
University of Arkansas, Fayetteville University of Arkansas, Fayetteville 

ScholarWorks@UARK ScholarWorks@UARK 

Mathematical Sciences Spring Lecture Series Mathematical Sciences 

4-7-2021 

Lecture 12: Recent Advances in Time Integration Methods and Lecture 12: Recent Advances in Time Integration Methods and 

How They Can Enable Exascale Simulations How They Can Enable Exascale Simulations 

Carol S. Woodward 
Lawrence Livermore National Laboratory 

Follow this and additional works at: https://scholarworks.uark.edu/mascsls 

 Part of the Computer and Systems Architecture Commons, Engineering Physics Commons, Natural 

Resources and Conservation Commons, Numerical Analysis and Scientific Computing Commons, Oil, 

Gas, and Energy Commons, and the Systems Architecture Commons 

Citation Citation 
Woodward, C. S. (2021). Lecture 12: Recent Advances in Time Integration Methods and How They Can 
Enable Exascale Simulations. Mathematical Sciences Spring Lecture Series. Retrieved from 
https://scholarworks.uark.edu/mascsls/11 

This Video is brought to you for free and open access by the Mathematical Sciences at ScholarWorks@UARK. It 
has been accepted for inclusion in Mathematical Sciences Spring Lecture Series by an authorized administrator of 
ScholarWorks@UARK. For more information, please contact ccmiddle@uark.edu. 

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/mascsls
https://scholarworks.uark.edu/masc
https://scholarworks.uark.edu/mascsls?utm_source=scholarworks.uark.edu%2Fmascsls%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.uark.edu%2Fmascsls%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/200?utm_source=scholarworks.uark.edu%2Fmascsls%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/168?utm_source=scholarworks.uark.edu%2Fmascsls%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/168?utm_source=scholarworks.uark.edu%2Fmascsls%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=scholarworks.uark.edu%2Fmascsls%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/171?utm_source=scholarworks.uark.edu%2Fmascsls%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/171?utm_source=scholarworks.uark.edu%2Fmascsls%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=scholarworks.uark.edu%2Fmascsls%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/mascsls/11?utm_source=scholarworks.uark.edu%2Fmascsls%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ccmiddle@uark.edu


LLNL-PRES-821168
This work was perf ormed under the auspices of the U.S. Department of Energy 
by  Lawrence Livermore National Laboratory under contract DE-AC52-
07NA27344. Lawrence Livermore National Security, LLC

46th Annual Spring Lecture Series
April 7, 2021

Carol S. Woodward

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory

Recent Advances in Time Integration Methods and How 
They Can Enable Exascale Simulations



2
LLNL-PRES-821168

 Great to see such an active SIAM Student chapter

 Participation in SIAM is important for our profession
— Increases the visibility of applied math on 

campuses and in companies
— Provides leadership opportunities
— Provides a significant boost to building your 

network

 Student chapters provide an opportunity to build 
connections between math and other campus 
departments

Thank you Tulin and the Univ. of Arkansas SIAM Student Chapter!

https://kaman.uark.edu/siam/

 Great to also see an active AWM chapter

 Participation is open to all and helps support women 
in the mathematics profession through a greater 
understanding of the contributions of women in the 
mathematical sciences

 The chapter promotes mentoring and encouraging 
women and girls as they prepare for careers in the 
mathematical sciences

https://kaman.uark.edu/awm/
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Most models of physical systems are formulated in terms of the 
rate of change of some variable
 Ordinary Differential Equations (ODEs)

— PDEs: Method of lines discretization f contains discrete spatial operations
— Chemical reactions: f includes terms for each reaction

 Differential Algebraic Equations (DAEs) 

— PDEs: Method of lines discretization with algebraic constraints
— Power transmission models: F includes differential equations for power generators 

and network-based algebraic system constraining power flow
— Electronic circuit models
— If              is invertible, we can solve for     to obtain an ODE, but this is not always the 

best approach, else the system is a DAE.

Magnetic reconnection

US Transmission grid
(Wikimedia Commons)
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The compute power of exascale is bringing significant increases in 
what can be simulated

These new simulation goals translate into 
increased demand for high order and stable 
time integration methods and software for 
multiscale systems 

Land Surface Model

Atmospheric Model

Each model is typically run as 
its own component and loosely 
coupled to others 

Atmospheric model time scale 
is very fast, subsurface model 
time scale is very slow

More effects are now 
considered when studying 
effects of climate change on 
the water cycle

Groundwater / 
Vadose Model

 More capacity can be used to run more refined 
simulations or to add more physics to a simulation

 Additional physics generally results in 
— Multicomponent
— Multiphysics
— Multiscale 
— Multirate
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 Model flow 
— Transmisison - generators to substations
— Distribution - substations to houses 
— Previously assumed distribution was instantaneous 

relative to transmission

 Solar and wind energy: generation is now in the 
distribution network

 Wind energy adds new time scales and weather models 

 Solar energy is dependent on daylight and cloud cover

 These simulations are often wrapped in an optimization 
loop for contingency or market planning

Power grid simulations are becoming more multiphysics as 
renewables are being introduced into the simulations
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 Scientists often split such simulations based on the scientific models, rather than timescales.  
Consider,

𝑦𝑦′ 𝑡𝑡) = 𝑓𝑓1 𝑡𝑡, 𝑦𝑦 +⋯+ 𝑓𝑓𝑛𝑛 𝑡𝑡1𝑦𝑦 , 𝑦𝑦 (𝑡𝑡0 = 𝑦𝑦0

 The most used splitting is “Lie-Trotter” splitting:

𝑦𝑦1
′ 𝑡𝑡) = 𝑓𝑓1 𝑡𝑡, 𝑦𝑦1 , 𝑦𝑦1(𝑡𝑡0 = 𝑦𝑦0

𝑦𝑦2
′ 𝑡𝑡) = 𝑓𝑓2 𝑡𝑡, 𝑦𝑦2 , 𝑦𝑦2(𝑡𝑡0 = 𝑦𝑦1(𝑡𝑡0 + ℎ)

𝑦𝑦𝑚𝑚′ 𝑡𝑡) = 𝑓𝑓𝑚𝑚 𝑡𝑡, 𝑦𝑦𝑚𝑚 , 𝑦𝑦𝑚𝑚 (𝑡𝑡0 = 𝑦𝑦𝑚𝑚−1(𝑡𝑡0 + ℎ)

with solution, 𝑦𝑦(𝑡𝑡0 + ℎ) = 𝑦𝑦𝑚𝑚(𝑡𝑡0 + ℎ)

 Each partition of the operator may be integrated separately  (or even subcycled), but the highest 
order of accuracy is 1, even if each partition is integrated with a higher order method

A careful approach to time integration is important
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Splitting methods can suffer from low accuracy and stability

50 time steps, phase R subcycled inside phase D

1 “R” per “D” 5 “R” per “D” 10 “R” per “D”

𝑢𝑢 𝑡𝑡 =
𝑢𝑢0𝑒𝑒−𝜆𝜆𝜆𝜆

1 + 𝑢𝑢0
𝜆𝜆 𝑒𝑒−𝜆𝜆𝜆𝜆 −1

�̇�𝑢 = −2𝑢𝑢+ 𝑢𝑢2, 𝑢𝑢 0 = 1 , 𝑡𝑡 > 0Example from Estep et al. (2008)

In practice, when the “R” 
step generates an 
unphysical partial 
solution, this is often 
“limited” which lowers 
efficiency.

Phase R,                 subcycled inside phase D

For large time values, this goes to 0

�̇�𝑢𝑅𝑅 = 𝑢𝑢𝑅𝑅2 �̇�𝑢𝐷𝐷 = −𝜆𝜆𝑢𝑢𝐷𝐷
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Linear multistep (Adams and BDF) methods construct 
approximations based on prior states

 Retain a history of previous solutions
— Adams-Bashforth explicit
— Adams-Moulton implicit for nonstiff systems
— BDF implicit for stiff systems

 Solve up to one nonlinear system per time step
 Amenable to problems with strong reaction and 

diffusion effects
 Stiff integrators often use a predictor-corrector scheme

Traditional time integration methods have different approaches 
to achieving high order accuracy

Multistage (Runge-Kutta) methods construct 
approximations based on estimates of derivatives at multiple 
points within a single step

𝑧𝑧𝑖𝑖 = 𝑦𝑦𝑛𝑛−1 + Δ𝑡𝑡𝑛𝑛�
𝑗𝑗=1

𝑠𝑠

𝑎𝑎𝑖𝑖𝑗𝑗𝑓𝑓(𝑡𝑡𝑛𝑛𝑗𝑗 , 𝑧𝑧𝑗𝑗 ) , 𝑖𝑖 = 1, … 𝑠𝑠

𝑦𝑦𝑛𝑛 = 𝑦𝑦𝑛𝑛−1 + Δ𝑡𝑡𝑛𝑛�
𝑖𝑖=1

𝑠𝑠

𝑏𝑏𝑖𝑖𝑓𝑓(𝑡𝑡𝑛𝑛𝑖𝑖 + 𝑐𝑐𝑖𝑖Δ𝑡𝑡𝑛𝑛), 𝑧𝑧𝑖𝑖

𝑡𝑡𝑛𝑛𝑖𝑖 = 𝑡𝑡𝑛𝑛−1 + 𝑐𝑐𝑖𝑖Δ𝑡𝑡𝑛𝑛
 Use multiple internal stages per step
 More work per-step
 Can be explicit or implicit; Diagonally Implicit RK (DIRK) 

has 𝑎𝑎𝑖𝑖𝑗𝑗 = 0 for 𝑗𝑗 > 𝑖𝑖
 Amenable to spatial adaptivity and hyperbolic effects
 The 𝑎𝑎’s, 𝑏𝑏’s, 𝑐𝑐’s, and 𝑠𝑠 define the method, its order of 

accuracy, and its stability 

If the system has widely varying time scales, and the 
phenomena that change on fast scales are stable, 
then the problem is stiff [Ascher & Petzold 1998]
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Time steps are chosen to minimize local truncation 
error and maximize efficiency
 Time step selection

— Based on the method, estimate the time step error (embedded method of one lower order or direct error 
calculation)

— Accept step if ||E(∆t)||WRMS < 1; Reject it otherwise

— Choose next step, ∆t’, so that ||E(∆t’)|| WRMS is expected to be small

 Some algorithms also allow order adaption: give the largest step expected to meet the error condition

 Advanced “error controllers” adapt these step sizes to meet a variety of objectives:
— minimize failed steps
— maximize step sizes
— maintain smooth transitions in the step sizes as integration proceeds

 Temporal adaptivity can lead to much more efficient (and accurate) results
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Goals for such methods include:
 Stability/accuracy for each component, as well as inter-physics couplings
 Custom/flexible time step sizes for distinct components
 Robust temporal error estimation and adaptivity of step size(s)
 Ability to apply optimally efficient and scalable solver algorithms on problem components rather 

than a one-size-fits-all solver for a monolithic system
 Support for experimentation and testing between methods

Common approaches include:
 Implicit/explicit (IMEX)
 Multirate
 Parallel-in-time

Extensions and variations on these traditional methods target high 
order and stable methods for multirate and multiscale systems
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Implicit/explicit (IMEX) integrators try to match stiff 
integrators with stiff operators
 Consider the split problem,

𝑦𝑦′ 𝑡𝑡) = 𝑓𝑓E 𝑡𝑡,𝑦𝑦 + 𝑓𝑓𝐼𝐼 𝑡𝑡,𝑦𝑦 , 𝑡𝑡 ∈ 𝑡𝑡0 , 𝑡𝑡𝑓𝑓 , 𝑦𝑦 (𝑡𝑡0 = 𝑦𝑦0

where 𝑓𝑓E 𝑡𝑡,𝑦𝑦 contains the nonstiff terms and 𝑓𝑓I 𝑡𝑡,𝑦𝑦 contains the stiff terms
 Variable step size additive Runge-Kutta (RK) methods combine explicit (ERK) and diagonally implicit (DIRK) methods 

to enable an IMEX solver [Ascher et al. 1997; Araujo et al. 1997; Kennedy & Carpenter 2003; . . .]
 Solve for each stage solution, 𝑧𝑧𝑖𝑖, sequentially then compute the time-evolved solution, 𝑦𝑦𝑛𝑛

 Coefficients must be chosen to satisfy “order conditions,” constraints that, when satisfied, ensure the resulting 
method is of a specific order of accuracy

 Some methods allow an “embedding” of a method of 1 order lower than the target method computed with the 
same stage values and that can be used to estimate the error for use in adaptivity
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 These methods are popular in several fluids communities

 One area of strong use is in the nonhydrostatic atmospheric dynamics community
— Acoustic waves have a negligible effect on climate but travel much faster than 

convection (343 m/s vs 100 m/s horizontal and 1 m/s vertical), leading to overly
restrictive explicit stability restrictions

— Common to treat the gravity waves in the vertical implicitly and the rest of the 
system explicitly (Horizontally Explicit, Vertically Implicit (HEVI)) methods

— For these models, parallel decomposition is only over the horizontal, so the implicit solve can be a sweep over independent 

columns contained on a processor with no communication required
— Significant speedups have been observed for these methods over explicit [Vogl et al. 2020; Gardner et al. 2018; Giraldo 2013; 

Weller, Lock, and Wood 2013; …]

 Current work is in developing methods targeting larger stability regions in areas of need for particular applications
— Low storage methods reduce the numbers of stages needed in memory at any time [Kennedy, Carpenter, and Lewis 2000]
— Methods with large coverage of the imaginary axis for stability [Steyer et al. 2019]

IMEX methods are highly effective when a fast operator is 
resulting in a very restrictive CFL stability step size requirement

https://e3sm.org
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The parareal method applies a two-level iteration 
[Lions, Maday, and Turninici, 2001].

Let: G(𝑡𝑡𝑛𝑛, 𝑡𝑡𝑛𝑛−1,𝑢𝑢𝑛𝑛−1) and F(𝑡𝑡𝑛𝑛, 𝑡𝑡𝑛𝑛−1,𝑢𝑢𝑛𝑛−1) be 
coarse and fine approximations, respectively, to 
𝑢𝑢(𝑡𝑡𝑛𝑛) with initial condition 𝑢𝑢(𝑡𝑡𝑛𝑛−1) = 𝑢𝑢𝑛𝑛−1

Sequential time stepping is only one way of solving a 
large time-dependent system

Parareal:

From: Ong and Schroder, 2020

The propagator, 𝐹𝐹, can be applied to all time 
intervals in parallel since it is initiated by the 
coarse time approximation done with 𝐺𝐺.

Let F(𝑡𝑡𝑛𝑛+1,𝑡𝑡𝑛𝑛 ,𝑈𝑈𝑛𝑛𝑘𝑘) denote the exact solution at 𝑡𝑡𝑛𝑛+1 and
G(𝑡𝑡𝑛𝑛+1, 𝑡𝑡𝑛𝑛,𝑈𝑈𝑛𝑛𝑘𝑘) be a one step method with local truncation 
error bounded by C1Δ𝑇𝑇𝑝𝑝+1.  If

then the solution from parareal is of order 𝑘𝑘𝑝𝑝, where 𝑘𝑘 is 
the iteration number, and 𝑝𝑝 is the order of the coarse 
integrator, [Gander and Hairer, 2008].

As the method converges, the distance between 
G(𝑡𝑡𝑛𝑛+1, 𝑡𝑡𝑛𝑛,𝑈𝑈𝑛𝑛𝑘𝑘) and G(𝑡𝑡𝑛𝑛+1,𝑡𝑡𝑛𝑛 ,𝑈𝑈𝑛𝑛𝑘𝑘+1) gets smaller until just 
the result of the fine propagator is left.
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The Parallel Full Approximation Scheme in Space and Time (PFASST) algorithm [Emmett and Minion, 2012]:
 Uses a spectral deferred correction (SDC) algorithm as the coarse and fine integrators
 Extends Parareal to a nonlinear multilevel algorithm through the nonlinear multigrid Full Approximation Scheme
 In SDC, one uses a quadraturescheme to approximate a residual to drive a correction propagation

— Requires a quadrature scheme 
— Accuracy increases with each iteration of the multilevel hierarchy, subject to accuracy of the quadrature
— For multiphysics applications, inside integrator can use a first order splitting
— Has a multirate extension

Has been used in reactive flow modeling to get to higher order without changing the underlying operator split methods 
[Minion et al., 2003; Emmett et al., 2014]

Parareal ideas can be combined with spectral deferred corrections 
to give a flexible multiphysics integrator as seen in PFASST

See Gander 2015 for review of PinT methods.
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 For the ordinary differential equation

 Consider the general one-step method

 For the linear case (for simplicity), time stepping is a block forward solve
 An 𝒪𝒪(𝑁𝑁) direct method, but sequential

 Replace the sequential solve with a multigrid reduction in time (MGRIT)
 Extend to nonlinear systems with the Full Approximation Scheme multigrid method
 An 𝒪𝒪(𝑁𝑁) iterative method, but highly parallel

Multigrid reduction in time (MGRIT) is a parallel multigrid 
method applied in the time domain

𝑦𝑦𝑖𝑖 = Φ𝑖𝑖 𝑦𝑦𝑖𝑖−1 + 𝑔𝑔𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑁𝑁

𝐼𝐼
−Φ 𝐼𝐼

⋱ ⋱
−Φ 𝐼𝐼

𝑦𝑦0
𝑦𝑦1
⋮
𝑦𝑦𝑁𝑁

=

𝑔𝑔0
𝑔𝑔1
⋮
𝑔𝑔𝑁𝑁

𝑦𝑦′ 𝑡𝑡 = 𝑓𝑓 𝑡𝑡, 𝑦𝑦 𝑡𝑡 , 𝑦𝑦 0 = 𝑦𝑦0
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 Relaxation alternates between F / C-points
— F-relaxation: integration in coarse intervals 

(done in parallel)
— C-relaxation: one integration step

 Restrict the fine grid approximation and 
residual to the coarse grid 
— Coarse system is a time re-discretization

 Solve the coarse system and compute the
coarse grid error approximation

 Correct the fine grid solution at C-points, then 
apply F-relaxation

The two-grid MGRIT algorithm applies two types of 
relaxation methods

F-relaxation

t0 t1 t2 t3 …

T0 T1 …

δt

∆T = mδt

tN

F-point
C-point

C-relaxation

Prolongation
(interpolation)

Multigrid in Time
V-Cycle iteration

Smoothing
(relaxation)

xt

Restriction
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XBraid implements the MGRIT algorithm, as a 
nonintrusive black box

 XBraid is designed to be as nonintrusive as possible
— Requires only the “step” function (identical to the sequential one) and some utilities
— Only stores C-points to minimize storage
— Allows “spatial” parallelism (MPI or openMP)
— Implements V- and F- cycles
— Possibility of temporal adaptivity if the step function supports it

 Parallel in time with XBraid has delivered speedups as great as 50x in applications (fluid 
flow in particular)

 Speedups increase with increases in the number of time steps

 Great example of taking linear algebra ideas into a new context

“XBraid: Parallel multigrid in time” http://llnl.gov/casc/xbraid
R. Falgout et al., “Parallel time integration with multigrid”

http://llnl.gov/casc/xbraid
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 Integrate the slow partition with a method using step size H

 Integrate the fast partition using step size h < H

 Coupling information needs to be shared between slow and fast integrations, and different 
methods handle this differently

 Result is higher order accuracy while advancing operator partitions at different rates

Multirate methods advance multiple timescales within a 
problem with differing step sizes

𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡 = 𝑓𝑓𝑆𝑆 𝑡𝑡,𝑦𝑦 + 𝑓𝑓𝐹𝐹 𝑡𝑡,𝑦𝑦 , 𝑦𝑦 𝑡𝑡0 = 𝑦𝑦0

 Consider
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Savcenco, et al. 2007: developed a method for solving partitioned systems when the fast and slow parts 
are dictated by variable:

In the Savcenco approach, all equations are solved 
with a large step, an error test is performed, and the 
variables whose accuracy exceeds tolerance are 
evolved again with a smaller step size, and so on

The time integration community is developing multirate methods to 
try to address stability and accuracy issues with operator splitting

Savcenco time slab
tn

tn+1

where
fastslow

y = 𝑦𝑦1𝑦𝑦2 |… …𝑦𝑦𝑁𝑁

This method has been used in many applications, but 
overall accuracy and stability are not fully understood

𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡 =

𝑓𝑓𝑠𝑠(𝑡𝑡,𝑦𝑦)
0 +

0
𝑓𝑓𝑓𝑓(𝑡𝑡,𝑦𝑦)
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Multirate infinitesimal step methods, based on the Runge-Kutta
framework, have significant efficiency advantages

Knoth & Wolke 1998; Schlegel et al. 2009

Given a RK method for the slow time scale, advance as follows:
1. Set 𝑧𝑧1 = 𝑦𝑦𝑛𝑛−1
2. For each slow Runge-Kutta stage 𝑧𝑧𝑖𝑖, 𝑖𝑖 = 2, … , 𝑠𝑠 + 1:

a) Let 𝑣𝑣 𝑡𝑡𝑛𝑛,𝑖𝑖−1
𝑆𝑆 = 𝑧𝑧𝑖𝑖−1

b) Compute slow forcing
𝑟𝑟𝑖𝑖−1 = 1

𝑐𝑐𝑖𝑖
𝑆𝑆−𝑐𝑐𝑖𝑖−1

𝑆𝑆 ∑𝑗𝑗=1𝑖𝑖−1(𝐴𝐴𝑖𝑖,𝑗𝑗𝑆𝑆 − 𝐴𝐴𝑖𝑖−1,𝑗𝑗
𝑆𝑆 ) 𝑓𝑓𝑆𝑆 𝑡𝑡𝑛𝑛,𝑗𝑗

𝑆𝑆 , 𝑧𝑧𝑗𝑗

c) For 𝜏𝜏 ∈ [𝑡𝑡𝑛𝑛,𝑖𝑖−1
𝑆𝑆 ,𝑡𝑡𝑛𝑛,𝑖𝑖

𝑆𝑆 ], solve the fast ODE

�̇�𝑣 𝜏𝜏 = 𝑓𝑓𝐹𝐹 𝜏𝜏,𝑣𝑣 + 𝑟𝑟𝑖𝑖−1
d) Set 𝑧𝑧𝑖𝑖 = 𝑣𝑣(𝑡𝑡𝑛𝑛,𝑖𝑖

𝑆𝑆 )
3. Set 𝑦𝑦𝑛𝑛 = 𝑧𝑧𝑠𝑠+1

The slow stage times are 𝑡𝑡𝑛𝑛,𝑗𝑗
𝑆𝑆 = 𝑡𝑡𝑛𝑛−1 + 𝑐𝑐𝑗𝑗𝑆𝑆ℎ𝑆𝑆 and 𝐴𝐴𝑠𝑠+1,𝑗𝑗

𝑆𝑆 = 𝑏𝑏𝑆𝑆

 Require only one traversal of any point in time for 
each RHS partition 

 Solves a modified ODE at the fast time scale

 Provides flexibility for fast time scale integration

 Inner method may be subcycled -> a telescopic 
method (allows for n-rate)

 Because partitions are integrated separately, can 
leverage single rate infrastructure

 Inner and outer methods can be problem-specific
 Numerous specific methods developed:

— 2nd and 3rd order [Knoth & Wolke 1998; Schlegel et al. 
2009]

— 4th order [Bauer & Knoth 2019]
— 3rd and 4th order multirate with IMEX splitting at the 

slow time scale [Chinomona et al. 2021]
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 (a{s,s} , a{s}) for the slow component;   (a{f,f}, a{f}) for the fast component
 The coefficients a{s,f,λ}, a{f,s,λ} realize coupling between the components

Generalized Additive Runge-Kutta (GARK) methods (Sandu and 
Günther, 2015) provide a more general framework
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Slow base scheme

Fast base scheme

Coupling of slow to fast

Coupling of fast to slow

Subcycling
Due to the high 
numbers of method 
parameters, developing 
order conditions is 
challenging.
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 Many degrees of freedom for method design; order conditions have been developed up to 4th order 
for two-rate methods (Sarshar et al., 2019): 
— 2 for order 1
— 4 for order 2
— 10 for order 3
— 36 for order 4
— Makes method formulation very challenging

 Unlike MIS methods, GARK can traverse time intervals many times

 Methods up to 4th order have been derived
— Sarshar, et al., 2019
— Sandu, 2019, developed MIS methods within the GARK framework using a time dependent 

forcing at the fast scale rather than the constant forcing in MIS

Many high-order GARK methods have been formulated
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 For implicit methods (implicit on both slow and fast), complexities arise:
— Solve decoupled methods solve each partition separately
— Solve-coupled methods include coupling between the fast and slow partitions in implicit solves: 

Significantly more complex solver infrastructure is needed for these

 Stability is surprisingly difficult to analyze – unclear even what test problem to use

 Recent results show limitations of stability for these methods
— Theorem:  A decoupled GARK method is conditionally stable for a real 2D test problem; stability 

depends on M, the ratio between the fast and slow scales
— Theorem: An internally consistent multirateGARK method of order exactly one has conditional

scalar stability for all but a finite number of multirate ratios, M
— Higher orders harder to prove properties, but we expect stability very limited by size of M 

 Relax requirement for internal consistency (stage “times” between fast and slow no longer are 
required to match) gives better stability
— S. Roberts has new methods that do this
— Implementation is less general

Stability properties for implicit multirate methods are being investigated

Roberts, Loffeld, Sarshar, W., and Sandu, 2021
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So, why am I talking about time integrators in a course on scalable 
linear algebra?
 Generally, any implicitness in a time integrator 

will require solution of nonlinear systems at each 
time step or stage (in a multistage method)

 These nonlinear solves often require linear 
solves at each iteration 

 The data layout and memory needs of the 
solvers can impact how the rest of the problem
is set up

 Time integrators are in the middle of the 
algorithm stack – called by application and call 
linear algebra

 One goal is to make the integrators and
nonlinear solvers agnostic of data layout in
memory

Control passes from integrator 
to solvers and application code 

as integration progresses

Integrator

Nonlinear Solver

Linear solver

Application code
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Many time integrators and nonlinear solvers can be 
implemented in ways that allow for very flexible software

 Most methods can be written in terms of operations on data

 Implicit time integrators can be made more efficient through control of properties of the 
nonlinear and linear solver, but these properties can be parameterized, e.g., 
— Stopping criteria
— How often to call setup
— Max iterations before cutting a time step and retrying
— …

 Nonlinear solvers can be made more efficient through control of properties of the subsidiary 
linear solver, but these properties can be parameterized

 Linear solvers may require detailed data information:
— Iterative: only needs action of the linear operator on a matrix rather than the full matrix
— Direct: Requires the matrix in specific formats
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With an implicit integrator, a nonlinear system must be solved at 
every stage or every step
Writing the systems as root-finding problems gives:
ODE w/ multistep method:

DAE w/ multistep method:

ODE w/ multistage method:

ODE w/ multistep method:

ODE w/ multistage method:

Writing the systems as fixed point problems gives*:

*DAEs are often too stiff for fixed point methods to be useful

Historical note: 
Newton-Krylov methods 

were developed in 
tandem with the first 
fully adaptive efficient 

implicit multistep 
integrators in 

the 1980s.

Applying Newton’s method gives a linear system for the update:

Modern stiff integrator codes will 
use inexact Newton methods with 
iterative solvers for large systems 
and Modified Newton methods for 
smaller ones where the factorization 
can be reused over many Newton 
iterations and time steps.

For ODEs, this amounts to solving 𝐼𝐼 − 𝛼𝛼Δ𝑡𝑡𝐽𝐽 as the linear system
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 SUNDIALS is a software library consisting of ODE and 
DAE integrators and nonlinear solvers

 Written in C with interfaces to Fortran

 Designed to be incorporated into existing codes

 Nonlinear and linear solvers and all data use is fully 
encapsulated from the integrators and can be user-
supplied

 All parallelism is encapsulated in vector and solver 
modules and user-supplied functions

 Freely available; released under the BSD 3-Clause 
license (>90,000 downloads in 2020)

 Detailed user manuals are included with each package

SUite of Nonlinear and DIfferential-
ALgebraic Solvers

https://computing.llnl.gov/casc/sundials
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 CVODE, IDA, and their sensitivity analysis variants (forward and adjoint), CVODES and IDAS are based on linear multistep 
methods
— CVODE solves ODEs, �̇�𝑦 = f(t, y)

— IDA  solves DAEs, 𝐹𝐹(𝑡𝑡, 𝑦𝑦, �̇�𝑦) = 0
— Adaptive in both order and step sizes

— Both packages include stiff BDF methods
— CVODE includes nonstiff Adams-Moulton methods

 ARKODE is designed to work as an infrastructure for developing adaptive one-step, multistage time integration methods

— Originally designed to solve 
𝑀𝑀(𝑡𝑡) may be the identity or any nonsingular (and optionally time-dependent) mass matrix (e.g., FEM)

— Multistage embedded methods give rise to adaptive time steps
— Three steppers: ARKStep (explicit, implicit, and additive IMEX Runge-Kutta methods), ERKStep (streamlined ERK 

implementation), and MRIStep (multirate infinitesimal step methods)

— Xbraid wrappers for SUNDIALS vectors and the explicit, implicit, and IMEX methods from ARKStep

SUNDIALS offers packages with linear multistep and 
multistage methods
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The MRIStep (multirate infinitesimal step) module is our newest 
module in ARKODE and is still expanding in capability
 The new MRIStep module supports 2nd, 3rd, and 4th order methods
 The slow time scale is integrated with implicit, explicit, or IMEX methods
 The slow time scale uses a user-defined ∆t for the slow operator that 

can be varied between slow steps
 The fast time scale calls ARKStep and thus allows for explicit, implicit, or 

IMEX integration (user-supplied fast integrator support coming soon)
 The fast time scale can use adaptive or fixed time step sizes
 Supports user-defined method tables for both time scales
 Supports MRI-GARK methods (Sandu, SIAM J. Numer. Anal., 57, 2019), 

including solve-decoupled, diagonally-implicit treatment of slow scale
 Currently available

— 2nd and 3rd order multirate MIS methods
— 4th order multirate MRI-GARK methods, explicit and solve decoupled implicit

— 3rd and 4th order multirate with IMEX splitting at the slow time scale (soon)

Comparison of 3rd and 4th order IMEX-MRI methods in 
SUNDIALS with 1st and 2nd order splitting approaches 
on a 1D advection-diffusion-reaction test. The IMEX-
MRI methods show greater accuracy and efficiency. 
Figure courtesy of R. Chinomona (SMU).
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The SUNDIALS strategy for parallelism relies heavily on 
encapsulation of integrators from data and solvers
 For distributed parallelism:

— Integratorlogic is executed by each distributed task
— Underlying data structures, solvers, and problem-defining functions implement distributed code

 For GPU parallelism:
— Keep integrator logic on CPU
— Put data on the GPU and leave it there
— Applications perform function evaluations on the GPU: only scalars transfer to the CPU unless the user needs 

to output their data
— Supply native vector data structures with optimized methods for each programming environment
— Supply interfaces to multiple linear solver packages with GPU-enabled direct solvers

 Flexibility for users to supply their own data structures, solvers, and memory managers
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The Exascale Computing Project gave us a specific on-node 
use case
SUNDIALS is used as a local integrator for many small independent subsystems, e.g., reactive flow problems where 
chemical systems are split from the flow 

 Group the systems and integrate the group as a larger system
— No communication needed between systems
— Allows for longer vectors and better performance
— Each system has the same structure
— Suffers from requiring easy systems to use small time steps dictated 

by hard systems

 Solve multiple groups simultaneously in different CPU threads/GPU streams

 Linear solver encapsulation allows for batching solves
— Need fast, GPU-enabled linear solvers designed for 

block-diagonal linear systems
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 Several GPU-enabled vector implementations are released with SUNDIALS:
— On-node: CUDA, HIP, SYCL, RAJA (CUDA and HIP backends), and OpenMPDEV

(target offload) 
— Distributed: Parallel, hypre (ParHyp), PETSc, and Trilinos (Tpetra) 
— Hybrid: ManyVector and MPIPlusX

 Adding more GPU-enabled solvers
— Iterative solvers derive GPU support through use of GPU-enabled vectors 
— CuSolver and MAGMA direct solvers also support GPU uses

 Straightforward to implement problem-specific vectors and solvers
 New memory manager API allows applications to use their own memory managers

To support pre-exascale and exascale uses we have added 
more vectors and solver interfaces to SUNDIALS

N_Vector
Interface

Vectors
Parallel 
(MPI)

SYCL

PETSc

RAJA

MPIPlusXOpenMP 
DEV

Serial

HIP

CUDA

ManyVector ParHyp 
(hypre)

Trilinos 
(Tpetra)

OpenMP Pthreads

SUNLinearSolver
API

Linear Solver Modules

SPTFQMR

DENSE

SUPERLU_MT

SPFGMR

KLU

SPGMR

LAPACK BAND

SPBCG

BAND

SUPERLU_DIST

PCG

LAPACK DENSE

CUSOLVER MAGMA

GPU-enabled direct linear solvers via interfaces to cuSOLVER1 and MAGMA2 libraries (Gingko is planned)
1https://developer.nvidia.com/cusolver 2https://icl.cs.utk.edu/magma/

Gingko

https://developer.nvidia.com/cusolver
https://icl.cs.utk.edu/magma/
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A note on scaling and adaptive integrators

 To ensure the relative weights of various components are accounted for, adaptive integrators measure any error-like 
quantity with a weighted root mean square norm

 Iterative solvers
— To help better condition the linear algebra, SUNDIALS applies 

a scaling vector, 𝑤𝑤 above is set to S1 and S2 below, for 
both equations and unknowns in its preconditioned 
Krylov methods so that it solves               

— These factors are critical to good performance

 Direct solver – SUNDIALS did not scale matrices in the past 
as most linear algebra packages provided pivoting.  With direct 
solvers now required on the GPU, we are rethinking this practice

Unscaled and scaled Jacobians from a dodecane 
reaction system modeled with PelePhysics.  The
condition number dropped from ~3e15 to ~100.



34
LLNL-PRES-821168

 1D Advection-Reaction PDE solved with an IMEX 
method from ARKODE

 Reactions treated implicitly; advection treated explicitly

 Nonlinear solver is a “Task-local” Newton solve (solve 
per spatial node) + direct inversion

 Greatest speedup achieved when using the CUDA 
vector and CUDA for the RHS

MPI+X performance on a demonstration 
problem on Summit shows benefit from GPU use 

Weak scaling using the MPI+X vector. 
Configurations include 1, 4, 16, 64, and 256 Summit 
nodes, each with 6 MPI tasks per node(1 MPI task 
per GPU) except the MPI-only which uses 40 MPI 
tasks per node. Data points are annotated with the 
speedup over the configuration with the MPI+Serial
vector.
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We have been working with the Pele combustion project to 
transition to use of GPUs
 The Pele code suite uses AMReX for structured grid adaptive mesh refinement and uses an 

integrator to evolve the combustion mechanism within each grid cell 

 PelePhysics: Interfaces to CVODE and ARKODE, batched cuSolver interface allows for setting 
matrix entries directly on GPU, HIP and CUDA vectors interfaced.  This infrastructure is 
available to both PeleC and PeleLM

 PeleLM: CVODE is default chemistry integrator; testing solver options, iterative and direct

 PeleC: Explicit integrator in ARKODE is now the default integrator for chemistry; ERKStep
integrator in SUNDIALS with CUDA provides 6x speedup over fastest CPU configuration

PeleLM Profiles Single-level premixed flame
• Wrinkled flame sheet
• 22 species, 84 reactions
• 4.3M cells / node
• ~ 25x speedup on 2048 nodes
• 42 P9 cores vs. 6 V100’s per node 

on Summit

Figures and results courtesy of Marc Day (NREL) and Jon Rood (NREL)
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 Interfaced ARKODE package with AMReX adaptive mesh 
refinement library allowing explicit, implicit, and implicit-
explicit single and multiratetime integrators to evolve AMReX
multiphysics systems

 Compared ARKODE MRIStep multirate infinitesimal step 
methods with AMReX native SDC implementation which allows 
operator split with subcycling as the inner integrator

 Comparisons done on an advection-diffusion-reaction system 
with reactions integrated with 1 to 8 fast steps per 1 slow step 
for the advection and diffusion

 MRI methods show a significant performance advantage over 
the single-rate SDC, and MRI methods have a sizable efficiency 
advantage over the SDC multirateschemes (MRSDC methods)

Multirate methods can be competitive with SDC

Comparison of the error vs CPU time for SDC schemes 
using the standard four iterations per multiphysics time 
step with SUNDIALS IMEX-MRI multirate methods on an 
advection-diffusion-reaction system. MRI methods are 
denoted MRI-P(k), where is P the order of the fast 
method and k is the number of fast steps per slow step. 
(Tests run on LLNL Quartz system using 8 MPI ranks 
distributed over a single node with 2 Xeon E5-2695  v4  
chips.



37
LLNL-PRES-821168

 As HPC systems continue to gain capacity and speed, scientific simulations continue to grow in 
complexity and temporal scales

 Effective integration methods 

— Rely on operator splittings but achieve high order accuracy and stability

— Introduce implicitness only where necessary in order to achieve faster run times

 Implicit approaches require efficient nonlinear and linear algebraic solvers

 Well-designed integrator packages can easily take advantage of new and efficient solver software 
underneath the integrators

 Parallelism in time will be essential for continued progress in many fields

Concluding remarks
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