
University of Arkansas, Fayetteville University of Arkansas, Fayetteville 

ScholarWorks@UARK ScholarWorks@UARK 

Mathematical Sciences Spring Lecture Series Mathematical Sciences 

4-8-2021 

Lecture 04: Spatial Statistics Applications of HRL, TRL, and Mixed Lecture 04: Spatial Statistics Applications of HRL, TRL, and Mixed 

Precision Precision 

David Keyes 
King Abdullah University of Science and Technology, david.keyes@kaust.edu.sa 

Follow this and additional works at: https://scholarworks.uark.edu/mascsls 

 Part of the Applied Statistics Commons, Logic and Foundations Commons, Multivariate Analysis 

Commons, Numerical Analysis and Computation Commons, and the Statistical Models Commons 

Citation Citation 
Keyes, D. (2021). Lecture 04: Spatial Statistics Applications of HRL, TRL, and Mixed Precision. 
Mathematical Sciences Spring Lecture Series. Retrieved from https://scholarworks.uark.edu/mascsls/6 

This Video is brought to you for free and open access by the Mathematical Sciences at ScholarWorks@UARK. It 
has been accepted for inclusion in Mathematical Sciences Spring Lecture Series by an authorized administrator of 
ScholarWorks@UARK. For more information, please contact ccmiddle@uark.edu. 

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/mascsls
https://scholarworks.uark.edu/masc
https://scholarworks.uark.edu/mascsls?utm_source=scholarworks.uark.edu%2Fmascsls%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=scholarworks.uark.edu%2Fmascsls%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/182?utm_source=scholarworks.uark.edu%2Fmascsls%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/824?utm_source=scholarworks.uark.edu%2Fmascsls%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/824?utm_source=scholarworks.uark.edu%2Fmascsls%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=scholarworks.uark.edu%2Fmascsls%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/827?utm_source=scholarworks.uark.edu%2Fmascsls%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/mascsls/6?utm_source=scholarworks.uark.edu%2Fmascsls%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ccmiddle@uark.edu


David Keyes
Extreme Computing Research Center

King Abdullah University of Science and Technology
5-9 April 2021

Lecture 4

Spatial Statistics Applications of 
HRL, TRL, and Mixed Precision

University of Arkansas Department of Mathematical Sciences 

46th Spring Lecture Series



Motivation & challenge of geospatial statistics
• Geospatial statistics predicts desired quantities directly from 

spatially distributed data, presumed to be drawn from a 
random process
– For data, it may draw upon observations or simulations

• Alternative statistical approaches, such as wrapping many 
simulations in a Monte Carlo loop, are expensive given the 
slow convergence of Monte Carlo (~1/√M, for M trials)
– One can instead sample from a parameterized distribution 

learned from a smaller number of simulations

• This trades many sparse PDE simulations running at a small 
% of peak for a large dense linear algebra problem 
– “Smack in the wheelhouse” of today’s HPC systems
– However, memory goes as N2, for N spatially distributed points



Sample data sets
We use synthetic data of readily specified size and statistical parameters for 
testing and tuning algorithms
Goal is environmental modeling, particular of conditions required for engineering 
design of sustainable energy solutions
Where to plant which kind of crops, install wind farms, install solar photovoltaics?
How to estimate electricity loads for air conditioning, etc.?



Geospatial statistics challenge
“Increasing amounts of data are being produced (e.g., 
by remote sensing instruments and numerical models), 
while techniques to handle millions of observations have 
historically lagged behind…
Computational implementations that work with 
irregularly-spaced observations are still rare.”  

- Dorit Hammerling, NCAR, July 2019

Traditional approaches:
n Global low rank
n Zero outer diagonals

Better approaches:
n Hierarchical low rank
n Reduced precision outer 

diagonals

1M ✕ 1M dense sym DP matrix requires 4 TB,  N3 ~ 1018 Flops 

Lecture 2



Geospatial statistics test data
Synthetic test matrix: random coordinate generation 
within the unit square or unit cube with Matérn 
kernel decay, each pair of points connected by 
n linear exp to square exp decay, aij ~ exp (-c|xi - xj|p), p = 1,2

2D 3D

Lecture 2



Maximum Likelihood Estimation

c/o wikipedia

Maximum likelihood estimation can be traced to Gauss when fit to a Gaussian function, with 
two parameters, the mean and the variance, 𝜃 = { 𝜇, 𝜎2 }.

For one variable, n=1, we have  L(𝜃) =                                             .
y



Maximum Likelihood Estimation

c/o Wikipedia and NLopt documentation, Steven G. Johnson, http://github.com/stevengj/nlopt

We use NLopt and treat it as a blackbox for the rest of this 
lecture. NLopt is a free/open-source library for nonlinear 
optimization, providing a common interface for various freely 
available optimization routines. Although n is typically very large,
k is typically very small, like 3 or 4 in our examples, so the cost of 
the optimization logic is insignificant, but each optimization 
iteration is expensive – a large dense linear algebra problem.

http://github.com/stevengj/nlopt


The first three parameters are standard (“partial sill”, “range”, “smoothness”).  
The last parameter (“nugget”) adds to the diagonal to preserve definiteness in 
upcoming approximations.  (All four parameters are nonnegative, though only two 
are written that way.)
In the limit as 𝜈 → ∞, Matérn reduces to a Gaussian. The key shape parameters are 
𝜈 and ℓ .  Apart from the diagonal shift of 𝜏2, 𝜎2 is just a scaling factor.

Let rij = | si - sj | .

Parameter identification problem



Matérn distribution 
as function of r for ℓ=1 and various 𝜈

r

Gaussian 
for large 𝜈

Exponential 
for small 𝜈



Mean and covariance of random fields

The covariance matrix 𝛴 is

𝛴=



Valid covariance functions/matrices
A covariance function must possess positive semi-definiteness

Or in matrix form, 

xT𝛴y ≥ 0
For any n-dimensional real vectors x, y .
To understand the importance of covariance, consider making the “best” guess for a missing 
pixel in the two 10 x 10 arrays below.  Both are zero-mean random fields, but (a) is 
completely uncorrelated and nearby cells in (b) have modest correlation, or positive 
covariance. 

(a) (b)



Range parameter ℓ sets correlation length

ℓ=0.100 ℓ=0.234ℓ=0.033

ℓ=0.173 ℓ=0.404ℓ=0.058

WEAK STRONG



Covariance parameter estimation

determinant inverse



Prediction

Schur complement



Parameter identification complexity

With cubic complexity, a 1-minute computation made 10 times larger at 
constant computing rate would require nearly 17 hours, and computing rate 
would likely degrade due to greater memory traffic, prolonging the run 
further.
Enter, of course, data sparsity considerations…
In lecture 2, Tile Low Rank
In lecture 4, mixed precision



https://github.com/ecrc/exageostat

Prediction Accuracy using Space-Time model

• Supports large-scale geo-spatial datasets (univariate/bivariate).
• Estimates the maximum likelihood using synthetic and real datasets.
• Leverages the data sparsity structure of the matrix operator.
• Performs matrix computations at tunable accuracies using Diagonal

Super-Tile (DST) and Tile Low-Rank (TLR) approximations as well as
mixed-precision (MP) calculations.

• Predicts observations using dense, DST, TLR, and MP techniques
and reveals insights from environmental Big Data applications.

A collaboration with With support from Sponsored by

HIGH PERFORMANCE UNIFIED SOFTWARE 
FOR GEOSTATISTICS ON MANY-CORE SYSTEMS

The ExaGeoStat project is a high performance software package for computational geostatistics on many-core systems. The Maximum
Likelihood Estimation (MLE) method is used to optimize the likelihood function for a given spatial set. MLE provides an efficient way to
predict missing observations in the context of climate/weather forecasting applications. This machine learning framework deploys a
unified software stack to target various hardware architectures with a single-source simulation code, from commodity x86 to GPU-
based shared and distributed-memory systems. At large-scale problem sizes, ExaGeoStat further exploits the data sparsity of the
covariance matrix to address the curse of dimensionality. In particular, ExaGeoStat supports Tile Low-Rank (TLR) approximation and
mixed-precision computations to model univariate, multivariate space and space-time problems. This translates into a reduction of the
memory footprint and the algorithmic complexity of the MLE operation, while still maintaining the overall fidelity of the underlying model.

ExaGeoStat v1.1.0
Dense

TLR Accuracy Impact on Parameter Estimates, Bivariate Case

4096 Shaheen-II Cray XC40 Nodes 1536 Hawk AMD EPYC Nodes

• Support for out-of-core algorithms.

• Assist the convergence of MLE
with a prediction phase.

• Deploy the PaRSEC runtime system.

• Combine TLR with MP to accelerate
MLE for larger problem sizes.

• Model space-time, non-Gaussian,
and non-stationary geospatial data.

Computing the Cholesky-Based MLE Method

• Real dataset: (MERRA-2) re-analyses dataset of hourly PM 2.5 measurements from NASA Earth data.
• Data description: an hourly dataset for four years (2016- 2019) with a total size of 550 spatial locations.
• Extreme Gaussian geostatistical spatio-temporal computations.

Software Infrastructure

Samples of the Training Datasets (Year: 2016)

Space-Time Modeling Prediction

Mixed-Precision Performance on Distributed-Memory Systems

128 Summit IBM/NVIDIA V100 Nodes

TLR Multivariate Spatial Modeling Performance and Accuracy

Current Research

DST TLR MP

ER=0.1 ER=0.3 ER=0.7

Acc=1e-5 Acc=1e-7 Acc=1e-9 Dense

128 Shaheen-II Cray XC40 Nodes

References
Ø S. Abdulah, H. Ltaief, Y. Sun, M.G. Genton, D.E. Keyes. ExaGeoStat: A High Performance Unified Software for Geostatistics on Manycore Systems. IEEE Transactions on Parallel and Distributed Systems. 29(12):2771-84. 2018.
Ø S. Abdulah, H. Ltaief, Y. Sun, M.G. Genton, D.E. Keyes. Parallel Approximation of the Maximum Likelihood Estimation for the Prediction of Large-Scale Geostatistics Simulations. IEEE International Conference on Cluster Computing. pp. 98-108. 2018.
Ø S. Abdulah, H. Ltaief, Y. Sun, M.G. Genton, D.E. Keyes. Geostatistical Modeling and Prediction Using Mixed Precision Tile Cholesky Factorization. IEEE 26th International Conference on High Performance Computing, Data, and Analytics. pp. 152-162. 2019.
Ø S. Abdulah, Y. Li, J. Cao, H. Ltaief, D.E. Keyes, M.G. Genton, Y. Sun. ExaGeoStatR: A Package for Large-Scale Geostatistics in R. arXiv preprint arXiv:1908.06936. 2019.
Ø M.L. Salvaña, S. Abdulah, H. Huang, H. Ltaief, Y. Sun, M.G. Genton, D.E. Keyes. High Performance Multivariate Spatial Modeling for Geostatistical Data on Manycore Systems. arXiv preprint arXiv:2008.07437. 2020.



n Synthetic Dataset Generator
! generate large-scale geospatial datasets which can 

separately be used as benchmark datasets for other 
software packages

n Maximum Likelihood Estimator (MLE)
! evaluate the maximum likelihood function on large-scale 

geospatial datasets within the family of tile algorithms 
! support full machine precision accuracy (full-matrix) and 

Tile Low-Rank (TLR) approximation
! support mixed precision optimizations

n ExaGeoStat Predictor
! predict unknown measurements on known geospatial 

locations by leveraging the MLE estimated parameters

ExaGeoStat framework

Sameh 
Abdulah



Block Cholesky approaches
Traditional Diagonal 

Super Tile
Tile Low Rank

2-Precision 3-Precision



Illustrative application



ExaGeoStat V1.0.0, shared memory  
(TLR, Nov. 2018)

5.5x speedup

Time for one MLE iteration with different problem sizes for different 
accuracies per block on 56-core Intel Skylake



ExaGeoStat V1.0.0, distributed memory  
(TLR approx., Nov. 2018)

Time for one MLE iteration with different problem sizes on Cray XC40 (Shaheen 1024 nodes)

(2M)

7.3x speedup



Motivations for mixed precision

rel. Dec 2017 rel. May 2020

n Mathematical: better than “zero precision”
! if statisticians are used to treating remote diagonals as zero after 

performing a diagonally clustered space-filling curve ordering, then 
their coefficients must often be orders of magnitude down from the 
diagonals

! not just “smooth” in the low-rank sense, but actually small

n Computational: faster time to solution
! hence lower energy consumption and higher performance, 

especially by exploiting heterogeneity



Diagonal-based reasoning depends 
upon good orderings

mons.wikimedia.org/w/index.php?curid=47570255

3D Hilbert curves 
equipartitioned by 

color

2D Hilbert curves

Points near each other in 1D memory must be near each other, on average, 
in N-dimensional space, using space-filling curves



Diagonal based reasoning depends 
upon good orderings

https://commons.wikimedia.org/w/index.php?curid=3879675

2D Morton curves 3D Morton curves 
equipartitioned by 

color



Extension to nonuniform distributions
Recursively subdivide within Cartesian blocks by density

David Hilbert
(1862-1943)

n We live in his spaces (“Hilbert Space” – a function space equipped 
with an inner product)

n His statement of 23 problems, first presented at the Paris 
International Mathematical Congress in 1900, gave definition to 
much of 20th century mathematical research

n Invented what we now call the Hilbert (or Peano-Hilbert) curve in 
1891

n Brought into computer science in 1997



Extension to nonuniform distributions
Ordered by points instead of cells

10,000 points in 200 groups of 50 each

n John Salmon (now of D E Shaw 
Research, then of LLNL) 
“connected the dots” back to 
Hilbert for his N-body computations 
with Mike Warren at SC’97

n Won “Test of Time” award at SC’18

John Salmon, 
with early universe simulation



Adapt precision to accuracy requirements

fp64, fp32, fp16 defined by IEEE standard
Bfloat16: Google, Intel, ARM, NVIDIA

c/o Nick Higham (2021), Jack Dongarra (2021)



Mixed precision dense Cholesky

(2020)
(2017)
(2014)



Mixed-precision ExaGeoStat  
(MP approx., 2019)

Time for one MLE iteration with different problem sizes on Skylake/V100

1.3x to 2.2x 
speedup, 
depending 
upon the mix



ExaGeoStat with PaRSEC runtime system
n StarPU runtime has scalability issues as more nodes are used
n Implemented ExaGeoStat’s MLE and prediction steps with PaRSEC’s 

parameterized task graph (PTG) interface with better scalability
n Novel mixed-precision implementation extends to three precisions, exploiting 

the Nvidia GPU Tensor Core
n A specialized lookahead scheme and workload balancer among the GPUs on 

the same node ensured performance
n All kernels run on GPU
n PaRSEC coordinates data transfer between host and device, inter-node 

communication
n Banded distribution for different precisions reduce memory footprint while 

managing workload balancing
n Features operator overloading with type conversion



PaRSEC runtime system 
http://icl.cs.utk.edu/PaRSEC/index.html

George
Bosilca

ICL, 
University of 
Tennessee



Three-precision dense Cholesky

Abdulah, Cao, Pei, Bosilca, Dongarra, Genton, K., Ltaief & Sun, Accelerating Geostatistical Modeling 
and Prediction with Mixed-Precision Computations. IEEE TDPS, 2021.



Three-precision dense Cholesky

Abdulah, Cao, Pei, Bosilca, Dongarra, Genton, K., Ltaief & Sun, Accelerating Geostatistical Modeling 
and Prediction with Mixed-Precision Computations. IEEE TDPS, 2021.



Three-precision dense Cholesky

Abdulah, Cao, Pei, Bosilca, Dongarra, Genton, K., Ltaief & Sun, Accelerating Geostatistical Modeling 
and Prediction with Mixed-Precision Computations. IEEE TDPS, 2021.



Cholesky factorization Scalability on Cray XC40 – Shaheen-II with different runtime systems

ExaGeoStat with PaRSEC runtime system



128 ORNL Summit nodes (V100 GPUs) (DP on single node can achieve 32+ Tflop/s)

ExaGeoStat with 3 precisions and 
PaRSEC runtime system on Summit

DP peak



Three-precision dense Cholesky

128 ORNL Summit nodes (V100 GPUs) (DP on single node can achieve 32+ Tflop/s)
Abdulah, Cao, Pei, Bosilca, Dongarra, Genton, K., Ltaief & Sun, Accelerating Geostatistical Modeling 

and Prediction with Mixed-Precision Computations. IEEE TDPS, 2021.



Three-precision dense Cholesky

n 5 blends of 
mixed precision 
approximation

n 4 synthetic field 
types 

n 40K points each
n Some of the 

combinations are 
unacceptable

Abdulah, Cao, Pei, Bosilca, Dongarra, Genton, K., Ltaief & Sun, Accelerating Geostatistical Modeling 
and Prediction with Mixed-Precision Computations. IEEE TDPS, 2021.



Three-precision dense Cholesky

Abdulah, Cao, Pei, Bosilca, Dongarra, Genton, K., Ltaief & Sun, Accelerating Geostatistical Modeling 
and Prediction with Mixed-Precision Computations. IEEE TDPS, 2021.



Three-precision dense Cholesky

Abdulah, Cao, Pei, Bosilca, Dongarra, Genton, K., Ltaief & Sun, Accelerating Geostatistical Modeling 
and Prediction with Mixed-Precision Computations. IEEE TDPS, 2021.



Hierarchical matrix approximations

c/o Alex Litvinenko (RTHW-Aachen, SIAM CSE 2021)



Recall covariance parameter estimation

determinant inverse



Balance of log-likelihood terms in learning

c/o Alex Litvinenko (RTHW-Aachen, SIAM CSE 2021)

Max 
rank 
k=8

Max 
rank 
k=16

N=4225
𝜈true=1.0

𝜈true=1.0 𝓵true=0.2337

𝓵true=0.2337

Missippi soil moisture example



Quantifying the ℋ-approximation

c/o Alex Litvinenko (RTHW-Aachen, SIAM CSE 2021)



Quantifying the ℋ-approximation

c/o Alex Litvinenko (RTHW-Aachen, SIAM CSE 2021)



Accuracy results

c/o Alex Litvinenko (RTHW-Aachen, SIAM CSE 2021)



Memory and execution time

c/o Alex Litvinenko (RTHW-Aachen, SIAM CSE 2021)



Importance of the nugget parameter

c/o Alex Litvinenko (RTHW-Aachen, SIAM CSE 2021)

zoom of left figure

Missippi soil moisture example
N=2000, 𝜈=0.5

𝓵true=0.2337



Convergence with sample size

c/o Alex Litvinenko (RTHW-Aachen, SIAM CSE 2021)

𝜈 𝜎2ℓ

Missippi soil moisture example
fixed k=11

N = 2K, 4K, 8K, 16K, 32K



Prediction

The yellow points at 900,000 locations were used for training 
and the blue points were predicted at 100,000 locations.



Generalizations to ExaGeoStat underway

• Multivariate
• Nonstationary
• Time-varying



n Multivariate random variables, where a vector of variables 
is measured at each location

n Mathematically, this means that at location 𝒔 ∈ 𝑹𝒅 , 𝒅
≥ 𝟏, each variable is considered as one component of the p-
dimensional vector 𝒁(𝒔)

n Parsimonious multivariate Matérn

𝑎"# = 𝑎, 𝜈"# =
1
2
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Multivariate Modeling (Exact & TLR)

Salvaña, Abdulah, Huang, Ltaief, Sun, Genton & K., High Performance Multivariate Spatial Modeling 
for Geostatistical Data on Manycore Systems. IEEE TDPS, 2021.



Spatial images of the U and V components (after mean removal) on 116, 100 
locations over the Arabian Sea

Salvaña, Abdulah, Huang, Ltaief, Sun, Genton & K., High Performance Multivariate Spatial Modeling 
for Geostatistical Data on Manycore Systems. IEEE TDPS, 2021.

Multivariate Modeling



n Memory footprint of exact and TLR-based MLE with varying 
number of spatial locations  

n Bivariate Modeling two measurement vectors

Multivariate Modeling (Exact & TLR)

Salvaña, Abdulah, Huang, Ltaief, Sun, Genton & K., High Performance Multivariate Spatial Modeling 
for Geostatistical Data on Manycore Systems. IEEE TDPS, 2021.

order of 
magnitude 
reduction

NB: log scale



Salvaña, Abdulah, Huang, Ltaief, Sun, Genton & K., High Performance Multivariate Spatial Modeling 
for Geostatistical Data on Manycore Systems. IEEE TDPS, 2021.

Multivariate Modeling (Exact & TLR)
n Execution time of exact and TLR-based MLE with varying number of 

spatial locations on 128 nodes of a Cray XC40 (2-socket 16-core Haswell)  
n Bivariate Modeling two measurement vectors

2x speedup



Reference

Abdulah, Cao, Pei, 
Bosilca, Dongarra, 

Genton, K., Ltaief & 
Sun

IEEE TPDS
(2021)



Reference

Salvaña, Abdulah, 
Huang, Ltaief, Sun, 

Genton & K. 
IEEE TDPS 

(2021)



Very special thanks to…

Sameh Abdulah
Research Scientist

Extreme Computing Research Center

Alexander Litivinenko
formerly Research Scientist

Extreme Computing Research Center,
now at RTWH-Aachen



Covariances
In the billions require

ExaGeoStat



Thank you!

اركش

david.keyes@kaust.edu.sa
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