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Outline of the talk

• Root Finding Problem: Find X ∈ Rn, such that F (X ) = 0

• Motivating applications
• Nonlinearly preconditioned Newton methods
• Some nonlinearly difficult problems in fluid and solid

problems in biomechanics
• Final remarks



Nonlinear problems with
local singularity: Blood
flows in arteries with
aneurysm or stenosis



Nonlinear problems with local singularity: Stroke

View from the front View from the back



Nonlinear problems with local singularity: Arterial plaques



Motivation from linear preconditioning
• Iterative methods for solving large system of linear

equations
Ax = b

Roughly speaking, if h is the mesh size and np is the
number of processors of a parallel machine
• The discretization accuracy ≈ hα
• The number of iterations ≈ h−β · (np)γ

• Preconditioned iterative methods for solving large system
of linear equations

M−1Ax = M−1b

• A good preconditioner reduces the impact of certain
parameters on the convergence. Parameters: mesh size,
number of processors, jump coefficients, ...



• Preconditioned iterative methods for solving large system
of nonlinear equations

F (X ) = 0 ⇐⇒ G(F (X )) = 0 ⇐⇒ F (G(X )) = 0

• A good nonlinear preconditioner can sometimes drastically
improve the robustness of the nonlinear convergence by
reducing the impact of certain parameters on the nonlinear
convergence
• Parameters: Reynolds number, Mach number, Grashof

number, ..., plus mesh size, number of processors, ...
• Note: Linear preconditioning doesn’t help much with the

“nonlinear parameters”



A little history of nonlinear preconditioning

• X.-C. Cai, W. D. Gropp, D. E. Keyes, R. G. Melvin, and D. P. Young, Parallel Newton-Krylov-Schwarz
algorithms for the transonic full potential equation, SIAM J. Sci. Comput., 19 (1998), pp. 246-265.
(a shock wave problem)

• X.-C. Cai, D. E. Keyes, and D. P. Young, A nonlinear additive Schwarz preconditioned inexact Newton
method for shocked duct flow, Proceedings of the 13th International Conference on Domain Decomposition
Methods, Oct. 9-12, 2000, France.
(a shock wave problem solved using nonlinear preconditioning)

• X.-C. Cai and D. E. Keyes, Nonlinearly preconditioned inexact Newton algorithms, SIAM J. Sci. Comput., 24
(2002), pp. 183-200.
(left nonlinear preconditioning)

• X.-C. Cai and X. Li, Inexact Newton methods with restricted additive Schwarz based nonlinear elimination
for problems with high local nonlinearity, SIAM J. Sci. Comput., 33 (2011), pp. 746-762.
(right nonlinear preconditioning)



In general, we can use the classical Newton’s method for

F (X ) = 0,

where X = (x1, x2, . . . , xn)T and F = (f1, f2, . . . , fn)T

X k+1 = X k − F ′(X k )−1F (X k )

or, equivalently,
X k+1 = X k + Hk

F ′(X k )Hk = −F (X k ),

which requires the solving of a large linear system of equations
at every iteration
Inexact Newton’s method: Hk is chosen such that

‖F ′(X k )Hk + F (X k )‖ ≤ ηk‖F (X k )‖,

for a given ηk > 0 (which may or may not depend on k )



Globally convergent Newton’s methods

• Linesearch: Changing the steplength by a factor of
λk ∈ (0,1]

X k+1 = X k − λkHk

In other words, Hk is a good search direction if a non-zero
λk can be found such that

1
2
‖F (X k+1)‖2 ≤ 1

2
‖F (X k )‖2 − αλk (Hk )T JF (X k )

where α is small positive parameter
• Trust region: Changing the search direction Hk



What happens when inexact Newton is applied to a large
system with unbalanced nonlinearities?

• The convergence, or fast convergence, happens only if a
good initial guess is available
• Generally it is very difficult to obtain such an initial guess

especially for nonlinear equations that have unbalanced
nonlinearities
• The step length λk is often determined by the components

with the strongest nonlinearities, and this may lead to an
extended period of stagnation in the nonlinear residual
curve
• We say that the nonlinearities are “unbalanced” when λk

is, in effect, determined by a subset of the overall degrees
of freedom



We consider a one-dimensional compressible flow problem described
by the full potential equation in a variable-area duct. The problem is
to determine the solution potential u(x) satisfying

(Aρux )x = 0,

for 0 < x < 2 and u(0) = 0 and u(2) = uR given. The duct area

A = A(x) = 0.4 + 0.6(x − 1)2,

and the density ρ is given by

ρ = ρ(v) = (c2)1/(γ−1) =

(
1 +

γ − 1
2

(1− v2)

)1/(γ−1)

.

Here v = ux is the velocity, γ = 1.4 is the ratio of specific heat and c
is the speed of sound.
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Some observations

• To advance from X k to X k+1, all n variables and equations
need to be updated even though in many situations n can
be very large, but only a small number of components of
X k receive significant updates
• If a small number of components of the initial guess X 0 are

not acceptable, the entire X 0 is declared bad
• There are two global control variables ηk and λk . Any slight

change of F (·) may result in the change of ηk or λk , and
any slight change of ηk or λk may result in some global
function evaluations and/or the solving of global Jacobian
systems



Can we remove those bad components, just like Gaussian
elimination?

For example {
F1(x1, x2) = 0
F2(x1, x2) = 0

Eliminate (implicit function theorem) the bad component x2

x2 = G(x1)

The leftover is a slightly smaller and easier to solve nonlinear
system

F1(x1,G(x1)) = 0



A simple example with one bad component

• Consider a 2× 2 system

F (x1, x2) ≡
[

F1(x1, x2)
F2(x1, x2)

]
=

[
(x1 − x3

2 + 1)
m − xm

2
x1 + 2x2 − 3

]
= 0

where m = 1,3,5. x∗ = [1,1]T is the root

IN PIN
x (0) m=1 m=3 m=5 m=1 m=3 m=5

(0,0)T 5 8 10 5 6 6
(0,2)T 5 11 12 5 6 6
(2,0)T 5 1 7 5 1 5
(2,2)T 5 12 13 5 5 6

• As m increases, one of the equations is more nonlinear than the
other; the number of iterations increases and is also more
sensitive to the choice of the initial guess



Nonlinear elimination – peak removing

Consider a nonlinear problem F (x) = 0 defined on Ω with the
current approximate solution xc .

• Identify the worst region. A peak of F is a region ω ∈ Ω
such that ‖F (xc)‖2(ω) is large
• Solve a local nonlinear problem

F |ω(xω) = 0, with boundary condition xω|∂ω = xc |∂ω

• Locally correct the solution

xnew =

{
xω in ω
xc in Ω \ ω



Linear and nonlinear Schwarz preconditioners

• Rδ
i , R0

i restriction with and without overlap. δ is the
overlapping size
• Additive Schwarz

Linear :
N∑

i=1

(Rδ
i )T A−1

i Rδ
i Nonlinear:

N∑
i=1

(Rδ
i )T F−1

i (Rδ
i x)

• Restricted additive Schwarz

Linear :
N∑

i=1

(R0
i )T A−1

i Rδ
i Nonlinear :

N∑
i=1

(R0
i )T F−1

i (Rδ
i x)



A general scalable nonlinear equation solver: RAS-NKS

• Step 1 (The Nonlinearity Checking Step): Check stopping conditions.

• If the global condition is satisfied, stop.

• If the local nonlinearities are not balanced, go to Step 2.

• If the local conditions indicate the nonlinearities are balanced, set ũ(k) = u(k) , go to Step 3.
• Step 2 (The RAS Step): Solve local nonlinear problems on the overlapping subdomains to obtain the

subdomain correction vδi
Rδi F (u(k) + vδi ) = 0, for i = 1, · · · ,N

Drop the solution in the overlapping part of the subdomain and compute the global function G(u(k))

G(u(k)) =
N∑

i=1

R0
i (u

(k) + vδi ), and set ũ(k) = G(u(k)).

• Step 3 (The NKS Step): Compute the next approximate solution u(k+1) by solving the following equation

F (u) = 0

with one step of NKS iteration using ũ(k) as the initial guess.
Go to Step 1



Comparing NKS and RAS-NKS
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Blood flow in the cerebral artery of a stroke patient

Time-dependent incompressible Navier-Stokes equations

 ρ

(
∂u

∂t
+ (u · ∇)u

)
−∇ · σ = 0,

∇ · u = 0

Here ρ is the blood density, µ is the viscosity, and σ = −pI + µ
(
∇u +∇uT

)
is the Cauchy stress tensor, u is the velocity, p is the pressure.



Two cases of patient-specific arteries

Case Mean # of # of # of # of
Reynolds inlets outlets nodes elements

One-inlet 443.2 1 6 437,538 2,190,164
Two-inlet 262.6 2 15 1,069,767 5,225,949



(a) Pressure (b) Streamlines

(c) Pressure (d) Streamlines

Figure: Numerical solutions at t = 0.7s.



We form the following nonlinear system in the region with large
residuals

G(x) ≡ Rk
b (F (x)) +Rk

g (x− xn
k ) = 0.

x∗k is accepted as the approximate solution if the stopping
condition ‖G(x∗k )‖ ≤ γNE

r ‖G(xn
k )‖ is satisfied.

(a) Before the subspace correction (b) After the subspace correction

Figure: The one-inlet case: residual contours for the u component at
the second nonlinear step during the second time step.



Nonlinear residual history
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Parallel scalability of INB-NE

Table: Scalability test for the two-inlet case obtained using the INB-NE
method with different fill-in levels of the ILU subsolve. A fixed mesh
with 5,225,949 elements and 1,069,767 nodes is used. The overlap
size of RAS preconditioner is δ = 1. The time step size is 0.0025s.

np Subsolve NIglobal LIglobal NIne LIne Timene (s) Timetotal (s)

240

ILU(0) 3.83 1068.52 1.33 6.75 11.04 243.79
ILU(1) 3.67 668.59 1.20 3.66 10.42 171.54
ILU(2) 3.83 525.70 1.20 3.33 10.82 171.83
ILU(3) 3.50 488.47 1.20 3.00 11.54 179.63

480

ILU(0) 3.83 1115.04 1.33 6.50 6.19 133.81
ILU(1) 3.50 683.47 1.20 4.00 5.83 87.84
ILU(2) 3.67 532.91 1.20 3.67 6.05 88.66
ILU(3) 3.50 491.91 1.20 3.50 6.47 96.40

960

ILU(0) 3.83 1179.70 1.33 6.63 3.72 77.45
ILU(1) 3.50 743.81 1.20 4.00 3.69 52.88
ILU(2) 3.50 541.76 1.20 3.67 3.76 48.08
ILU(3) 3.67 505.50 1.20 3.50 4.02 56.74

1920

ILU(0) 3.83 1436.56 1.20 5.00 2.27 53.17
ILU(1) 3.67 900.36 1.20 4.16 2.30 38.33
ILU(2) 3.67 653.05 1.20 3.67 2.34 33.31
ILU(3) 3.67 630.18 1.20 3.83 2.43 38.58



A carotid artery with plaques



Hyperelastic model for arterial wall

• Energy functional

ψ = ψiso(C) + ψvol (C) + ψti (C,M(i)),

where C is Cauthy-Green tensor,
M(i) are the structural tensors

• Momentum equation

divP = −f

where P = FS,S = ∂ψ
∂C

Figure: Cross-section of
artery [Klawonn et al.,
2008]

Figure: Collagen fibre
reinforced [Holzapfel et al.,
2000]



Computational difficulties

Standard NKS doesn’t work well under the following 3
conditions, and the issue is not the linear solver

• Large deformation

• Nearly
incompressible

• Highly anisotropic

Material Poisson’s Ratio
rubber 0.4999

soft tissue 0.45 - 0.49
gold 0.42 - 0.44
clay 0.3 - 0.45

stainless steel 0.3 - 0.31
glass 0.18 - 0.3

concrete 0.1 - 0.2



3 situations

From Klawonn, Rheinbach et al 2008

ψA = ψisochoric + ψvolumetric + ψti

:= c1

 I1
I1/3
3

− 3

 + ε1

(
I
ε2
3 + 1

I
ε2
3
− 2

)
+

∑2
i=1 α1〈I1J(i)4 − J(i)5 − 2〉α2

Set Layer c1 ε1 ε2(-) α1 α2 Purpose

D1 – 1.e3 1.e3 1.0 0.0 0.0 Deformations by different forces

C1 – 1.e3 1.e3 1.0 0.0 0.0
Different compressibilityC2 – 1.e3 1.e4 1.0 0.0 0.0

C3 – 1.e3 1.e5 1.0 0.0 0.0

A1 Adv. 7.5 100.0 20.0 1.5e10 20.0

Highly anisotropic arterial walls1

Med. 17.5 100.0 50.0 5.0e5 7.0

A2 Adv. 6.6 23.9 10 1503.0 6.3
Med. 17.5 499.8 2.4 30001.9 5.1

A3 Adv. 7.8 70.0 8.5 1503.0 6.3
Med. 9.2 360.0 9.0 30001.9 5.1

Table: Model parameter sets of ψA

1kPa for c1, ε1, α1.



Test for large deformation

Newton Iterations
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Figure: Convergence history of IN and
IN-NE.

Figure: Deformations by
different pulls.



Test for compressibility

Newton Iterations
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For consistency with linear
elasticity,

C1 =
µ

2
, ε1 =

κ

2
,

where µ, κ and the shear
and bulk modulus. The
Poisson ratio can be
computed by

ν =
3K − 2G

2(3K + G)

Set Poisson’s Ratio
C1 0.125
C2 0.452
C3 0.495



Test for anisotropic arterial wall

Newton Iterations
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Figure: Convergence history of IN and
IN-NE. Figure: von Mises stress



Some final remarks

• For problems with uniform global nonlinearity, NKS is a good general purpose parallel solver. Multilevel
maybe necessary if the number of processors is large

• For problems with unbalanced global and local nonlinearities, a combination of full space Newton and
subspace Newton, in the form of a nonlinear elimination preconditioned Newton, offers a good strategy

• It may not be easy to identify the local ‘bad’ region
• For problems with only local nonlinearities, subspace Newton is often sufficient
• It is often difficult to tell what types of nonlinearities a problem may have
• The norm of the residual function, ‖F (x)‖2, is often not a good monitor, unfortunately all existing nonlinear

theories and algorithms are based on ‖F (x)‖2
• Many parameters (stopping conditions)

Some recent publications
• L. Luo, X.-C. Cai, and D. Keyes, Nonlinear preconditioning strategies for two-phase flows in porous media

discretizated by a fully implicit discondinuous Galerkin method, SIAM J. Sci. Comput., (2021, to appear)
• L. Luo, X.-C. Cai, Z. Yan, L. Xu, and D. Keyes, A multi-layer nonlinear elimination preconditioned inexact

Newton method for steady-state incompressible flow problems in 3D, SIAM J. Sci. Comput., 42 (2020), pp.
B1404-1428

• L. Luo, W.-S. Shiu, R. Chen, and X.-C. Cai, A nonlinear elimination preconditioned inexact Newton method
for blood flow problems in human artery with stenosis, J. Comp. Phys., 399 (2019), 108926

• S. Gong and X.-C. Cai, A nonlinear elimination preconditioned Newton method for heterogeneous
hyperelasticity, SIAM J. Sci. Comput., 41 (2019), pp. S390-S408
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