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Background and Motivation

▪ The solution of linear systems is at the core of many scientific 
simulation codes

▪ High fidelity requires huge linear systems and large-scale 

computing

▪ Development of parallel linear solvers and software (hypre), 
driven by applications, with focus on multigrid methods

Magnetohydrodynamics ElectromagneticsElasticity / Plasticity Quantum Chromodynamics



LLNL-PRES-821025

3

▪ Multilevel methods are optimal, i.e., O(N) operations

▪ Well designed multilevel methods have excellent scalability 

▪ Scalable → faster simulations
→ better science!

Multigrid is playing an important role for high 
performance computing
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Algebraic multigrid has been impacted by rapidly 
changing computer architectures over the years!

▪ New architectures impact algorithm design, 
requiring consideration of:

— Parallelism:

• Vector computers (e.g., Cray X-MP)

• Distributed computer architectures

— + avoiding/reducing communication and memory 
movement:

• Computers with up to millions of cores (e.g., IBM Blue Gene 
series)

• Hybrid computer architectures with very fast cores, complicated 
memory hierarchies

— + extreme-scale parallelism:

• Heterogeneous computer architectures with accelerators/GPUs 
(e.g., Roadrunner, LANL, Summit, ORNL)
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High Performance Computing – the race is on!

▪ Greater than 500,000x increase in 
supercomputer performance, with no 
end currently in sight!

▪ We are now  pursuing exascale
computing!

— Exaflop = 1018 calculations per second

— Fugaku first computer to achieve this 
using ARM chip technology

— Other exascale systems on the horizon 
using GPU technology:

• Frontier (Cray/AMD, ORNL, 2021/2022)

• Aurora (Cray/Intel, ANL, 2021/2022)

• El Capitan (Cray/AMD, LLNL, 2023)
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Multigrid uses coarse grids to efficiently damp out 
smooth error components

smoothing

Finest Grid

First Coarse Grid

restriction
prolongation

(interpolation)

The Multigrid

V-cycle

Note:

smaller grid
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Background of Algebraic Multigrid

▪ Algebraic multigrid (AMG) formally based on geometric multigrid 
method, looks similar

▪ Originally developed by Brandt, McCormick, Ruge (1982)

▪ AMG developed to deal with more complex problems, unstructured 
problems 

▪ Deal with variables instead of grids

▪ Efficient interplay between smoothing and coarse-grid correction
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— Select coarse “grids,” 

— Define interpolation, 

— Define restriction and coarse-grid operators

Algebraic Multigrid

Setup Phase:

Solve Phase:

mm)m( fuA Relax =
mm)m( fuA Relax =

1m)m(m ePe   eInterpolat +=

m)m(mm uAfr  Compute −=
mmm euu  Correct   +

1m1m)1m( reA

Solve        

+++ =

m)m(1m rRrRestrict  =+

,...2,1m   ,P )m( =

)m()m()m() 1(mT)m()m( PARA         )P(R == +
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Parallelizing AMG

▪ Multigrid linear solvers are optimal (O(N) operations), and 
hence have good scaling potential

▪ Many of AMG’s components are parallel, e.g., Galerkin product 
RAP, interpolation operator generation, matrix-vector 
operations

▪ Some critical components are highly sequential, e.g., 
smoothers (lex. Gauss-Seidel), coarsening algorithm

▪ We consider here a distributed memory model, i.e., message 
passing (MPI) programming model
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Problem:

▪ solving:  Ax=b, A symmetric positive definite

▪ smoothing:    xn+1 = xn + M-1(b-A xn)

Weighted Jacobi smoother:   M = ωD 

Hybrid Gauß-Seidel smoothers: M = MH

▪ Depends on number of processes

▪ Might include a weight for better convergence

• ω =
1

ρ MH
−1A

But requires eigenvalue estimate

Original Smoother: Gauss-Seidel – sequential!

A =

MH =

UMY, NLAA, 11 (2004), pp. 155-172.



LLNL-PRES-821025

11

Alternate smoothers: polynomial smoother  I – M-1A = p(A), p(0)=1

▪ independent of parallelism

▪ MatVec kernel has been tuned

▪ But need extreme eigenvalue estimates

We pursue two strategies: 
1. investigate alternate smoothers , 2. ‘fix’ hybrid smoothers

MH =

‘Fix’ hybrid smoothers: ℓ1 – smoother

▪ Add suitable diagonal matrix to hybrid smoother MH 

Mℓ1
= MH + Dℓ1

with Dℓ1
= ∑j≠i |aij

o |

▪ Always convergent, when GS converges

▪ Requires no eigenvalue estimates

Baker, Falgout, Kolev, UMY, SISC, 33 (2011), pp. 2864-2887 .
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Choosing the coarse grid

▪ Focus here on
Classical AMG (C-AMG) – coarse grid is a subset of the fine grid

▪ The basic coarsening procedure is as follows:
— Define a strength matrix As by deleting weak connections in A
— First pass: Choose an independent set of fine-grid points based on the 

graph of As

— Second pass: Choose additional points if needed to satisfy interpolation 
requirements

▪ Coarsening partitions the grid into C- and F-points

Ruge, Stüben, Algebraic multigrid (AMG), in : S. F. McCormick, ed., Multigrid Methods, 

vol. 3 of Frontiers in Applied Mathematics (SIAM, Philadelphia, 1987) 73–130.
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Original AMG coarsening highly sequential!

(C1) Maximal Independent Set:

Independent: no two C-points are 
connected

Maximal: if one more C-point is 
added, the independence is lost

2
3

3

2

4

4

2

1

3

2
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Original AMG coarsening highly sequential!

(C1) Maximal Independent Set:
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connected
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Original AMG coarsening highly sequential!

(C1) Maximal Independent Set:

Independent: no two C-points are 
connected

Maximal: if one more C-point is 
added, the independence is lost

3

5

4

1
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Original AMG coarsening highly sequential!

(C1) Maximal Independent Set:

Independent: no two C-points are 
connected

Maximal: if one more C-point is 
added, the independence is lost

31
4

3

3
3

2

4
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Original AMG coarsening highly sequential!

(C1) Maximal Independent Set:

Independent: no two C-points are 
connected

Maximal: if one more C-point is 
added, the independence is lost
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Original AMG coarsening highly sequential!

(C1) Maximal Independent Set:

Independent: no two C-points are 
connected

Maximal: if one more C-point is 
added, the independence is lost

(C2) All F-F connections require 
connections to a common C-point 
(for good interpolation)
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Original AMG coarsening highly sequential!

(C1) Maximal Independent Set:

Independent: no two C-points are 
connected

Maximal: if one more C-point is 
added, the independence is lost

(C2) All F-F connections require 
connections to a common C-point 
(for good interpolation)

F-points have to be changed into 
C-points, to ensure (C2); (C1) is 
violated

more C-points, higher complexity
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Introduce parallel coarsening algorithms

▪ Use sequential algorithm within each process

▪ Find a way on how to deal with the process boundaries:

• Do nothing and hope it works

- Con: risky, might miss important 

connections

rform a third path on the 

boundary points

- Con: can lead to too many C-points

Apply the parallel CLJP algorithm 

(introduced on the next slide) 

to the process boundary points only: 

Falgout coarsening

- Best solution for this scenario
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Introduce parallel coarsening algorithms

▪ Use sequential algorithm within each process

▪ Find a way on how to deal with the process boundaries:

• Do nothing and hope it works

- Con: risky, might miss important 

connections

• Perform a third path on the 

boundary points

- Con: can lead to too many C-points

• Apply the parallel CLJP algorithm 

(introduced on the next slide) 

to the process boundary points only: 

Falgout coarsening

- Best solution for this scenario

Henson, UMY, Appl. Num. Math, 41 (2002), pp. 155-177.
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CLJP Coarsening Algorithm

▪ CLJP (Cleary-Luby-Jones-Plassmann) coarsening

▪ Based on an idea by Clearyᶟ and algorithms by Luby¹, Jones and 
Plassmann² 

▪ Uses one-pass approach with random numbers to get concurrency

¹ Luby, Journal on Computing 15 (1986) 1036–1053.

² Jones and P. E. Plassman, A parallel graph coloring heuristic, SISC, 14 (1993) 654–669.

ᶟ Cleary, Falgout, Henson, Jones, Proceedings (Springer-Verlag, New York, 1998).
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CLJP Coarsening Algorithm

▪ CLJP (Cleary-Luby-Jones-Plassmann) coarsening

▪ Based on an idea by Clearyᶟ and algorithms by Luby¹, Jones and 
Plassmann² 

▪ Uses one-pass approach with random numbers to get concurrency

¹ Luby, Journal on Computing 15 (1986) 1036–1053.

² Jones and P. E. Plassman, A parallel graph coloring heuristic, SISC, 14 (1993) 654–669.

ᶟ Cleary, Falgout, Henson, Jones, Proceedings (Springer-Verlag, New York, 1998).
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▪ AMG complexity growth for large 3-dimensional problems

Unstructured Diffusion Problem with Jumps

#procs

CLJP

#its o.c time

1

8

64

128

256

512

1024

9

9

11

10

11

11

10

5.6

6.5

6.7

7.9

7.8

7.2

8.6

11

21

38

57

76

128

210

Operator complexity

o.c. = 
σ𝑖 𝑛𝑛𝑧(𝐴

(𝑖))

𝑛𝑛𝑧(𝐴)
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PMIS: start

select C-pt with 
maximal measure

select neighbors as 
F-pts

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5

5 8 8 8 8 8 5

5 8 8 8 8 8 5

5 8 8 8 8 8 5

3 5 5 5 5 5 3



LLNL-PRES-821025

29

PMIS: add random numbers

select C-pt with 
maximal measure

select neighbors as 
F-pts

3.7 5.3 5.0 5.9 5.4 5.3 3.4

5.2 8.0 8.5 8.2 8.6 8.2 5.1

5.9 8.1 8.8 8.9 8.4 8.9 5.9

5.7 8.6 8.3 8.8 8.3 8.1 5.0

5.3 8.7 8.3 8.4 8.3 8.8 5.9

5.0 8.8 8.5 8.6 8.7 8.9 5.3

3.2 5.6 5.8 5.6 5.9 5.9 3.0
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PMIS: select

8.8

8.9 8.9

8.9

3.7 5.3 5.0 5.9 5.4 5.3 3.4

5.2 8.0 8.5 8.2 8.6 8.2 5.1

5.9 8.1 8.8 8.4 5.9

5.7 8.6 8.3 8.8 8.3 8.1 5.0

5.3 8.7 8.3 8.4 8.3 8.8 5.9

5.0 8.5 8.6 8.7 5.3

3.2 5.6 5.8 5.6 5.9 5.9 3.0

select C-pts with 
maximal measure 
locally

make neighbors F-
pts
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PMIS: update 1

5.4 5.3 3.4

select C-pts with 
maximal measure 
locally

make neighbors F-
pts 
(requires neighbor
info)

3.7 5.3 5.0 5.9

5.2 8.0

5.9 8.1

5.7 8.6

8.4

8.6

5.6
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PMIS: update 2

5.3 3.4

select C-pts with 
maximal measure 
locally

make neighbors F-
pts

3.7 5.3

5.2 8.0
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PMIS: final grid

select C-pts with 
maximal measure 
locally

make neighbor F-
pts

remove neighbor 
edges
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▪ Leads to significantly lower complexities and better times, but 
decreases numerical scalability

#procs

CLJP PMIS

#its o.c time #its o.c. time

1

8

64

128

256

512

1024

9

9

11

10

11

11

10

5.6

6.5

6.7

7.9

7.8

7.2

8.6

11

21

38

57

76

128

210

18

30

62

64

72

118

162

1.5

1.6

1.5

1.5

1.5

1.6

1.5

7

16

29

31

27

55

77

Unstructured Diffusion Problem with Jumps

De Sterck, UMY, Heys, SIMAX, 27 (2006), pp. 1019-1039. 
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C-AMG interpolation is not suitable for more 
aggressive coarsening

▪ PMIS is parallel and eliminates the second pass, which can lead 
to the following scenarios:

▪ Want above i-points to interpolate from both C-points

▪ Long-range (distance two) interpolation!

j iOne-sided interpolation

No interpolation j i

?
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One possibility for long-range interpolation is 
extended interpolation

▪ C-AMG: Ci = {j,k}

▪ Long-range: Ci = {j,k,m,n}

▪ Extended interpolation – apply C-
AMG interpolation to an extended 
stencil

▪ Extended+i interpolation is the 
same as extended, but also 
collapses to point i

▪ Improves overall quality

▪ Note that this requires a 2nd layer of 
communication! 

k i

j

n

m0

0

De Sterck, Falgout, Nolting, UMY, NLAA 15 (2008), pp. 115-139. 
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Unstructured Diffusion Problem with Jumps

#procs

CLJP PMIS

class class e+i(4)

its Op.c its Op.c its Op.c

1

8

64

128

256

512

1024

9

9

11

10

11

11

10

5.6

6.5

6.7

7.9

7.8

7.2

8.6

18

30

62

64

72

118

162

1.5

1.6

1.5

1.5

1.5

1.6

1.5

9

11

13

12

13

12

14

1.8

1.9

1.9

1.9

1.8

1.8

2.0

Note that full distance-two interpolation can still lead to large complexities

and generally, is combined with interpolation truncation
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Our new long-range interpolation approaches are 
improving scalability

Total Times

0

50

100

150

200

0 500 1000

No. of procs

S
e

c
o

n
d

s

cljp-c

pmis-c

pmis-ei4

New coarsening 

→ 2.7x faster!

New interpolation 

→ 4.5x faster!

Runs performed on Thunder, Intel Itanium2 machine at LLNL 

with 1024 nodes of 4 processors each (#2 on Top500 in June 2004)

AMG-GMRES(10), approximately 90,000 degrees of freedom per process
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New computer architectures with very large 
number of cores

▪ IBM BG/L appeared as #1 on the Top500 in November 2004,
with 32,768 cores displacing Japan’s Earth Simulator (5,120 
cores, #1  from 2002 through mid 2004)

▪ Stayed there with increasing number of cores up to 212,992 in 
2007

▪ AMG-CG achieved excellent
scalability on BG/L  using new
algorithms up to 125,000 cores
(25x25x25 dofs per core)

▪ Life is good! 0

2

4

6

8

10

12

14

16

18

20

0 50000 100000
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New architectures have

- multiple higher performing cores per node

- deeper memory hierarchies

- different networks

Advances in computer architectures lead to new challenges!

Architecture

Node 0

Node 3Node 2

Node 1

Node multi-core model

Core 0 Core 1 Core 2 Core 3

L3 cache

L2 cache L2 cache
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▪ Hera (Cray/HPE) 13,552 cores

▪ #32 Top500, June 2009

▪ 4 sockets per node, equipped with AMD Quad-core processors, 

connected by QDR Infiniband. 

▪ Individual 512 KB L2 cache for each core

▪ 2 MB L3 cache shared by 4 cores

▪ 16 cores sharing the 32 GB main memory

▪ NUMA memory access

Multicore cluster details (Hera):
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While AMG scales almost perfectly on BG-type architectures, its weak 
scalability on a multi-core architecture is severely degraded. 

0

5

10

15

20

0 1000 2000 3000

BG/L Hera

No. of cores

s
e
c
o

n
d

s

But …
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What is causing the performance degradation?

▪ AMG setup communication

▪ Coarse-grid selection in AMG 
can produce unwanted side 
effects

▪ Operator (RAP) “stencil 
growth” reduces efficiency
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Efforts to reduce communications

▪ Addition of a new programming model on node: OpenMP

▪ Now have hybrid programming model: MPI+OpenMP

▪ Requires adding OpenMP; straight forward in many routines

▪ Revisiting hybrid Gauß-Seidel:
Convergence can be degraded by:
- increasing number of blocks
- decreasing block sizes
- use of threads (can lead to 
poor partitioning)

MH =
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AMG-GMRES(10) on Hera, 7pt 3D Laplace problem on a unit 
cube, 100x100x100 grid points per node (16 procs per node)

0

5

10

15

20

25

30

35

40

45

50

0 2000 4000 6000 8000 10000 12000

MPI 16x1

H 8x2

H 4x4

H 2x8

OMP 1x16

No. of cores

S
e
c
o

n
d

s
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0

5

10

15

20

25

30

35

40

0 250000 500000 750000 1000000
se

c
o

n
d

s
No of cores

16x4

8x8

4x16

32x2

64x1

1x64

0

2

4

6

8

10

12

14

16

0 50000 100000 150000 200000

S
e

c
o

n
d

s

No of cores

MPI (12x1)
Hyb 4x3
Hyb 2x6
Hyb 1x12

▪ A general solution for obtaining good performance is not possible without 

considering the specific target architecture.

Baker, Gamblin, Schulz, UMY, Proceedings of IPDPS 2011.

7pt 3D Laplace problem on a cube, weak scaling

Jaguar (Cray XT5. ORNL)                      Sequoia (IBM, BG/Q, LLNL)  
(#1 Top500 Nov 2009-June 2010)                             (#1 Top500 June 2012)
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▪ Agglomeration of coarse levels

▪ Reduction of number of nonzeros per row in Galerkin product
— Use of interpolation truncation (was included in results shown earlier)
— Sparsification of the coarse grid operator 

▪ AMG-DD 

4

7

Additional Efforts to Reduce Communication 
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▪ Non-Galerkin AMG replaces the usual coarse-grid 

operators with sparser ones

• Speedups from 1.2x - 2.4x 

over existing AMG

• In hypre 2.10.0b

Reducing parallel communication costs (1)

Falgout, Schroder, SISC, 36 (2014), pp. C309-C334. 
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▪ AMG domain decomposition (AMG-DD) employs cheap 

global problems to speed up convergence

• Constructs problems algebraically from an existing method

• Potential for FMG convergence with only log N latency (vs log2 N)!

• Implemented parallel code

Reducing parallel communication costs (2)

Mitchell, Strzodka, Falgout, NLAA, October 2020
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▪ Architectural Challenges at the Extreme Scale

• Non-increasing clock speeds

• Increasing number of cores

• Limited power resources

• Reduced memory per core

• Heterogeneous architectures

• Higher level of hardware failures

▪ Extreme Scale Solvers need to

• Exhibit extreme levels of parallelism

• Minimize data movement

• Demonstrate resilience to faults

• Be power efficient

Extreme Scale Challenges
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Exascale Computers: Originally two pipelines

MPI model

Proc 0

Proc 3Proc 2

Proc 1

multi-core model

Core 0 Core 1 Core 2 Core 3

L3 cache

L2 cache L2 cache

CPU

GPU GPU

…
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Exascale Computers: One was dropped!

MPI model

Proc 0

Proc 3Proc 2

Proc 1

CPU

GPU GPU

…

Planned exascale computers

Aurora, ANL, 2021

Frontier, ORNL, 2021

El Capitan, LLNL, 2022/2023
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Strategy for unstructured interfaces/solvers in hypre in preparation for 

exascale platforms

• Modularize into smaller chunks/kernels to be ported to CUDA for 
Nvidia GPUS initially

• Develop new algorithms for portions not suitable for GPUs 
(interpolation operators, smoothers)

• Convert CUDA kernels to HIP for AMD GPUs and DPC++ for Intel 
GPUs (in progress)

• Various special solvers (e.g., Maxwell solver AMS,  ADS, pAIR, 
MGR) built on BoomerAMG and will benefit from this strategy
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Comments on GPU implementation

Solve Phase:

mm(m) fuARelax =
mm(m) fuARelax =

1m(m)m ePe   eInterpolat +=

m(m)mm uAfr  Compute −= mmm euu     Correct +

1m1m1)(m reA

Solve        

+++ =

m(m)1m rRr  Restrict =+

▪ Jacobi, polynomial smoothers are all based on matrix-
vector multiplications

▪ MG solve phase can now completely be expressed in 
terms of matrix-vector multiplications

▪ Can take advantage of efficient GPU kernels!
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▪ Implement generation of strength matrix (highly parallel)

▪ Implement fine-grained parallel coarsening algorithm: PMIS (highly 

parallel)

▪ Implement coarse-grid operator generation – triple matrix product –

much research for efficient matrix-matrix multiplication

▪ What about interpolation?

5

9

Comments on GPU implementation of AMG Setup 

Phase

— Select coarse “grids” 

— Define interpolation:

— Define restriction:

— Define coarse-grid operators:

1,2,...m   ,P(m) =

(m)(m)(m)1)(m PARA =+

T(m)(m)(m) )(PR  often   1,2,...m   ,R == ,
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Interpolation operators suitable for GPUs

▪ While extended and extended+i interpolation are parallel and can 

be efficiently implemented on parallel multicore machines suitable 

for larger grain parallelism, not suitable for GPUs

▪ Due to memory-efficient implementation and need to distinguish 

fine and strong connections:

many branches and if statements

straight forward port unsuitable for GPUs

▪ Suitable interpolation: direct interpolation, but: generally, not well 

convergent, particularly at scale

▪ Solution: Design of a new class of interpolation operators that can 

be generated using basic matrix operations

→ class of MM-interpolation operators
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How do you express interpolation in terms of 

multiplication between matrices?

MM-extended interpolation:

▪ Consider 𝐴 =
𝐴𝐹𝐹 𝐴𝐹𝐶
𝐴𝐶𝐹 𝐴𝐶𝐶

and 𝐴 = 𝐴𝑠 + 𝐴𝑤,   define 𝑃 =
𝑊
𝐼

▪ Generate 𝐴𝐹𝐹
𝑠 and 𝐴𝐹𝐶

𝑠

▪ 𝐷𝛽 = diag 𝐴𝐹𝐶
𝑠 1 ; row sums of 𝐴𝐹𝐶

𝑠

▪ 𝐷𝛼 = diag diag 𝐴𝐹𝐹
𝑠 ; diagonal of 𝐴𝐹𝐹

𝑠

▪ 𝐷𝑤 = diag 𝐴𝐹𝐹
𝑤 , 𝐴𝐹𝐶

𝑤 1 ; row sums of weak coefficients

▪ Then

𝑊 = − 𝐷𝛼 + 𝐷𝑤
−1 𝐴𝐹𝐹

𝑠 − 𝐷𝛼 + 𝐷𝛽 𝐷𝛽
−1𝐴𝐹𝐶

𝑠 = − ሚ𝐴𝐹𝐹
𝑠 ሚ𝐴𝐹𝐶

𝑠

▪ Similar formulations for MM-extended+i interpolation and MM-

extended+e interpolation Li, Sjogreen, UMY, SISC, to appear. 
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▪ Coupled 3D Poisson problem with 3 variables on a grid of size n x n x n, 

system size: 3n³,  375,000 to 3M dofs per GPU

▪ GPU, CPU40: MM-ext+i

▪ CPU40-old: ext+i

6

3

Comparison CPU/GPU results on 16 nodes of Lassen 

(64 Nvidia GPUs, 640 Power 9 cores)
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▪ Coupled 3D Poisson problem with 3 variables on a grid of size n x n x n, 

system size: 3n³,  375,000 to 3M dofs per GPU

▪ GPU, CPU40: MM-ext+i

▪ CPU40-old: ext+i

6

4

Comparison CPU/GPU results on 16 nodes of Lassen 

(64 Nvidia GPUs, 640 Power 9 cores)
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Conclusions/Future Work

▪ Hypre’s AMG has gone through many changes as 

computer architectures have changed

▪ This required 

• New mathematical algorithms

• Inclusion of new programming models

▪ Efforts to move AMG to different GPUs (AMD, Intel)

▪ Use of mixed precision in hypre

▪ New developments in hypre’s structured/semi-

structured interfaces

• Development of a new semi-structured AMG 

algorithm in progress
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Hypre developers and alumni

▪ R. Falgout 

▪ A. Baker

▪ C. Baldwin

▪ A. Barker

▪ G. Castilla

▪ E. Chow

▪ A. Cleary

▪ N. Elliott

▪ H. Gahvari

▪ V. Henson

▪ E. Hill

▪ D. Hysom

▪ J. Jones

▪ T. Kolev

▪ M. Lambert

▪ B. Lee

▪ R. Li

▪ S. Osborn

▪ D. Osei-Kuffuor

▪ J. Painter

▪ V. Paludetto Magri

▪ J. Schroder

▪ B. Sjogreen

▪ C. Tong

▪ T. Treadway

▪ P. Vassilevski

▪ D. Walker

▪ L. Wang

▪ U. Yang

https://github.com/hypre-space/hypre http://www.llnl.gov/casc/hypre

https://github.com/hypre-space/hypre
http://computing.llnl.gov/casc/hypre
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