intestine (Van Deun et al., 

2008) through a direct bactericidal effect. This occurs when butyric acid diffuses through the 

lipophilic bacterial cell wall in its undissociated form causing a toxicity within the cell cytoplasm 

(Warnecke and Gill, 2005). This toxicity is a result of a reduction in cytoplasmic pH following 

the dissociation of butyrate acid into a proton and its corresponding anion (Fernandez-Rubio et 

al., 2009). This increased acidification can disrupt purine bases and compromise DNA integrity 

of the microbe. Furthermore, Fernandez-Rubio et al. (2009) noted that an increase in anion 

concentration can lead to a higher transport of potassium ions into the bacteria cell, leading to 

increased cell turgidity.  

Endogenous and exogenous butyrate has shown to reduce Salmonella colonization in the 

ceca (Cox et al., 1994), crop, and liver. Orally ingested Salmonella moves down the crop and 

into the GIT where it grows anaerobically in a high fermentative environment such as the ceca 

(Ricke, 2003). Butyrate can directly inhibit Salmonella’s invasion into the epithelial cells 

(Durant et al., 2000) by downregulating the expression of genes involved in the invasion (Van 

Immerseel et al., 2006) or indirectly affect bacteria by lowering the pH of the intestine. A lower 

intestinal pH enhances the growth of lactic acid producing bacteria such as Lactobacilli and 

Bifidobacteria spp. (Ahsan et al., 2016). In turn, these bacteria can compete with pathogenic 

bacteria for space and nutrients, helping moderate pathogenic bacterial proliferation.  

 Immune Function. Inflammation is a common defense mechanism to protect the host 

from infection or disease in the presence of a pathogen. When inflammation does occur, it is a 

well-regulated process involving several mechanisms and pathways (Kovarik et al., 2008). 
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However, excess inflammation can lead to damage to the host tissue. In the GIT, the first line of 

defense is the physical barriers established by the mucus layer and epithelial cells. The mucus 

layer is primarily composed of mucins which are glycoproteins that have a backbone encoded 

with MUC genes (Gaudier et al., 2004). Short chain fatty acids, but more specifically butyrate, 

have been reported to upregulate MUC genes resulting in increased mucin secretion (Gaudier et 

al., 2004). Additionally, butyric acid has been reported to stimulate the development of gut-

associated lymphoid tissue (GALT) as well as increase the peptide production in the distal GIT 

(Cox et al., 2009).  Wu et al. (2018) noted that broilers fed a diet supplemented with sodium 

butyrate had a higher secretion of mucus and larger concentrations of goblet cells in the jejunum 

and ileum. This coincided with longer villi lengths within the jejunum and ileum at 42 days, as 

well increased weight and length of the duodenum, jejunum, and ileum at 42 days. Therefore, it 

can be concluded that the supplementation of sodium butyrate promoted intestinal development 

and health in broilers by reducing inflammation via an increase in mucin production and 

stimulation of GALT.  

Furthermore, G-protein-coupled receptors such as, GPR41, GPR43, and GPR109A can 

also be found along the intestinal epithelial lining and function as receptors for free fatty acids 

(Cox et al., 2009). In a human model, Chang et al. (2014) hypothesized that butyrate can bind to 

GPR41 and GPR43 which promote secretion of peptide YY (PYY). The secretion of PYY can 

lead to delays or inhibition of gastric emptying and intestinal passage rate, therefore suppressing 

appetite and increasing the secretion of glucagon-like peptide 1 (GLP-1) (Chang et al., 2014). 

Additionally, GPR109A signaling can promote anti-inflammatory properties in dendritic cells 

and macrophages, such as nitric oxide, resulting in the differentiation of regulatory T- cells and 

IL-10 producing T-cells (Thangaraju et al., 2009; Singh et al., 2014). The GPR109A is also 
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responsible for butyrate-mediated absorption of IL-18 cytokines into the colonic epithelium 

(Singh et al., 2014). Therefore, G-protein-coupled receptors are critical in butyrate signaling and 

its role in immunity. 

Furthermore, butyrate and other SCFA have been reported to bind and activate PPARγ 

(Alex et al., 2013) which aids in the inhibition of NF-κβ, resulting in anti-inflammatory effect in 

the gut. The inhibition of NF-κβ causes a cascade of events including the inhibition of nitric 

oxide which is responsible for several physiological and pathological processes including 

inflammatory responses and vasodilation (Sharma et al., 2007; Taylor et al., 2008). During 

pathogenesis, bacteria interact with the host cells during which butyrate down regulates 

expression of invasion genes and decreases virulence of bacteria (Van Immerseel et al., 2004). 

As previously mentioned, macrophages can produce reactive oxygen species such as nitric oxide 

which stimulate an anti-inflammatory response to the pathogen during phagocytosis (Zhou et al., 

2014).  

Butyrate as a Feed Additive 

The aforementioned positive effects for endogenous butyrate on broiler gastrointestinal 

health and immune system have led to its exogenous supplementation in poultry feed (Van 

Immerseel et al., 2004). However, because butyric acid is volatile and corrosive in nature, it is 

often fed in protected or coated forms for ease of handling (Ahsan et al., 2016). The different 

forms can include unprotected, fat-coated, salts, or esterified to a glycerol backbone as mono-, 

di- or tri glycerides (Moquet et al., 2018). However, the efficacy of butyrate depends upon the 

pKa value of butyric acid and the corresponding pH of the GIT. When ingested, the low pH of 

the crop, proventriculus, and gizzard causes butyrate to dissociate from its hydroxyl group and be 

converted into butyric acid. Once in its un-dissociated form, butyrate can be absorbed one of two 
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ways. The first method is through passive absorption into the enterocytes for use as an energy 

source (Ashan et al., 2016). The second method of absorption then occurs via bicarbonate ion 

(HCO3-) exchange method or active transport (McNeil et al., 1979; Velazquez et al., 1997; 

Ashan et al., 2016). The primary transporters involved in the active transport system are 

monocarboxylate transporter isoform 1 (MCT1) and sodium coupled mococarboxylate 

transporter 1 (SMCT1). It is important to note that butyric acid, rather than butyrate, is the 

preferred source of energy for enterocytes (Mahdavi and Torki, 2009) as butyrate requires active 

transport into the small intestine.  

 Therefore, when butyric acid is fed in the unprotected state, it is hypothesized that it is 

taken up rapidly via passive absorption by epithelial cells in the crop, proventriculus, and gizzard 

(Moquet et al., 2016). However, it is unclear if butyrate absorption in these areas impart any 

beneficial effects upon growth performance and gut morphology. Hu and Guo (2007) noted that 

birds fed unprotected butyrate had increased concentrations in the proventriculus region but not 

in the jejunal chyme. Thus, feeding in an unprotected state is rare as most research is protecting 

the butyric acid to achieve the release of butyrate within the small intestine (Moquet et al., 2018).  

In addition, if fed in a protected form, butyric acid can reach the small intestine where it 

is then dissociated back into butyrate due to the higher pH. Protection of butyrate can occur in 

several ways, such as its attachment to a salt to improve its stability and reduce the odor that is 

often associated with butyric acid (Ashan et al., 2016). The most commonly available salt form is 

sodium butyrate which has been shown to improve the bird’s gastrointestinal health by aiding in 

the development of the gut wall tissues and modulating the growth of the microflora present in 

the intestine (Van Immerseel et al., 2004; 2005; Leeson et al., 2005). As previously mentioned, 

butyrate contains a weakly bonded hydroxyl group, therefore in sodium butyrate the sodium 
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atom takes the place of the hydrogen of the –OH group. Sodium butyrate is converted to butyric 

acid upon ingestion due to the loss of the sodium ion. The acidic pH of the crop, proventriculus, 

and gizzard, allow the butyric acid molecule to stay in its undissociated form after losing its 

sodium atom (Ahsan et al., 2016), therefore, allowing entry into cells to impart bactericidal 

effects. However, similar to that of unprotected butyrate, it can be absorbed in the proximal 

gastrointestinal tract by enterocytes for energy. Thus, it must be protected from dissociation in 

the upper GIT to allow for a release in the distal portion of the bird’s small intestine (Ashan et 

al., 2016).  

One method of protection from absorption in the upper GIT, is embedding of butyrate in 

a fat matrix such as vegetable fat (Smulikowska et al., 2009; Zhang et al., 2011; Jerzsele et al., 

2012). The inclusion of butyrate into these matrices can vary from 30% to 70% on a 

weight:weight basis (Smulikowska et al., 2009; Jerzsele et al., 2012) and these proportions of fat 

to butyrate may make it difficult to predict the exact release point within the birds GIT. 

Regardless, it partially protects the butyrate from absorption in the upper GIT and allows the 

release in the proximal portion of the small intestine (Moquet et al., 2018).  

Another pathway to protect butyrate from absorption in the anterior GIT is through 

esterification. The esterification of butyrate to a glycerol backbone can create a mono-, di-, or 

tributyrin (Moquet et al., 2018). Due to the presence of the glycerol, butyric acid is degraded by 

the same pathway as lipids through pancreatic lipases. The chicken has very little pre-duodenal 

lipolytic activity (Moreau et al., 1988) therefore tributyrin can remain relatively stable in the 

upper GIT. However, reverse peristalsis from the duodenum into the gizzard may cause some 

degradation to occur if pancreatic lipase is present. This is also true for fat coated and 

microencapsulated butyrate products as well. Regardless, when it reaches the small intestine it is 
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cleaved by pancreatic lipases. Because lipases are only able to cleave the ester bonds of 

triacylglercol and the sn-1 and sn-3 positions, in a tributyrin, butyrate is likely absorbed as a 2-

monobutyrin in the small intestine (Moquet et al., 2018).   

 Growth Performance. The efficacy of butyrate supplementation in broiler feeds appears 

to be dependent upon on the form fed, release site, age of birds, and diet composition. When 

sodium butyrate was supplemented in an unprotected state, Hu and Guo (2007) reported that 

broilers body weight gain (BWG) increased when fed 500 mg/kg and 2,000 mg/kg for 21 days 

compared to broilers fed diets absent in butyrate, however this effect disappeared by d 42. 

Similarly, Panda et al. (2009) observed a significant increase in BWG of broilers fed a much 

higher inclusion rate of unprotected butyric acid at 4,000 mg/kg during a 35-day grow out 

period, but with no additional benefits when supplemented at 6,000 mg/kg. Therefore, it appears 

that the lowest inclusion level of 2,000 mg/kg in the aforementioned studies improved broiler 

growth performance without any added benefit at a higher inclusion rate of 6,000 mg/kg.   

Inconsistencies in the literature also appear when broilers are fed sodium butyrate. For 

example, Gonzalez-Ortiz et al. (2019) noted that the inclusion of a coated sodium butyrate 

product at 1,000 mg/kg in the diet negatively influenced growth performance at d 21 but 

increased butyrate concentration in the duodenum and jejunum digesta at d 42 with no impact 

upon growth performance. Kaczmarek et al. (2016) reported that encapsulated sodium butyrate 

included in the diet at 300 or 400 mg/kg improved feed conversion ratio (FCR) in broilers 

throughout a rearing period of 42 days. In addition, when supplemented with sodium butyrate at 

1,000 mg/kg in a nutrient reduced diet, broilers had a 2.8% increase in BWG from day 1 to 28 

compared to broilers fed a non-supplemented nutrient reduced diet (Bortoluzzi et al., 2017). 

However, Liu et al. (2019) suggested that sodium butyrate efficacy may not only be dependent 
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on inclusion level but also by the products targeted release time. These authors used an 

indigestible marker to evaluate differences in passage rate of two encapsulated sodium butyrate 

products.  Liu et al. (2019) noted that broilers fed 250 and 750 mg/kg of an encapsulated sodium 

butyrate product (30% butyrate) with a pre-established 2-hour release time had higher ileal 

digestible energy compared to a pre-established 3 to 4 hour release time at a 750 and 1,000 

mg/kg inclusion level.  

Inconsistencies in butyrate’s optimal dose for growth performance have also been 

reported. A study by Bedford et al. (2016) noted that when butyrate glycerides were 

supplemented at 500 or 2,000 mg/kg there was no effect on overall BWG or FCR, however both 

levels did reduce abdominal fat deposition. In a subsequent trial, Bedford et al. (2017) once again 

reported the lack of effect by butyrate glycerides supplemented at 500 mg/kg of the diet and 

2,000 mg/kg of the diet on broilers BWG and FCR. Similarly, broilers fed 2,000 mg/kg or 4,000 

mg/kg butyrate glycerides for 42 days had no differences in growth performance compared to 

broilers diets absent in butyrate (Leeson et al., 2005).  

 Nutrient digestibility. Data evaluating butyrate’s impact on broiler nutrient digestibility is 

lacking. Kaczmarek et al. (2016) reported that dietary inclusion of calcium butyrate at 200 mg/kg 

led to significant improvement in apparent total tract crude fat digestibility and nitrogen 

corrected apparent metabolizable energy (AMEn). These improvements in nutrient digestibility 

may be attributed to butyrate’s ability to increase cellular concentrations of Ca2+ ions in the 

pancreatic acinar cells, thus leading to activation of enzymatic secretion (Katoh and Tsuda 

1987). Therefore, potentially improving nutrient digestibility and subsequently increasing AMEn 

within the diet. Smulikowska et al. (2009) also reported a significant increase in apparent total 

tract digestibility of nitrogen and organic matter without affecting crude fat digestibility when 
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broilers were fed 300 mg/kg of a fat coated butyrate. These authors suggested this improvement 

in nutrient digestibility was due to greater epithelial cell proliferation within the GIT. Moreover, 

Qaisrani (2015) reported a trend for increase proteolytic activity in broilers fed the same butyrate 

additive. However, in the aforementioned studies, the differences in nutrient digestibility, 

specifically within protein digestibility, were observed when a butyrate salt product was included 

in the diet. Therefore, butyrate glycerides impact upon nutrient and energy digestibility still 

needs to be investigated. 

Diet Composition and Butyrate Efficacy 

 Dietary fermentation characteristics. Regardless of the form of butyrate fed, it is 

important to consider the diet composition in the studies previously mentioned. The 

fermentability of the diet could impact endogenous SCFA production, specifically butyrate. 

Because butyrate is produced through cecal fermentation of non-starch polysaccharides and 

oligosaccharides. Therefore, diet composition can play a large role in the production of 

endogenous butyrate production. Meat and bone meal (MBM) has been a commonly used feed 

ingredient in broiler diets for over 90 years. The addition of MBM can help reduce diet cost by 

providing valuable nutrients such as phosphorus and amino acids. A portion of the protein in 

MBM is not readily digestible by the broiler and will enter the hindgut undigested. When this 

occurs, an increase production of nitrogenous bacterial metabolites, such as amines and 

ammonia, can fuel pathogenic bacteria and potentially induce necrotic enteritis (Onifade et al., 

1998; Zanu et al., 2020). In previous literature the inclusion of MBM from 5% to greater than 

50% in poultry diets has led to increased concentrations of C. perfringens in ileal and cecal 

contents compared to birds fed vegetable-based proteins, thus resulting in higher incidences of 

necrotic enteritis and reduced growth performance (Wilkie et al., 2005; Zanu et al., 2020). It has 
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also been suggested that the inclusion of MBM in the diet can result in increased ileal and cecal 

pH due to the high calcium content that may interfere with amino acid and mineral utilization 

(Paiva et al., 2014). In a previous study conducted by Zanu et al. (2020), the addition of 6% 

MBM to wheat-based diets increased ileal and cecal pH of 16 d old broiler. Thus, the impact 

MBM has upon gastrointestinal health such as necrotic enteritis and its variable composition has 

led to the use of alternative feeding strategies such as all-vegetable based diets.  To ensure that 

vegetable-based diets meet sufficient protein levels, vegetable proteins such as soybean meal 

(SBM) can be included up to 30% or more in the diet. In general, good quality soybean meal is 

well utilized by poultry, however, in a vegetable-based diet, the oligosaccharide content is 

greatly increased. Stachyose and raffinose, two common oligosaccharides found in SBM, have 

been shown to increase feed passage rate and reduce nutrient digestibility in roosters (Coon et 

al., 1990). Additionally, due to the potassium content in SBM, vegetable-based diets have been 

linked to an increase in wet litter and as a result, an increase in footpad dermatitis. On the other 

hand, SBM has been shown to confer some beneficial effects within the gastrointestinal tract. 

Yang et al. (2016) reported that the additional inclusion of 0.13% SBM oligosaccharides in a 

diet, which is comparable to a 1.9% increase in SBM, increased total SCFA in the excreta in vivo 

while in turn stimulating a change within the bacterial community in ceca of the bird in a diet 

containing 26.9% SBM. Additionally, if concentrations are high enough, volatile fatty acids can 

stimulate a neuro-hormonal response via peptide YY which can delay gastric emptying and 

duodenal digesta transit times (Cuche et al., 2000; Park et al., 2013), thus improving nutrient 

digestion and absorption (Singh et al., 2014). Therefore, differences in dietary compositions such 

as the inclusion of MBM or all-vegetable based diets may influence endogenous butyrate 

production and in turn its impact upon broiler nutrient utilization.  
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Lipid Sources. Lipids are included in poultry diets as a concentrated source of energy and 

to supply essential fatty acids. However, depending on the origin of the lipid and the processing 

methods it is subjected to, lipid quality can be highly variable (Kerr et al., 2016). The fatty acid 

profile and free fatty acid content of lipids can impact their digestibility and energy value, while 

the peroxidation status can influence the intestinal integrity of the animal (Mani et al, 2013; 

Rosero et al., 2015). Additionally, lipid source absorption and utilization can vary due to the 

bird’s strain, age, or sex. A diverse array of lipid and oil sources are available for use in diets 

such as restaurant greases, rendered by-products, and acidulated soap stocks (Ravindran et al., 

2016).  Most poultry diets in the US use soybean oil or poultry fat due to their high digestibility, 

availability, and superior fatty acid profile making them ideal for use in the diet. However, 

soybean oil and poultry fat vary in many factors including their degree of saturation. Several 

studies have noted a negative correlation between the degree of saturation of a lipid and its 

utilization and apparent metabolizable energy in the bird (Renner and Hill, 1961a; Wiseman et 

al. 1991). The enzyme responsible for cleavage of the fatty acid off the glycerol backbone is 

known as pancreatic lipase. Lipase can be largely influenced by the degree of saturation of a 

fatty acid due to the difference in binding angle between unsaturated and saturated fatty acids 

(Ravindran et al., 2016). Pancreatic lipase has a binding affinity for a 141° angle between the 

double bond in unsaturated fatty acids. However, saturated fatty acids have a 180° angle due to 

the lack of a double bond, making them less digestible due to the reduced access of pancreatic 

lipase. Fatty acids such as oleic and linoleic significantly increase pancreatic lipase activity while 

saturated fatty acids such as stearic impart an inhibitory effect (Ravindran et al., 2016). Thus, the 

composition of the lipid source used in the diet can have a large impact on the ultimate 

absorption of the fatty acids.  
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In addition, the age of the bird may also impact the digestibility of different lipid sources. 

It has been reported that during the first week of life, enzyme secretion such as amylase, trypsin, 

and lipase are low (Tancharoenrat et al., 2013). The increase in amylase and trypsin appear to not 

increase until day 4 and continue to rise until 21 days post hatch (Noy and Sklan, 1995). In 

contrast, lipase activity increases much slower than the other enzymes (Noy and Sklan, 1995). 

Therefore, the ability of young birds to digest lipids is poor in general, and even more inefficient 

when fed lipids comprised of saturated fatty acids.  

In addition to lipid composition, lipid digestibility is also influenced by the level in which 

it is included in the diet. A study conducted by Wiseman (1986) reported that with increasing 

concentrations of lipid in the diet, broilers experienced a negative and non-linear impact upon the 

dietary apparent metabolizable energy. This effect was most pronounced in diets containing 

saturated fatty acids in young broilers. In addition, a recent study noted that broilers fed 

increasing amounts of soybean oil (3.5% to 17.5%) from d 0 to 7, had a linear decrease in feed 

intake and a linear increase in FCR (Lamot et al., 2019). However, it is important to note that 

with the increase in soybean oil; amino acids, minerals, and the premix were also increased at the 

same ratio as the soybean oil. Interestingly, there was not a main effect of lipid level on fat and 

nitrogen digestibility. However, Ravindran et al. (2016) notes that lipid digestibility will be 

reduced with a higher degree of saturation, longer chain length, and higher inclusion levels.  

Particle size. In a poultry diet, energy is not only derived from lipid sources but other 

ingredients such as cereal grains. Corn has been widely used in poultry diets due to its consistent 

high energy values and protein content, contributing up to 65% of the metabolizable energy and 

20% of protein in poultry diets (Naderinejad et al. 2016). Most cereal grains in poultry diets are 

ground rather than included as a whole grain. However, several studies have debated the issue of 
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how finely to ground cereal grains to increase growth performance, nutrient utilization, and 

gizzard function.  

The gizzard’s most notable role is its ability to physically digest incoming feed particles 

(Svihus, 2011). The gizzard is comprised of muscles that move asymmetrically when contracted 

and crush the particles inside. Amerah et al. (2008, 2009) noted that the volume of the bird’s 

gizzard increased significantly when structural components were added to the diet, indicating 

that the mean retention time will increase in correspondence with gizzard function (Svihus et al., 

2011). Furthermore, the inclusion of structural components in the diet has shown to reduce the 

pH of the gizzard content (Gabriel et al., 2003; Engberg et al., 2004; Bjerrum et al., 2005). This 

occurs by an increase in hydrochloric acid secretion due to longer retention times and increased 

gizzard volume often associated with structural components (Svihus et al., 2011). Additionally, 

the increase in hydrochloric acid could impart positive benefits on the birds GIT by the reduction 

of pathogenic microflora and improved gastric digestion (Svihus et al., 2011).  

Additionally, studies by Proudfoot and Hulan (1989) and Hamilton and Proudfoot (1995) 

reported improved BWG in broilers fed mash diets containing coarse corn particles or very 

coarse corn particles compared to broilers fed finely ground corn. One traditional view regarding 

nutrient utilization is that smaller particle sizes are associated with a larger surface area of the 

grain, leading to increased exposure to digestive enzymes thus resulting in higher digestibility 

(Preston et al., 2000). A study conducted by Kilburn and Edwards (2001) showed that when 

birds were fed mash diets containing finely ground corn (869 µm), the metabolizable energy was 

improved whereas a reduction in the magnitude of change in metabolizable energy was observed 

when birds were fed pelleted diets. Furthermore, Parsons et al. (2006) reported broilers fed 

coarse ground corn (2,242 µm) experienced an increase in lysine and nitrogen retention 
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compared to finely ground corn (781 µm). Therefore, it is important to consider particle size 

when formulating a diet to maximize the growth performance and nutrient utilization.   

 Lastly, conflicting data has been reported on the ability of particle size ability to 

influence intestinal morphology and digestive tract measurements. It has been suggested that the 

interaction between coarse feed particles and the intestinal mucosa allows for a reduction in 

gastrointestinal passage rate and thus an increase in time between the feed particle and mucosa 

(Sturkie, 2000; Warner, 1981). Therefore, an increase in villus length may lead to a larger 

absorptive surface area and result in higher enzymatic activity and increased transportation of 

nutrients at the villus surface (Cera et al., 1988).  Previous research has noted a significant 

increase in broiler and layer small intestine villus height and villi height: crypt depth ratio when 

feeding diets containing coarse particles (Dahlke et al., 2003; Rohe et al., 2014; Gabriel et al. 

2007). Furthermore, Amerah et al. (2007) observed an interaction of feed form and particle size 

on digestive tract measurements where broilers fed a mash diet containing a 839 µm particle size 

had heavier GIT components compared to the broilers fed a mash diet with 1,164 µm particle 

size. Additionally, the same interaction was observed in gastrointestinal lengths where broilers 

fed mash diets containing 1,164 µm particle size had shorter intestinal lengths compared to 

broilers fed mash diets containing a 839 µm particle size. However, in the same study, no impact 

of particle size was observed on duodenum or jejunal morphology. Additionally, Lv et al. (2015) 

reported a lack of interaction of feed particle size and feed form for all sections within the 

digestive tract when using 573 µm, 865 µm, and 1,027 µm corn particle size in a mash diet. 

Therefore, it appears that the impact of particle size on intestinal morphology and development 

and how it relates to nutrient digestibility needs to be further explored.  
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In conclusion, butyrate supplementation has the potential to improve broiler growth 

performance, nutrient utilization, and gastrointestinal health. The form in which to include 

butyrate must be taken into consideration, as different forms will have varying release points 

inside the gastrointestinal tract. In the current studies, butyrate glycerides, or tributyrin (TB), will 

be the primary molecule evaluated. In addition, nutritional factors will be investigated on their 

influence in TB efficacy. One of the nutritional factors will include dietary lipid source and level 

due to field experience and research trials reporting a difference in broiler growth performance in 

birds fed diets supplemented with TB containing either soy oil or poultry fat. Additionally, corn 

particle size will also be evaluated due to its impact upon gizzard function. An increase in 

gizzard function can result in improved growth performance, nutrient digestibility, and 

enzymatic secretion. This in turn may impact TB utilization due to the increase in pancreatic 

lipase activity that can occur with improved gizzard functionality.  

Lastly, the fermentability of the diet is of great importance as different feeding programs 

are growing exponentially in the poultry industry. The elimination of animal protein in some 

diets has caused an increase in other ingredients such as soybean meal, resulting in higher 

fermentation of the diet. Thus, this increase in fermentation could lead to higher production of 

endogenous butyrate, allowing for a synergistic effect between exogenous butyrate 

supplementation and endogenous butyrate production. Therefore, these studies aim to evaluate 

nutritional factors influence upon TB efficacy and its impact on broiler growth performance, 

nutrient digestibility, carcass characteristics, and gastrointestinal development and morphology.   
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CHAPTER III: EVALUATION OF GRADED DOSES OF TRIBUTYRIN ON BROILER 

LIVE PERFORMANCE, NUTRIENT DIGESTIBILITY, AND CARCASS 

CHARACTERISTICS 

 

ABSTRACT 

  Tributyrin (TB) is a glyceride ester of butyrate that has previously been reported to 

improve broiler performance and improve carcass leanness. Therefore, two experiments were 

conducted to investigate the optimal inclusion level of tributyrin for broiler growth performance, 

apparent ileal nutrient (AID) and energy digestibility (IDE), and carcass characteristics when fed 

in a step-down program and in a reduced energy and amino acid diet. Dietary treatments for both 

experiments consisted of a positive control (PC), negative control (NC), and 3 inclusions of TB 

in the NC, which was formulated with a reduction of 100 kcal/kg in AMEn and 7% in digestible 

amino acids relative to PC. The 3 TB doses included 1x (500 mg/kg in starter and 250 mg/kg in 

the grower and finisher), 3x (1,500 mg/kg in starter and 750 mg/kg in the grower and finisher), 

and 5x (2,500 mg/kg in starter and 1,250 mg/kg in the grower and finisher) of the manufacturer’s 

recommended dose. Dietary treatments were fed in three feeding phases in Experiment 1 starter, 

(0 to 12 d); grower, (13 to 26 d); and finisher, (27 to 35 d), whereas in Experiment 2 treatments 

were fed in a single feeding phase from d 0 – 14. Titanium dioxide was used as an indigestible 

marker in the feed for determination of AID and IDE following collection of ileal digesta at 14 d 

in Experiment 2. In Experiment 1, each treatment was replicated with 12 floor pens of 6 male 

and 6 female Ross 708 chicks and on d 35, 480 birds were processed and deboned. In 
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Experiment 2, each treatment was replicated with 6 floor pens of 12 male by-product chicks from 

a female Cobb 500 line. A linear reduction in BWG (P = 0.002) and a quadratic response in FCR 

(P = 0.001) with increasing amounts of TB from d 0 – 35 was observed in Experiment 1 while 

overall mortality was not impacted by increasing TB in the diet. In addition, a linear increase in 

fat pad yield (P = 0.002) and a linear reduction in breast meat yield (P < 0.001) was also 

observed with increasing TB doses. In Experiment 2, no significant differences were observed 

among treatments in growth performance at d 14. However, a linear increase in ether extract 

digestibility (P = 0.022) was observed with increasing TB inclusion. Lastly, a quadratic 

improvement was observed for both dry matter digestibility (P = 0.042) and IDE kcal/kg (P = 

0.012) with the 1,500 mg/kg TB having the highest numerical values in both measurements. In 

conclusion, these data indicate that when evaluating the 3 TB doses used in Experiment 1, 

growth performance was not negatively impacted when fed at 500 mg/kg in the starter phase and 

stepped down to 250 mg/kg in the grower and finisher phases as compared to birds fed the higher 

inclusion levels of TB. In Experiment 2, 1,500 mg/kg of TB improved nutrient digestibility 

without affecting growth performance. Differences in genetic strains and age of birds at the 

termination of the trial may have influenced the differences in observations between the two 

studies.  

INTRODUCTION 

 Butyric acid is a commonly used feed additive that has been well-studied regarding its 

effects on the gastrointestinal health and production performance of broiler chickens (Cox et al., 

1994; Van Immerseel et al., 2004, Onrust et al., 2015). Potential benefits of exogenous butyric 

acid include improved intestinal morphology, immune function, and microbiota profile 

(Apajalahti and Vienola, 2016; Moquet et al., 2018). Collectively, these effects can increase 
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nutrient utilization, but data evaluating the effects of butyric acid on nutrient digestibility are 

lacking (Kaczmarek et al., 2016; Smulikowska et al., 2009). Various forms of butyric acid are 

used in poultry feeds and differ in their purity and sites of release within the gastrointestinal 

tract. One such form includes butyric acid esterified to a glycerol backbone, as mono-, di-, and 

tributyrins (Moquet et al., 2016). Glycerol bound butyrins may be more stable in feed and the 

anterior gastrointestinal tract when compared with unprotected forms of butyric acid such as 

anions and salts, which are often passively absorbed in the upper gastrointestinal tract (Ichikawa 

et al., 2002; Moquet et al., 2018). Therefore, microencapsulation or esterification of butyrate it is 

thought to release butyrate within the small intestine following exposure to pancreatic lipase 

which allows butyrate to provide energy to enterocytes and stimulate villi growth (Ahsan et al., 

2016).  

 Current literature is inconsistent regarding the optimum level of butyrate glycerides to 

promote growth performance and carcass yield. In two studies conducted by Leeson et al. 

(2005), birds fed 100, 200, or 400 mg/kg of mixed butyrins had no difference in growth 

performance from 0 to 42 days, however, breast yield was the highest for birds fed the 200 

mg/kg inclusion level. Bedford et al. (2017b) reported that a mixture of 500 mg/kg of mono- and 

tributyrin reduced abdominal fat deposition and improved breast yield with no impact upon 

growth performance. Furthermore, Bedford et al. (2017b) concluded that butyrate glycerides may 

not require feeding throughout the duration of growth in order to achieve an increase in carcass 

leanness. Thus, it is unclear if a reduction in butyrate glycerides between growth phases is 

beneficial for performance and carcass characteristics; and if so, at what magnitude is optimal for 

reduction. In a study conducted by Antongiovanni et al. (2009), straight run broilers were fed 

2,000 mg/kg of a butyrate glyceride mixture in the starter phase and stepped down to 500 mg/kg 
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in the finisher phase which yielded a significant increase in FCR and a reduction in breast yield 

when compared to a control diet. It is noteworthy to mention, that in the aforementioned studies, 

only male broilers were used so it is unclear if TB is utilized differently between male and 

female broilers. Therefore, two experiments were designed to explore the supplementation of 

graded doses of tributyrin in a step-down program during the grower and finisher phases to 

establish an optimum inclusion level for use in subsequent studies. Furthermore, the two 

experiments aimed to evaluate TB in reduced nutrient dense diets while also establishing its 

impact on broiler growth performance, nutrient digestibility, and carcass characteristics in male 

and female broilers.  

MATERIALS AND METHODS 

 All animal care and experimental procedures were approved by the University of 

Arkansas Institutional Animal Care and Use Committee before initiation of the experiment.  

Animal Husbandry and Dietary Treatments (Experiments 1 and 2) 

 Experiment 1. In experiment 1, 720 Ross 708 straight-run chicks were obtained from a 

commercial hatchery on day of hatch. All chicks were vent-sexed by a trained professional and 

tagged according to sex. Birds were then group-weighed and distributed across 60 floor pens 

containing used litter top-dressed with fresh pine shavings. Each 0.91m by 1.22 m pen contained 

a total of 12 birds with 6 females and 6 males equipped with a commercial-type pan feeder and 

nipple waterers to provide free access to feed and clean water throughout the trial. Supplemental 

feed trays were placed in each pen from 0 to 7 d post-hatch. Lighting and temperature were 

maintained according to best practice appropriate for bird age as outlined in management guides 

published by the primary breeder.  
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 On 0, 14, 28, and 35 d post-hatch, male and females were weighed separately, and feeder 

weights were recorded and used for the calculation of body weight gain (BWG), feed intake 

(FI), and mortality corrected feed conversion ratio (FCR). Five dietary treatments were 

maintained across 3 feeding phases to 35 d post-hatch: starter (d 0 to 12), grower (13 to 26 d), 

and finisher (27 to 35 d). For each feeding phase, a common basal was mixed and experimental 

treatments were remixed with the appropriate ingredient additions according to treatment (Table 

2.1). Diets contained corn, soybean meal, and distillers dried grains with solubles and were 

formulated to industry-relevant nutrient specifications. The negative control (NC) was 

formulated with a 100 kcal/kg reduction in nitrogen-corrected apparent metabolizable energy 

(AMEn) and a 7% reduction in digestible amino acids compared to the positive control (PC). The 

3 TB doses included 1x (500 mg/kg in starter and 250 mg/kg in the grower and finisher), 3x 

(1,500 mg/kg in starter and 750 mg/kg in the grower and finisher), and 5x (2,500 mg/kg in starter 

and 1,250 mg/kg in the grower and finisher) of the manufacturer’s recommended dose. For the 

1x, 3x, and 5x doses, tributyrin was included at the expense of sand in the starter phase at 500, 

1,500, and 2,500 mg/kg, and 250, 750, 1,250 mg/kg, in the grower and finisher phases: 

respectively.   

 At 35 d post-hatch, all birds from 8 replicate pens per treatment (480 minus mortality) 

were selected and fasted overnight. Birds were then transported in coops to the University of 

Arkansas Pilot Processing Plant. Live weights were measured immediately prior to live-hanging. 

Birds were processed and deboned by University of Arkansas research personnel. Processing 

measurements included hot carcass weights, hot fat pad weights, and chilled carcass, breast, 

tenders, wing, and leg quarters weights and yields. Yields were calculated for each bird relative 

to the live weights taken at the back dock.  
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  Experiment 2. Experiment 2 was conducted to determine nutrient digestibility in 

response to graded doses of TB in a reduced nutrient dense diet. In Experiment 2, 360 Cobb 500 

male by-product chicks from a Cobb 500 female line obtained from a commercial hatchery on 

day of hatch. The type of chicks used differed from Experiment 1 due to availability. Chicks 

were distributed among 30 floor pens (12 birds/pen) containing used litter top-dressed with fresh 

pine shavings and reared to 14 d post-hatch. Birds and feeders were weighed together at 0 and 14 

d post-hatch for the calculation of BWG, FI, and FCR. The dietary treatments in Experiment 2 

were the same as those used during the starter period.  

 At 14 d post-hatch, all birds from each pen were humanely euthanized. Digesta was 

flushed from all birds in 6 replicate pens of each treatment using deionized water from the lower 

one-third of the ileum (as defined by the section of small intestine between the Meckels 

diverticulum and ileo-cecal junction). Frozen ileal digesta samples were lyophilized and ground 

using an electric coffee grinder to provide an evenly ground sample while avoiding significant 

loss. Diet and digesta samples were analyzed for dry matter, gross energy, nitrogen, and ether 

extract. Gross energy was determined with a bomb calorimeter (Parr 6200 bomb calorimeter, 

Parr Instruments Co., Moline, IL.). Nitrogen was determined using the combustion method 

(Fisions NA-2000, CE Elantech, Lakewood, NJ) standardized with EDTA (method 990.03, 

AOAC International 2006) and ether extract was determined according to the AOAC (2006) 

METHOD 920.39. Titanium dioxide was included in the feed at 0.5% as an indigestible marker, 

and diet and digesta TiO2 concentrations were determined in duplicate following the procedures 

of Short et al. (1996). Apparent ileal digestibility (AID) of dry matter, gross energy, ether 

extract, and nitrogen were calculated using the following equation:  

AID, % = {[(X / TiO2) diet – (X / TiO2) digesta] / (X / TiO2) diet} × 100, 
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where (X/TiO2) = ratio of nutrient concentration to TiO2 in the diet or ileal digesta. Energy 

digestibility (%) values obtained from the above equation were multiplied by the gross energy 

content of the feed to calculate ileal digestible energy (IDE) in kcal/kg.  

Statistical Analysis 

 In both experiments, pen was considered the experimental unit with 12 replicate pens for 

Experiment 1 and 6 replicate pens for Experiment 2 for each of the 5 dietary treatments arranged 

in a randomized complete block design. Data were analyzed by a one-way ANOVA using the 

MIXED procedure in SAS 9.4. Orthogonal contrasts were used to compare the positive control 

versus negative control diets and the linear and quadratic effects of tributyrin inclusion. The 

main effect of sex and diet type interactions on body weight gain and carcass characteristics was 

analyzed by a two-way ANOVA using the procedure as described above. Statistical significance 

was considered at P < 0.05. Statistical outliers were defined as values exceeding 3 studentized 

residuals of the mean.  

 RESULTS 

Growth performance 

 Experiment 1. During the starter phase, birds fed the NC diet had a higher BWG (P = 

0.033) and a reduced FCR (P = 0.009) compared to birds fed the PC diet (Table 2.2). 

Furthermore, a quadratic response (P = 0.049) in BWG was observed with increasing amounts of 

TB, which was accompanied by a quadratic response in FI (P = 0.020) and increase in FCR (P = 

0.003). Additionally, females had significantly higher body weights (P < 0.001) compared to 

male broilers, however, no interaction (P > 0.05) between diet and sex was observed (data not 

shown). 
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 During the grower period, no main effects or interactions of sex (P > 0.05) during the 

grower period was observed for growth performance (data not shown). Furthermore, no 

differences (P > 0.05) were observed in BWG between birds fed the PC and NC diets (Table 

2.2). However, birds fed the NC diet had higher (P < 0.001) FCR compared to birds fed the PC 

diet. There was also a linear decrease (P = 0.015) in BWG observed with increasing amounts of 

TB, although no differences were observed in FI or FCR in response to TB.  

 From 0 to 35 d post-hatch male broilers had significantly heavier body weights (P < 

0.001) compared to female broilers (data not shown), however, there were no interactions (P > 

0.05) between sex and diet observed. Additionally, there were no differences (P > 0.05) in BWG 

between birds fed the PC and NC diets, whereas birds fed the PC diet had lower (P < 0.001) FCR 

compared to birds fed the NC diet (Table 2.2). Furthermore, there was a linear reduction (P = 

0.002) in BWG and a linear increase (P = 0.001) in FCR as TB dose increased, with no effects (P 

> 0.05) of TB on FI. There were also no differences (P > 0.05) in mortality among any of the 

treatments during the trial.  

 At 36 d post-hatch, females had increased carcass yield (P < 0.001), breast yield (P < 

0.001), tender yield (P < 0.001), and leg quarter yield (P = 0.003) compared to males with no 

diet by sex interactions (P > 0.05) observed (Table 2.3). In addition, relative fat pad weight, 

which was higher (P = 0.023) for NC birds than for PC birds, was the only processing 

measurement observed to be different between the PC and NC groups (Table 2.3). Increasing 

dietary TB linearly reduced live bird weight and weights of hot carcasses, chilled carcasses, 

breast, tenders, wings, and leg quarters (P < 0.01) (data not shown). Linear reductions in chilled 

carcass (P = 0.024) and breast (P < 0.001) yield were observed with increasing TB 

concentration. Inversely, a linear increase (P = 0.002) in relative fat pad weight was observed 
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with increasing amounts of TB. Furthermore, a quadratic (P = 0.022) response in tender yield 

was observed with increasing TB.  

Experiment 2. No differences (P > 0.05) in BWG, FI, or FCR were observed among any of the 

dietary treatments from 0 to 14 d post-hatch (Table 2.4). Birds fed the PC diet had greater (P = 

0.008) nitrogen digestibility and IDE than birds fed the NC diet (Table 2.5). A linear increase (P 

= 0.022) was observed in ether extract digestibility as dietary TB increased. Additionally, there 

was a quadratic response of dietary TB observed for dry matter digestibility and IDE, with the 

greatest numerical value for TB-fed birds observed at the 3x dose.  

DISCUSSION 

 In the current experiments, broilers were fed graded doses of TB in a step-down program 

in a reduced energy and amino acid diet to establish an optimal dose for broiler growth 

performance, nutrient digestibility, and carcass characteristics for subsequent experiments. In 

prior studies, the supplementation of butyrate glycerides have been inconsistent regarding their 

effects on growth performance and carcass characteristics (Bedford et al., 2017a; Antongiovanni 

et al., 2016; 2007; Leeson et al., 2005). In Experiment 1 and 2, birds were fed the same diets and 

reared under similar management and environmental conditions, however, different genetic lines 

were used due to chick availability at the time of the 2 experiments. It has previously been 

reported that broiler strains may influence responses to TB (Bedford et al., 2017a), therefore, the 

difference between genetic lines needs to be taken into consideration when evaluating the current 

experiments.  

 In Experiment 1, as expected, a reduction in energy and amino acid density in the 

negative control caused an increase in overall FI and FCR, ultimately leading to a reduction in 

carcass leanness and subsequent increases in abdominal fat. Tributyrin was added at 500, 1,500, 



40 
 

and 2,500 mg/kg in the starter phase and stepped down to 250, 750, and 1,250 mg/kg, 

respectively, in the grower and finisher phases of Experiment 1. During the starter phase, a 

quadratic response in FI and FCR was observed in Ross 708 birds with increasing amounts of 

TB. Additionally, feeding a step-down program in Experiment 1 led to a linear reduction in 

BWG and a linear increase in FCR with increasing amounts of TB from d 0 – 35.  Bedford et al. 

(2017b) suggested that butyrate glycerides may not need to be fed at high levels throughout the 

growth phase. It is important to note, however, that in the current studies, the highest-level fed 

was a 5x dose (2,500S; 1,250 GF), which is a much lower dose compared to previous research 

(Leeson et al., 2005). Even so, there were no indication to suggest that the 5x dose (2,500S; 

1,250GF) of TB was unsafe to the bird’s health. 

  Furthermore, increasing the amount of TB in diets also impacted carcass characteristics. 

Specifically, birds fed the 5x dose ((2,500 starter (S); 1,250 grower and finisher (GF)) had 

significantly lower breast meat yield compared to birds fed the 1x dose of TB (500S; 250GF). 

Conversely, Leeson et al. (2005) reported that birds fed 2,000 mg/kg of mixed butyrins had 

higher carcass and breast weight at d 42 compared to birds fed 1,000 mg/kg. In agreement, 

Bedford et al. (2017b) observed a significant reduction in abdominal fat weight at 5 weeks of age 

in broilers fed a mixture of mono- and tributyrin, thus potentially indicating a shift in lipid 

metabolism with the addition of butyrate glycerides to the diet.  One key difference between the 

current studies and previous research is the diet composition and nutrient levels. In the current 

studies, an excess of energy relative to the protein level may have occurred in the NC compared 

to the PC due to the relatively larger reduction in AMEn compared with AA density, thus birds 

may have overconsumed energy in order to meet their protein requirement (Griffiths et al., 

1977). This overconsumption of energy by the broiler may have led to an increased accumulation 
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of abdominal fat. Whereas in previous research, the evaluation of butyrate glycerides on broiler 

growth performance and carcass characteristics has been in diets containing adequate nutrient 

levels, therefore overconsumption was likely not an issue. Furthermore, previous research has 

utilized diets containing higher dietary fat levels and included ingredients such as wheat by 

products (Leeson et al., 2005; Bedford et al., 2017b). Therefore, it is possible that dietary 

nutrient levels and diet composition may influence broiler’s utilization of TB. 

 In Experiment 2, no significant differences in growth performance were observed from 0 

– 14 days with increasing amounts of TB or between the PC and NC. An increase in nitrogen 

digestibility and IDE kcal/kg, however, was observed for PC fed birds compared to NC fed birds. 

The PC contained 4 times the amount of dietary lipid compared to the NC. Therefore, the higher 

lipid concentration may have potentially improved broiler nutrient absorption through an “extra-

caloric effect” (Jensen et al., 1970). In Experiment 2, ether extract digestibility increased linearly 

with increasing TB supplementation and coincided with a quadratic increase in IDE kcal/kg, with 

the highest value reported at the 3x dose (1,500 mg/kg) which was exactly 100 kcal higher 

compared to birds fed the NC. This increase in energy utilization, with no increase in nitrogen 

digestibility, may have also contributed to an excess energy to protein ratio in Experiment 1, as 

evidenced by abdominal fat pad accumulation. Previous research has reported no difference in 

amino acid digestibility when TB was included in the diet at 1,000 mg/kg (Moquet et al., 2018) 

when compared to a control diet or other forms of butyrate. However, Liu et al. (2017) noted that 

when evaluating butyrate sources with different release points, an increase in IDE kcal/kg was 

observed at the 500 mg/kg level compared to a control diet.   

 In conclusion, increasing TB supplementation beyond the recommended dose of 500 

mg/kg had a negative impact on broiler growth performance and carcass characteristics in 
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Experiment 1, including an increase in abdominal fat pad deposition. However, in Experiment 2, 

the same graded doses of TB had no influence upon growth performance or nitrogen 

digestibility, but improved ether extract and energy digestibility. This indicates that TB may 

have a greater potential to improve energy utilization than amino acid digestibility and that 

dietary energy level should be taken into consideration when using TB in practical feed 

formulations. Furthermore, the potential for TB to improve energy utilization may be influenced 

by the source, quality, and concentration of added lipids, and these factors warrant further 

investigation.  
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Table 2.1 Diet formulations for broilers fed graded doses of tributyrin (TB) in a step-

down program from 0 to 35 d post-hatch (Experiment 1 and 2) 

 Starter Grower Finisher 

Ingredient PC NC PC NC PC NC 

Corn 52.10 58.53 55.62 62.47 60.41 66.66 

Soybean meal 35.95 31.87 32.37 28.20 27.54 23.75 

Corn DDGS1 5.00 5.00 5.00 5.00 5.00 5.00 

Poultry fat 3.42 0.82 3.87 1.17 4.23 1.68 

Limestone 1.21 1.23 1.14 1.17 1.09 1.11 

Dicalcium phosphate 1.10 1.11 0.88 0.89 0.70 0.71 

Sodium chloride 0.37 0.37 0.37 0.37 0.37 0.37 

DL-methionine, 99% 0.30 0.27 0.28 0.24 0.24 0.21 

L-lysine HCl, 78.8% 0.20 0.21 0.18 0.20 0.17 0.19 

L-threonine, 98% 0.12 0.11 0.07 0.07 0.06 0.06 

Trace mineral premix2 0.10 0.10 0.10 0.10 0.10 0.10 

Vitamin premix3 0.05 0.05 0.05 0.05 0.05 0.05 

Choline chloride, 60% 0.05 0.05 0.05 0.05 0.05 0.05 

Phytase4 0.03 0.03 0.03 0.03 0.03 0.03 

Selenium premix (0.06%) 0.02 0.02 0.02 0.02 0.02 0.02 

Titanium dioxide  0.50 0.50 0.50 0.50 0.50 0.50 

Builder’s sand5 - 0.250 - 0.125 - 0.125 

Calculated nutrient composition, % unless noted otherwise 

AMEn, kcal/kg 3,030 2,930 3,130 3,030 3,200 3,100 

CP 23.00 21.50 21.50 20.00 19.50 18.14 

Digestible Lys 1.25 1.16 1.12 1.04 1.00 0.93 

Digestible TSAA 0.93 0.86 0.85 0.79 0.78 0.73 

Digestible Thr 0.84 0.78 0.75 0.70 0.67 0.62 

Total Ca 0.96 0.96 0.87 0.87 0.79 0.79 

Available P 0.48 0.48 0.44 0.44 0.40 0.40 

Analyzed nutrient composition, % 

Dry matter 89.12 89.25 90.00 89.71 89.53 89.93 

Protein 23.00 22.20 21.60 20.70 20.00 18.60 

Gross energy, kcal/kg 4,002 3,986 4,035 4,062 4,112 4,077 
1 Dried distillers grains with solubles. 
2 The mineral premix provided (per kg of diet): calcium, 55.5 mg, manganese, 100.0 mg; 

magnesium, 27.0 mg; zinc, 100.0 mg; iron, 50.0 mg copper, 10.0 mg; iodine, 1.0 mg. 
3 The vitamin premix provided (per kg of diet): vitamin A, 6,350 IU; vitamin D3, 4,536 

ICU, vitamin E, 45 IU, vitamin B12 0.01 mg; mendadione, 1.24 mg; riboflavin, 5.44 

mg; d-pantothenic acid, 8.16 mg; niacin, 31.75 mg; folic acid, 0.73 mg; pyridoxine, 2.27 

mg; thiamine, 1.27 mg. 
4 OptiPhos 2000, (Huvepharma Inc., Peachtree City, GA) provided 250 FTU/g of 

phytase activity. 
5 Tributyrin was added to the experimental diets at the expense of sand to achieve 500 

mg/kg tributyrin. 
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Table 2.2 Live performance of broilers fed diets with graded doses of tributyrin (TB) in a step-down program from 0 to 

12 d post-hatch (Experiment 1)1 

 D 0 – 12  D 0 – 26 D 0 - 35 

Item BWG, kg FI, kg FCR, kg:kg BWG, kg FI, kg FCR, kg:kg BWG, kg FI, kg FCR, kg:kg 

PC 0.182 0.306 1.695 1.046 1.440 1.391 1.942 2.767 1.437 

NC 0.194 0.305 1.582 1.053 1.491 1.436 1.918 2.845 1.500 

NC + 1x TB 0.185 0.323 1.711 1.045 1.512 1.446 1.932 2.896 1.498 

NC + 3x TB 0.181 0.309 1.698 1.001 1.468 1.453 1.839 2.812 1.521 

NC + 5x TB 0.186 0.307 1.660 1.009 1.465 1.452 1.837 2.813 1.528 

SEM 0.005 0.006 0.033 0.022 0.020 0.012 0.032 0.046 0.009 

NC vs PC 0.033 0.857 0.009 0.753 0.064 <0.001 0.449 0.090 <0.001 

TB Linear P-value 0.075 0.752 0.071 0.015 0.154 0.153 0.002 0.216 0.001 

TB Quadratic P-value 0.049 0.020 0.003 0.602 0.551 0.523 0.714 0.448 0.516 
1PC = positive control, NC = negative control (Reduction of 100 kcal/kg in AMEn and 7% digestible amino acids relative 

to PC), 1x = 500 mg/kg TB in starter; 250 mg/kg TB in grower and finisher, 3x = 1,500 mg/kg in starter, 750 mg/kg TB 

in grower and finisher, 5x = 2,500 mg/kg in starter, 1,500 mg/kg in grower and finisher 
2ANOVA = overall P – value. 
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Table 2.3 Processing yields of broilers fed diets with graded doses of tributyrin 

(TB) fed in a step-down program from 0 to 36 d post hatch (Experiment 1)1 

Item 

Chilled 

Carcass 

Yield 

Fat Pad 

Yield 

Breast 

Yield 

Tender 

Yield 

Wing 

Yield 

Leg 

Quarter 

Yield 

                                       ---------------------------%-------------------------- 

Main effect of sex2 

Male 75.25b 1.36 19.10b 4.14b 8.06 22.57a 

Female 76.15a 1.43 20.03a 4.41a 8.08 22.20b 

SEM 0.13 0.03 0.12 0.03 0.03 0.09 

Main effect of diet 

PC 75.80 1.24 19.81 4.35 8.04 22.38 

NC 75.91 1.33 20.13 4.29 8.02 22.16 

NC + 1x dose TB 76.09 1.35 19.86 4.35 8.11 22.32 

NC + 3x dose TB 75.60 1.38 19.56 4.26 8.08 22.03 

NC + 5x dose TB 75.41 1.47 19.07 4.10 8.10 22.09 

SEM 0.27 0.04 0.21 0.06 0.05 0.28 

P-values 

Sex < 0.001 0.067 <0.001 <0.001 0.661 0.003 

Sex x diet 0.668 0.957 0.537 0.525 0.708 0.295 

NC vs PC 0.677 0.023 0.138 0.409 0.783 0.436 

TB Linear P-value 0.024 0.002 <0.001 0.002 0.190 0.573 

TB Quadratic P-value 0.340 0.208 0.471 0.022 0.294 0.820 
1PC = positive control, NC = negative control (Reduction of 100 kcal/kg in AMEn 

and 7% digestible amino acids relative to PC), 1x = 500 mg/kg TB in starter; 250 

mg/kg TB in grower and finisher, 3x = 1,500 mg/kg in starter, 750 mg/kg TB in 

grower and finisher, 5x = 2,500 mg/kg in starter, 1,500 mg/kg in grower and 

finisher. 
2 a-b Means within a row that do not share a common superscript are different (P < 

0.05). 
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Table 2.4 Live performance of broilers fed diets with graded doses of tributyrin 

(TB) from 0 to 14 d post-hatch1 (Experiment 2) 

Item D 14 BW, kg BWG, kg FI, kg FCR 

PC 0.399 0.354 0.409 1.359 

NC 0.415 0.370 0.436 1.341 

NC + 1x TB 0.410 0.366 0.438 1.354 

NC + 3x TB 0.408 0.363 0.443 1.433 

NC + 5x TB 0.405 0.361 0.422 1.374 

SEM 0.015 0.015 0.019 0.035 

NC vs PC 0.286 0.276 0.171 0.595 

TB Linear P-value 0.501 0.485 0.548 0.106 

TB Quadratic P-value 0.962 0.942 0.400 0.144 
1PC = positive control, NC = negative control (Reduction of 100 kcal/kg in 

AMEn and 7% digestible amino acids relative to PC), 1x = 500 mg/kg TB in 

starter; 250 mg/kg TB in grower and finisher, 3x = 1,500 mg/kg in starter, 750 

mg/kg TB in grower and finisher, 5x = 2,500 mg/kg in starter, 1,500 mg/kg in 

grower and finisher. 
2ANOVA = overall P – value. 

Table 2.5 Nutrient digestibility of broilers fed diets with graded doses of tributyrin 

(TB) from 0 to 14 d post-hatch1 (Experiment 2) 

Item Dry Matter, % Nitrogen, % Ether Extract, %  IDE kcal/kg 

PC 62.05 79.28 84.77 4,073 

NC 57.95 75.19 81.71 3,479 

NC + 1x TB 60.67 75.89 81.05 3,478 

NC + 3x TB 62.65 77.88 84.80 3,579 

NC + 5x TB 58.33 75.77 88.21 3,416 

SEM 2.27 1.38 2.74 37 

NC vs PC 0.072 0.008 0.270 <0.001 

TB Linear P-value 0.669 0.407 0.022 0.437 

TB Quadratic P-value 0.042 0.162 0.308 0.012 
1PC = positive control, NC = negative control (Reduction of 100 kcal/kg in AMEn 

and 7% digestible amino acids relative to PC), 1x = 500 mg/kg TB in starter; 250 

mg/kg TB in grower and finisher, 3x = 1,500 mg/kg in starter, 750 mg/kg TB in 

grower and finisher, 5x = 2,500 mg/kg in starter, 1,500 mg/kg in grower and 

finisher. 
2ANOVA = overall P-value. 
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CHAPTER IV: EVALUATION OF TRIBUTYRIN SUPPLEMENTATION IN DIETS 

VARYING IN LIPID SOURCE, LIPID LEVEL, AND CORN PARTICLE SIZE ON LIVE 

PERFORMANCE AND NUTRIENT UTILIZATION IN BROILERS REARED TO 21 D 

 

ABSTRACT 

 Two experiments were conducted to investigate the impact of tributyrin (TB) on broiler 

performance and apparent ileal and nutrient and energy digestibility (IDE). In Experiment 1, 

birds were fed diets containing either soy oil (SO) or poultry fat (PF) at either a standard or high 

level of inclusion. Diets that contained a higher level of fat increased by 1.88% and 100 kcal/kg 

compared to the standard diets. Whereas in Experiment 2, diets were fed containing either SO or 

PF with a 730 µm or 1,042 µm corn particle size and formulated to be isocaloric and 

isonitrogenous. In both experiments, dietary treatments were arranged in a 2 by 2 by 2 factorial 

for a total of 8 treatments and were fed and maintained across one phase (0 to 21 d). Titanium 

dioxide was used as an indigestible marker in the feed for the determination of ileal digestibility. 

Nine replicate battery cages of 8 Cobb 500 male broilers per treatment were placed for each 

experiment. In Experiment 1, a significant (P = 0.001) interaction of lipid level by TB inclusion 

in d 0 – 21 BWG was observed where birds fed a high lipid level diet with TB or fed a standard 

lipid level without TB significantly improved BWG compared to a standard lipid level with TB. 

This significant interaction (lipid level by TB) was also observed in FI. The birds fed a high lipid 

diet with TB had significantly (P = 0.009) higher FI compared to birds fed a high lipid diet 

without TB. Furthermore, the high level of lipid significantly (P < 0.001) improved nitrogen, fat, 

and ileal energy digestibility compared to the standard lipid level. In Experiment 2, a lipid source 

x TB inclusion interaction was observed (P = 0.005) for FCR, where an increase in FCR was 



 

50 
 

observed in broilers fed TB within SO diets but an inverse response on FCR in broiler fed PF 

diets. A 3-way interaction among lipid source, corn particle size, and TB inclusion was observed 

(P = 0.028) for N digestibility which was driven by a tendency for TB to increase N digestibility 

in SO diets with a 1,042 µm corn particle size that was not observed with the 730 µm corn 

particle size. A similar response led to a 3-way interaction for IDE (P = 0.014). In conclusion, 

the data from these two experiments indicate that dietary lipid source, lipid level, and corn 

particle size may not be a primary determinant of TB efficacy.  

INTRODUCTION 

 In the past five years, the poultry industry has experienced a 40% increase in antibiotic 

free production (Rennier Associates Inc., 2019). Historically, antibiotics have helped to maintain 

flock health and subsequently ensure target performance is achieved. Therefore, causing a 

reduction in pathogenic bacteria while stimulating the growth of the intestinal epithelium, and in 

turn nutrient utilization, in the absence of in-feed antibiotics has become increasingly important 

for poultry producers (Truscott and Al-Sheikhly, 1977; Ferket et al., 2004). Several alternatives 

to in-feed antibiotics have been widely researched in their effectiveness and impact on broiler 

performance. One of the more popular alternatives includes short chain fatty acids (SCFA), 

specifically butyrate. Butyrate has been shown to improve broiler intestinal health by 

development of gut wall tissues and modulation of growth within the gastrointestinal microflora 

(Van Immerseel et al., 2004; Friedman and Barshira, 2005). Furthermore, butyrate has been 

reported to improve broiler body weight, feed conversion, and reduce pathogenic bacteria in the 

digestive tract (Chamba et al., 2014; Zhang et al., 2011; Hu and Guo, 2007). However, because 

butyrate can be fed in several different forms including unprotected, salt, or as a mono-, di-, 

triglyceride; the sites of digestion and activity can vary within the bird’s gastrointestinal tract. 



 

51 
 

For instance, Moquet et al. (2018) reported that unprotected butyrate is rapidly absorbed via 

passive diffusion in the upper gastrointestinal tract, while absorption of esterified butyrate is 

thought to occur in the small intestine. Esterification can improve the component SCFA potential 

by delivering the fatty acids to the small intestine intact following cleavage by pancreatic lipase 

from the glycerol backbone, initiating lipolysis. 

  In the US, poultry fat (PF) and soy oil (SO) are commonly used dietary lipid sources due 

to their widespread availability, high digestibility, and low cost. Compared with PF, SO has 1.97 

times lower levels of saturated fats and is typically more digestible (Tancharoenrat et al., 2013), 

resulting in higher metabolizable energy values. Dietary inclusion of soy oil has risen in recent 

years due to the increased adoption of all-vegetable based diets, however, the majority of diets 

formulated continue to use poultry fat. The dietary inclusion of these lipid sources can also vary 

depending on the stage of growth and other nutritional factors such as metabolizable energy. 

Another consideration when shifting from conventional to all-vegetable based, is the ingredient 

profile. When all animal by-products (i.e. by-product meals and poultry fat) are removed, the use 

of soy oil and cereal grains and legumes inclusion levels increase to maintain nutrient 

requirements. Previous studies have noted that lipid concentration can influence several aspects 

of the lipolysis process including pancreatic lipase secretion, colipase secretion, and bile salt 

formation (Krogdahl, 1985; Ravindran et al. 2016).  Therefore, changes in dietary lipid source 

and concentration may also affect lipolysis of TB and its subsequent effects on broiler growth 

performance, nutrient utilization, duodenal pH, and intestinal morphology, especially in young 

broilers which may have limited secretion of enzymes such as pancreatic lipase. 

 In addition to lipid source and content, cereal grain particle size can have a direct bearing 

on gizzard function, reverse peristalsis, and pancreatic enzyme (e.g. lipase) secretion (Svihus, 
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2011; Naderinejad et al., 2016). A recent study by Qaisrani et al. (2015) noted that feeding a 

coarse particle size diet supplemented with an unprotected sodium butyrate butyric acid source 

resulted in improved feed intake, body weight gain, and feed conversion ratio, with little to no 

effect occurring in birds fed a fine particle size diet. Higher gizzard function can increase 

enzymatic activity, and when coupled with butyrate, may result in a synergistic effect upon 

nutrient digestibility and ultimately growth performance (Qaisrani et al., 2015). Thus, because 

TB requires cleavage by lipase, impacts of ingredient composition and particle size on passage 

rate and enzyme secretion may have an even greater influence on its utilization compared with 

other forms of butyric acid. These experiments aimed to evaluate the inclusion of tributyrin in 

diets varying in lipid source and concentration, and corn particle size and their effect on broiler 

growth performance, nutrient utilization, lipid metabolism, gizzard activity, and jejunal 

morphology.  

MATERIALS AND METHODS 

 All animal care and experimental procedure were approved by the University of Arkansas 

Institutional Animal Care and Use Committee before initiation of the experiment.  

Common Husbandry Procedures (Experiments 1 and 2) 

 In both experiments, 576 male by-product chicks from a Cobb 500 female line were 

obtained from a commercial hatchery on day of hatch. All chicks were group-weighed and 

distributed to 72 battery cages. Each cage was equipped with a trough feeder and nipple drinkers. 

Eight birds per cage were placed (24 m by 24 m) and provided feed and water ad libitum 

throughout the experiment. The lighting schedule and temperature targets were adjusted 

according to management guidelines provided by the primary breeder. In both Experiment 1 and 
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2, birds and feeders were weighed at 0, 14, and 21 d post-hatch for calculation of body weight 

gain (BWG), feed intake (FI), and mortality corrected feed conversion ratio (FCR).   

Birds fed corn and soybean meal-based mash diets formulated to meet or exceed nutrient 

recommendations (Cobb-Vantress, 2015) in a single feeding phase. For each experiment, 

common basal diets were mixed, aliquoted, and remixed with appropriate experimental 

ingredient additional for each experimental treatment. Titanium dioxide was included at 0.50% 

in all diets as an indigestible marker for determination of nutrient digestibility. 

Experiment 1 Treatment Structure 

 Eight dietary treatments in Experiment 1 consisted of a factorial arrangement of 2 lipid 

sources (poultry fat or soy oil) by 2 lipid concentrations (standard and high) by 2 tributyrin 

concentrations (with or without 500 mg/kg tributyrin). For the high lipid diets, lipid 

supplementation was increased from 1.89% to 3.77% equating to a 100 kcal/kg increase in AME 

for the soy oil diets (Table 3.1); thus, diets were not isocaloric between lipid concentrations of 

sources. 

Experiment 2 Treatment Structure 

 Dietary treatments consisted of a factorial arrangement of 2 lipid sources (poultry fat or 

soy oil) x 2 corn particle sizes (730 µm, and 1,042 µm) x 2 tributyrin concentrations (with or 

without 500 mg/kg tributyrin) (Table 3.2). Whole corn was ground with a hammer mill equipped 

with either a 3 or 9 mm screen to produce ground corn with geometric mean diameters of 730 

and 1,042 µm, respectively. The geometric mean diameter was determined according to the 

American Society of Agricultural Engineers (2008). In addition, tributyrin was added at the 

expense of cellulose in treatment diets 2, 4, 6, and 8. Cellulose was used in soy oil diets to 
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maintain isocaloric levels between diets. All diets were analyzed for proximate nutrient 

composition.  

Sampling and Laboratory Analyses 

 In both experiments, all birds from 9 replicate cages were humanely euthanized by CO2 

inhalation for sample collection on d 21. Ileal contents from all birds in each cage were collected 

by gently flushing the distal half of the ileum using deionized water. Digesta samples were 

pooled within cage and frozen (−20°C) until analysis. Two birds per cage were also randomly 

selected for blood, jejunal tissue collection, and pH determination of the duodenal lumen 

contents that were subsequently collected for lipase activity and volatile fatty acid (VFA) 

concentrations. Blood was collected via cardiac puncture into tubes containing EDTA, placed on 

ice, and centrifuged for 15 min at 1,300 × g and 4°C to separate plasma. Plasma from birds 

within a cage were pooled, aliquoted, and stored at -80°C until further analysis. Jejunal tissue 

samples (~ 2 cm in length) were collected at the midpoint of the jejunum between the end of the 

duodenal loop and the Meckel’s diverticulum and rinsed with PBS to remove luminal contents 

and placed in scintillation vials containing 10% neutral-buffered formalin.  

 Organ weights, pH, and plasma analysis. In both experiments, liver and adipose tissue 

surrounding the gizzard and fat pad were collected and weighed from 2 birds per cage on d 21. 

All organ weights were adjusted to bird weight to achieve a relative organ weight. Additionally, 

plasma samples were pooled together from 2 birds per cage and analyzed for triglycerides using 

the instructions provided by the manufacturer (Kit# 10010303; Cayman Chemical, Ann Arbor, 

MI).  To determine duodenal pH in Experiment 1, the duodenal loop was cut in a half and the 

digital pH meter (Mettler-Toledo, UK) and a spear tip piercing pH electrode (Sensorex S175CD) 

was directly inserted into the digesta of the distal duodenal loop for pH measurement. The probe 
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was rinsed with distilled water after each reading and the tip of the pH probe was stored in 

double distilled water when not in use. After pH was recorded, the digesta was gently squeezed 

into cryogenic vials and snap frozen using liquid nitrogen. Digesta was then stored at -80°C for 

further analysis for lipase activity and butyrate concentration. In Experiment 2, gizzard pH was 

measured using the procedure as described above. It was then emptied using deionized water and 

weighed. 

 Lipase activity and SCFA determination. Lipase activity of duodenal digesta samples 

was measured using the lipase activity assay kit according to the instructions provided by the 

manufacturer (Kit # MAK046; Sigma Aldrich, St. Louis, MO). Volatile fatty acid concentrations 

were determined using the method described by Weber et al. (2010) where duodenal digesta 

samples were thawed and thoroughly mixed for at least 30 s. Approximately 0.5 g of duodenal 

digesta was pooled from 2 birds/cage to total 1.0 g which was placed into 15-mL polypropylene 

centrifuge tubes and diluted with 5 mL of deionized water. Samples were then mixed overnight 

on a rocking platform. After mixing, samples were centrifuged at 4°C for 30 min at 21,000 x g to 

separate supernatant. Approximately 2.5 mL of clear supernatant was removed and placed into 

tubes and o-phosphoric acid was added to achieve a pH between 2 – 2.5. Exactly 1 mL of the 

pH-adjusted supernatant sampled was placed into 20 mL gas chromatography vials with 0.3 g of 

NaCl. Prepared samples were frozen and shipped to an external laboratory (USDA-ARS-MWA-

NLAE, Ames, IA) for gas chromatography analysis as described by McCafferty et al. (2019) 

(Agilent 7890A Gas Chromatograph, Agilent Technologies, Inc, Wilmington, DE). Samples 

were analyzed in duplicates and total VFA concentrations measured included acetic, propionic, 

isobutyric, butyric, isovaleric, valeric, isocaproic, caproic, and heptanoic acid concentrations.   
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 Nutrient digestibility. Frozen ileal digesta samples were lyophilized and ground using an 

electric coffee grinder. Diet and digesta samples were analyzed for dry matter, gross energy, 

nitrogen, and ether extract. Gross energy was determined with a bomb calorimeter (Parr 6200 

bomb calorimeter, Parr Instruments Co., Moline, IL.). Nitrogen was determined using the 

combustion method (Fisions NA-2000, CE Elantech, Lakewood, NJ) standardized with EDTA 

(method 990.03, AOAC International 2006) and ether extract was determined according to the 

AOAC (2006) method 920.39. Titanium dioxide was included in the feed at 0.5% as an 

indigestible marker, and diet and digesta TiO2 concentrations were determined in duplicate 

following the procedures of Short et al. (1996). Apparent ileal digestibility (AID) of dry matter, 

gross energy, ether extract, and nitrogen were calculated using the following equation:  

AID, % = {[(X / TiO2)diet – (X / TiO2)digesta] / (X / TiO2)diet} × 100, 

where (X/TiO2) = ratio of nutrient concentration to TiO2 in the diet or ileal digesta. Energy 

digestibility (%) values obtained from the above equation, were multiplied by the gross energy 

content of the feed to calculate ileal digestible energy (IDE) in kcal/kg. 

 Jejunal histology. Jejunum tissue samples were embedded in paraffin, sectioned at 4 μm, 

set on a glass slide, and stained with hematoxylin and eosin. Photomicrographs of each jejunum 

sample were acquired using a light microscope (Nikon Eclipse) equipped with camera and 

software and used for morphometric analysis. Imaging software (Nikon’s NIS Elements Basic 

Research Microscope Imaging) was used for measurement of villus height, crypt depth, and 

villus width under 4x magnification. For villus height, approximately 4 intact well-oriented villi 

per bird were randomly selected and measured. Villus height was measured from the tip of the 

villus to the villus-crypt junction, whereas crypt depth was defined as the depth of the 

invagination between adjacent villi. The width of the villus was measured at the basal (crypt-
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villus junction) and apical ends (Iji et al., 2001). Apparent jejunal villus surface area was surface 

area was calculated using the following equation published by Iji et al. (2001):  

Apparent villus surface area = ((villus basal width + villus apical width)/2 × villus height)). 

Statistical analysis 

In both experiments, cage was considered the experimental unit with 9 replicate cages for each of 

the 8 dietary treatments arranged in a randomized complete block design and the statistical 

model used pen location as a random blocking factor. Data were analyzed by a three-way 

ANOVA to evaluate the main effects and all interactions among lipid source, lipid level, and 

tributyrin inclusion in a 2 by 2 by 2 factorial arrangement for Experiment 1. In Experiment 2, 

data were also analyzed by a three-way ANOVA to evaluate the main effects and all interactions 

among lipid source, corn particle size, and tributyrin inclusion in a 2 by 2 by 2 factorial 

arrangement. Statistical significance was considered at P ≤ 0.05 in all cases. Statistical outliers 

were defined as values exceeding 3 studentized residuals of the mean. Before removing 

statistical outliers, all raw data and calculations were confirmed to be correct.  

RESULTS 

Experiment 1 

 There were no three-way interactions (P > 0.05) observed among lipid source, lipid level, 

and TB inclusion on growth performance. Therefore, only two-way interactions and main effects 

will be discussed for all measurements (Table 3.3). For D 0 to 21, a main effect (P < 0.001) of 

lipid level was observed whereby birds fed a high lipid level diet had improved FCR compared 

to birds fed a standard lipid level diet (Table 3.3). For body weight gain during the same time 

period, a lipid level by TB inclusion interaction (P = 0.001) was observed where TB inclusion 

reduced BWG by 55 grams in broilers fed the standard lipid concentration but increased BWG 
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by 44 grams in broilers fed the high lipid concentration (Table 3.3). This interaction (P = 0.009) 

was also observed for FI whereby TB inclusion numerically decreased FI in broilers fed the 

standard lipid concentration and increased FI in broilers fed the high lipid concentration.  This 

trend was also observed in FCR (P = 0.053). Additionally, broilers fed soy oil had lower FCR 

compared to broilers fed poultry fat (P = 0.039). Lastly, broilers fed the high lipid concentration 

had a 20% increase (P = 0.038) in relative adipose tissue weight compared with broilers fed the 

standard lipid concentration. There were no two-way interactions or main effects (P > 0.05) 

observed for relative liver weight (Table 3.3).  

 Birds fed the high lipid level had increased apparent ileal digestibility (AID) of dry 

matter (P < 0.001), nitrogen (P = 0.002), ether extract (P = 0.018), and ileal digestible energy (P 

< 0.001) compared to the birds fed the standard lipid level (Table 3.4). The high level of poultry 

fat increased broiler nutrient digestibility compared to the birds fed the standard level of poultry 

fat and soy oil and improved dry matter and ether extract digestibility compared to birds fed the 

high soy oil diets. Moreover, nitrogen digestibility and IDE kcal/kg was elevated in high poultry 

fat diets compared to birds fed high soy oil diet. Additionally, a lipid source by TB interaction 

was observed where TB inclusion increased AID of dry matter (P < 0.001), nitrogen (P < 0.001), 

and IDE kcal/kg (P < 0.001) in broilers fed soy oil but reduced all of these measurements in 

broilers fed poultry fat. There was also an interaction between lipid level and TB where TB 

inclusion increased AID of dry matter (P < 0.001) and nitrogen digestibility (P < 0.001) in 

broilers fed the standard lipid concentration but reduced digestibility in broilers fed the high lipid 

concentration. Conversely, for lipid digestibility, TB inclusion reduced AID of ether extract in 

broilers fed a standard lipid diet but increased AID of ether extract in broilers fed a high lipid 

diet (Level by TB, P = 0.017).  
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 There were no main effects or interactions (P > 0.05) observed for duodenal pH (Table 

3.4). Average concentrations of acetic acid, propionic acid, butyric acid, and isobutyric acid in 

the duodenal digesta were as follows: 229 mm/L, 6.5 mm/L, 9.0 mm/L, and 1.4 mm/L, 

respectively, and were not affected by dietary treatment. Interestingly, a two-way interaction of 

lipid source by TB (P = 0.012) was observed in pancreatic lipase activity whereby the inclusion 

of TB in soy oil diets decreased broiler lipase activity. Whereas no differences in broiler’s 

pancreatic lipase activity was observed when fed poultry fat diets (Table 3.4).  

Experiment 2 

 From D 0 to 21, no treatment effects (P > 0.05) were observed for BWG or FI (Table 

3.5). An improvement in FCR (P = 0.005), however, was observed whereby the absence of TB in 

soy oil diets improved FCR compared to soy oil diets supplemented with TB. Conversely, TB 

inclusion in poultry fat diets did not influence FCR (P > 0.05).   

 Dietary treatment did not influence (P > 0.05) relative liver, adipose tissue, or gizzard 

weights (Table 3.5 and 3.7). There were also no treatment effects (P > 0.05) on gizzard pH 

(Table 3.7) or plasma triglycerides (data not shown). A main effect of lipid source was observed 

for jejunal villus height (P = 0.010) and crypt depth (P = 0.042) where broilers fed diets 

containing poultry fat had longer villi height and deeper crypt depths compared to broilers fed 

soy oil diets (Table 3.6). A corn particle size main effect was also observed for jejunal villus 

height (P = 0.021) and villus surface area (P = 0.001) where broilers fed diets containing 1,042 

µm particle size had longer villi height and greater surface area compared to broilers fed diets 

containing 730 µm particle size. A lipid source by corn particle size by TB inclusion interaction 

(P = 0.015) was observed for crypt depth and villi height: crypt depth ratio, however, Tukey’s 

test was unable to separate the means.  
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 Three-way interactions among lipid source, corn particle size, and TB interaction were 

observed for dry matter (P < 0.001) and nitrogen (P = 0.028) digestibility and IDE (P = 0.014) 

(Table 3.7). In soy oil diets, the addition of TB increased dry matter digestibility (P < 0.001) and 

IDE kcal/kg (P = 0.014) in broilers fed 1,042 µm particle size but reduced these measurements in 

broilers fed 730 µm particle size, with no effect of TB among birds fed the poultry fat diets.  A 

similar interaction was observed in the soy oil diets for nitrogen digestibility (P = 0.028) where 

the absence of TB at the 1,042 µm particle size resulted in improved broiler nitrogen digestibility 

compared to the 730 µm particle size soy oil diet absent in TB and poultry fat diet supplemented 

with TB.    

DISCUSSION 

 In recent years, butyrate has been a commonly used feed additive in the poultry industry, 

but studies have been inconclusive regarding its impact on broiler growth performance and 

intestinal health (Van Immerseel et al., 2004; Leeson et al., 2005; Hu and Guo, 2007; Moquet et 

al., 2018). Tributyrin, a form of butyrate, is a triglyceride composed of three butyric acid 

molecules esterified to a glycerol backbone and is primarily thought to be released in the small 

intestine via pancreatic lipase. While butyric acid has been reported to play a role in several 

pathways, it primarily functions as an energy source for enterocytes which can accelerate 

enterocyte growth and in turn, can promote villus elongation and subsequent nutrient utilization 

(Cox et al., 2009; Ahsan et al., 2016). Because pancreatic lipase is the primary enzyme involved 

in lipolysis and TB cleavage, it is important to consider any nutritional factors that may influence 

its activity. In both experiments, different lipid sources were utilized to explore the impact, if 

any, on broiler growth performance, nutrient utilization, and jejunal morphology and as a result, 

TB efficacy. However, to ensure that the inclusion level of the dietary lipid source did not also 
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influence these parameters, lipid concentration was also taken into consideration in Experiment 

1. In general, main effects and interactive effects of lipid source and level were observed on 

growth performance and nutrient utilization. 

 Previous research has noted that increasing dietary lipid concentration is thought to have 

an “extra-caloric” effect resulting in improved absorption of other nutrients (Jensen et al., 1970). 

This could be attributed to a reduction in passage rate and a subsequent longer retention time in 

the GIT due to the increase in lipid concentration (Mateos et al., 1982). In Experiment 1, 

increasing lipid concentrations improved growth performance, nutrient digestibility, and 

increased relative adipose tissue weight compared to birds fed a standard lipid level. 

Additionally, diets were formulated on a lipid level basis, resulting in slight differences in the 

AMEn of the diets containing an additional 1.9% of soy oil and poultry fat in Experiment 1. The 

elevated AMEn in diets containing soy oil improved FCR compared to broilers fed diets 

containing poultry fat. Whereas, in Experiment 2, diets were formulated to be isocaloric and no 

main effect was observed between lipid sources during growth performance. In Experiment 1, 

nutrient digestibility was influenced by lipid source and level.  In general, an improvement in 

broiler nutrient digestibility was observed in both lipid sources when fed the higher inclusion 

level, however, the differences were significantly larger in the poultry fat diets compared to the 

soy oil diets.   

 It has been suggested that the release of TB in the small intestine may cause increased 

concentrations of butyrate and in turn, a reduction in pH. (Moquet et al., 2016; Moquet et al., 

2018). However, In Experiment 1 TB inclusion had no effect on duodenal pH, SCFA 

concentration, or pancreatic lipase activity. In contrast, the addition of TB to diets containing soy 

oil reduced pancreatic lipase activity in the duodenum, and improved broiler dry matter 
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digestibility, nitrogen digestibility, and IDE kcal/kg compared to birds fed diets absent in TB. 

The opposite trend in nutrient digestibility occurred in the birds fed the poultry fat diets. This 

data suggests that pancreatic lipase may not act as a limiting factor in TB utilization as 

improvements were observed in nutrient digestibility when lipase activity was reduced in soy oil 

diets. Furthermore, the interaction in lipase activity did not appear to influence lipolysis as 

observed by the lack of effect in ether extract digestibility, suggesting that the lowest pancreatic 

lipase level supported sufficient ether extract digestibility in the bird. Additionally, a rapid 

absorption of butyrate is thought to take place once butyrate is cleaved from the glycerol 

backbone, which would explain the lack of effect observed in the SCFA concentration within the 

duodenum in Experiment 1 (Ahsan et al., 2016).  

 Tributyrin also interacted with the lipid concentration in the diet during broiler growth 

performance and nutrient digestibility. As previously mentioned, increasing lipid concentration is 

thought to have an “extra-caloric” effect (Mateos et al., 1982). This could be attributed to 

hormones such as cholecystokinin (CCK), ghrelin, and gastrin which have been reported to 

impact gastric emptying by inhibiting gastric motility and stimulating gastric muscles (Martinez 

et al., 1992). This is important to note because CCK acts in conjunction with the vagus nerve to 

stimulate pancreatic enzyme secretion (i.e. pancreatic lipase) for nutrient digestion (Li and 

Owyang, 1993). In Experiment 1, TB supplementation at the higher lipid level increased broiler 

BWG, FI, ether extract digestibility, and IDE kcal/kg compared to broilers fed the standard lipid 

level diet. However, as stated previously, pancreatic lipase activity appeared to not be a limiting 

factor in TB utilization. Therefore, the interaction that occurred in growth performance and 

nutrient digestibility between lipid level and TB activity was more than likely driven by the main 

effect of lipid concentration.  
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 A similar main effect of lipid level was observed in broilers fed the higher lipid level 

having increased adipose tissue weight compared to birds fed the standard lipid level. It is well 

established that lipogenesis occurs primarily in the liver of chickens (Back et al., 1986) and the 

adipose tissue is considered to be the main lipid storage site (Griffin et al., 1992; Cogburn et al., 

2004). Previous literature has reported that TB can reduce abdominal fat deposition in broilers 

within similar genetic strains (Bedford et al., 2017). However, in contrast to growth performance 

and nutrient digestibility, no interactive effects were observed between TB inclusion and lipid 

level of relative liver weight or adipose tissue weight. Therefore, due to the lack of effect or 

interaction by TB on adipose tissue and liver weight, it suggests that lipogenesis was not 

impacted.  

 It was anticipated that increasing corn particle size in Experiment 2 would alter 

gastrointestinal physiology, and subsequently, the effects of TB supplementation. However, there 

were generally minimal differences in indicators of gizzard function (i.e., weight or pH) between 

broilers fed 730 and 1,042 µm corn in this study. Svihus et al. (2011) noted that cereal grain 

particles should be larger than 1,000 µm, with at least 20% of particles within 1,500 µm to 2,000 

µm, to markedly stimulate gizzard development and functionality, whereas only 10% of particles 

of the 1,042 µm corn were distributed between 1,500 µm and 2,000 µm in the current 

experiment. Nonetheless, broilers fed the 1,042 µm corn particle size had greater jejunal villi and 

length and surface area compared to broilers fed the 730 µm corn particle size. This agrees with 

previous research that has reported increased broiler and layer small intestine villus height and 

villi height: crypt depth ratios when feeding diets containing coarse particles (Dahlke et al., 

2003; Rohe et al., 2014; Gabriel et al. 2008).  
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 Several studies have suggested that coarser feed particles can positively affect nutrient 

digestibility and live performance (Nir et al., 1995; Amerah et al., 2008; Samu et al., 2010; Xu et 

al., 2015), possibly due in part to enhanced intestinal morphology elicited by coarse grain 

particles as observed in the current study (Garbriel et al., 2008). In Experiment 2, nutrient 

digestibility was influenced by a three-way interaction among lipid source, corn particle size, and 

TB inclusion. In general, TB supplementation positively affected AID of dry matter and nitrogen 

and IDE in broilers fed the soy oil diets with 1,042 µm corn, but adversely affected these 

measurements in soy oil diets with 730 µm corn, while values were similar between corn particle 

size and TB inclusion in diets containing poultry fat. Previous research has noted that birds fed a 

coarse particle size diet supplemented with butyric acid experienced an improvement in growth 

performance and duodenal morphology compared to a fine particle size diet (Qaisrani et al., 

2016). Additionally, negative responses to 1 mg/kg TB supplementation reported by Moquet 

were observed in broilers fed finely ground corn and rapeseed meal, agreeing with the current 

experiment that TB supplementation may be most beneficial when broilers are fed coarser grain 

particles. This may be due to the ability of butyric acid ability to provide energy to enterocytes 

and in turn stimulate villus elongation (Czerwinski et al., 2012.). 

 Overall, inconsistencies in growth performance and nutrient digestibility were observed 

between the two experiments regarding lipid source and lipid level. While an overall lack of 

main effect was observed in corn particle size during Experiment 2. In addition, although 

interactions were observed, these nutritional factors may not be primarily responsible for TB 

efficacy as previously hypothesized. Therefore, other dietary factors need to be considered in 

their role of TB efficacy. 
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Table 3.1 Diet formulations of broilers fed diets varying in lipid source, lipid 

concentration, and tributyrin inlcusion for 21 d post-hatch (Experiment 1) 

Ingredient 

Soy oil – 

standard lipid 

Soy oil –  

high lipid 

Poultry fat – 

standard lipid 

Poultry fat –  

high lipid 

Corn 54.57 52.69 54.57 52.69 

Soybean meal 34.76 34.76 34.76 34.76 

Corn DDGS1 5.00 5.00 5.00 5.00 

Soybean oil or poultry fat 1.89 3.77 1.89 3.77 

Limestone 1.13 1.13 1.13 1.13 

Dicalcium phosphate 0.86 0.86 0.86 0.86 

Sodium chloride 0.33 0.33 0.33 0.33 

DL-methionine, 99% 0.29 0.29 0.29 0.29 

L-lysine HCl, 78.8% 0.15 0.15 0.15 0.15 

L-threonine, 98% 0.14 0.14 0.14 0.14 

Trace mineral premix2 0.10 0.10 0.10 0.10 

Vitamin premix3 0.10 0.10 0.10 0.10 

Choline chloride, 60% 0.10 0.10 0.10 0.10 

Phytase4 0.01 0.01 0.01 0.01 

Selenium premix (0.06%) 0.02 0.02 0.02 0.02 

Titanium dioxide  0.50 0.50 0.50 0.50 

Builder’s sand5 0.05 0.05 0.05 0.05 

Calculated nutrient composition, % unless noted otherwise 

AMEn, kcal/kg 2,975 3,075 2,969 3,063 

CP 22.27 22.13 22.27 22.13 

Digestible Lys 1.18 1.18 1.18 1.18 

Digestible TSAA 0.89 0.88 0.89 0.88 

Digestible Thr 0.80 0.80 0.80 0.80 

Total Ca 0.90 0.90 0.90 0.90 

Available P 0.60 0.59 0.60 0.59 

Analyzed nutrient composition, % 

Dry matter 89.89 90.18 90.56 91.20 

Protein 24.40 24.20 23.90 24.10 

Gross energy, kcal/kg 4,087 4,171 4,059  4,234 
1 Distillers dried grain with solubles 
2 The mineral premix provided (per kg of diet): calcium, 55.5 mg; manganese, 100 mg; 

magnesium, 27.0 mg; zinc, 100 mg; iron, 50.0 mg; iodine, 1.0 mg. 
3 The vitamin premix provided (per kg of diet): vitamin A, 30,863 IU; vitamin D3, 

22,045 ICU; vitamin E, 220 IU; vitamin B12, 0.05 mg; menadione, 6.0 mg; riboflavin, 

26 mg; d-pantothenic acid, 40 mg; thiamine 6.2 mg; niacin, 154 mg; pyridoxine, 11 

mg; folic acid, 3,5 mg; biotin, 0.33 mg. 
4 OptiPhos 2000 (Huvepharma Inc., Peachtree City, GA) provided 250 FTU/g of phytase 

activity. 
5 Tributyrin was added to the experimental diets at the expense of sand to achieve 500 

ppm tributyrin. 
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Table 3.2 Diet formulations of broilers fed diets varying in lipid source, corn 

particle size, and tributyrin (TB) inclusion for 21 d post-hatch (Experiment 2) 

Ingredient 

Soy oil –  

730 µm 

Soy oil –  

1,042 µm 

Poultry fat – 

730 µm 

Poultry fat – 

 1,042 µm 

Corn 55.70 55.70 55.93 55.93 

Soybean meal 33.36 33.36 33.32 33.32 

Corn DDGS1 5.00 5.00 5.00 5.00 

Soybean oil or poultry fat 2.03 2.03 2.03 2.03 

Limestone 1.14 1.14 1.14 1.14 

Dicalcium phosphate 0.87 0.87 0.87 0.87 

Sodium chloride 0.33 0.33 0.33 0.33 

DL-methionine, 99% 0.26 0.26 0.26 0.26 

L-lysine HCl, 78.8% 0.14 0.14 0.14 0.14 

L-threonine, 98% 0.10 0.10 0.10 0.10 

Trace mineral premix2 0.10 0.10 0.10 0.10 

Vitamin premix3 0.10 0.10 0.10 0.10 

Choline chloride, 60% 0.10 0.10 0.10 0.10 

Phytase4 0.01 0.01 0.01 0.01 

Selenium premix (0.06%) 0.02 0.02 0.02 0.02 

Titanium dioxide  0.50 0.50 0.50 0.50 

Cellulose5 0.24 0.24 0.05 0.05 

Calculated nutrient composition, % unless noted otherwise 

AMEn, kcal/kg 2,975 2,975 2,975 2,975 

CP 22.00 22.00 22.00 22.00 

Digestible Lys 1.18 1.18 1.18 1.18 

Digestible TSAA 0.89 0.89 0.89 0.89 

Digestible Thr 0.80 0.80 0.80 0.80 

Total Ca 0.90 0.90 0.90 0.90 

Available P 0.45 0.45 0.45 0.45 

Analyzed nutrient composition, % 

Dry matter 91.07 91.10 90.97 92.81 

Protein 23.20 23.75 24.40 23.85 

Gross energy, kcal/kg 4,143 4,117 4,157 4,143 
1 Distillers dried grains with solubles 

2 The mineral premix provided (per kg of diet): calcium, 55.5 mg; manganese, 100.0 

mg; magnesium, 27.0 mg; zinc, 100.0 mg; iron, 50.0 mg; copper, 10.0 mg; iodine, 

1.0 mg. 
3 The vitamin premix provided (per kg of diet): vitamin A, 30,863 IU; vitamin D3, 

22,045 ICU; vitamin E, 220 IU; vitamin B12, 0.05 mg; menadione, 6.0 mg; 

riboflavin, 26 mg; d-pantothenic acid, 40 mg; thiamine 6.2 mg; niacin, 154 mg; 

pyridoxine, 11 mg; folic acid, 3,5 mg; biotin, 0.33 mg. 
4 OptiPhos 2000 (Huvepharma Inc., Peachtree City, GA) provided 250 FTU/g of 

phytase activity. 
5 Tributyrin was added to the experimental diets at the expense of cellulose to 

achieve 500 ppm tributyrin. 
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Table 3.3 Growth performance and relative liver and adipose tissue weight of broilers fed 

diets varying in lipid source, lipid concentration, and tributyrin (TB) inclusion from 0 to 21 d 

post-hatch (Experiment 1) 

Item 

D 0 - 21 BWG, 

kg FI, kg FCR, kg:kg 

Relative liver 

wt. (%) 

Relative 

adipose tissue 

wt. (%) 

Main effect of lipid source 

Soy oil 0.798 1.041 1.356b 2.94 0.64 

Poultry fat 0.780 1.018 1.379a 2.82 0.57 

SEM 0.015 0.024 0.011   0.09 0.04 

Main effect of lipid level 

Standard 0.770b 1.024 1.390a 2.81 0.55b 

High 0.807a 1.035 1.344b 2.94 0.66a 

SEM 0.015 0.024 0.011 0.09 0.04 

Main effect of TB1 

0 ppm 0.791 1.012 1.364 2.91 0.61 

500 ppm 0.786 1.047 1.371 2.85 0.60 

SEM 0.015 0.024 0.011 0.09 0.04 

Two way interaction of lipid source x lipid level 

Soy oil + std 0.782 1.053 1.380 2.88 0.58 

Soy oil + high 0.814 1.028 1.332 2.99 0.70 

Poultry fat + std 0.759 0.995 1.401 2.74 0.53 

Poultry fat + high  0.800 1.042 1.357 2.90 0.62 

SEM 0.021 0.034 0.015 0.13 0.05 

Two way interaction of lipid source x TB 

Soy oil + 0 ppm TB  0.804 1.019 1.355 2.99 0.65 

Soy oil + 500 ppm TB 0.791 1.062 1.357 2.88 0.62 

Poultry fat + 0 ppm TB 0.779 1.005 1.372 2.82 0.57 

Poultry fat + 500 ppm TB 0.781 1.032 1.385 2.81 0.58 

SEM 0.021 0.034 0.015 0.13 0.05 

Two way interaction of lipid level x TB 

Std + 0 ppm TB 0.798a 1.040ab 1.376 2.71 0.51 

Std + 500 ppm TB 0.743b 1.008ab 1.405 2.89 0.59 

High + 0 ppm TB   0.785ab 0.984b 1.351 3.10 0.71 

High + 500 ppm TB  0.829a 1.086a 1.338 2.79 0.61 

SEM 0.021 0.034 0.015 0.13 0.05 



 

72 
 

 

 

 

 

 

Table 3.4. Nutrient utilization of broilers fed diets varying in lipid source, lipid 

concentration, and tributyrin (TB) inclusion from 0 to 21 d post-hatch (Experiment 1) 
 Duodenum     
 

pH 

Lipase 

activity 

(milliunits/  

g digesta) 

Dry matter, 

% 

Nitrogen,

% 

Ether 

extract, % 

IDE 

kcal/kg 

Main effect of lipid source 

Soy oil 6.33 40.90 67.94 82.82 85.01 2,883 

Poultry fat 6.34 41.35 68.50 82.74 84.83 2,933 

SEM 0.02 3.16 0.41 0.33 0.80 20 

Main effect of lipid level 

Standard 6.32 43.31 65.92b 81.29b 81.69b 2,742b 

High 6.35 38.94 70.52a 84.27a 88.15a 3,075a 

SEM 0.02 3.16 0.42 0.33 0.80 20 

Main effect of TB 

0 ppm  6.32 43.73 68.53 82.76 84.76 2,920 

500 ppm 6.35 38.52 67.90 82.79 85.08 2,896 

SEM 0.02 3.16 0.42 0.32 0.80 20 

Two way interaction of lipid source x lipid level 

Soy oil - std 6.30 43.71 66.74c 82.08bc 83.15bc 2,780c 

Soy oil - high 6.35 38.10 69.13b 83.56ab 86.87ab 2,986b 

Poultry fat - std 6.34 42.91 65.09c 80.50c 80.23c 2,703c 

Poultry fat - high 6.34 39.78 71.91a 84.97a 89.43a 3,164a 

SEM 0.03 4.54 0.60 0.45 1.13 29 

Two way interaction of lipid source x TB 

Soy oil + 0 mg/kg TB 6.33 49.25a 65.47b 81.28b 83.54 2,791b 

Soy oil + 500 mg/kg TB 6.33 32.56b 70.40a 84.36a 86.48 2,976a 

Poultry fat + 0 mg/kg TB 6.32 38.21ab 71.59a 84.25a 85.99 3,050a 

Poultry fat + 500 mg/kg TB 6.37 44.49ab 65.40b 82.22b 83.67 2,817b 

SEM 0.03 4.54 0.60 0.46 1.16 28 

 

Table 3.3 (Cont.) 

 

D 0 – 21 BWG, 

kg FI, kg FCR, kg:kg 

Relative liver  

wt. (%) 

Relative 

adipose tissue 

wt. (%) 

P-values 

Lipid source 0.222 0.364 0.039 0.363 0.231 

Lipid level 0.015 0.649 <0.001 0.297 0.038 

TB inclusion 0.710 0.156 0.483 0.646 0.836 

Source x level 0.75 0.149 0.842 0.867 0.770 

Source x TB 0.616 0.766 0.581 0.699 0.730 

Level x TB 0.001 0.009 0.053 0.064 0.098 

Source x Level x TB 0.756 0.769 0.853 0.897 0.313 
a,b Means within a row that do not share a common superscript are different (P < 0.05). 
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Table 3.4 (Cont.) 

 pH 

Lipase 

activity 

(millinuts/ 

g digesta 

Dry matter, 

% 

Nitrogen,  

% 

Ether  

extract, % 

IDE 

kcal/kg 

Two way interaction of lipid level x TB 

Std + 0 mg/kg TB 6.31 45.10 64.96c 80.40c 82.92bc 2,724b 

Std + 500 mg/kg TB 6.33 41.52 66.87bc 82.18b 80.46c 2,759b 

High + 0 mg/kg TB 6.33 42.35 72.11a 85.13a 86.60ab 3,117a 

High + 500 mg/kg TB 6.36 35.53 68.93b 83.40b 89.69a 3,034a 

SEM 0.03 4.54 0.60 0.46 1.13 29 

P-values 

Lipid source 0.613 0.920 0.343 0.859 0.873 0.083 

Lipid level 0.265 0.329 <0.001 <0.001 <0.001 <0.001 

TB inclusion 0.285 0.245 0.289 0.956 0.779 0.396 

Source x level 0.296 0.781 <0.001 0.002 0.018 <0.001 

Source x TB 0.307 0.012 <0.001 <0.001 0.023 <0.001 

Level x TB 0.897 0.717 <0.001 <0.001 0.017 0.042 

Source x level x TB 0.680 0.431 0.826 0.815 0.357 0.817 
a-c Means within a row that do not share a common superscript are different (P < 0.05). 
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Table 3.5 Growth performance and relative liver and adipose tissue weight of broilers 

fed diets varying in lipid source, corn particle size, and tributyrin (TB) inclusion from 0 

to 21 d post-hatch (Experiment 2) 

Treatment 

D 0 – 21 

BWG, kg FI, kg FCR, kg:kg 

Relative 

liver wt. (%) 

Relative 

adipose tissue 

wt. (%) 

Main effect of lipid source 

Soy oil 0.779 1.048 1.349 2.97 0.65 

Poultry fat 0.769 1.029 1.352 2.88 0.59 

SEM 0.008 0.010 0.011 0.07 0.03 

Main effect of corn particle size 

730 µm 0.768 1.027 1.345 2.91 0.60 

1,042 µm 0.780 1.050 1.356 2.95 0.65 

SEM 0.008 0.010 0.011 0.07 0.03 

Main effect of TB 

0 mg/kg 0.769 1.027 1.343 2.97 0.62 

500 mg/kg 0.779 1.050 1.358 2.89 0.63 

SEM 0.008 0.010 0.011 0.07 0.03 

Two way interaction lipid source x TB 

Soy oil + 0 mg/kg TB 0.778 1.026 1.320b 2.98 0.65 

Soy oil + 500 mg/kg TB 0.780 1.070 1.379a 2.97 0.65 

Poultry fat + 0 mg/kg TB 0.760 1.028 1.367ab 2.96 0.58 

Poultry fat + 500 mg/kg TB 0.779 1.031 1.336ab 2.81 0.60 

SEM 0.011 0.015 0.016 0.09 0.04 
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Table 3.6 Jejunal mucosal morphology of broilers fed diets varying in lipid source, 

corn particle size, and tributyrin (TB) inclusion from 0 to 21 d post-hatch 

(Experiment 2) 

Treatment 

Villus height, 

µm 

Crypt depth, 

µm 

Villus height to 

crypt depth 

Villus surface 

area, mm2 

Main effect of lipid source 

Soy oil 1,657b 175b 9.88 5.36 

Poultry fat 1,772a 190a 9.53 5.34 

SEM 32.05 5.43 0.31 0.02 

Main effect of corn particle size 

730 µm 1,664b 180 9.58 5.32b 

1,042 µm 1,765a 184 9.83 5.39a 

SEM 31.89 5.42 0.31 0.02 

Main effect of TB 

0 mg/kg 1,750 189 9.68 5.35 

500 mg/kg 1,679 176 9.73 5.36 

SEM 30.66 5.19 0.30 0.02 

Two way interaction of lipid source x corn particle size 

Soy oil + 730 µm 1,629 171 9.96 5.32 

Soy oil + 1,042 µm 1,684 179 9.80 5.40 

Poultry fat + 730 µm 1,698 190 9.20 5.32 

Poultry fat + 1,042 µm 1,846 190 9.86 5.37 

SEM 50.07 8.61 0.50 0.02 

 

 

Table 3.5 (Cont) 

Treatment 

D 0 - 21 BWG, 

kg FI, kg FCR, kg:kg 

Relative liver 

wt. (%) 

Relative adipose 

tissue wt. (%) 

Two way interaction of corn particle size x TB 

730 µm + 0 mg/kg TB 0.767 1.015 1.331 2.94 0.57 

730 µm + 500 mg/kg TB 0.769 1.039 1.358 2.87 0.62 

1,042 µm + 0 mg/kg TB 0.770 1.038 1.355 2.99 0.66 

1,042 µm + 500 mg/kg TB 0.789 1.062 1.357 2.90 0.64 

SEM 0.011 0.015 0.016 0.09 0.04 

P-values 

Lipid source 0.397 0.210 0.875 0.339 0.078 

Corn particle size 0.317 0.118 0.469 0.638 0.122 

TB inclusion 0.352 0.110 0.362 0.386 0.717 

Source x corn particle size 0.173 0.115 0.953 0.814 0.314 

Source x TB 0.451 0.166 0.005 0.466 0.729 

Corn particle size x TB 0.431 0.988 0.431 0.914 0.330 

Source x corn particle size x TB 0.102 0.373 0.166 0.383 0.129 
a,b Means within a row that do not share a common superscript are different (P < 0.05). 
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Table 3. 6 (Cont) 

 Villus height, 

µm 

Crypt depth, 

µm 

Villus height to 

crypt depth 

Villus surface 

area, mm2 

Two way interaction of lipid source x TB 

Soy oil + 0 mg/kg TB 1,666 178 9.88 5.33 

Soy oil + 500 mg/kg TB 1,648 172 9.88 5.39 

Poultry fat + 0 mg/kg TB 1,835 200 9.49 5.37 

Poultry fat + 500 mg/kg TB 1,711 180 9.58 5.32 

SEM 47.38 7.91 0.46 0.02 

Two way interaction of corn particle size x TB 

730 µm + 0 mg/kg TB 1,662 192 9.11 5.33 

730 µm + 500 mg/kg TB 1,667 169 10.06 5.31 

1,042 µm + 0 mg/kg TB 1,839 186 10.26 5.37 

1,042 µm + 500 mg/kg TB 1,692 183 9.40 5.40 

SEM 47.01 8.08 0.47 0.02 

Three way interaction of lipid source x corn particle size x TB 

Soy oil + 730 µm + 0 mg/kg TB 1,609 172 10.03 5.31 

Soy oil + 730 µm + 500 mg/kg TB 1,649 170 9.89 5.32 

Poultry fat + 730 µm + 0 mg/kg TB 1,715 212 8.18 5.34 

Poultry fat + 730 µm + 500 mg/kg TB 1,683 168 10.22 5.29 

Soy oil + 1,042 µm + 0 mg/kg TB 1,724 185 9.73 5.35 

Soy oil + 1,042 µm + 500 mg/kg TB 1,645 173 9.87 5.46 

Poultry fat + 1,042 µm + mg/kg TB 1,955 188 10.79 5.39 

Poultry fat + 1,042 µm + 500 mg/kg TB 1,738 192 8.94 5.35 

SEM 75.68 13.01 0.75 0.04 

P-values 

Lipid source 0.010 0.042 0.410 0.396 

Corn particle size 0.021 0.581 0.551 0.001 

TB inclusion 0.097 0.070 0.915 0.687 

Source x corn particle size 0.280 0.587 0.323 0.360 

Source x TB 0.226 0.340 0.910 0.011 

Corn particle size x TB 0.080 0.183 0.036 0.174 

Source x corn particle size x TB 0.695 0.048 0.015 0.162 
a-c Means within a row that do not share a common superscript are different (P < 0.05) 
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Table 3.7 Nutrient digestibility and gizzard activity of broilers fed diets varying lipid source, 

corn particle size, and tributyrin (TB) inclusion from 0 to 21 d post-hatch (Experiment 2) 

 Gizzard  

Treatment pH 

Relative wt. 

% 

Dry matter,  

% 

Nitrogen,  

% 

Ether extract, 

% 

IDE 

kcal/kg 

Main effect of lipid source 

Soy oil 2.09 2.35 75.28 84.28 89.41 3,158 

Poultry fat 2.07 2.36 75.12 84.74 88.63 3,179 

SEM 0.11 0.05 0.45 0.33 0.64 21 

Main effect of corn particle size 

730 µm 2.11 2.33 75.22 84.86 89.53 3,182 

1,042 µm 2.05 2.39 75.18 84.17 88.50 3,155 

SEM 0.11 0.05 0.45 0.33 0.64 21 

Main effect of TB 

0 mg/kg 2.10 2.35 74.50 84.13 88.04b 3,155 

500 mg/kg 2.06 2.37 75.90 84.90 90.00a 3,182 

SEM 0.11 0.05 0.45 0.33 0.63 21 

Two way interaction of lipid source x corn particle size 

Soy oil + 730 µm 2.11 2.32 75.49 84.83 88.55ab 3,196 

Soy oil + 1,042 µm 2.07 2.41 75.06 83.73 90.26a 3,120 

Poultry fat + 730 µm 2.12 2.34 74.94 84.89 90.51a 3,168 

Poultry fat + 1,042 µm 2.03 2.36 75.30 84.60 86.74b 3,190 

SEM 0.15 0.08 0.66 0.47 0.94 30 

Two way interaction of lipid source x TB 

Soy oil + 0 mg/kg TB 2.14 2.39 74.86 83.91 88.64 3,139 

Soy oil + 500 mg/kg TB 2.03 2.34 75.70 84.65 90.17 3,178 

Poultry fat + 0 mg/kg TB 2.06 2.31 74.14 84.35 87.43 3,171 

Poultry fat + 500 mg/kg TB 2.09 2.40 76.11 85.14 89.82 3,186 

SEM 0.15 0.08 0.64 0.47 0.91 30 

Two way interaction of corn particle size x TB 

730 µm + 0 mg/kg TB 2.19 2.34 75.68a 84.95 88.65 3,215a 

730 µm + 500 mg/kg TB 2.04 2.32 74.76ab 84.77 90.41 3,149ab 

1,042 µm + 0 mg/kg TB 2.01 2.36 73.32b 83.31 87.42 3,095b 

1,042 µm + 500 mg/kg TB 2.09 2.41 77.05a 85.03 89.58 3,215a 

SEM 0.15 0.08 0.64 0.47 0.91 30 

Three way interaction of lipid source x corn particle size x TB 

Soy oil + 730 µm + 0 mg/kg TB 2.17 2.33 77.46a 85.46a 87.10 3,261a 

Soy oil + 730 µm + 500 mg/kg TB 2.05 2.31 73.53b 84.20ab 90.00 3,131ab 

Poultry fat + 730 µm + 0 mg/kg TB 2.20 2.35 73.90ab 84.44ab 90.20 3,169ab 

Poultry fat + 730 µm + 500 mg/kg TB 2.03 2.34 75.99ab 85.34a 90.82 3,167ab 

Soy oil + 1,042 µm + 0 mg/kg TB 2.11 2.45 72.26b 82.36b 90.19 3,017b 

Soy oil + 1,042 µm + 500 mg/kg TB 2.02 2.36 77.86a 85.11ab 90.34 3,224a 

Poultry fat + 1,042 µm + 0 mg/kg TB 1.91 2.27 74.38ab 84.25ab 84.66 3,174ab 

Poultry fat + 1,042 µm + 500 mg/kg TB 2.15 2.46 76.23ab 84.94ab 88.83 3,206a 

SEM 0.21 0.11 0.93 0.66 1.33 42 
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Table 3.7 (Cont) 

 Gizzard     

Treatment pH 

Relative wt. 

% 

Dry matter, 

% 

Nitrogen, 

% 

Ether extract, 

% 

IDE 

kcal/kg 

P-values 

Lipid source 0.929 0.870 0.808 0.329 0.388 0.491 

Corn particle size 0.674 0.782 0.956 0.145 0.258 0.369 

TB inclusion 0.813 0.818 0.533 0.108 0.033 0.374 

Source x corn particle size 0.888 0.686 0.031 0.393 0.003 0.105 

Source x TB 0.647 0.346 0.374 0.956 0.628 0.695 

Corn particle size x TB 0.452 0.680 <0.001 0.047 0.825 0.003 

Source x corn particle size x TB 0.526 0.373 <0.001 0.028 0.084 0.014 
a-c Means within a row that do not share a common superscript are different (P < 0.05). 
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CHAPTER V: THE EVALUATION OF TRIBUTYRIN IN ANIMAL PROTEIN AND 

VEGETABLE BASED DIETS REARED IN BATTERY CAGES AND FLOOR PENS 

AND ITS IMPACT UPON GROWTH PERFORMANCE AND NUTRIENT 

DIGESTIBILITY 

 

ABSTRACT 

 Tributyrin (TB) is glyceride ester of butyrate that has the potential to improve broiler 

performance and intestinal development. Previous research conducted by our lab noted 

inconsistent effects of lipid source and concentration on TB utilization. The presence of animal 

protein (APM) or an increase in vegetable proteins (VEG), however, may increase the 

fermentability of the diet and in turn increase endogenous butyrate production. Additionally, the 

evaluation of TB efficacy in our lab has been in birds reared in battery cages, thus the exposure 

to commercial challenges, such as dirty litter and a coccidiosis vaccine, may influence TB 

utilization. Therefore, two experiment were conducted simultaneously to investigate the 

interactive effects of TB and diet type on broiler growth performance and apparent ileal nutrient 

(AID) and energy digestibility (IDE). Dietary treatments were arranged in a 2 by 2 factorial 

arrangement of 2 diet types (animal protein or vegetable based) x tributyrin supplementation 

(with or without 500mg/kg tributyrin) in either floor pens or battery cages. Dietary treatments 

were fed in one feeding phases in Experiment 1: starter (0 – 15 d), and three feeding phases in 

Experiment 2: starter (0 – 14 d), grower (15 – 28 d), and finisher (29 – 42 d). Diets were 

formulated to be isocaloric and isonitrogenous. Titanium dioxide was used in the starter feeds as 

an indigestible marker for determination of AID and IDE following collection of ileal digesta at 

15 d in Experiment 2. Off-sex male chicks from a Cobb 500 breeder line was used for both 
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experiments, and birds in Experiment 1 were sprayed with a live coccidiosis vaccine at day of 

hatch and placed in 12 replicate floor pens of 22 birds/pen. Birds in Experiment 2 were non-

vaccinated and placed in 9 replicate battery cages of 12 birds/pen. Cumulative FI was reduced at 

d 14 (P = 0.032), d 28 (P = 0.043), and d 42 (P < 0.001) and FCR was improved at d 28 (P = 

0.001) and d 42 (P = 0.003) in APM fed birds compared to VEG fed birds in Experiment 1. 

Similarly, birds fed APM diets in Experiment 2 had reduced FI (P < 0.001), higher AID dry 

matter digestibility (P < 0.001), increased nitrogen digestibility (P = 0.013), and higher IDE 

kcal/kg (P < 0.001) compared to VEG fed birds. An underestimation of the digestibility 

coefficients in the meat and bone meal may be responsible for this significant increase in growth 

performance and nutrient utilization in the APM fed birds. Furthermore, there were no main 

effects or interactive effects (P > 0.05) of TB observed in growth performance or nutrient 

utilization in either trial. These findings suggest that TB supplementation had no effect in birds 

reared in different environments or fed APM or VEG diets.  

INTRODUCTION 

 The poultry industry has experienced a recent shift toward increased antibiotic free 

production and the use of all-vegetable based diets. Nonetheless, animal proteins such as meat 

and bone meal (MBM) are still commonly used to replace soybean meal (SBM) and provide 

valuable nutrients such as phosphorus and amino acids to the diet. In vegetable-based diets, 

vegetable proteins such as SBM are included at levels exceeding 30% to achieve sufficient 

essential amino acid levels. An increase in SBM increases concentrations of oligosaccharides 

and non-starch polysaccharides present in the diet (Choct, 1997). Yang et al. (2016) reported that 

an additional 0.13% of dietary soybean oligosaccharides in a diet, which is comparable to an 

1.9% increase in SBM, to a diet containing 26.9% SBM increased total volatile fatty acids in the 
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excreta of broilers and altered the cecal microbiota. Therefore, reduction of dietary SBM with 

MBM may reduce overall SCFA production from soy-derived carbohydrates. Furthermore, 

fermentation of undigested nitrogen derived from animal proteins such as MBM can increase the 

production of nitrogenous bacterial metabolites in the hindgut (Zanu et al., 2020) which has been 

shown to fuel pathogenic bacteria growth and exacerbate necrotic enteritis infections when 

exceeding levels beyond 5% (Onifade et al., 1998; Zanu et al., 2020).    

 Changes in ingredient composition, and in turn, endogenous SCFA production may 

influence the response to exogenous SCFA supplementation. Tributyrin is an esterified form of 

butyrate and has targeted release site in the small intestine following cleavage by pancreatic 

lipase. Although tributyrin supplementation has been reported to provide some benefits in the 

absence of antibiotics through its bactericidal activity and enhancements to gut morphology, 

studies have been inconsistent regarding the effect of tributyrin supplementation effect upon 

growth performance and carcass characteristics (Leeson et al., 2005; Bedford et al., 2017). 

Therefore, it is important to understand how changes in ingredient composition that may 

influence overall SCFA production can affect responses to dietary tributyrin supplementation. 

 In addition to ingredient composition, responses to gut health promoting feed additives such as 

tributyrin are likely influenced by bacterial load, pathogenic challenge, and environmental stress 

experienced by the bird (Kim et al. 2014). It has been suggested that beneficial effects of organic 

acids, including butyric acid, are more apparent when birds encounter environmental stressors 

compared to birds raised in environments with minimal challenges (Sayrafi et al., 2011). 

Therefore, in this study, two experiments were conducted simultaneously to evaluate TB efficacy 

in birds fed animal protein or all-vegetable based diets and exposed to two different 

environments (i.e. battery cages vs floor pens) and its influence on growth performance, nutrient 
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digestibility, and gastrointestinal pH. In Experiment 1, non-vaccinated birds were reared in 

battery cages for 15 d. Whereas in Experiment 2, birds were vaccinated with a commercial 

coccidiosis and reared in floor pens on used litter to 42 d. In both experiments, birds were fed 

vegetable-based or animal protein-based diets with or without the inclusion of tributyrin at 500 

mg/kg.  

MATERIALS AND METHODS 

 All animal care and experimental procedure were approved by the University of Arkansas 

Institutional Animal Care and Use Committee before initiation of the experiment.  

Common Procedures and Dietary Treatments (Experiments 1 and 2) 

 A total of 1,488 male by-product chicks from a Cobb 500 female line were obtained from 

a commercial hatchery on day of hatch. In Experiment 1, 482 non-vaccinated chicks were reared 

in battery cages, whereas in Experiment 2, a commercial coccidiosis vaccine was administered at 

the hatchery in the remaining 1,056 chicks and placed in floor pens. Birds were reared 

simultaneously in both experiments and fed 4 experimental diets based on a factorial 

arrangement of 2 protein sources (vegetable or animal) in combination with 2 tributyrin 

concentrations (with or without 500 mg/kg tributyrin). Dietary treatments were maintained 

across 1 feeding phases in Experiment 1: starter (0 to 15 d); and 3 feeding phases in Experiment 

2: starter (0 to 14 d), grower (15 to 28 d), and finisher (29 to 42 d). For the starter phase, a 

common basal was mixed, quartered, and experimental treatments were remixed with the 

appropriate ingredient additions according to treatment (Table 1) treatments were then allocated 

and fed to birds in Experiment 1 and 2. The subsequent feeding phases for Experiment 2 

followed the same procedure. Diets were corn and soybean meal based and formulated on an 

isocaloric and digestible amino acid basis. In addition to soybean meal, the diets with animal 
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protein-included pork meat and bone meal and poultry fat, while vegetable-based diets included 

soybean oil as the source of added lipid. Titanium dioxide was also included in the starter diets at 

0.5% as an indigestible marker for determination of nutrient digestibility. 

Animal Husbandry 

 Experiment 1.  All chicks were group-weighed and distributed to 36 battery cages on day 

of hatch. Each cage was equipped with a trough feeder and nipple drinkers. Twelve birds per 

cage were placed (24 cm by 24 cm) and birds were provided ad libitum throughout the 

experiment. The lighting schedule and temperature targets were adjusted according to the 

management guidelines provided by the primary breeder. Birds were reared up to 15 d post-hatch 

and on d 0 and 15, birds and feeders were weighed for calculation of body weight gain (BWG), 

feed intake (FI), and mortality corrected feed conversion ratio (FCR).   

 Experiment 2. Birds were group-weighed on day of hatch and distributed among 48 floor 

pens (22 birds/pen) containing used litter and top-dressed with fresh pine shavings and reared to 

42 d post-hatch. Each pen contained a total of 22 birds equipped with a commercial-type pan 

feeder and nipple waterers to provide free access to feed and clean water throughout the trial. 

Supplemental feed trays were placed in each pen from 0 to 7 d post-hatch to facilitate access to 

feed for young chicks. Lighting and temperature were maintained according to best practice 

appropriate for bird age as outlined in management guides published by the primary breeder. On 

0, 14, 28, and 42 days post-hatch, birds and feeders were weighed and recorded and used for the 

calculation of BWG, FI, and FCR.  

Analysis Procedures  

 In Experiment 1, on d 15, all birds from 9 replicate pens were humanely euthanized by 

CO2 inhalation. Ileal contents from all birds in each pen were collected by gently flushing the 
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distal half of the ileum using deionized water. Digesta samples were pooled within pen and 

frozen (-20°C) until analysis. On d 42 in Experiment 2, ileal and cecal pH was recorded from 2 

birds/pen. 

 Ileal and cecal pH. In Experiment 2, to determine ileal and cecal pH, an incision was 

made on the lower section of the ileal and the rounded tip of the ceca, and the digital pH meters 

(Mettler-Toledo, UK) with a spear tip piercing pH electrode (Sensorex S175CD) were directly 

inserted into the digesta of ileum and ceca and the pH was recorded. The probes were rinsed with 

distilled water after each reading and the tip of the pH probes were stored in double distilled 

water when not in use.  

Nutrient digestibility. In Experiment 1, frozen ileal digesta samples were lyophilized and ground 

using an electric coffee grinder to provide an evenly ground sample while avoiding significant 

loss. Diet and digesta samples were analyzed for dry matter, gross energy, nitrogen, and ether 

extract. Gross energy was determined with a bomb calorimeter (Parr 6200 bomb calorimeter, 

Parr Instruments Co., Moline, IL.). Nitrogen was determined using the combustion method 

(Fisions NA-2000, CE Elantech, Lakewood, NJ) standardized with EDTA (method 990.03, 

AOAC International 2006) and ether extract was determined according to the AOAC (2006) 

method 920.39. Titanium dioxide was included in the feed at 0.5% as an indigestible marker, and 

diet and digesta TiO2 concentrations were determined in duplicate following the procedures of 

Short et al. (1996). Apparent ileal digestibility (AID) of dry matter, gross energy, ether extract, 

and nitrogen were calculated using the following equation:  

AID, % = {[(X / TiO2)diet – (X / TiO2)digesta] / (X / TiO2)diet} × 100, 
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where (X/TiO2) = ratio of nutrient concentration to TiO2 in the diet or ileal digesta. Energy 

digestibility (%) values obtained from the above equation, were multiplied by the gross energy 

content of the feed to calculate ileal digestible energy (IDE). 

Statistical analysis 

 In each experiment, pen was considered the experimental unit with 9 replicate pens in 

Experiment 1 and 12 replicate pens for Experiment 2 for each of the 4 dietary treatments 

arranged in a randomized complete block design. Data were analyzed by a two-way ANOVA to 

evaluate the main effects and interactions among the diet type and tributyrin inclusion in a 2 by 2 

factorial arrangement. Statistical significance was considered at P ≤ 0.05 in all cases. Statistical 

outliers were defined as values exceeding 3 studentized residuals of the mean. Before removing 

statistical outliers, all raw data and calculations were confirmed to be correct. 

RESULTS AND DISCUSSION 

The goal of the current experiment was to simultaneously evaluate tributyrin (TB) efficacy in 

growth performance, nutrient utilization, and gastrointestinal pH in birds fed animal protein 

(APM) or all-vegetable based diets (VEG) while exposed to two different environments (i.e. 

battery cages vs floor pens). Even though diets were formulated on an isocaloric and digestible 

amino acid basis, diet analyses indicated a 7.7% increase in CP levels during the starter phase 

and a 4.5% and 3.8% increase during the grower and finisher phases, respectively, for the APM 

diets as compared to VEG diets (Table 4.1). Although the increase in CP values did not impact 

growth performance in Experiment 1, an improvement in AID dry matter digestibility (P < 

0.001), increased nitrogen digestibility (P = 0.013), and higher IDE kcal/kg (P < 0.001) was 

observed in Experiment 1 for APM fed birds compared to VEG fed birds, with no impact of TB 

supplementation (Table 4.2 and 4.3, respectively). It is possible that the digestibility coefficients 



 

86 
 

used for MBM were underestimated, therefore increasing the digestible amino acid content in the 

APM diets compared to the VEG diets.  

Similar to the starter phase in Experiment 1, no differences in body weight gain (BWG) were 

observed between birds fed APM or VEG diets with or without the inclusion of TB during the 

starter period in Experiment 2 (Table 4). There was however a reduction in the starter phase FI 

(P = 0.032) in APM fed birds compared to VEG fed birds (Tables 4). Even though feed 

conversion (FCR) was not affected by diet type during the starter phase, FCR was improved at d 

28 (P = 0.001) and d 42 (P = 0.003) in Experiment 2 in APM fed birds compared to VEG fed 

birds, regardless of TB supplementation (Table 4). It has been suggested that the inclusion of 

MBM can increase the occurrence of necrotic enteritis (Wilkie et al., 2005). In previous literature 

the inclusion of MBM from 5% to greater than 50% in poultry diets has led to increased 

concentrations of C. perfringens in ileal and cecal contents compared to birds fed vegetable-

based proteins, thus resulting in higher incidences of necrotic enteritis and reduced growth 

performance (Wilkie et al., 2005; Zanu et al., 2020). Comparatively, birds were fed 4% MBM in 

the current studies and experienced better growth performance compared to VEG fed birds. It 

should be noted that birds in Experiment 1 were non-vaccinated and reared in battery cages 

whereas in Experiment 2, birds were exposed to a commercial coccidiosis and placed in floor 

pens containing used litter. Previous research has noted that birds raised in battery cages exhibit 

improved performance compared to birds raised in floor pens which may be attributed to floor 

pens birds being directly exposed to dirty litter which increases exposure to pathogenic bacteria 

and parasites (Reece et al., 1971; Kim et al., 2014). Regardless, in Experiment 2, birds 

administrated a coccidiosis vaccine and placed on used litter had improved growth performance 

when fed APM diets compared to VEG fed birds, suggesting that in the current experiments, 
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even under mildly challenged conditions and increased CP values, MBM did not induce necrotic 

enteritis or impair growth performance as seen in previous studies.  

 Increased SBM concentrations in the VEG diets in the current studies was thought to 

increase the fermentability of the diet and in turn, enhance SCFA production in the ceca via 

anaerobic fermentation. However, no effect (P > 0.05) was observed in cecal or ileal pH between 

the VEG and APM diets (Table 5). This is in contrast to Yang et al. (2016) who reported that the 

additional inclusion of SBM oligosaccharides by 0.13% in a diet, which is comparable to a 1.9% 

increase in SBM, in a diet containing 26.9% SBM increased total SCFA in the excreta in vivo 

while in turn stimulated a change within the bacterial community in ceca of the bird. Qaisrani et 

al. (2015) also noted that supplementing fermentable carbohydrates in the diet could decrease 

hindgut protein fermentation which in turn could improve gut health and promote beneficial 

microbiota growth. Additionally, the inclusion of MBM is also thought to stimulate fermentation 

in the ceca of the broiler, however, an increase in pathogenic bacteria via biogenic amine 

formation has been reported (Sharma et al., 2017). In a previous study conducted by Zanu et al. 

(2020), the addition of 6% MBM to wheat-based diets increased ileal and cecal pH of 16 d old 

broilers. In the current experiment, however, a reduction in nitrogen fermentation via pathogenic 

bacteria may have been a result of the increase in digestibility of MBM thus leading to a lack of 

effect on cecal pH. In addition to changes in hindgut fermentation, it has been suggested that the 

inclusion of MBM in the diet can result in increased ileal and cecal pH due to the high calcium 

content that may interfere with amino acid and mineral utilization (Paiva et al., 2014). It is 

noteworthy to mention, however, the birds sampled in the current study were 42 d old broilers 

and were fed lower levels of MBM in the finisher phase at 2.5%. Therefore, the lack of effect on 
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ileal and cecal pH may be attributed to the stability of the gastrointestinal tract at 42 days and the 

relatively lower inclusion of MBM during this period. 

 There were no main effect or interactive effects of TB inclusion at 500 mg/kg in the 

Experiment 1 and 2. Kim et al. (2014) noted that when evaluating possible alternative to 

antibiotics, the housing system may influence the efficacy of the product as differences in 

bacterial load, pathogenic challenge, and environmental stress exist between birds reared in 

battery cages and floor pens. However, in Experiment 2, the coccidiosis vaccination that broilers 

received and the used litter that birds were reared on appeared to not impact TB efficacy and its 

effects on growth performance or nutrient utilization. These findings agree with a previous study 

conducted by Leeson et al. (2005) who reported no differences in overall growth performance in 

birds fed 200 or 400 mg/kg of butyrate glyceride esters when given a coccidiosis vaccine on day 

of hatch and reared in floor pens for 42 days compared to antibiotic fed birds and control fed 

birds. Tributyrin supplementation in Experiment 1 did not impact non-vaccinated birds reared in 

battery cages. These observations suggest that the housing system and assumed pathogenic and 

bacterial load that is associated with floor pen rearing and coccidiosis vaccine, did not influence 

the utilization of TB.  

 The composition between the two diet types was hypothesized to influence TB efficacy. 

In an effort to create isocaloric diets in the current studies, different concentrations of soy oil and 

poultry fat were used. Upon doing so, the dietary lipid level was increased in VEG diets 

approximately three times the amount used in APM diets. Even so, a general lack of interaction 

by TB within each diet type was observed in performance and nutrient digestibility. 

Additionally, it was anticipated that a synergistic effect of TB as an exogenous source of butyrate 

and an increase of endogenous butyrate production would occur. The lack of effect (P > 0.05), 
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however, on ileal and cecal pH suggest that TB supplementation did not influence SCFA 

production (Table 5) (Moquet et al., 2016). The lack of effect on ileal and cecal pH is likely due 

to TB being degraded and absorbed with no accumulation in the small intestine, thus resulting in 

no differences among ileal and cecal pH.  

 In conclusion, birds fed APM diets had improved growth performance and nutrient 

digestibility compared to VEG fed birds. However, this is more than likely attributed to an 

underestimation of the digestibility coefficients which in turn resulted in higher digestible amino 

acids in the APM diets. Moreover, TB efficacy did not appear to be impacted by APM or VEG 

diets in a battery cage system or floor pens. A lack of effect by TB supplementation was also 

noted within environment types with the addition of a coccidiosis vaccine and exposure to used 

litter having no impact on bird performance or nutrient utilization. Further studies should be 

conducted to evaluate TB efficacy in a challenged model to enhance the stress on the GIT as well 

as in diets containing viscous cereals to promote higher ceaecal fermentation.  
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 TABLES 

Table 4.1 Diet formulations for broilers fed vegetable based (VEG) or animal protein based 

(APM) diets with or without the inclusion of tributyrin (TB) for 15 or 42 d post-hatch 

(Experiment 1 and 2) 

 Starter Grower Finisher 

Ingredient VEG APM VEG APM VEG APM 

Corn 60.50 62.98 62.15 64.07 67.60 69.00 

Soybean Meal 33.92 29.83 32.08 28.77 26.12 23.56 

MBM1 - 4.00 - 3.25 - 2.50 

Soybean oil or poultry fat 1.55 0.57 2.67 1.95 3.32 2.86 

Limestone 1.09 0.60 1.04 0.67 1.05 0.74 

Sodium bicarbonate - 0.13 - 0.10 - 0.08 

Dicalcium phosphate 0.98 - 0.83 - 0.60 - 

Sodium chloride 0.44 0.33 0.44 0.36 0.45 0.38 

DL-methionine, 99% 0.33 0.33 0.28 0.28 0.27 0.27 

L-lysine HCl, 78.8% 0.23 0.25 0.16 0.17 0.21 0.22 

L-threonine, 98% 0.14 0.14 0.06 0.07 0.08 0.08 

Trace mineral premix2 0.10 0.10 0.10 0.10 0.10 0.10 

Vitamin premix3 0.06 0.06 0.05 0.05 0.05 0.05 

Choline chloride, 60% 0.05 0.07 0.03 0.05 0.04 0.05 

Phytase4 0.01 0.01 0.01 0.01 0.01 0.01 

Titanium dioxide  0.50 0.50 - - - - 

Builder’s sand5 0.10 0.10 0.10 0.10 0.10 0.10 

Calculated nutrient composition, % unless noted otherwise 

AMEn, kcal/kg 3,000 3,000 3,100 3,100 3,200 3,200 

CP 21.33 21.56 20.41 20.60 18.02 18.15 

Digestible Lys 1.20 1.20 1.10 1.10 1.00 1.00 

Digestible TSAA 0.90 0.90 0.84 0.84 0.78 0.78 

Digestible Thr 0.82 0.82 0.72 0.72 0.65 0.65 

Total Ca 0.90 0.90 0.84 0.84 0.77 0.77 

Available P 0.46 0.46 0.43 0.43 0.38 0.38 

Analyzed nutrient composition, % 

Dry Matter 89.08 90.27 88.01 89.36 88.77 89.69 

Protein 21.73 23.41 20.00 20.90 18.10 18.80 

Gross energy, kcal/kg 3,872 3,956 3,970 4,014 3,928 4,024 
1 Meat and bone (MBM) containing 49.99% CP, 13% fat, 6.05% phosphorus, and 12.13% 

calcium. 
2 The mineral premix provided (per kg of diet): calcium, 55.5 mg, manganese, 100.0 mg; 

magnesium, 27.0 mg; zinc, 100.0 mg; iron, 50.0 mg copper, 10.0 mg; iodine, 1.0 mg. 
3 The vitamin premix provided (per kg of diet): vitamin A, 6,350 IU; vitamin D3, 4,536 ICU, 

vitamin E, 45 IU, vitamin B12 0.01 mg; mendadione, 1.24 mg; riboflavin, 5.44 mg; d-

pantothenic acid, 8.16 mg; niacin, 31.75 mg; folic acid, 0.73 mg; pyridoxine, 2.27 mg; 

thiamine, 1.27 mg. 
4 OptiPhos 2000, (Huvepharma Inc., Peachtree City, GA) provided 250 FTU/g of phytase 

activity. 
5 Tributyrin was added to the experimental diets at the expense of sand to achieve 500 mg/kg 

tributyrin. 
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Table 4.2. Nutrient digestibility of non-vaccinated broilers fed vegetable based (VEG) 

or animal protein based (APM) diets with or without the inclusion of tributyrin (TB) 

from 0 to 15 d post hatch (Experiment 1) 

Item Dry matter, % Nitrogen, % Ether extract, % IDE, kcal/kg 

Main effect of diet type 

VEG 75.57b 73.74b 96.44 2,964b 

APM 80.15a 76.34a 96.18 3,211a 

SEM 0.40 0.72 0.44 16 

Main effect of TB 

0 mg/kg TB 77.52 74.19 96.44 3,086 

500 mg/kg TB 78.21 75.89 96.18 3,090 

SEM 0.41 0.70 0.46 17 

Two way interaction of diet type x TB 

VEG + 0 mg/kg TB 75.51 73.69 96.90 2,978 

VEG + 500 mg/kg TB 75.64 73.79 95.98 2,950 

APM + 0 mg/kg TB 79.52 74.68 95.98 3,194 

APM + 500 mg/kg TB 80.78 77.99 96.39 3,230 

SEM 0.60 1.05 0.64 25 

P-values 

Diet type < 0.001 0.013 0.684 < 0.001 

TB inclusion 0.232 0.092 0.685 0.856 

Diet type x TB 0.330 0.111 0.297 0.181 
a,b Means within a row that do not share a common superscript are different (P < 

0.05). 
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Table 4.3. Growth performance of non-vaccinated broilers fed vegetable based 

(VEG) or animal protein based (APM) diets with or without the inclusion of 

tributyrin (TB) from 0 to 15 d post hatch (Experiment 1) 

Item D 0 - 15 BWG, kg FI, kg FCR, kg:kg 

Main effect of diet type 

VEG 0.537 0.661a 1.237 

APM 0.529 0.623b 1.213 

SEM 0.007 0.006 0.009 

Main effect of TB 

0 mg/kg TB 0.525 0.635 1.229 

500 mg/kg TB 0.540 0.649 1.220 

SEM 0.007 0.006 0.009 

Two way interaction of diet type x TB 

VEG + 0 mg/kg TB 0.530 0.657 1.244 

VEG + 500 mg/kg TB 0.543 0.664 1.229 

APM + 0 mg/kg TB 0.521 0.613 1.214 

APM + 500 mg/kg TB 0.536 0.633 1.212 

SEM 0.010 0.009 0.013 

P-values 

Diet type 0.437 < 0.001 0.086 

TB inclusion 0.162 0.135 0.523 

Diet type x TB 0.951 0.429 0.611 
a,b Means within a row that do not share a common superscript are different (P < 

0.05). 
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Table 4.4. Growth performance of vaccinated broilers fed vegetable based (VEG) or animal protein based (APM) 

diets with or without the inclusion of tributyrin (TB) from 0 to 42 d post hatch (Experiment 2) 

 D 0 - 14 D 0 - 28 D 0 - 42 

Item BWG, kg FI, kg FCR, kg:kg BWG, kg FI, kg FCR, kg:kg BWG, kg FI, kg FCR, kg:kg 

Main effect of diet type 

VEG 0.405 0.519a 1.286 1.624 2.365a 1.475a 3.229 5.201a 1.639a 

APM 0.398 0.506b 1.279 1.614 2.328b 1.451b 3.193 5.005b 1.619b 

SEM 0.004 0.004 0.006 0.009 0.013 0.005 0.018 0.028 0.005 

Main effect of TB 

0 mg/kg TB 0.404 0.512 1.275 1.628 2.346 1.461 3.219 5.082 1.628 

500 mg/kg TB 0.399 0.512 1.290 1.611 2.348 1.465 3.204 5.124 1.630 

SEM 0.004 0.004 0.006 0.009 0.013 0.005 0.018 0.028 0.005 

Two way interaction of diet type x TB 

VEG + 0 mg/kg TB 0.407 0.519 1.280 1.626 2.362 1.474 3.233 5.168 1.640 

VEG + 500 mg/kg TB 0.403 0.519 1.293 1.623 2.368 1.475 3.226 5.233 1.637 

APM + 0 mg/kg TB 0.401 0.506 1.271 1.629 2.329 1.448 3.204 4.996 1.615 

APM + 500 mg/kg TB 0.395 0.505 1.286 1.599 2.327 1.454 3.182 5.014 1.622 

SEM 0.006 0.006 0.008 0.013 0.018 0.007 0.026 0.039 0.007 

P-values 

Diet type 0.217 0.032 0.339 0.463 0.043 0.001 0.155 < 0.001 0.003 

TB inclusion 0.370 0.967 0.076 0.212 0.903 0.564 0.560 0.293 0.788 

Diet type x TB 0.925 0.956 0.860 0.311 0.827 0.668 0.771 0.559 0.425 
a,b Means within a row that do not share a common superscript are different (P < 0.05) 
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Table 4.5. Ileal and cecal pH of vaccinated broilers fed vegetable based 

(VEG) or animal protein based (APM) diets with or without the inclusion 

of tributyrin (TB) from 0 to 42 d post hatch. (Experiment 2) 

Item Ileal pH Cecal pH 

Main effect of diet type 

VEG 5.37 6.83 

APM 5.61 6.86 

SEM 0.11 0.03 

Main effect of TB 

0 mg/kg TB 5.49 6.85 

500 mg/kg TB 5.48 6.84 

SEM 0.11 0.03 

Two way interaction of diet type x TB  

VEG + 0 mg/kg TB 5.47 6.81 

VEG + 500 mg/kg TB 5.27 6.85 

APM + 0 mg/kg TB 5.52 6.88 

APM + 500 mg/kg TB 5.69 6.83 

SEM 0.16 0.05 

P-values 

Diet type 0.123 0.605 

TB inclusion 0.921 0.849 

Diet type x TB 0.230 0.367 
a,b Means within a row that do not share a common superscript are 

different (P < 0.05). 
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CHAPTER VI: GENERAL CONCLUSIONS 

 The overall focus of these studies was to explore the interactive effects between tributyrin 

(TB) and nutritional factors when fed in broiler diets. Experiment 1 revealed that feeding TB 

beyond 500 mg/kg can potentially negatively influence broiler growth performance and carcass 

characteristics. Experiment 2 indicated, however, that lipid source nor lipid concentration were 

primary driving factors that impact TB efficacy on broiler growth performance and nutrient 

utilization. Even so, TB supplementation in soybean oil diets did improve nutrient utilization 

when compared to birds fed a diet absent in TB. Interestingly, the opposite trend in nutrient 

utilization was observed in birds fed diets containing poultry fat and TB. These differences, 

however, were not observed in the second experiment trial within Experiment 2; therefore, 

suggesting that the interaction between TB and the dietary lipid source is variable. Additionally, 

corn particle size did not impact gizzard function as indicated by its weight or pH of its contents, 

nor was an interactive effect observed with TB supplementation on growth performance or 

nutrient utilization in Experiment 2. Therefore, Experiment 3 sought to evaluate TB efficacy in 

birds fed animal protein or vegetable-based diets reared under different housing environments. 

Non-vaccinated birds reared in battery cages and vaccinated broilers reared in floor pens and fed 

animal-protein based diets had improved growth performance and nutrient utilization compared 

to vegetable fed birds. These differences did not influence ileal or cecal pH as previously 

hypothesized, suggesting that the increase in soybean oligosaccharide and non-starch 

polysaccharides did not stimulate an increase in short chain fatty acid production such as 

butyrate. Lastly, TB efficacy did not affect broiler growth performance or nutrient utilization 

when birds were reared in battery cages or in floor pens with exposure to mild challenges (used 

litter and coccidial vaccine).  
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 Collectively, the data from these studies suggest that feeding TB beyond the 

recommended dose (500 mg/kg in the starter and 250 mg/kg in subsequent feeds) can lead to a 

negative impact upon growth performance and carcass characteristics. However, it is not 

impacted by dietary lipid source, lipid concentration, corn particle size, or the presence of MBM 

and increased soybean oligosaccharides. While some differences in TB efficacy were observed 

among varying lipid sources, inconsistencies in these results suggest that lipid source and level 

are not primary drivers of TB efficacy. Additionally, the presence of a mild challenge in the form 

of a coccidiosis vaccine combined with exposure to used litter did not influence TB efficacy. 

Further research should be conducted to determine whether other environmental challenges or 

diet compositions will affect tributyrin’s role within the gastrointestinal tract and its subsequent 

effects on growth performance and nutrient utilization in broilers.  
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