
University of Arkansas, Fayetteville University of Arkansas, Fayetteville 

ScholarWorks@UARK ScholarWorks@UARK 

Mathematical Sciences Spring Lecture Series Mathematical Sciences 

4-7-2021 

Lecture 03: Hierarchically Low Rank Methods and Applications Lecture 03: Hierarchically Low Rank Methods and Applications 

David Keyes 
King Abdullah University of Science and Technology, david.keyes@kaust.edu.sa 

Follow this and additional works at: https://scholarworks.uark.edu/mascsls 

 Part of the Algebra Commons, Algebraic Geometry Commons, Numerical Analysis and Computation 

Commons, and the Numerical Analysis and Scientific Computing Commons 

Citation Citation 
Keyes, D. (2021). Lecture 03: Hierarchically Low Rank Methods and Applications. Mathematical Sciences 
Spring Lecture Series. Retrieved from https://scholarworks.uark.edu/mascsls/3 

This Video is brought to you for free and open access by the Mathematical Sciences at ScholarWorks@UARK. It 
has been accepted for inclusion in Mathematical Sciences Spring Lecture Series by an authorized administrator of 
ScholarWorks@UARK. For more information, please contact ccmiddle@uark.edu. 

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/mascsls
https://scholarworks.uark.edu/masc
https://scholarworks.uark.edu/mascsls?utm_source=scholarworks.uark.edu%2Fmascsls%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/175?utm_source=scholarworks.uark.edu%2Fmascsls%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/176?utm_source=scholarworks.uark.edu%2Fmascsls%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=scholarworks.uark.edu%2Fmascsls%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=scholarworks.uark.edu%2Fmascsls%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=scholarworks.uark.edu%2Fmascsls%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/mascsls/3?utm_source=scholarworks.uark.edu%2Fmascsls%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ccmiddle@uark.edu


David Keyes
Extreme Computing Research Center

King Abdullah University of Science and Technology
5-9 April 2021

Lecture 3

Hierarchically Low Rank 
Methods and Applications

University of Arkansas Department of Mathematical Sciences 

46th Spring Lecture Series



Motivations for rank-structured linear algebra
n Mathematical aesthetic

§ Rank-structured matrix methods are beautiful – algebraic 
generalizations of fast multipole methods

n Engineering aesthetic
§ Data sparsity allows to tune storage and work to accuracy 

requirements

n Software engineering aesthetic
§ “Cool stuff” finds new roles: direct and randomized floating point 

kernels, tree-traversal from FMM, task-based programming, etc.

n Computer architecture dictates
§ Emerging architectures are “met on their terms”: limited fast 

memory per core, SIMT instructions, etc.

n Application opportunities (see following)



Reduce memory footprint and 
operation complexity via data sparsity

• Replace dense blocks with reduced rank representations, 
whether “born dense” or as arising during matrix operations
§ use high accuracy (high rank) to build “exact” solvers
§ use low accuracy (low rank) to build preconditioners

• Consider hardware parameters in tuning block sizes and 
maximum rank parameters 
§ e.g., cache sizes, warp sizes

• Use randomized SVD, ACA, etc., to form low-rank blocks
§ flop-intensive GEMM-based flat algorithms

• Implement in “batches” of leaf blocks
§ uniform tiles for TLR and groups of tiles at each level of a flattened tree 

in the case of HLR



Complexities of rank-structured factorization
For a square dense matrix of O(N) :
n “Straight” LU or LDLT

§ Operations O(N3)
§ Storage O(N2)

n Tile low-rank (Amestoy, Buttari, L’Excellent & Mary, SISC, 2016)*

§ Operations O(k0.5 N2)
§ Storage O(k0.5 N1.5)
§ for uniform blocks with size chosen optimally for max rank k of any 

compressed block, bounded number of uncompressed blocks per row 

n Hierarchically low-rank (Grasedyck & Hackbusch, Computing, 2003) 

§ Operations O(k2 N log2N)
§ Storage O(k N)
§ for strong admissibility, where k is max rank of any compressed block

* First reported O(k0.5 N2.5), then later O(k0.5 N2) for variant that reorders updates and recompression

Lecture 2



Also relevant to sparse problems
Classical factorizations fill in with 
elimination
For 3D Poisson solver on a cube with O(N) 
degrees of freedom:
n Classical nested dissection generally 

requires O(N2) operations

n Tile low-rank can yield O(N4/3) 
(Amestoy, Buttari, L’Excellent & Mary, SISC, 2016) 

n Hierarchically low-rank methods can yield
O(N)
(Bebendorf & Hackbusch, Numer. Math., 2003)

n Gains come from low-rank treatment of 
the resulting Schur complements

Volume
O(N) = O(n3)

Last Surface separator
O(n2) = O(N2/3) 

Dense elimination
O((n2)3) = O(N2) 

TLR elimination
O((n2)2) = O(N4/3) 



A key question: what is k ?
In the complexity estimates, k is kmax, the maximum of the reduced rank 
over all blocks; for block accuracy                  < 𝜖 , k scales like log(1/𝜖)𝛾

For the purpose of batching many identical subproblems on GPUs, so 
that each thread in a warp executes the same step of a task on a 
different block of the matrix, without conditionals or masking, we want 
groups of common k
So kmax determines computational complexity of many implementations
k is straightforward to determine operationally for representation of 
a given block: if                          and

then

However, it is not straightforward to derive  a priori the block-by-
block accuracy that insures downstream overall accuracy
Recall (lecture 2) a wide range of k in TLR for the exponential 
kernel, not a rare type of kernel decay



Rank distribution challenges 
with 3D exponential kernels 

n8
Cao, Pei, Akbudak, Bosilca, Ltaief, K. & Dongarra, Leveraging PaRSEC Runtime Support to Tackle Challenging 
3D Data-sparse Matrix Problems. IPDPS (IEEE), 2021

The simple exponential kernel:

𝐶 𝑟; ℓ = 𝑒𝑥𝑝( −
𝑟
ℓ
)

is suited for rough correlations 
such as the variation of wind 
speed or temperature with 
altitude, and leads to wide 
rank disparities

initial ranks 
following

Morton 
ordering of 3D 

field with 
N=1.08M and 

B=2700
for matrix of  

400 x 400 tiles

final ranks 
following 
Cholesky 

factorization

rank 
variations 

before and 
after 

factorization

ratio of 50 in rank!

ratio of 500 in rank!

small→smaller, large→larger

Lecture 2



TLR plugs directly into classical tile algorithms with subroutine overloading
n dense-dense block operations replaced with dense-TLR or TLR-TLR
n in lecture 4, we will follow the same pattern with precision overloading

TLR is a compromise between 
optimality and implementation complexity

T = N / B  # B block size; T tiles per dim
for k = 1 to T do
POTRF(D(k,k))
for i = k+1 to T do
TRSM(V(i,k), D(k,k))

for j = k+1 to T do
SYRK(D(j,j), U(j,k), V(j,k))

for i = j+1 to T do

GEMM(U(i,k), V(i,k), U(j,k), 
V(j,k), U(i,j), V(i,j), acc)

T = N / B  # B block size; T tiles per dim
for k = 1 to T do
POTRF(D(k,k))
for i = k+1 to T do
TRSM(V(i,k), D(k,k))
for j = k+1 to T
LR_SYRK(D(j,j), U(j,k), V(j,k))

for i = j+1 to T do

LR_GEMM(U(i,k), V(i,k), U(j,k), 
V(j,k), U(i,j), V(i,j), acc)



Hierarchical Low Rank (HLR) methods 
enrich the range of compromises

n Red blocks dense; green blocks low rank
n In this example, many red blocks appear 

far off the diagonal
n Many structure flavors exist
n Hybrids between them also exist

n e.g., low-rank blocks from the outer 
decomposition can be replaced with a 
TLR matrix instead of an SVD

n smaller SVDs occur within the TLR 
subblocks (nested hybrid)

n could also, in principle with operator 
overloading, have side-by-side hybrids

n Ultimately, need to balance between 
optimal memory and compute complexity
and complexity of implementation,
n considering load balance and ability to 

exploit SIMD/SIMT instructions and 
efficient implementations of BLAS



Conceptualization of H-matrix construction

Specify two parameters:
n Block size b

acceptably small to 
handle densely

n Rank k acceptably 
small to represent a 
block (depends on b)

Until each block is 
acceptably small:
n Compress to req acc
n Is rank acceptably 

small?
n If not, subdivide 

block and recur
Take union of leaf blocks

(not an efficient algorithm – better in practice to compute tree structure in advance)



H 2 hierarchical matrix representation

1D 2D

Boukaram, Turkiyyah & K., Hierarchical Matrix Operations on GPUs: Matrix-Vector Multiplication 
and Compression, ACM TOMS, 2019

(from finer, l , to coarser, l −1)



Nested bases of H 2-matrices

Ambartsumyan, Boukaram, Bui, Ghattas, K., Stadler, Turkiyyah & Zampini, Hierarchical Matrix 
Approximations of Hessians Arising in Inverse Problems Governed by PDEs, SISC, 2020

finest leaf is at 4th level (1/16th)
l = 4

l = 0



Zoology of H-matrices (not comprehensive)

Flat bases Nested bases
Weak 
admissibility HODLR  [1] HSS   [2]

Strong 
admissibility

H [3] H 2 [4]

[1] Ambikasaran and Darve, Journal of Scientific Computing, 2013
[2] Xia, Chandrasekaran, Gu, and Li, Numerical Linear Algebra with 
Applications, 2010
[3] Hackbusch, Hierarchical Matrices: Algorithms and Analysis,
Springer, 2015
[4] Börm, Linear Algebra and its Applications, 2007



Recursive structures of
“standard (strong)” vs. “weak” admissibility

weak admissibility  in 1Dstrong admissibility in 1D
See Bebendorf, Grasedyck, Hackbusch, Kriemann, Khoromskij, et al., 2003-04
Originally motivated by boundary integral operators 



Some software leveraging data sparsity
Package Technique(s) Format Author (year, 2005→)

ACR Cyclic reduction H Chavez, Turkiyyah & K. (2017)

AHMED H-1 and H-LU H Bebendorf (2005)

ASKIT H-LU HODLR Yu, March, Xiao & Biros (2016)

BLR PaStiX Supernodal BLR Pichon & Faverge (2017)

CE H2-LU H2 Sushnikova & Oseledets (2016)

DMHIF Multifrontal ID Li & Ying (2016)

DMHM Newton-Schulz H Li, Poulson & Ying (2014)

GOFMM Geometry-oblivious Compression, MV HODLR Yu, Reiz & Biros (2018)

H2Lib H-1 and H-LU H2 Christophersen & Börm (2015)

H2Pack Proxy points compression, MV H2 Huang, Xing & Chow (2020)

HLib H-1 and H-LU H Börm, Grasedyck & Hackbusch (2004)

HLibPro H-1 and H-LU H Kriemann & Hackbusch (2013)

hm-toolbox numerous HSS, HODLR Massei, Robol & Kressner (2020)

LoRaSp H2-LU H2 Pouransari, Coulier & Darve (2013)

MF-HODLR Multifrontal HODLR Aminfar & Darve (2016)

MUMPS-BLR Multifrontal BLR Amestoy & Mary (2016)

Structured CHOLMOD Supernodal BLR Chadwick & Bindel (2015)

STRUMPACK H-LU, Preconditioning HSS/BLR/HODLR Ghysels, Li, Liu & Claus (2020)



H-
matrices

GPU,
manycore

Must address the  tension between
n highly uniform vector, matrix, and general SIMT 

operations – prefer regularity and predictability
n hierarchical algorithms with tree-like data structures and 

scale recurrence – possess irregularity and adaptability

Hierarchical algorithms and extreme scale

our target

No miracles will appear in this talk L

Lecture 2



• MAGMA
• cuBLAS, KBLAS

Batched LA for GPUs

• H-matrix construction from matrix-vector sampling (HARA)
• Low-rank updates (HLRU)
• Matrix compression (Hcompress)
• Basis orthogonalization (Horthog)
• Matrix-vector multiplication (HGEMV)
• Matrix construction from kernel function (Hconstruct)
• Generation of matrix structure from admissibility condition

Core utilities

• Hierarchical matrix-matrix multiplication (and re-compression)
• Generation of approximate matrix inverse, via Newton-Schulz iteration
• Formation of Schur complements, via randomized sampling

High-level operations

Introducing H2Opus
an H2 matrix computation library

• OpenMP
• Intel MKL

Manycore LA for CPUs



H2Opus features (1)
§ Performance-oriented library for H2 computations
§ Runs on GPUs

§ includes batched QR, RRQR, and SVD dense linear algebra routines

§ Can also run on CPU-only machines
§ using shared-memory parallelism (via OpenMP and MKL) 

§ Can represent weak and strong admissiblity matrix structures
§ using geometric KD-tree partitioning and (user-controllable) admissibility 

condition 

§ Constructs kernel matrices from user-specified kernel function
§ for example, covariances matrices from Matérn kernels

§ Optimized matrix-vector multiplication (“algebraic FMM’’)
§ single-vector mult achieving ~80% of peak bandwidth on GPUs
§ multiple vector mults leverage fast GEMMs on GPUs 



H2Opus features (2)
§ Generation of Hierarchical Orthogonal Bases

§ via batched QR operations in upsweep through bases trees
§ followed by expressing matrix blocks in the new orthogonal Q basis

§ Hierarchical Matrix Compression
§ ranks increase during algebraic manipulation
§ perform RRQR / SVD operations followed by truncation of bases to 

desired accuracy
§ followed by expressing matrix blocks in the new bases

§ Low Rank Updates
§ allows globally low rank updates to be compressed into a hierarchical 

matrix
§ “local’’ updates (that only affect a portion of the matrix) are also 

supported 



H2Opus features (3)
§ Matrix generation from matrix-vector sampling

§ generates hierarchical matrix from a “black-box’’ operator
accessible via mat-vec products

§ generalizes highly successful randomized algorithms (for generating globally 
low-rank approximations of large dense matrices) to the hierarchical setting

§ formulated as a sequence of low-rank updates at the various matrix levels

§ Matrix-matrix multiplication operation
§ takes advantage of the high-performance of multi-vector sampling

§ Approximate inverse computation
§ via Newton-Schulz iteration and its higher-order variants
§ can converge very quickly when warm-started from a nearby solution

§ Hessian of previous iteration in optimization
§ Jacobian of previous iteration in nonlinear solver

§ Schur complements
§ and other algebraic expressions that can be sampled



On quality software

“Quality software 
renormalizes the 

difficulty of doing 
computation.” 

Peter Lax, 2005 Abel Prize 
Winner 



Hierarchical MatVec by tree-traversal
n

n

n

Ambartsumyan, Boukaram, Bui, Ghattas, K., Stadler, Turkiyyah & Zampini, Hierarchical Matrix 
Approximations of Hessians Arising in Inverse Problems Governed by PDEs, SISC, 2020



Tree-based mat-vec

Boukaram, Turkiyyah & K., Hierarchical Matrix Operations on GPUs: Matrix-Vector Multiplication 
and Compression, ACM TOMS, 2019



Where have you seen this before? 

Ibeid, Yokota, and K., A Performance Model for the Communication in Fast Multipole Methods on 
HPC Platforms, IJHPCA (2016)

FMM!



c/o R. Yokota  (Tokyo Tech/KAUST)

Memory complexity of FMM vs HLR



Distributed memory mat-vec

Boukaram, Hierarchical Matrix Operations on GPUs, PhD thesis, 2020 [online @ library.kaust.edu.sa]

“Hierarchical 
algorithms 

do not repeat 
themselves, but 
they do rhyme.”
(with apologies to 

Mark Twain)

Illustration on 8 nodes (one color per node)
n a combination of tricks from FMM and MG J



Applications caveat
n HLR and TLR methods are being applied beyond the 

rigorous guidance we expect of more traditional linear 
algebraic methods, as engineered into software
§ e.g., how to choose blockwise tolerances when fitting 

ranks to satisfy global tolerances for various uses?

n Apologies in advance for examples in this presentation
n Not unlike some compromises that are accepted to 

increase opportunities for parallelism in full-rank 
methods
§ e.g., limiting domain of pivoting

n Good news: interesting opportunities for theorists



Distributed upsweep

Boukaram, Hierarchical Matrix Operations on GPUs, PhD thesis, 2020 [online @ library.kaust.edu.sa]



Large dense symmetric systems arise as 
covariance matrices in spatial statistics

• Climate and weather applications have many 
measurements located regularly or irregularly in a region; 
prediction is needed at other locations

• Modeled as realization of Gaussian or Matérn spatial 
random field, with parameters to be fit

• Leads to evaluating the log-likelihood function involving a 
large dense (but data sparse) covariance

• Solve 𝛴-1 and determinant | 𝛴 | with covariance matrix 
performed with HLR

inverse determinant

Lecture 2



Geospatial statistics applications
Synthetic test matrix: random coordinate generation 
within the unit square or unit cube with Matérn 
kernel decay, each pair of points connected by 
n linear exp to square exp decay, aij ~ exp (-c|xi - xj|p), p = 1,2

2D 3D



Compression

Boukaram, Turkiyyah & K., Hierarchical Matrix Operations on GPUs: Matrix-Vector Multiplication 
and Compression, ACM TOMS, 2019

NB: log scale



Original operator, size  O(n2) Compressed, size O(kn)

Can we avoid forming and storing original?

Yes, we can form and compress “on the fly”
n block by block from dense
n from functional matvecs



Adaptive Randomized Approximations (ARA)



matrices

Comparison with Jacobi (Givens) SVD

Greater 
advantage 

at larger size
More than 2 orders 

of magnitude 
for DP

Boukaram, Turkiyyah & Keyes, Randomized GPU Algorithms for the Construction of Hierarchical 
Matrices from MatVec Operations, SISC, 2019

NB: log scale



Boukaram, Turkiyyah & K., Randomized GPU Algorithms for the Construction of Hierarchical 
Matrices from MatVec Operations, SISC, 2019

Hierarchical Adaptive Randomized Approximation
(HARA)



Hierarchical MatVec execution time

Linear

matrix sizes from 16K to 1M

Boukaram, Turkiyyah & K., Hierarchical Matrix Operations on GPUs: Matrix-Vector Multiplication and 
Compression, ACM TOMS  (2019)

NB: log scale



HGEMV on Summit (1024 GPUs)
(the distributed release of H2Opus will follow at github shortly)

Boukaram, Hierarchical Matrix Operations on GPUs, PhD thesis, 2020 [online @ library.kaust.edu.sa]

NB: log scale



Hierarchical MatVec bandwidth
Theoretical peak

Native NVIDIA

HiCMA (KAUST), higher better

Boukaram, Turkiyyah & K., Hierarchical Matrix Operations on GPUs: Matrix-Vector 
Multiplication and Compression, ACM TOMS, 2019



MatVecs with multiple vectors

Ø Speedup over single-vector MatVec
Ø Single precision, size 219 (524,288)
Ø GPU version obtains 90% of GEMM

K., Ltaief & Turkiyyah, Hierarchical Algorithms on Hierarchical Architectures, Phil Trans Roy Soc Ser A, 2020

#



H matrix-H matrix multiplication

Fast matvecs ⇒ fast approx inversions with Newton-Schulz

Boukaram, Turkiyyah & K., Randomized GPU Algorithms for the Construction of Hierarchical 
Matrices from MatVec Operations, SISC, 2019 

NB: log scale



A prime target for HLR linear algebra:
PDE-constrained optimization 

n Dense Hessian matrices arise from
! second variation of data misfit functional in 

deterministic inverse problems

! covariance in Bayesian inversion for quantifying 
uncertainties in stochastic inverse problems

data misfit regularization



Prime target for HLR linear algebra:
PDE-constrained optimization 

n Historical choices
! abandon prospects for dimension-independent 

convergence rates in inverse problems by avoiding 
Hessians
! a path to nowhere, given future problem scales

! use globally low-rank Hessian approximation
! valid for limited information …
! … not where inverse problems want to be, with their many 

sources and many sensors

n Hierarchical low rank valid in informed regime



A prime target for HLR linear algebra:
PDE-constrained optimization 

n Desired operations (all in situ, please!)
! matrix-vector multiplication
! matrix-matrix multiplication

! for inversion, roots, etc. using Newton-Schulz iteration

! low-rank Hessian updating 
! “born data-sparse” Hessian matrix construction
! recompression of matrix products
! Frobenius and p-norms of matrices



n 1D transient diffusion
§ invert for coefficient

n 2D stationary advection-
diffusion
§ invert for source

n 2D time-domain 
electromagnetism in 
diffusive limit
§ invert for coefficient

n 2D frequency-domain 
wave equation
§ invert for coefficient

Optimization examples

Ambartsumyan, Boukaram, Bui, Ghattas, K., Stadler, Turkiyyah & Zampini, Hierarchical Matrix 
Approximations of Hessians Arising in Inverse Problems Governed by PDEs, SISC, 2020



water

sediments

Inversion example: 
transient electromagnetic inversion

Stefano Zampini, KAUST
MFEM, PETSc developer



Inversion example: 
transient electromagnetic inversion



Inversion insight: frequency rank dependence 
n

n

n



Fractional derivative application
n 1st-order in time, fractional Laplacian in 1D, 2D or 3D space

§ literature is mostly 1D, since operator is dense
§ this example: github.com/ecrc/h2opus/fractional_diffusion/

n Hot topic for diffusive flux models that are sub-Fickian (e.g., 
porous media, foamy media)



Smooth particle discretization

Key operation in explicit integration is a dense mat-vec
( A would be a sparse Laplacian for Fickian diffusion)



Fractional diffusion application

Boukaram, Lucchesi, Turkiyyah, Le Maitre, Knio & K., Hierarchical Matrix Approximation for 
Space-fractional Diffusion Equations, Comp Meths Appl Mech Eng, 2020

NB: log scale



Fractional diffusion application
Overall savings in memory of the hierarchical matrix (dense blocks 
and compressed blocks) computed to an overall accuracy of 𝜖 = 10-5

Comparison of the hierarchical matrix representation and the 
(hypothetical) dense representation of the discretized operator
Substantial reduction in memory, of

footprint savings of 2,339x
for 2M DOFs



Rank variation with accuracy 

rank  ~  | log 𝜖 |c
NB: log scale



Scaling of mat-vec

NB: log scale



Newton-Schulz for inverse



Newton-Schulz as CG preconditioner



Conclusions, recapped
n With controllable trade-offs, many linear algebra 

operations adapt well to high performance on emerging 
architectures through
§ higher residence on the memory hierarchy
§ greater SIMT/SIMD-style concurrency
§ reduced synchronization and communication

n Rank-structured matrices, based on uniform tiles or 
hierarchical subdivision play a major role

n Rank-structured matrix software is here for shared-
memory, distributed-memory, and GPU environments

n Many applications are benefiting
§ by orders of magnitude in memory footprint & runtime

Lecture 1



Some ripe directions
n Research (heuristics or theory) 

" Guidance for tuning accuracy of individual block replacements 
with ultimate global purpose(s) for rank-structured matrix in 
view

" Orderings of DOFs from multidimensional problems that 
minimize overall TLR and HLR memory footprint

" Point blockings and point-block scalings for multicomponent 
problems

n Development (software)
" Generalization to variable rank size at leaves of the HLR tree 

(currently allocated for a max rank per level, not as restrictive 
as max rank for all compressed blocks)

" Optimizing parallelization of distributed implementation 
above “C-level” (in analogy to multigrid)



Iconographic conclusion

todayyesterday



Reference

Ibeid, Yokota & K.

Int. J. High Perf. 
Comput. Applics.

(2016)



Reference

Boukaram, 
Turkiyyah & K.

ACM Trans. Math. 
Software
(2019)



Reference

Boukaram, 
Turkiyyah & K.

SIAM J. Sci. Comput. 
(2019)



Reference

Ambartsumyan, 
Boukaram, Bui-Thanh, 

Ghattas, K., Stadler, 
Turkiyyah & Zampini

SIAM Journal of 
Scientific Computing

(2020)

HIERARCHICAL MATRIX APPROXIMATIONS OF HESSIANS1

ARISING IN INVERSE PROBLEMS GOVERNED BY PDES⇤2

ILONA AMBARTSUMYAN† , WAJIH BOUKARAM‡ , TAN BUI-THANH† , OMAR GHATTAS† ,3

DAVID KEYES‡ , GEORG STADLER§ , GEORGE TURKIYYAH¶, AND STEFANO ZAMPINI‡4

Abstract. Hessian operators arising in inverse problems governed by partial di↵erential equa-5
tions (PDEs) play a critical role in delivering e�cient, dimension-independent convergence for both6
Newton solution of deterministic inverse problems, as well as Markov chain Monte Carlo sampling of7
posteriors in the Bayesian setting. These methods require the ability to repeatedly perform such op-8
erations on the Hessian as multiplication with arbitrary vectors, solving linear systems, inversion, and9
(inverse) square root. Unfortunately, the Hessian is a (formally) dense, implicitly-defined operator10
that is intractable to form explicitly for practical inverse problems, requiring as many PDE solves as11
inversion parameters. Low-rank approximations are e↵ective when the data contain limited informa-12
tion about the parameters, but become prohibitive as the data become more informative. However,13
the Hessians for many inverse problems arising in practical applications can be well approximated14
by matrices that have hierarchically low-rank structure. Hierarchical matrix representations promise15
to overcome the high complexity of dense representations and provide e↵ective data structures and16
matrix operations that have only log-linear complexity. In this work, we describe algorithms for17
constructing and updating hierarchical matrix approximations of Hessians and for constructing their18
inverses. Data parallel versions of these algorithms, appropriate for GPU execution, are presented19
and studied on a number of representative inverse problems involving time-dependent di↵usion,20
advection-dominated transport, frequency domain acoustic wave propagation, and low frequency21
Maxwell equations, demonstrating up to an order of magnitude speedup.22

Key words. Hessians, inverse problems, PDE-constrained optimization, Newton methods,23
hierarchical matrices, matrix compression, log-linear complexity, GPU, low rank updates, Newton-24
Schulz.25

AMS subject classifications. 35Q93, 49N45, 65F30, 65M32, 65F10, 65Y0526

1. Introduction. The Hessian operator plays a central role in optimization27

of systems governed by partial di↵erential equations (PDEs), also known as PDE-28

constrained optimization. While the approach proposed here applies more broadly to29

other PDE-constrained optimization problems including optimal control and optimal30

design, we will focus on an important class: inverse problems. The goal of an inverse31

problem is to infer model parameters, given observational data, a forward model or32

state equation (here in the form of PDEs) mapping parameters to observables, and33

any prior information on the parameters. Often the parameters represent infinite-34

dimensional fields, such as heterogeneous coe�cients (including material properties),35

distributed sources, initial or boundary conditions, or geometry. We focus here on this36

infinite dimensional setting, leading to large scale inverse problems after discretiza-37

tion.38

The Hessian operator plays a critical role in inverse problems. For deterministic39

inverse problems, finding the parameters that best fit the data is typically formu-40

lated as a regularized nonlinear least squares optimization problem. Its objective41

⇤Submitted to the editors.
Funding: This work was supported by the King Abdullah University of Science and Technology

(KAUST) O�ce of Sponsored Research (OSR) under Award No: OSR-2018-CARF-3666.
†Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin.

(ailona@austin.utexas.edu, tanbui@ices.utexas.edu, omar@ices.utexas.edu).
‡Extreme Computing Research Center, King Abdullah University of Science and Technology.

(wajihhalim.boukaram@kaust.edu.sa, stefano.zampini@kaust.edu.sa, david.keyes@kaust.edu.sa).
§Courant Institute of Mathematical Sciences, New York University. (stadler@cims.nyu.edu).
¶Department of Computer Science, American University of Beirut, Lebanon. (gt02@aub.edu.lb).

1

This manuscript is for review purposes only.



Reference

Boukaram, Lucchesi, 
Turkiyyah, Le Maitre, 

Knio & K.

Computer Methods in 
Applied Mechanics and 

Engineering 
369:113191

(2020)



Reference

K., Ltaief & Turkiyyah

Philosophical 
Transactions of the 

Royal Society 
Series A

378:20190055
(2020, open access)



Very special thanks to…

George Turkiyyah
Visiting Professor 

American University of Beirut



Closing haiku

Vast sea of numbers
Can you be described by few

As bones define flesh?



Thank you!

اركش

david.keyes@kaust.edu.sa


	Lecture 03: Hierarchically Low Rank Methods and Applications
	Citation

	SLS_keyes_lecture3

