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Motivation & challenge of geospatial statistics

* Geospatial statistics predicts desired quantities directly from
spatially distributed data, presumed to be drawn from a
random process

— For data, it may draw upon observations or simulations

* Alternative statistical approaches, such as wrapping many
simulations in a Monte Carlo loop, are expensive given the
slow convergence of Monte Carlo (~1/NM, for M trials)

— One can instead sample from a parameterized distribution
learned from a smaller number of simulations

® This trades many sparse PDE simulations running at a small
% of peak for a large dense linear algebra problem

— “Smack in the wheelhouse” of today’s HPC systems

— However, memory goes as N2, for N spatially distributed points



Sample data sets

We use synthetic data of readily specified size and statistical parameters for
testing and tuning algorithms

Goal is environmental modeling, particular of conditions required for engineering
design of sustainable energy solutions

Where to plant which kind of crops, install wind farms, install solar photovoltaics?

How to estimate electricity loads for air conditioning, etc.?

Soil Moisture data at the top *  Wind Speed data at Middle Temperature data at
layer of the Mississippi East, on September 1st, Middle East, on September

River Basin, US, on 2017. 1st, 2017.
January 1st, 2004.

B ~ 2M Locations. . ~ 1M Locations. * ~ 1M Locations.

: &

Latitudes
Latitudes

§ £ ¢ § §$ § § $%




Lecture 2

Geospatial statistics challenge

Western Digital.

“Increasing amounts of data are being rr
by remote sensing instruments and nu

while techniques to handle millions of o
historically lagged behind... WD BLUE

. . . 3.5" PC HARD DRIVE
Computational implementations that w

irregularly-spaced observations are stil

- Dorit Hammerling, N

1M X 1M dense sym DP matrix requires 4 TB, N3~ 108 Flops

Traditional approaches: Better approaches:
® Global low rank ® Hierarchical low rank
® Zero outer diagonals ® Reduced precision outer

diagonals




Lecture 2

Geospatial statistics test data

Synthetic test matrix: random coordinate generation
within the unit square or unit cube with Matérn
kernel decay, each pair of points connected by

® linear exp to square exp decay, a; ~ exp (-c|x;- x|), p = 1,2




Maximum Likelihood Estimation

In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of
a probability distribution by maximizing a likelihood function, so that under the assumed statistical
model the observed data is most probable. The point in the parameter space that maximizes the
likelihood function is called the maximum likelihood estimate.[!] The logic of maximum likelihood
is both intuitive and flexible, and as such the method has become a dominant means of statistical

inference.[2I314]

Associated with each probability distribution is a unique vector 8 = [0, 02, ..., Ok]T of
parameters that index the probability distribution within a parametric family { f(-;6) | 8 € ©}
where O is called the parameter space, a finite-dimensional subset of Euclidean space.
Evaluating the joint density at the observed data sample y = (y1 ¢ Ygaes 3 yn) gives a real-
valued function,

L, (9) = Ly, (9, Y) = fn (y; 6)
which is called the likelihood function.

Maximum likelihood estimation can be traced to Gauss when fit to a Gaussian function, with
two parameters, the mean and the variance, 0 = { u, o?}.

c/o wikipedia



Maximum Likelihood Estimation

In practice, it is often convenient to work with the natural logarithm of the likelihood function, called the log-
likelihood:

(0;y)=InL,(6;y).
Since the logarithm is a monotonic function, the maximum of £(6 ; y) occurs at the same value of 6 as does

the maximum of L,,.[8l If £(6;y) is differentiable in 6, the necessary conditions for the occurrence of a
maximum (or a minimum) are

ov ov or
—=0, — =0, iy —=0
601 892 aek
known as the likelihood equations. For some models, these equations can be explicitly solved for 5 but in
general no closed-form solution to the maximization problem is known or available, and an MLE can only be

found via numerical optimization.

We use NLopt and treat it as a blackbox for the rest of this
lecture. NLopt is a free/open-source library for nonlinear &
optimization, providing a common interface for various freely i L™ L

available optimization routines. Although 7 is typically very large,

k is typically very small, like 3 or 4 in our examples, so the cost of N OP l o

the optimization logic is insignificant, but each optimization \//
iteration is expensive — a large dense linear algebra problem.

c/o Wikipedia and NLopt documentation, Steven G. Johnson,

Y


http://github.com/stevengj/nlopt

Parameter identification problem

Given:
Let s1,...,s, be locations.
L= {Z(sl) Z(sn)}', where Z(s) is a Gaussian random field

indexed by a spatlal location s € RY, d > 1.
Let I’,j= | S;- Sj| .

Assumption: Z has mean zero and stationary parametric
covariance function, e.g. Matérn:

C(8) = f{';) (Q’E)VK,, (%) L2, 0= (02, 0,72).

To identify: unknown parameters 8 := (02, v, 4, 7%).

n

The first three parameters are standard (“partial sill”, “range”, “smoothness”).
The last parameter (“nugget”) adds to the diagonal to preserve definiteness in

upcoming approximations. (All four parameters are nonnegative, though only two
are written that way.)

In the limit as v — o, Matérn reduces to a Gaussian. The key shape parameters are
vand £ . Apart from the diagonal shift of 72, o2 is just a scaling factor.



Matérn distribution

as function of » for £=1 and various v

1.0~

0.8 7

0.6 -

0.4 -

0.2~

0.0 -

Gaussian
0..
*, *, forlargev
- *

Exponential
for small v

0.0 0.5 1.0 1.5 2.0 2D 3.0




Mean and covariance of random fields

The mean function of Z(s) is
p(s) = E{Z(s)}

The covariance function of Z(s) is

C(s1,52) = coviZ(s1), Z(s2)} = E[{Z(s1) — p(s1) 1 Z(s2) — pu(s2)}],

where s1 and s> are two spatial locations

The covariance matrix X is

'E[(X: - E[X1])(X1 - E[X1])] E[(X: —E[X1])(X2 —E[X3])] --- E[(X1 - E[X1])(X, — E[X,])] ]

E[(X; — E[X,])(X1 —E[X1])] E[(X; — E[X,])(Xz —E[X3])] -+ E[(X; — E[X,])(Xy — E[X;])]

)=

| E[(X, —E[X,])(X: —E[Xi])] E[(Xn - E[X,])(Xz —E[X,])] -+ E[(Xyn — E[X,])(Xn — E[Xy])]




Valid covariance functions/matrices

A covariance function must possess positive semi-definiteness

Z cjckC(sj,sx) >0

J;k=1
for any finite n, s1,...,s, € D, and real numbers cy,...,c,
Or in matrix form,
x'2y 20

For any n-dimensional real vectors x, y .

To understand the importance of covariance, consider making the “best” guess for a missing
pixel in the two 10 x 10 arrays below. Both are zero-mean random fields, but (a) is
completely uncorrelated and nearby cells in (b) have modest correlation, or positive
covariance.

l 2
o

10

8

: (b) -

1

2




£=0.234
Exponential covariance (v = 0.5) STRONG

ST
T i

e=0173  £=0.404
Gaussian covariance (v = o)



Covariance parameter estimation

For simplicity, we focus on zero-mean stationary Gaussian random fields.
The log-likelihood for n locations:

1 1
0(6) = —— log(27) — = log |£(0)| — =ZTx(0)"Z,
2 2 . 2 .
determinant inverse
where

Z(s1) C(s1,s1;0) ... C(s1,s5,;0)

Z = | 2(0) = . s
Z(sn) C(51,51;0) :s: C(5y; 54;0)

@ Log determinant and linear solver require a Cholesky factorization of
the given covariance matrix X(60)

o Cholesky factorization requires O(n>) floating point operations and
O(n?) memory



Prediction

Q Assuming Y11 € RMXM 515, e RN %51 € R™M and Y5, € R™M,
74 Bl |11 X1
~ N ; 1
B E TC
@ The associated conditional distribution can be repkq]ted as
Z1|Zy ~ N(py + L1255 (Z2 — po), 11 — 12555 To1). (2)

Schur complement
@ Assuming that the known measurements vector Z> has a zero-mean
function (i.e., pq = 0 and p, = 0), the unknown measurements
vector Z1 can be predicted using,

Zi = X120 Z5. (3)

o Solution of system of linear equation (X, Z>) requires also the
Cholesky factorization of X o;.



Parameter identification complexity

Maximum Likelihood Estimator
6 = argmax/((6)
7]
argmin{log |X(8)| + Z'X(0)"1Z}
7]

O(n?) floating point operations and O(n?) memory requirements for
exact computations

With cubic complexity, a 1-minute computation made 10 times larger at
constant computing rate would require nearly 17 hours, and computing rate

would likely degrade due to greater memory traffic, prolonging the run
further.

Enter, of course, data sparsity considerations...
In lecture 2, Tile Low Rank

In lecture 4, mixed precision



https://github.com/ecrc/exageostat

The ExaGeoStat project is a high performance software package for computational
Likelihood Estimation (MLE) method is used to optimize the likelihood function f
predict missing observations in the context of climate/weather forecastini

unified software stack to target various hardware architectures with ngle-source

tistics on
given spatial set. MLE pruwdes an efficient way to
plications. This machine learning framework deploys a
code, from

v The

x86 to GPU-

based shared and distributed-memory systems. At large-scale p
covariance matrix to address the curse of dimensionality. In
mixed-precision computations to model univariate, multiv;
memory footprint and the algorithmic complexity of ti

ExaGeoStat v1.1.0

+ Supports large-scale geo-spatial datasets (ui

* Estimates the maximum likelihood usin

« Leverages the data sparsity struct,

* Performs matrix computation;
Super-Tile (DST) and Tile,

late/ bivariate).
etic and real datasets.
the matrix operator.
unable accuracies using Diagonal
-Rank (TLR) approximations as well as

Dense

m sizes, ExaGeoStat further exploits the data sparsity of the
icular, ExaGeoStat supports Tile Low-Rank (TLR) approximation and
space and space-time problems. This translates into a reduction of the
E operation, while still maintaining the overall fidelity of the underlying model.

Computing the Cholesky-Based MLE Method

TR MP

mixed-precision (MP)g#f€ulations.

* Predicts observaglis using dense, DST, TLR, and MP techniques

and reveals hts from environmental Big Data applications.

B o

.
TLR Multivariate Spatial Modeling Performance and Accuracy
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* Real dataset: (MERRA-
+ Data description: an hourly data:

1536 Hawk AMD EPYC Nodes

ses dataset of hourly PM 2.5 measurements from NASA Earth data
our years (2016- 201 9) with a total size of 550 spatial locations.
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TLR Accuracy Impact on Parameter Estimates, Bivariate Case

Mixed-Precision Performance on Dlsfrlbufed Memory Systems

128 Summit IBM,/NVIDIA V100 Nodes

Current Research

Support for out-of-core algorithme.

Assist the convergence of MLE
with a prediction phase.

Deploy the PaRSEC runtime system.

Combine TLR with MP to accelerate
MLE for larger problem sizes.

Model space-time, non-Gaussian,
and non-stationary geospatial data.

12):2771.82.2018.
Cluster Computing. pp. 98-108. 2015,

o . and Analytics. pp. 152-162. 2015.
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Climate/Weather Applications

Modeling/Inference

Optimization Library (e.g., NLopt)

Parallel Linear Algebra Libraries

Chameleon (Dense Computation)| [HICMA (Tile Low-Rank (TLR) Computation)

Wrorre [l rsm [ svre [] cemm [ Finac
Cholesky

Factorization DAG / Operation
(4 X 4 Tile Matrix)

StarPU/PaRSEC Dynamic Runtime System

Drivers (e.g., Pthreads, CUDA, OpenCL, MPI)

Shared Memory Systems

Distributed Memory Systems

X86 CPU AArch64 CPU GPU




o )
o Synthetic Dataset Generator

+ generate large-scale geospatial datasets which can AJ‘
separately be used as benchmark datasets for other Sameh
software packages Abdulah

¢ Maximum Likelihood Estimator (MLE)

+ evaluate the maximum likelihood function on large-scale
geospatial datasets within the family of tile algorithms

+ support full machine precision accuracy (full-matrix) and
Tile Low-Rank (TLR) approximation

+ support mixed precision optimizations

e ExaGeoStat Predictor

+ predict unknown measurements on known geospatial
locations by leveraging the MLE estimated parameters



Block Cholesky approaches

Traditional

2-Precision

e Diagonal

~ Super Tile

Tile Low Rank

nb K

[jopies [0 [zeroTies DP!}"” Unmmpc Vi "b
n

. DP Tiles

SP Tiles . DP Tiles

3-Precision

SP Tiles . HP Tiles



Ilustrative application

Cholesky factorization of X(8): o | - - -
el - -~ %O X030 oO o g Og Og oOo
o (o} o X
2(9)= V’V oooo(:(XOo %o OOOOO Oc())oooox
o oooxxooooooc,oooooooOOO
. 0 .49 ¢ ag&e 9
Z vector generation = Al S LRSS T T e
Oooxxooo D 00 o 6 2 % o o
Z: V'e, eNN(071) g_ o oW gooo o 0o © OOO Oso 8OO ooxO
. > OO§ x50 ooo OOC;OOZ ooooo ooOOO -l
An example of 400 points 620 8 985 By 060 55%0 B
q: |g® &° o 85 Hx ob 3 oO o0 o
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o % X° 0% © o g oog o
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ExaGeoStat V1.0.0, shared memory
(TLR, Nov. 2018)

- @-  Full-tile :’
250 1 —A- TLR-acc(le-12) .
—8— TLR-acc(le-9) .
-l TLR-acc(le-7) .
2007 _pe TLR-acc(le-5) ‘”“,
© ) 5.5x speedup
0
QEJ 150-
.I: ¢ ‘ ”/A
100 A ‘ P A-
“““ A *-":
501 o O e S-S o I
r—:'—:r— -:::'_"_','_"_'::': —————
O l l l ! f T T T
M ° V0 S D
3V Q @) 4 S AS % 5
&P ) AY ~ 4 o© '\'Qu \9/

Spatial Locations (n)

Time for one MLE iteration with different problem sizes for different
accuracies per block on 56-core Intel Skylake



ExaGeoStat V1.0.0, distributed memory
(TLR approx., Nov. 2018)

2000

1750

1500 -

b d --@- Full-tile

: -A- TLR-acc(le-9)
—8— TLR-acc(le-7)
-l TLR-acc(le-5)

7.3x speedup

@ .1
A
. //
:.. ///
. x -° ‘
o ’ /.v
Y Wt
250 500 750 1000 2000
Spatial Locations (n) X 10™-3 (2M)

Time for one MLE iteration with different problem sizes on Cray XC40 (Shaheen 1024 nodes)



Motivations for mixed precision

o Mathematical: better than “zero precision”

+ if statisticians are used to treating remote diagonals as zero after
performing a diagonally clustered space-filling curve ordering, then
their coefficients must often be orders of magnitude down from the
diagonals

+ not just “smooth” in the low-rank sense, but actually small

o Computational: faster time to solution

+ hence lower energy consumption and higher performance,
especially by exploiting heterogeneity

V100 A100
NVIDIA NVLink | NVIDIA NVLink
Peak FP64 Performance 1.5 TE 9.7 Tk
Peak FP64 Tensor Core — 195 TF
Peak FP32 Performance 15 TF 195 TF
Peak Tensor Float 32 (TF32) — /fg-m
Peak FP16 Tensor Performance 120 TF 312 TF

rel. Dec 2017 rel. May 2020



Diagonal-based reasoning depends
upon good orderings

Points near each other in 1D memory must be near each other, on average,

in N-dimensional space, using space-filling curves

9 12
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3D Hilbert curves

equipartitioned by

mons.wikimedia.org/w/index.php?curid=47570255
color

2D Hilbert curves



Diagonal based reasoning depends
upon good orderings

L

2D Morton curves 3D Morton curves
equipartitioned by
https://commons.wikimedia.org/w/index.php?curid=3879675 color



Extension to nonuniform distributions

Recursively subdivide within Cartesian blocks by density

e
(1 2_1943)

We live in his spaces (“Hilbert Space” — a function space equipped
with an inner product)

His statement of 23 problems, first presented at the Paris
International Mathematical Congress in 1900, gave definition to
much of 20" century mathematical research

Invented what we now call the Hilbert (or Peano-Hilbert) curve in
1891

Brought into computer science in 1997



Extension to nonuniform distributions
Ordered by points instead of cells

—— _ e John Salmon (now of D E Shaw
' A /. Research, then of LLNL)
' = “connected the dots” back to
Hilbert for his N-body computations
with Mike Warren at SC’97

o Won “Test of Time” award at SC’18

10,000 points in 200 groups of 50 each with early universe simulation

John Salmon,




Adapt precision to accuracy requirements

Bits
Precision Type Signif () Exp Range u=27"1
half bfloat16 8 8 10~ B3.9x10"
half fp16 11 5 10= 49 x 1074
single fp32 24 8 10%%® 6.0x 108
double fp64 53 11 10728 1.1 < 10 1¢

fp64, fp32, fpl6 defined by IEEE standard
Bfloat16: Google, Intel, ARM, NVIDIA

¢ Note the number range with sign exponent (8 bits)  |EEE SP fraction (23 bits)
P . | I ]
half precision (16 bit fl.pt.) olo[1]1]1]1]1]o]o]o[1]o]o]o[o]o[o]o]o]o]o]o]o]o]o]0]o]o]o[oo]0
exponent fraction G o0 . 2
s'gril Bl I i I Iargest fl pt sigﬁ %gponent 8 bité:z)3 2frzaction (7 l()ti)tltsinde” 0

(] ] |
number ofo|z|z]1]1|z]o]o|o|z]|olo]0]0|0 largest fl pt

2 0 9 65,504 16 15 g8 7 (bitindex) ¢ number

38

float16 Google TPU: bfloatl16 0(10%9)

c/o Nick Higham (2021), Jack Dongarra (2021)



Mixed precision dense Cholesky

35
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Mixed-precision ExaGeoStat
(MP approx., 2019)

300
-@- DP(100%)
~A- DP(90%)-SP(10%) .
2501 DP(70%)-SP(30%) < A 1.3xt0 2.2x
— - %)- 0 S . .
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= 150 e
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X R o et v
w ““" - “.u r“"r‘
“'zll """ ;, ‘r‘*r‘
50 - .-s‘—"“.f-:'—'?lﬂﬁ‘
-Cretty.
O T T T T T ! ! '
4 N o) ™ © Q O »
1 Q $H © N % ‘v
N

Time for one MLE iteration with different problem sizes on Skylake/V100



ExaGeoStat with PaRSEC runtime system

e StarPU runtime has scalability issues as more nodes are used

e Implemented ExaGeoStat’s MLE and prediction steps with PaRSEC’s
parameterized task graph (PTG) interface with better scalability

o Novel mixed-precision implementation extends to three precisions, exploiting
the Nvidia GPU Tensor Core

o A specialized lookahead scheme and workload balancer among the GPUs on
the same node ensured performance

o All kernels run on GPU

e PaRSEC coordinates data transfer between host and device, inter-node
communication

e Banded distribution for different precisions reduce memory footprint while
managing workload balancing

o Features operator overloading with type conversion



PaRSEC runtime system
http://icl.cs.utk.edu/PaRSEC/index.html

Home
Overview
News
Software
Publications
FAQ

People

PaRSEC

Parallel Runtime Scheduling and
Execution Controller

PaRSEC is a generic framework for architecture aware scheduling
and management of micro-tasks on distributed many-core
heterogeneous architectures. Applications we consider can be
expressed as a Direct Acyclic Graph of tasks with labeled edges
designating data dependencies. DAGs are represented in a
compact problem-size independent format that can be queried on-
demand to discover data dependencies in a totally distributed
fashion. PaRSEC assigns computation threads to the cores,
overlaps communications and computations and uses a dynamic,
fully-distributed scheduler based on architectural features such as

NUMA nodes and algerithmic features such as data reuse.

The framework includes libraries, a runtime system, and
development tools to help application developers tackle the difficult
task of porting their applications to highly heterogeneous and

diverse environment.

Latest PaRSEC News
2017-09-26
PaRSEC tutorials

2015-12-04
PaRSEC development branches are

now public

2015-12-01
PaRSEC 2.0.0-rc2 released

2015-06-08
PaRSEC 2.0.0-rc1 released

2014-04-15
PaRSEC /DPLASMA 1.2.1 is up and
running !

George
Bosilca
ICL,
University of
Tennessee



Three-precision dense Cholesky

@ Store a single copy of the matrix
@ Support collective communications
@ Encapsulate the datatype into the data-flow

e Mitigate load imbalance overheads in computation / communication
using lookahead and hybrid (and nested) data distribution

Data flows Introducing
Data storage communications

EEEhE
Abdulah, Cao, Pei1, Bosilca, Dongarra, Genton, K., Ltaief & Sun, Accelerating Geostatistical Modeling
and Prediction with Mixed-Precision Computations. IEEE TDPS, 2021.



Three-precision dense Cholesky

@ Possibility of tasks far away from the critical path may be scheduled
first, e.g., tiles with magenta boundary.

@ The concept of control dependency between tasks in PaRSEC guides
the task execution order and priorities by adding an empty
dependency (without data encapsulated).

o Expediting the discovery of tasks on/near the critical path, and
enough workloads could be guaranteed.

g
(3]
<
©
X
8
-l

PaRSEC Lookahead Technique.

Abdulah, Cao, Pei1, Bosilca, Dongarra, Genton, K., Ltaief & Sun, Accelerating Geostatistical Modeling
and Prediction with Mixed-Precision Computations. IEEE TDPS, 2021.



Three-precision dense Cholesky

@ Possibility of tasks far away from the critical path may be scheduled
first, e.g., tiles with magenta boundary.

@ The concept of control dependency between tasks in PaRSEC guides
the task execution order and priorities by adding an empty
dependency (without data encapsulated).

e Expediting the discovery of tasks on/near the critical path, and
enough workloads could be guaranteed.

1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0.1 2 3. 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 0 0 0 0

1l |V 1 1 1 1

[ @@ 2 2 2 2

3 3 w0 3 v 3 3

4 4 ® 4 20N ¢ Y4

5 5 < 5 O 5 @ |V
(a) 1st PE. (b) 2nd PF. (c) 3rd PE. (d) 4th PE. (e) 5th PE. (f) 6th PE

Fig. 2: Mixed-precision Cholesky factorization with 6 x 6 tiles, band_size_dp = 2, and band_size_sp = 1. White tiles
represent the completed task. Other colors represent different precisions for each tile: DP in red, SP in blue, and HP in green.
Different shapes indicate different kernels: triangle POTRF, square GEMM, pentagon TRSM, and circle SYRK.

Abdulah, Cao, Pei1, Bosilca, Dongarra, Genton, K., Ltaief & Sun, Accelerating Geostatistical Modeling
and Prediction with Mixed-Precision Computations. IEEE TDPS, 2021.



ExaGeoStat with PaRSEC runtime system

~e- StarPU: DP(100%)

800 N PaRSEC: DP(100%)

200 e~ StarPU: DP(10%)-SP(90%)

N ¥ PaRSEC: DP(10%)-SP(90%)
£ 6001
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()]
V500
£
';400'

300

200

150 200 250 300 350 400 450 500
The number of nodes

Cholesky factorization Scalability on Cray XC40 — Shaheen-Il with different runtime systems



ExaGeoStat with 3 precisions and
PaRSEC runtime system on Summit

DP peak
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T 5000
<
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Matrix Size
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128 ORNL Summit nodes (V100 GPUs) (DP on single node can achieve 32+ Tflop/s)



Three-precision dense Cholesky
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128 ORNL Summit nodes (V100 GPUs) (DP on single node can achieve 32+ Tflop/s)

Abdulah, Cao, Pei1, Bosilca, Dongarra, Genton, K., Ltaief & Sun, Accelerating Geostatistical Modeling
and Prediction with Mixed-Precision Computations. IEEE TDPS, 2021.



Three-precision dense Cholesky

Weak Correlation = Medium Correlation  Strong Correlation Strong Correlation
Rough Field Rough Field Rough Field Smooth Field
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Abdulah, Cao, Pei1, Bosilca, Dongarra, Genton, K., Ltaief & Sun, Accelerating Geostatistical Modeling
and Prediction with Mixed-Precision Computations. IEEE TDPS, 2021.



Three-precision dense Cholesky

1M 2D Soil Moisture Dataset: The estimation of the model parameters
are close to the pure DP MLE, except for the 1D:99H variant. We
observed that this dataset has a medium correlated data with an average
smooth field. This corroborates the analysis made with synthetic datasets
that concludes on the effectiveness of the mixed-precision MLE for such
data characteristics

Variants Variance Range Smoothness LLH MSPE Prediction Uncertainty Iterations
100D 0.7223 0.0933 0.9983 -59740.65974 0.044926 4.734439e+-03 180
30D:70S 0.7230 0.0935 0.9982 -59740.66579 0.044919 4.741754e+-02 206
10D:90S 0.7314 0.0953 0.9969 -59741.37532 0.044933 4.736149e+-03 207
10D:30S:60H 0.7239 0.0936 0.9982 -59740.65200 0.044927 4.734435e+-03 244
10D:10S:80H 0.7328 0.0947 0.9983 -59741.03423 0.044926 4.733337e+03 207
5D:55:908 ) 20 - 0.044935 4.736572e+-03 204
1D:99H § ) € 0.9863 )] -59867.53239 0.044980 4.750953e+-03 159

Abdulah, Cao, Pei, Bosilca, Dongarra, Genton, K., Ltaief & Sun, Accelerating Geostatistical Modeling
and Prediction with Mixed-Precision Computations. IEEE TDPS, 2021.



Three-precision dense Cholesky

116K 2D Wind Speed Dataset: This dataset comes from a highly smooth
field. Thus, the estimation of the model parameters is impacted starting
from the first mixed-precision 30D:70S variant and further deteriorates
with lower precision configurations

Variants Variance Range Smoothness LLH MSPE Prediction Uncertainty It ions
100D 3 1.752914E-02 2.2855E4-00 666
30D:70S 239908.5983 1.766191E-02 2.9221E+-00
10D:90S 9924 .IT9 .S 0908.1004 1.766194E-02 2.9170E4-00 91
10D:50S:40H 0.9911 0.1810 1.9754 239884.4173 1.766318E-02 89
10D:30S:60H 0.9761 0.1804 1.9576 232783.9932 1.765651E-02 94
10D:10S:80H 0.9774 0.1802 1.9588 233438.8691 1.765624E-02 107

Abdulah, Cao, Pei, Bosilca, Dongarra, Genton, K., Ltaief & Sun, Accelerating Geostatistical Modeling
and Prediction with Mixed-Precision Computations. IEEE TDPS, 2021.



Hierarchical matrix approximations

Yy

R
H-matrix approximations of the exponential covariance matrix
(left), its hierarchical Cholesky factor L (middle), and the zoomed

upper-left corner of the matrix (right), n = 4000, ¢ = 0.09,
v =05, 0% =1.

c/o Alex Litvinenko (RTHW-Aachen, SIAM CSE 2021)



Recall covariance parameter estimation

For simplicity, we focus on zero-mean stationary Gaussian random fields.
The log-likelihood for n locations:

1 1
0(6) = —— log(27) — = log |£(0)| — =ZTx(0)"Z,
2 2 . 2 .
determinant inverse
where

Z(s1) C(s1,81;0) ... C(s1,s,;0)

Z = | 2(0) = . s
Z(sn) C(51,51;0) :s: C(5y; 54;0)

@ Log determinant and linear solver require a Cholesky factorization of
the given covariance matrix X(0)

o Cholesky factorization requires O(n>) floating point operations and
O(n?) memory



Balance of log-likelihood terms in learning

Missippi soil moisture example
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c/o Alex Litvinenko (RTHW-Aachen, SIAM CSE 2021)



Quantifying the J-approximation

Theorem (1)

Let C be an H-matrix approximation of matrix C € R"*" such that
o(ClC-)<e<l

Then N
|logdet C — logdet C| < —nlog(1 — ¢), (3)

Proof: See [Ballani, Kressner 14| and [lpsen 05].
Remark: factor n is pessimistic and is not really observed
numerically.

c/o Alex Litvinenko (RTHW-Aachen, SIAM CSE 2021)



Quantifying the #-approximation

Theorem (2)
Let C ~ C € R™" and Z be a vector, ||Z|| < ¢y and ||C71|| < c1.

~

Let p(C"1C —1) <e < 1. Then it holds

% 1 ~ 1 -
£(6) - £(6)] = 5(loglC| — logfCl) + z|2" (¢ - T ) Z|

1 Lo ff i p=A, | —f
& s s — — —
< —5 - nlog(1 — €) + 5|2 (c C—C c)c Z|
1 1 ;

< —§-n/0g(1 —5)+§c0 O

c/o Alex Litvinenko (RTHW-Aachen, SIAM CSE 2021)



Accuracy results

€ accuracy in each sub-block, n = 16641, v = 0.5,

c.r.=compression ratio.

log|C|—log|C|

e log]C| — log]Cl| | |<EL=EIE e — Qe | B2 | =@~z | erin%
¢ = 0.0334
le-1 3.2e-4 1.2e-4 7.0e-3 7.6e-3 2.9 9.16
le-2 1.6e-6 6.0e-7 1.0e-3 6.7e-4 9.0e-2 94
le-4 1.8e-9 7.0e-10 1.0e-5 7.3e-6 2.0e-3 10.2
le-8 4.7e-13 1.8e-13 1.3e-9 6e-10 2.1e-7 12.7
¢ = 0.2337
le-4 9.8e-5 1.5e-5 8.1e-5 1.4e-5 2.5e-1 9.5
le-8 1.45e-9 2.3e-10 1.1e-8 1.5e-9 4e-5 11.3

log|C| = 2.63 for £ = 0.0334 and log|C| = 6.36 for £ = 0.2337.

c/o Alex Litvinenko (RTHW-Aachen, SIAM CSE 2021)



Memory and execution time

v =0.325, ¢/ = 0.64, 2 = 0.98

n C LL"
time size  kB/dof | time size |l = (LLT)7!C|2
sec. MB sec. MB
32.000 33 162 5.1 24 1727 2.4-1077
128.000 | 13.3 776 6.1 139 881.2 1.1-1072
512.000 52.8 3420 6.7 7.6 4150 3.5.1072
2.000.000 | 229 14790 7.4 473 18970 1.4-107"

c/o Alex Litvinenko (RTHW-Aachen, SIAM CSE 2021)

Dell Station, 20 x 2 cores, 128 GB RAM




Importance of the nugget parameter

Missippi soil moisture example
N=2000, v=0.5

10t zoom of left figure
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0.7}
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0.55¢

c/o Alex Litvinenko (RTHW-Aachen, SIAM CSE 2021)

Convergence with sample size

Missippi soil moisture example
fixed k=11
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Prediction

The yellow points at 900,000 locations were used for training
and the blue points were predicted at 100,000 locations.



Generalizations to ExaGeoStat underway

* Multivariate
* Nonstationary

* Time-varying



Multivariate Modeling (Exact & TLR)

e Multivariate random variables, where a vector of variables
is measured at each location

e Mathematically, this means that at location s € R, d
> 1, each variable is considered as one component of the p-
dimensional vector Z(s)

e Parsimonious multivariate Matérn

1
_ — 2 __
aij = a, vij = — (Uii + ij), O'i-— pijaiiajj,whe’re
2 ]
d.1 d.1 1
L, Tat) 2T ) 2 ra2wety) /2
Pij = Pij

Cwi) /2 Tip'/z T(1/204+v))+D

Salvafia, Abdulah, Huang, Ltaief, Sun, Genton & K., High Performance Multivariate Spatial Modeling
for Geostatistical Data on Manycore Systems. IEEE TDPS, 2021.



Multivariate Modeling

Spatial images of the U and V components (after mean removal) on 116, 100
locations over the Arabian Sea
U Component Residuals '} Component ReS|duaIs
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Salvafia, Abdulah, Huang, Ltaief, Sun, Genton & K., High Performance Multivariate Spatial Modeling
for Geostatistical Data on Manycore Systems. IEEE TDPS, 2021.



Multivariate Modeling (Exact & TLR)

o Memory footprint of exact and TLR-based MLE with varying
number of spatial locations

o Bivariate Modeling two measurement vectors
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Salvafia, Abdulah, Huang, Ltaief, Sun, Genton & K., High Performance Multivariate Spatial Modeling
for Geostatistical Data on Manycore Systems. IEEE TDPS, 2021.



Multivariate Modeling (Exact & TLR)

o Execution time of exact and TLR-based MLE with varying number of
spatial locations on 128 nodes of a Cray XC40 (2-socket 16-core Haswell)

o Bivariate Modeling two measurement vectors
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Salvafia, Abdulah, Huang, Ltaief, Sun, Genton & K., High Performance Multivariate Spatial Modeling
for Geostatistical Data on Manycore Systems. IEEE TDPS, 2021.



Reference

Abdulah, Cao, Pel,
Bosilca, Dongarra,
Genton, K., Ltaief &
Sun
IEEE TPDS
(2021)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. ?2, NO. 2, MM YYYY 1

Accelerating Geostatistical Modeling and
Prediction With Mixed-Precision Computations:
A High-Productivity Approach with PaRSEC

Sameh Abdulah, Qinglei Cao, Yu Pei, George Bosilca, Jack Dongarra,
Marc G. Genton, David E. Keyes, Hatem Ltaief, and Ying Sun

Abstract—GeostanshcaI modeling is an efficient technique for climate
and envi lysis and predicting desired quantities from geo-
graphically distributed data, based on statistical models and optimization
of parameters. Spatial data presenting some known property of sta-
tionarity (or non-stationarity) requires a specific geostatistics kemel to
handle. A primary putational kernel of stati y spatial i

is the evaluation of the Gaussian maximum log-likelihood estimation
(MLE) function, whose central data structure is a dense, symmetric, and
positive definite covariance matrix of the dimension of the number of
correlated observations. In the MLE approach considered herein, two
essential operations are the application of its inverse and evaluation of
its determinant. These can be rendered through the Cholesky decom-
position and friangular solution. In this paper, we propose to reduce
the precision of low correlated locations to single- or half- preaslon
based on the distance. We migrate g istics to a three pi 1
app! by iting the matr | structure of \he dense
covariance matrix. We il ion- d y worthy of
double-precision from a majority hall -precision computahon in a context
where all single precision is by itself insufficient. We deploy ParSEC
runtime system with high productivity in mind to tackle the complexity
and imbalance caused by the mixed three precisions. The PaRSEC
delivers within a solo Cholesky factorization on-demand casting of pre-
cisions, while orchestrating tasks and data movement in a multi-GPU
distributed-memory environment. We maintain the application-expected
accuracy, while achieving against FP64-only operations up to 1.59X by
mixing FP64/FP32 operations and 2.64X by mixing FP64/FP32/FP16
operations on 1536/4006 nodes of HAWK / Shaheen IT and 128 nodes
of summit, respectively. This translates into up to 4.5/ 4.7 and 9.1
(mixed) PFlop/s sustained performance, respectively, demonstrating the
effective synergism between PaRSEC dynamic runtime systems and
challenging environmental HPC applications.

Index Terms—Climate/Weather Prediction, Dynamic Runtime Systems,
Geospatial Statistics, High Performance Computing, Multiple Precisions,
User-Productivity.
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1 INTRODUCTION

Geostatistics is a means of modeling and predicting desired
quantities directly from data. It is based on statistical as-
sumptions and optimization of parameters. It is comple-
mentary to first-principles modeling approaches rooted in
conservation laws and typically expressed in PDEs. Al-
ternative statistical approaches to predictions from first-
principles methods, such as Monte Carlo sampling wrapped
around simulations with a distribution of inputs, may be
vastly more computationally expensive than sampling from
an assumed parameterized distribution based on a much
smaller number of simulations. Geostatistics is relied upon
for economic and policy decisions for which billions of
dollars or even lives are at stake, such as engineering
safety margins into developments, mitigating hazardous
air quality, locating fixed renewable energy resources, and
planning agricultural yields or weather-dependent tourist
revenues. Climate and weather predictions are among the
principal workloads occupying supercomputers around the
world, and even minor improvements for regular produc-
tion applications pay large dividends. A wide variety of
such predictive codes have opportunistically migrated or
are migrating to mixed-precision environments; we describe
a novel migration of one important class of such codes.

A main computational kernel of stationary spatial statis-
tics considered herein is the evaluation of the Gaussian
log-likelihood function, whose central data structure is a
dense covariance matrix of the dimension of the number
of (presumed) correlated observations, which is generally
the product of the number of observation locations and the
number of variables observed at each location. In the maxi-
mum log-likelihood estimation (MLE) technique considered
herein, two essential operations on the covariance matrix
are the application of its inverse and evaluation of its de-
terminant. These operations can all be rendered through the
classical Cholesky decomposition and triangular solution,
occurring inside the optimization loop that fits statistical
model parameters to the input data. The covariance matrix
is dense, symmetric, and positive definite, and possesses
a mathematical structure arising from its physical origin
that motivates approximations of various kinds for high-
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High Performance Multivariate Geospatial
Statistics on Manycore Systems|

Mary Lai O. Salvana, Sameh Abdulah, Huang Huang, Hatem Ltaief,
Ying Sun, Marc G. Genton, and David E. Keyes

Abstract—Modeling and inferring spatial relationships and predicting missing values of environmental data are some of the main tasks
of geospatial statisticians. These routine tasks are accomplished using multivariate geospatial models and the cokriging technique.
The latter requires the evaluation of the expensive Gaussian log-likelihood function, which has impeded the adoption of multivariate
geospatial models for large mulhvanate spatial datasets Hoaever thls large-scale cokriging challenge provides a fertile ground for
supercomputing impk for the geospatial y as it is paramount to scale computational capability to match
the growth in environmental data coming from the Mdespread use of dlﬁerem data collection technologies. In this paper, we develop

and depkyy large-scale multivariate spatial modeling and i on parallel hardh archi . To tackle the increasing

complexity in matrix

P P

and the ive concurrency in parallel systems, we leverage low-rank matrix approximation

techniques with task-based programming models and schedule the asynchronous computational tasks using a dynamic runtime
syslem The proposed framework provides both the dense and the approximated computations of the Gaussian log-likelihood function.

accuracy r and performance scalability on a variety of computer systems. Using both synthetic and real
dalasets, the low-rank matrix approximation shows better performanoe compared to exact computation, while preserving the

application requirements in both parameter estimation and pi

We also propose a novel algorithm to assess the

prediction accuracy after the online parameter estimation. The algorithm quantlfles prediction performance and provides a benchmark
for measuring the efficiency and accuracy of several approximation techniques in multivariate spatial modeling.

Index Terms—Gaussmn log-likelihood, geospatial statistics, high-performance computing, large multivariate spatial data, low-rank

app! ion, multivariate modeling/prediction.

1 INTRODUCTION

HE convergence of high-performance computing (HPC)
Tand big data brings great promise in accelerating and
improving large-scale applications [1], [2] on climate and
weather modeling [3], astronomy [4], transportation [5],
and bioinformatics [6]. Climate and weather modeling, in
particular, is one of the first applications of HPC for big
data |7]. The need to improve climate and weather models
has pushed for advances in environmental data collection
technologies such as spaceborne, airborne, and ground sen-
sors [8]. The volume of data coming from these sources is
huge and increasing. For instance, NASA’s Earth Observing
System Data and Information System (EOSDIS) is expected
to archive more than 37 petabytes of data in 2020 [9]. By
2022, the yearly increase is projected at 47.7 petabytes.

Environmental data, such as climate and weather vari-
ables, are often recorded from different spatial locations,
and thus indexed by s € R%,d > 1, where s is the location
of the measurement. Usually, there are multiple variables
measured at each location, such as temperature, humidity,
wind speed, and atmospheric pressure. These colocated
variables may or may not depend on each other and on
the variables at other locations.

®  The authors are with the Extreme Computing Research Center, Computer,
Electrical, and Mathematical Sciences and Engineering Division
(CEMSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia. E-mail: {Marylai.Salvana,
Sameh.Abdulah, Huang.Huang, Hamleairf, Ying.Sun, Marc.Genton,
David.Keyes Yakaust.edu.sa.

A major concern when dealing with environmental
datasets is missing data on one or a few variables. For
instance, when using environmental variables as inputs to
climate and weather models, the gaps in areas with no
measurements caused by poor atmospheric conditions or
defective sensors, to name a few, need to be filled [10], [11].
Recently, with the existence of HPC capabilities, methods for
big geospatial data analysis are sought in order to leverage
these big geospatial data obtained from different sources
such as satellite images, model simulations, sensors, and the
Internet of Things for the purpose of missing data interpo-
lation. These methods include the use of numerical models
that solve a complex set of partial differential equations
and generate large volumes of predictions on the quantities
of interest, such as the concentrations of pollutants in the
atmosphere [12], [13]. Other novel contemporary methods
include applying machine learning and deep learning for
analysis of big geospatial datasets [14], [15], [16], [17]. For in-
stance, in [14], several machine learning methods to predict
solar irradiation were reported. Although these methods
show high predictions capabilities, they suffer the drawback
of being unable to describe explicitly the spatial relationship
among environmental variables [18].

In this work, we adopt the statistical approach using
the Gaussian log-likelihood function to model the under-
lying multivariate geospatial data with the aid of a gener-
ated covariance matrix on large-scale systems. Multivariate
geospatial statistics can interpolate environmental variables
at unsampled locations by modeling the multivariate spa-
tial dependencies. While every variable of interest can be




Very special thanks to...

Sameh Abdulah Alexander Litivinenko

Research Scientist formerly Research Scientist

Extreme Computing Research Center  Extreme Computing Research Center,
now at RTWH-Aachen



o© 0 ¥ OU%O 550 ” a0 0% g P o0 o©
° o 5? 0. Ry 00 O &8 e
. o @) o o O(IBoOg




(.

Thank you!

david.keyes@kaust.edu.sa




	Lecture 04: Spatial Statistics Applications of HRL, TRL, and Mixed Precision
	Citation

	SLS_keyes_lecture4_draft

