University of Arkansas, Fayetteville

ScholarWorks@UARK

Mathematical Sciences Spring Lecture Series Mathematical Sciences

4-6-2021

Lecture 11: The Road to Exascale and Legacy Software for Dense
Linear Algebra

Jack Dongarra
University of Tennessee

Follow this and additional works at: https://scholarworks.uark.edu/mascsls

b Part of the Algebra Commons, Computer and Systems Architecture Commons, Databases and
Information Systems Commons, Data Storage Systems Commons, Digital Communications and
Networking Commons, Numerical Analysis and Computation Commons, Numerical Analysis and
Scientific Computing Commons, Ordinary Differential Equations and Applied Dynamics Commons, and

the Programming Languages and Compilers Commons

Citation
Dongarra, J. (2021). Lecture 11: The Road to Exascale and Legacy Software for Dense Linear Algebra.
Mathematical Sciences Spring Lecture Series. Retrieved from https://scholarworks.uark.edu/mascsls/10

This Video is brought to you for free and open access by the Mathematical Sciences at ScholarWorks@UARK. It
has been accepted for inclusion in Mathematical Sciences Spring Lecture Series by an authorized administrator of
ScholarWorks@UARK. For more information, please contact ccmiddle@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/mascsls
https://scholarworks.uark.edu/masc
https://scholarworks.uark.edu/mascsls?utm_source=scholarworks.uark.edu%2Fmascsls%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/175?utm_source=scholarworks.uark.edu%2Fmascsls%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.uark.edu%2Fmascsls%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.uark.edu%2Fmascsls%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.uark.edu%2Fmascsls%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=scholarworks.uark.edu%2Fmascsls%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.uark.edu%2Fmascsls%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.uark.edu%2Fmascsls%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=scholarworks.uark.edu%2Fmascsls%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=scholarworks.uark.edu%2Fmascsls%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=scholarworks.uark.edu%2Fmascsls%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/121?utm_source=scholarworks.uark.edu%2Fmascsls%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=scholarworks.uark.edu%2Fmascsls%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/mascsls/10?utm_source=scholarworks.uark.edu%2Fmascsls%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ccmiddle@uark.edu

The Road to Exascale and Legacy
Software for Dense Linear Algebra

Jack Dongarra
University of Tennessee

Oak Ridge National Laboratory
University of Manchester

Copy of slides at http://bit.ly/dongarra-arkansas-042021

4/1/21

http://bit.ly/dongarra-arkansas-042021

A~
<= Dense Linear Algebra

- Common Operations

Ax=b; minllAx—->bll; Ax= Ax

- A major source of large dense linear systems is problems involving the solution of
boundary integral equations.

« The price one pays for replacing three dimensions with two is that what started as a
sparse problem in O(n3) variables is replaced by a dense problem in O(n?).

- Dense systems of linear equations are found in numerous other applications,
including:
+ Airplane wing design;
« Radar cross-section studies; - :
* Flow around ships and other off-shore constructions;
« Diffusion of solid bodies in a liquid;
* Noise reduction; and
4121 © Diffusion of light through small particles. ,

N~
evor Existing Math Software - Dense LA

DIRECT SOLVERS |License Support Type Language Mode Dense Sparse Direct Iiﬂj{fv"c Eigszgl?\l:iuc Last release date
Real [Complex| 101 | C | C++ |Shared| Accel. | Dist SPD | SI | Gen |SPD | Gen |Sym | Gen
Chameleon CeCILL-C yes X X X X C M X 2018-09-15
DPLASMA BSD yes | X X X X c [M| x 2014-04-14
Eigen MPL2 yes | X X X X X | X X X | x 2018-07-23
Elemental New BSD yes X X X M X X X X 2017-02-06
ELPA LGPL yes | X X |[Fo0| x X M | X 2018-06-01
FLENS BSD ves | X X X X X 2014-05-11
LAPACK BSD ves | X X X | x X X 2017-11-12
LAPACK95 BSD yes | X X X X X 2000-11-30
libflame New BSD yes | X X X | x X X 2014-03-18
MAGMA BSD yes | X X X | x X |crox X X | X | x 2018-06-25
NAPACK BSD yes | X X X X X X ?
PLAPACK LGPL yes | X X X | x M | X 2007-06-12
PLASMA BSD yes | X X X | x X X 2018-09-04
ScaLAPACK BSD ves | X X X | x MP| X 2018-08-20
Trilinos/Pliris BSD ves | X X X X M | X 2015-05-07
ViennaCL MIT yes | X X X |cox X X | x | x X 2016-01-20
http://www.netlib.org/utk/people/JackDongarra/la-sw.html
¢+ LINPACK, EISPACK, LAPACK, ScaLAPACK
4/1/21 3

»PLASMA, MAGMA

http://www.netlib.org/utk/people/JackDongarra/la-sw.html

o

<+ DLA Solvers

- We are interested in developing Dense Linear
Algebra Solvers

- Retool LAPACK and ScalL APACK for multicore and
hybrid architectures

4/1/21

Over the Past 50 Years Evolving SW and Alg

Tracking Hardware Developments g

Software/Algorithms follow hardware evolution in time

EISPACK (1970's)
(Translation of Algol o F66)

LINPACK (1980's)
(Vector operations)

LAPACK (1990's)
(Blocking, cache friendly)

ScaLAPACK (2000's)
(Distributed Memory)

PLASMA / MAGMA (2010's)
(Many-core friendly & GPUs)

SLATE (2020's)
(DM and Heterogeneous arch)

soee (8

......
......
......
tAPAcH

......

Rely on
- Fortran, but row oriented

Rely on
- Level-1 BLAS operations
- Column oriented

Rely on
- Level-3 BLAS operations

Rely on
- PBLAS Mess Passing

Rely on

- DAG/scheduler
- block data layout

Rely on C++
- Tasking DAG scheduling
- Tiling, but tiles can come from anywhere
- Heterogeneous HW, Batched dispatch

r\
h
ICL

- What do we mean by performance?

¢ What is the unit: floating point operations per second (flop/s)?
> flop/s is a rate of execution, some number of floating point operations per second.

> Whenever this term is used it will refer to 64 bit floating point operations and the
operations will be either addition or multiplication.

» Tflop/s refers to trillions (10'2) of floating point operations per second
> Pflop/s refers to 10'® floating point operations per second.
> Eflop/s is 108 floating point operations per second.

¢ What is the theoretical peak performance?

» The theoretical peak is based not on an actual performance from a benchmark run,
but on a paper computation to determine the theoretical peak rate of execution of
floating point operations for the machine.

> The theoretical peak performance is determined by counting the number of floating-

point additions and multiplications (in 64-bit precision) that can be completed during
a period of time, usually the cycle time of the machine.

> For example, an Intel Skylake core at 2.1 GHz can complete 32 floating point
operations per cycle or a theoretical peak performance per core of:

32 fl.pt. ops / cycle * 2.1 G-cycles / second = 67.2 Gflop/s
> With 24 cores per socket: 24*67.2 Gflop/s or 1.61 Tflop/s for the socket.

N
cLor Peak Performance - Per Core

FLOPs
. . . g S = cores x clock x
Floating point operations per cycle per core i

» Most of the recent computers have FMA (Fused multiple add):
(i.e. X —x + y*z in one cycle)

> Intel Xeon earlier models and AMD Opteron have SSE2
> 2 flops/cycle/core DP & 4 flops/cycle/core SP

> Intel Xeon Nehalem (2009) & Westmere (2010) have SSE4
> 4 flops/cycle/core DP & 8 flops/cycle/core SP

> Intel Xeon Sandy Bridge(2011) & Ivy Bridge (2012) have AVX (vector instructions)
> 8 flops/cycle/core DP & 16 flops/cycle/core SP

> Intel Xeon Haswell (2013) & Broadwell (2014) AVX2
> 16 flops/cycle/core DP & 32 flops/cycle/core SP
> Xeon Phi (per core) is at 16 flops/cycle DP & 32 flops/cycle SP

> Intel Xeon Skylake (server) & KNE-AVX-512
» 32 flops/cycle/core DP & 64 flops/cycle/core SP
We # Skylake w/24 cores & Xeon-Rhi-{Knight's-Landing)}-w/68-cores
e # » Intel Xeon Cascade Lake, Kaby Lake, Coffee Lake, Ice Lake...
» 32 flops/cycle/core DP & 64 flops/cycle/core SP
» Next Gen Sabphire Rapids. with AMX (matrix instructions)

S .
Commodity Processors ...

Over provisioned for floating point operations
Today it's all about data movement

Memory Access Latencies in Clock Cycles

Xeon €5-2600 167 cycles to move a word from memory to a register

In 167 cycles single core: 5344 DP Flops, socket: >40K Flops

= —
CORE3 CORE4

CORES CORE6

Main memory 167

CORE7 CORE8

L3 Cache Full Random access NG 38

L3 Cache In Page Random access [18

llllll
eeeeeeeee

L3 Cache sequential access [l 14

L2 Cache Full Random access [l 11

Each Core: 32 Flops per core / cycle
L2 Cache In Page Random access [l 11
W|1-h 26 GHZ L2 Cache sequential access M 11

(32 flops/cycle*2.6 Geycles/sec = 83.2 Gflop/s) L1 Cache In Full Random access

EGCh Cor.e Peak DP 83.2 Gflop/s L1 Cache In Page Random access
1 Cache sequential access

Each Socket (8 cores) Peak 665.6 Gflopks

:j Need Cache Friendly Algorithms
.. Matrix Multiply and Data Reuse

0 50 100 150 200

Memory transfer

* One level of memory model on my laptop:

aswe
Cycle time = 2.3 GHz
Turbo Boost = 3.5 GHz

3.5 GHz*16 flops/cycle =
56 Gflop/s per core

56 GFLOP/sec/core x 2 cores

A

A
Cache

(6 MB)

25.6 GB/sec]

Main memory

(16 GB)

(Omitting latency here.)

The model IS simplified (see next slide) but it provides an upper bound on
performance as well. l.e., we will never go faster than what the model predicts.

4/1/21

(And, of course, we can go slower ...)

FMA: fused multiply-add

AXPY: | — ol ;. H for (j=0;j<n;j++) n MUL
y[i] +=a * x[i]; nADD
2n FLOP
(without increment) n FMA
por: & — I ipha = 0e+00; n MUL
for (j=0;j<n;j++) n ADD
alpha += x[i] * y[i]; 2n FLOP
n FMA
(without increment)

Note: It is reasonable to expect the one loop codes shown here to perform as well as
their Level 1 BLAS counterpart (on multicore with an OpenMP pragma for example).

* Take two double precision vectors x and y of size n=375,000.

o — I
DOT: a

 Data size:

— (375,000 double) * (8 Bytes / double) = 3 MBytes per vector

(Two vectors fit in cache (6 MBytes). OK.)

* Time to move the vectors from memory to cache:
— (6 MBytes) / (25.6 GBytes/sec) = 0.23 ms

* Time to perform computation of DOT:
— (2n flops) / (56 Gflop/sec) = 0.013 ms

56 GFLOP/sec/core x 2 cores

25.6 GB/sec H

Vector Operations

total_time > max (time_comm, time_comp)
=max (0.23ms, 0.01lms) =0.23ms

Performance for DOT < 3.2 Gflop/s
Peak is 56 Gflop/s

We say that the operation is communication
bounded. No reuse of data.

Level 1, 2 and 3 BLAS

Level 1 BLAS Matrix-Vector operations 2nrLoes

2n memory references
M — ol . B o «— IR |
AXPY: DOT: AXPY: 2n READ, n WRITE
DOT: 2n READ

RATIO Fl Pt Ops to Memory Ops: 1:1

Level 2 BLAS Matrix-Vector operations

GEMV: H a X 2n2 FLOPs
A n2 memory references

RATIO Fl Pt Ops to Memory Ops: 2:1

Level 3 BLAS Matrix-Matrix operations

GEMM: E 2n3 FLOPs
3nZ memory references
C —q +p @ 3n2READ, n2 WRITE
RATIO Fl Pt Ops to Memory Ops: n:2

Double precision matrix A and vectors x and y of size n=860.

GEMV: K a X R
A
Data size:

— (8602 +2*860 double) * (8 Bytes / double) ~ 6 MBytes
Matrix and two vectors fit in cache (6 MBytes).

Time to move the data from memory to cache:
— (6 MBytes) / (25.6 GBytes/sec) = 0.23 ms

Time to perform computation of GEMV:
— (2n2flops) / (56 Gflop/sec) = 0.026 ms

Matrix - Vector Operations

total_time > max (time_comm, time_comp)
=max (0.23ms, 0.026ms) =0.23ms

56 GFLOP/sec/core x 2 cores

Performance for GEMV < 6.4 Gflop/s A

25.6 GB/sec H

Peak is 56 Gflop/s : | :

We say that the operation is communication
bounded. Very little reuse of data.

Take two double precision matrices A and B of size n=500.

GEMM: — q +B
n
Data size:

— (500% double) * (8 Bytes / double) = 2 MBytes per matrix
(Three matrices fit in cache (6 MBytes). OK.)

Time to move the matrices in cache:
— (6 MBytes) / (25.6 GBytes/sec) = 0.23 ms

Time to perform computation in GEMM:
— (2n3flops) / (56 Gflop/sec) = 4.5 ms

Matrix Matrix Operations

LD
total_time > max (time_comm , time_comp) h"‘}“‘
25.6 GB/sec
= max(0.23ms, 4.46ms) = 4.46ms . 1
For this example, communication time is less than 6% of the computation time. H
Performance = (2 x 500 3 flops)/4.5ms = 55.5 Gflop/s

There is a lots of data reuse in a GEMM; 2/3n per data element. Has good
temporal locality.

If we assume total_time = time_comm +time_comp, we get
Performance for GEMM = 55.5 Gflop/sec

(Out of 56 Gflop/sec possible, so that would be 99% peak performance efficiency.)

Level 1, 2 and 3 BLAS

1 core Intel Haswell 17-4850HQ, 2.3 GHz (Turbo Boost at 3.5 GHz);
Peak = 56 Gflop/s

60
I
50
56 GFLOP/sec/core x 2 cores
£ PN
Q 40 =@=dgemm Level-3 BLAS
) =a=dgemv Level-2 BLAS @
§ 30 =¢=daxpy Level-1 BLAS
< 25.6 GB/sec
£
L
E 20 o
10 / 3.4 Gflop/s
| I * * I é 1.6 Gflop/s
0 T T T T T T T T T T

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Matrix (Vector) Size N

1 core Intel Haswell 17-4850HQ, 2.3 GHz, Memory: DDR3L-1600MHz
6 MB shared L3 cache, and each core has a private 256 KB L2 and 64 KB L1.
The theoretical peak per core double precision is 56 Gflop/s per core.

Compiled with gcc and using Veclib 18

Level 1, 2 and 3 BLAS
18 cores Intel Xeon Gold 6140 (Skylake), 2.3 GHz, Peak DP = 1325 Gflop/s

C=C+A*B
1050 Gflop/s

dgemv BLAS Level 2
daxpy BLAS Level 1

1200
§dgemm BLAS Level 3

1000 |-

Compute bound

800
%'600
= =y+ A*
% y=y+A*X
200 W
y= o*x+y

200

Memory bound

‘ : " g
4k 6k 8k 10k 12k 14k 16k 18k 20k

2k
Matrix size (N), vector size (NxN)

18 cores Intel Xeon Gold 6140, 2.3 GHz (Skylake)

The theoretical peak double precision is 1325 Gflop/s
Compiled with icc and using Intel MKL 2018

Issues

* Reuse based on matrices that fit into cache.
 What if you have matrices bigger than cache?

Issues

e Reuse based on matrices that fit into cache.
 What if you have matrices bigger than cache?

e Break matrices into blocks or tiles that will fit.

— EEE--EEE - BN
AEE Em

4/1/21

22

LU Factorization in LINPACK (1970’s)

o
o
o
o
o
0}
0}
o
o}
o}
o}
o}
o
O
@

0000000000000 0®

Factor one column at a time
— i_amax and _scal

Update each column of trailing matrix, one column at a time

— _axpy

Level 1 BLAS

Bulk synchronous

— Single main thread

— Parallel work in BLAS
— “Fork-and-join” model

vectorized or
multi-threaded

BLAS
—_—

Ll \
v 1

1 1

single
" LN a
main I W

thread ,-—*-'. sync

——

W “a

\#l

" n
"W "
W Ly
[T
1 1
\ r

\ '
—_—

The Standard LU Factorization LAPACK
1980’s HPC of the Day: Cache Based SMP

°]]]

]] 5] @

]] @ @
@] .C]

0000000000

00 O
0000 0000000000
Q00O 0000000000

e Factor panel of v columns
— getf2, unblocked BLAS-2 code
* Level 3 BLAS update block-row of U
— trsm
* Level 3 BLAS update trailing matrix
— gemm
— Aimed at machines with cache hierarchy
e Bulk synchronous

&

< Parallelism in LAPACK

¢+ Most flops in gemm update

. 2/3n3term

- Easily parallelized using
multi-threaded BLAS

« Done in any reasonable software

- Other operations lower order

« Potentially expensive if not parallelized

24

PR L AR T
.........
< --

--”~-
- T--

——————
- - -

WM
Il

mmmm

i

getf2 panel

i

laswp
swap rows

trsm solve
D -

gemm multiply

il

o~

-

" Last Generations of DLA Software

Software/Algorithms follow hardware evolution in time

LINPACK (70's) Rely on

(Vector operations) - Level-1 BLAS
operations

LAPACK (80's) Rely on

(Blocking, cache - Level-3 BLAS

friendly) operations

ScalLAPACK (90's) Rely on

(Distributed Memory) - PBLAS Mess Passing

Processor point of view

[a]o][2][«]

[2]
[s]
[2]
[s]
[2]
[s]
(2]
[s]
(2]

[=]

[»]

[l 5
LR

sMloflsflo|sfo

Vi
[¢]
5
4
5
4
5
4
5
4

alalala o|o|o|o|e

alalala o|o|o|o|e

alalala o|o|o|e

w|w|w|w LSS

w|w|w|w [SICAESN

w|w|w|w SIS

oo oo INIFNIFNIFNIFN

oo oo INIFNIFNIFNIFN
oo oo INIFNIFNIFNI PN

SOnE0E00
he e fo [

[Y=T=]=1=]-]
[oJe >~ fo]

4/1/21

ScaLAPACK

Scalable Linear Algebra PACKage

Distributed memory

Message Passing

— Clusters of SMPs
— Supercomputers

Dense linear algebra
Modules

— PBLAS: Parallel BLAS
— BLACS: Basic Linear Algebra Communication Subprograms

Parallelism in ScaLAPACK

e Similar to LAPACK

* Bulk-synchronous processing
— separate message passing & compute

* Most flops in gemm update
— 2/3 nd3term
— Can use sequential BLAS,
p X q=#cores
= # MPI processes,
num_threads =1

— Or multi-threaded BLAS,
p X q =# nodes
= # MPI processes,
num_threads = # cores/node

27

T
o
RNy

YN

W
|

i

o
|~

N

getf2 panel

I: |U(I)

laswp
swap rows

trsm solve
D -

gemm multiply

i

Today’s HPC Environment for Numerical Libraries

ORNL Summit, 200 Pflop/s, 4608 nodes
8% (node= 2-Power9 chips + 6-Nvidia GPUs)
| 2.3 x106Cores

Highly parallel
— Distributed memory
— MPI + Open-MP programming model

Heterogeneous
— Commodity processors + GPU accelerators

Simple loop level parallelism too limiting in ferms of per'for'manc
Th d Fork - _/Join ThEStecr!

Serial Region ‘ Parallel Region Serial Region

Communication between parts very TITITLL
QXPenSIVe Compared TO f C('l'lng po|n1' ops Wz =\

Comparison of operation counts may not reflect fime to solution A &

[Type Size [Range | u=27T
half 16 bits 10*5 271~ 49x10*

single 32 bits 10*%8 272 ~6.0x 1078

Floating point hardware at 64, 32, and 16 bit levels . W e 252600

> | | 4

k Yesterday’s HPC ScalAPACK Users’ Guide

ScalLAPACK
First released Feb 1995, 25 years old

Lacks dynamic scheduling, look-ahead panels,
communication avoiding algorithms, ...

Can’t be adequately retrofitted for accelerators

Written in archaic language (Fortran 77)

ASCI Blue Mountain

SGl Origin 2000 (ASCI Blue Mountain, 1998)
6,144 MIPS R10000
3 Tflop/s

$ICL R TERRESSEE

SLATE: Software for Linear Algebra Targeting Exascale

 Distributed, GPU-accelerated, dense linear algebra library
— Target large HPC machines

BLAS: matrix multiply (C = AB), etc.

Linear systems (Ax =b)

* LU, Cholesky, symmetric indefinite
Least squares (Ax = b)

* QR, LQ
Eigenvalue (Ax = Ax)
SVD (A = UXVH)

« Modern replacement for ScaLAPACK
— Explicit multi-threading (OpenMP)

— C++

Coverage

Basic linear algebra (C=AB, ...) Least squares (Ax=b)
ScaLAPACK SLATE ScalLAPACK SLATE
Level 1 PBLAS v X (use Level 3) QR v v
Level 2 PBLAS v X (use Level 3) LQ v v (new)
Level 3 PBLAS v v Least squares solver v v
Matrix norms v v
Test matrix generation v v (new)
Linear systems (Ax=b) SVD, eigenvalues (A = UXVH, Ax = Ax)
ScaLAPACK SLATE ScalLAPACK SLATE
LU (partial pivoting) v v SVvD v v values (new)
LU, band (pp) v v Symmetric eigenvalues v v values (new)
LU (non-pivoting) X v (new) Generalized symmetric eig. Vv v values (new)
Cholesky v v Polar decomposition (QDWH) X v (new)
Cholesky, band v v (new) Non-symmetric eigenvalues X pieces X (2021-2022)
Symmetric Indefinite (Aasen) X v (CPU only)
Mixed precision X v All SLATE routines listed are GPU-accelerated,
Inverses (LU, Cholesky) v v except symmetric indefinite

(new) since Sep 2019 review

Tile Algorithms: Matrix Decomposition

LAPACK Algorithm (right looking) SLATE: Tile Algorithm

= chol([,) B =chal()

/ L trsm -=./ k trsm
.=./k trsm
(]
AN

N N\

Track dependencies — Directed acyclic graph (DAG)

N

Fork-join schedule on 4 cores
with artificial synchronizations

Reorder without
synchronizations

Critical path

ign

Dataflow Based Des

Objectives

§ [||
ln LV | | Rt
- O L L
S | | I
B
B

52w
MRS - mEE

s, /4

;i IEEEEL--TEEaE

L L L]

High utilization of each core

v

Dynamic DAG scheduling using OpenMP

Scaling to large number of cores

Implicit communication

* Synchronization reducing algorithms
Explicit parallelism

* Fine granularity / block data layout

Methodology

Cholesky; 45% improvement

Arbitrary DAG with dynamic scheduling

1oV QS

i

L_)
<= Merging DAGs

48 cores, matrix is 4000 x 4000, tile size is 200 x 200.

. Cholesky
Ao Zorae matrix inverse
ChO'GSkyAZLLT : %r...ﬁ..,.---

invert L1 %%%:

Multiply A1 =LTL!

time —

Total: 18(3t+6)

Assume at by t matrix
tiling then Cholesky
Factorization alone: 3t-2

3 5 Total: 25(7t-3)

Accelerator platforms EsAE 0

| UDA/H w‘l ‘ | IP 4 BLAS++ LAPACK++ Batch BLAS++

« Initial version with NVIDIA CUDA | eamen]| souve | (RN (OSSN (eSS (eSSl
I OMPI-X
| [ensr |

» Port to AMD and Intel in progress

» Use BLAS++ as abstraction layer
— cuBLAS backend (done)

— hip/rocBLAS backend (done) NVIDIA. OpenMP
— oneAPI backend (in progress) CUDA

» Few CUDA kernels are memory bound

(batched add tiles, scale tiles, norms of tiles) &

— Port to HIP using hipify (prototype done) “é

— Port to DPC++ in progress oo

— Alternatively, port to OpenMP offload oneAPI

ICL

Machine Learning in Computational Science

Many fields are beginning to adopt machine learning to augment modeling and simulation

methods

Climate
Biology ALGORITHMS b
Drug Design : LEARNING" . .
Epidemology ' 5 3BUSINESSSiat srano
Materials
Cosmology
High-Energy Physics

#84517548

Deep Learning Needs Small Matrix Operations

Matrix Multiply is the time consuming part.

THIS 1S YOUR MACHINE LEARNING SYSTEM?

. . . . YUP! YOU POUR THE DATA INTO THIS BIG
Convolution Layers and Fully Connected Layers require matrix multipl PILE OF LINEAR ALGEBRA, THEN COLLECT
Th GEMM's of small mat rfectly parallel th THE ASLERS ON THE OFER SPE-

re are man ’s of small ma rices, errec araliel, can ge
efe are many S AL : LJHPITIFTHEANSl.ERSAREwﬂDNG?)
input featurce]maps featursé mapsfeaturcezmapsfeatursé maps " ou JUST STIR THE PILE. DNTIL
RECCR P MM (. THEY START LOOKING RIGHT
N\) puimmt AN
N\ lo% rmmm SN
S [=t PN
N& 8 | i | _} :‘L 'f_.rl\ \
— | s, - f i
X5 N 2x2 5x5 = N
convolution \ subsampling convolution = 2x2 O
\ subsampling

feature extraction

TP Convolution Step Fully Connected
o7 In this case 3x3 GEMM P
g Classification

Standard for Batched Computations

Define standard API for batched BLAS and LAPACK in
collaboration with Intel/Nvidia/other users

Fixed size: most of BLAS and LAPACK released
Variable size: most of BLAS released

Variable size: LAPACK in the branch

Native GPU algorithms (Cholesky, LU, QR) in the branch

Tiled algorithm using batched routines on tile or LAPACK
data layout in the branch

Framework for Deep Neural Network kernels
CPU, KNL and GPU routines
FP16 routines in progress

Batched BLAS I

Factored part of A*
Factored part of A®
Factored part of A

Fa d fA!
= Batched factorization
of a set of & matrices

A\ AL ZA

Batched Computations

 Non-batched computation

loop over the matrices one by one and compute using multithread (note that, since
matrices are of small sizes there is not enough work for all the cores). So we expect low

performance as well as threads contention might also affect the performance

for (1=0; i<batchcount; i++)
dgemm (...)

Low percentage of the work

resources is used

Batched Computations

 Batched computation

Distribute all the matrices over the available resources by assigning a matrix to each

p of core/TB to operate on it independently

For very small matrices, assign a matrix/core (CPU) or per TB for GPU

For medium size a matrix go to a team of cores (CPU) or many TB’s (GPU)

For large size switch to multithreads classical 1 matrix per round.

Batched dgemm/(..) ~Tasks manager

Gflop/s

8000

7000

6000

5000

4000

3000

2000

1000

Nvidia V100 GPU

small sizes medium sizes Large sizes
A
19X
No performance gain
-®-Batch cuBLAS DGEMM
7 -%¢Standard cuBLAS DGEMM
500 1000 1500 2000 2500 3000 3500

50~1000 matrices of size

4000

A S
ICL

€. 1EEE 754 Half Precision (16-bit) Floating Pt Standard l‘yl

A lot of interest driven by "machine learning”

AMD Radeon Instinct AM D

- Instinct MI6 Instinct MI8 Instinct MI25

exponent fraction
sign (5 bit) (10 bit)

Memory Type 16GB GDDR5 4GB HBM “High Bandwidth Cache
I I I and Controller”
! 'Y T Trrro ™ Memory Bandwidth 224GBlsec 512GBlsec 2
Single Precision WA= Nal=ISES il a2l 12.5 TFLOPS
(FP32
Half Precision 5.7 TFLOPS 8.2 TFLOPS 25 TFLOPS

(FP16)

TD <150W <175W el
15 : - . .
Cooling Passive Passive Passive
(SFF)
wn DIRECT mmm GPU Polaris 10 Fiji Vega
AUUGB - Manufacturin: GloFo 14nm TSMC 28nm ?
- ® E ACCESS ? : ,~ mm“ g
l n tel VS 166G WITH A Gu* A WHEN SCALING 10 32 NOOLS? Process
N n et
)
)| s a +45 H80%,, GPU PERFORMANCE COMPARISON
sign exponent (8 bits) fracticm @ bits) FLOPS SYSTENACCRLEMIIAPS = *-:‘
| | [2]a]2]a]s]olo |°| |°|°|°|°|°| DL Training FP16 10 TFLOPS 120 TFLOPS @D
6 3 7 bit index) 0 3 g

120 TFLOPS

DL Inferencing FP16 21 TFLOPS

7.5/15 TFLOPS

FP64/FP32 5/10 TFLOPS

S
HBM2 Bandwidth 720 GB/s 900 GB/s 11.75%

STREAM Triad Perf 557 GB/s 855 GB/s 1.5x
Google TPU different then IEEE
bfloat16 NVLink Bandwidth 160 GB/s 300 GB/s 1.9x
1 bit for the sign,

L2 Cache 4 MB 6 MB 1.5x

8 bits for the exponent (same as SP)

7 bits for the manti
ts for the mantissa L1 Caches 1.3 MB 10 MB 7.7x

N~
< Mixed Precision

- Today many precisions to deal with (IEEE Standard)

| Type Size | Range | u=27"1
half 16 bits 10*° 2" ~49x 104
single 32 bits 10+38 224 ~6.0x10°®

double 64 bits 10308 238 ~ 11 x 108
quadruple | 128 bits 104932 2-113 x 96 x 10

¢ NOTC The number' mnge WI'H’\ sign exponent (8 bits) |[EEE SP fraction (23 bits)
o . [Il
half precision (16 b'Tfl-PT-) olo|1[1]1|1]1]|0lolo]|1|{0]0|o]0|0[0|0|0]0|0[0|0|0]0]0
exponent fraction D ° .
s'gn” ol I b l |argest fl pt si:a% ?é(?(ponent (8 bitsz)3 %rzaction (7 t()ti)tl:[ssndeX)
|| | |
number olol1|1]1[1]1]olo]o|1|0]0]0l0]0 largest fl pt
o o © 65,504 16 15 s 7 (bitindex) o number

15 0

floatl6 Google TPU: bfloat16 0(10%)

Fg)

<= Nvidia Volta peak rates

- 64 bit floating point (FMA): 7.5 Tflop/s

- 32 bit floating point (FMA): 15 Tflop/s

- 16 bit floating point (FMA): 30 Tflop/s

- 16 bit floating point with Tensor core: 120 Tflop/s

07

45

VOLTA TENSOR OPERATION

Sum with
FP16 Full precision FP32 Convert to
storage/input product accumulator FP32 result
more products
} 4

’-

I
Fz

Also supports FP16 accumulator mode for inferencing

-—l_.‘
e —

46

[————

Leveraging Half Precision in HPC on Vioo

Study of the Matrix Matrix multiplication kernel on Nvidia V100

M‘ﬁ

A—tb—t—tobb—bobo—b—b—h

' (AeFP64 GEMM|

2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k 30k

matrix size

dgemm achieve about 6.4 Tflop/s

Matrix matrix multiplication GEMM

C

=

A

B

+p

C

- I

Leveraging Half Precision in HPC on Vioo

Study of the Matrix Matrix multiplication kernel on Nvidia V100

P32 GENM « dgemm achieve about 6.4 Tflop/s
FP64 GEMM « sgemm achieve about 14 Tflop/s

Matrix matrix multiplication GEMM

C |=al A B |+B| C

jeotasSSaaa! &y

2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k 30k
matrix size

——

Leveraging Half Precision in HPC on Vioo

Study of the Matrix Matrix multiplication kernel on Nvidia V100

©-FP16 GEMM
FP32 GEMM
FP64 GEMM

~4X

dgemm achieve about 6.4 Tflop/s
sgemm achieve about 14 Tflop/s
hgemm achieve about 27 Tflop/s

Matrix matrix multiplication GEMM

2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k 30k
matrix size

C |=al A B |+B| C

[————

Leveraging Half Precision in HPC on Vioo

Study of the Matrix Matrix multiplication kernel on Nvidia V100

"7 [-m=FP16 GEMM Tensor Cores

=©=FP16 GEMM
FP32 GEMM
FP64 GEMM

dgemm achieve about 6.4 Tflop/s
sgemm achieve about 14 Tflop/s
hgemm achieve about 27 Tflop/s
Tensor cores gemm reach about 85 Tflop/s

Matrix matrix multiplication GEMM

2k 4k 6k 8k 10k1

2k14k16k18k20k22k24k26k28k 30
matrix size

C

=

A

B

+p

C

[————

Leveraging Half Precision in HPC on Vioo

Study of the Matrix Matrix multiplication kernel on Nvidia V100

M‘ﬂ

=ll=FP16 GEMM Tensor Cores
=©=-FP16 GEMM
FP32 GEMM
FP64 GEMM

dgemm achieve about 6.4 Tflop/s
sgemm achieve about 14 Tflop/s
hgemm achieve about 27 Tflop/s
Tensor cores gemm reach about 85 Tflop/s

Matrix matrix multiplication GEMM

2k 4k 6k 8k 10k1

2k14k16k18k20k22k24k26k28k 30
matrix size

C |-af 4 B |+p[C

- I

Leveraging Half Precision in HPC on Vioo

Study of the rank k update used by the LU factorization algorithm on Nvidia V100

=li=FP16 TC square =@=FP16 square I*F‘='32 square ===FP64 square | * In LU factorization need matrix
QO L *" FP16TCk=256 == FP16k=256 == FP32k=256 == FP64 k=256 | multiple but operations is a
gg - 1 rank-k update computing the
751 : Schur complement
70 i
: / m-REE
» gg B T —
P B n —
§ 22 I e e S] . _. * I)
S0l St -
35_ ‘-ullai:lnl':l.ll-:'leelnllli...--lllIllI....---.-.l -
30+ ,“’ i
25‘“‘Illlllllllllllllll—
20 - Sesfita,eununnninis i
15 L+* i
10 L = CR S0 Emyu® |
5 L PPrTTTTT Ty EESEEEEEEEEEEE |
o 1 1 1 1 1 1 1 1 1 1

2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k30
m=n

[————

Leveraging Half Precision in HPC on Vioo

M‘ﬂ

Study of the LU factorization algorithm on Nvidia V100

{=l=FP16 hgetrf LU factorization Tensor Cores .
=©-FP16 hgetrf LU factorization
FP32 sgetrf LU factorization
FP64 dgetrf LU factorization 4

2k 4k 6k 8k 10k1

2k14k16k18k20k22k24k26k28k 30
matrix size

LU factorization is used to solve a

linear system Ax=b
A XxX=D

LUx=D

Ly =D

then
Ux =y

i -0
AN -4
b =8
=

Leveraging Half Precision in HPC on Vioo

Idea: use low precision o compute the expensive flops (LU O(n®)) and then iteratively refine
the solution in order to achieve the FP64 arithmetic

Iterative refinement for dense systems, Ax = b, can work this way.

L U = lu(A) lower precision O(n3)
x = U\(L\b) lower precision O(n2)
r=b-Ax FP64 precision o(n2)

WHILE || r || not small enough
1. find a correction "z" to adjust x that satisfy Az=r
solving Az=r could be done by either:

> z=U\(L\r) Classical Iterative Refinement lower precision o(n?)
» GMRes preconditioned by the LU to solve Az=r Iterative Refinement using GMRes lower precision O(n?)
2. X=X+2 FP64 precision o(n?)
3. r=b-Ax FP64 precision 0O(n2)

END gt Caron s con e the bl it e e o e e saion

E. Carson & N. Higham, “Accelerating the Solution of

> Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt results when using DP fl pt. Linear Systems by lterative Refinement in Three
Precisions SIAM J. Sci. Comput., 40(2), A817-A847.

» Tt can be shown that using this approach we can compute the solution to 64-bit floating point precision.
> Need the original matrix to compute residual (r) and matrix cannot be too badly conditioned

/"""

Improving Solution

* 7 IS the correction or (Xi.1 — X;)

 Computed in lower precision and then added to the approximate
solution in higher precision x; + z

_ S (xi)
1'(xi)

 Can be used in situations like this, i.e. _ S
)

Xi+l1 = X

Leveraging Half Precision in HPC on Vloo
Performance Behavior

Performance of solving Ax=b
usmg FP64 or IR with GMRes to achieve FP64 accuracy Flops = 2n3/(3 time)

meaning twice higher is twice faster

FP16 TC->64 dhgesv|
22 - «©=FP16->64 dhgesv
FP32->64 dsgesv
20 1| -9¢-FP64 dgesv

T
-
o

($)]

......................... i . Solving AX _ b using FP64 LU

2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k
Matrix size

1) and positive eigenvalues. ’

Problem generated with an arithmetic distribution of the singular values o; =1 — (ﬁ)(l —

Leveraging Half Precision in HPC on Vioo
Performance Behavior

Performance of solving Ax=b
usmg FP64 or IR with GMRes to achieve FP64 accuracy Flops = 2n3/(3 time)

meaning twice higher is twice faster

FP16 TC->64 dhgesv|
22 --©-FP16->64 dhgesv
FP32->64 dsgesv
20 1| -9¢-FP64 dgesv

ol
-
o

($)]

* solving Ax = b using FP64 LU

» solving Ax = b using FP32 LU and iterative
refinement to achieve FP64 accuracy

2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k
Matrix size

Problem generated with an arithmetic distribution of the singular values o; =1 — (i)(1 —

mnd) and positive eigenvalues. [

Leveraging Half Precision in HPCon Vioo
Performance Behavior

Performance of solving Ax=b
usmg FP64 or IR with GMRes to achieve FP64 accuracy

FP16 TC->64 dhgesv|
22 --©-FP16->64 dhgesv
FP32->64 dsgesv
20 1| -9¢-FP64 dgesv

Flops = 2n3/(3 time)
meaning twice higher is twice faster

ol
-
o

($)]

* solving Ax = b using FP64 LU

» solving Ax = b using FP32 LU and iterative
refinement to achieve FP64 accuracy

» solving Ax = b using FP16 LU and iterative
refinement to achieve FP64 accuracy

2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k
Matrix size

Problem generated with an arithmetic distribution of the singular values o; =1 — (i)(1 —

mnd) and positive eigenvalues. [

Leveraging Half Precision in HPCon Vioo
Performance Behavior

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy Flops = 2n3/(3 time)

24 = T T ! t T T T T o o o . o
09 §FP'1 6-TC->64 dhgesv| meaning twice higher is twice faster
i FP16->64 dhgesv
FP32->64 dsgesv 110°
20 9¢FPeadgesv | _Z ...]- : _ ,
18L TR * solving Ax = b using FP64 LU
6L e 1104 + solving Ax = b using FP32 LU and iterative
] refinement to achieve FP64 accuracy
14]
'\3_ 1103 <+ solving Ax = b using FP16 LU and iterative
2 12¢ i 3 refinement to achieve FP64 accuracy
10t :
2 * solving Ax = b using FP16 Tensor Cores LU and
8 - 110 iterative refinement to achieve FP64 accuracy
6 -]
4 - 101
2 L
0 1 1 1 1 1 1 1 1 1 100
2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k
Matrix size
Problem generated with an arithmetic distribution of the singular values ¢; =1 — r’l%ll)(l — mlnd) and positive eigenvalues. [

Leveraging Half Precision in HPCon Vioo
Performance Behavior

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy; Flops = 2n3/(3 time)

24 - : : , §
09 §FP'1 6-TC->64 dhgesv| meaning twice higher is twice faster
i FP16->64 dhgesv
FP32->64 dsgesv 110°
20|l9¢FPeadgesv | 3 . : : :
181 TR * solving Ax = b using FP64 LU
16 1104 « solving Ax = b using FP32 LU and iterative
] refinement to achieve FP64 accuracy
14]
'\3_ 1103 <+ solving Ax = b using FP16 LU and iterative
2 12¢ i 3 refinement to achieve FP64 accuracy
10t <
2 * solving Ax = b using FP16 Tensor Cores LU and
8 - 110 iterative refinement to achieve FP64 accuracy
6 -]
4+ 3] 10
5]
2 - 2
0 1 1 1 1 1 1 1 1 1 100
2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k
Matrix size
Problem generated with an arithmetic distribution of the singular values ¢; =1 — r’l%ll)(l — mlnd) and positive eigenvalues. [

(Critical Issues at Exascale for Algorithm and Software Design

* Synchronization-reducing algorithms
Break Fork-Join model

- Communication-reducing algorithms
Use methods which have lower bound on communication

* Mixed precision methods (half (16bit), single(32 bit), & double precision (64))
2x - 10x speed of ops and 2x - 4x speed for data movement

* Autotuning - Performance Debugging

Today’s machines are very complicated, build “smarts” into software to adapt to the
hardware

« Fault resilient algorithms
Implement algorithms that can recover from failures/bit flips
« Reproducibility of results

Today we can’t guarantee this. We understand the issues, but some of our “colleagues”
have a hard time with this.

ICL

- Data movement critical for performance.
« Algorithm / Software advances follows hardware

4

. The Take Away

HPC Constantly Changing
Scalar
Vector
Distributed
Accelerated
Mixed precision

And there is “plenty of room at the top”
“There's life in the old dog yet”

Technology

Opportunity

Examples

The Top
01010011 01100011
01101001 01100101 @
01101110 01100011
01100101 00000000
Software Algorithms Hardware architecture
Software performance New algorithms Hardware streamlining
engineering
Removing software bloat New problem domains Processor simplification

Tailoring software to
hardware features

New machine models

Domain specialization

The Bottom

for example, semiconductor technology

Leiserson et al., Science 368, 1079 (2020) 5 June 2020

“There’s plenty of room at the Top: What will drive computer
performance after Moore’s law?”

62

LICL

Collaborators / Software / Support

INNOVATIVE
. PLASMA
http://icl.cs.utk.edu/plasma/ F=ix < <intel‘> FUﬁTSU
L #VIDIA.
. MAGMA -
http://icl.cs.utk.edu/magmal/ % nag AMDZ
» SLATE e A\The MathWorks

. https://icl.utk.edu/slate/ i
. https://bitbucket. orgllcllslate/src/defauItl

- PaRSEC (Parallel Runtime Scheduling & Execution Control)
OfA0
[=];
Also see: http://www.netlib.org/utk/people/JackDongarra/papers.htm

http://icl.cs.utk.edu/parsec/

Looking for Grad Students and B
Post-Docs for work in this area. g

B V.S. DEPARTMENT OF

EEEEEEEEEEEEEEEEEEEEEEEE

Collaborating partners

University of Tennessee, Knoxville
University of California, Berkeley
University of Colorado, Denver

http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/
https://icl.utk.edu/slate/
https://bitbucket.org/icl/slate/src/default/
http://icl.cs.utk.edu/parsec/
http://www.netlib.org/utk/people/JackDongarra/papers.htm

4

ICL

= —a

Event Driven Muitithreading

Synchronization (in LAPACK)

DDDDDD
aaaaaaaaaaaa

DDDDD

VVVVVV
llllllllllllll

1
DGEMM 1
uuuuuuuuuuu

N

Step3 —» Step4 - - -

> fork join
» bulk synchronous processing

o

< OpenMP tasking

- Added with OpenMP 3.0 (2009)
- Allows parallelization of irregular problems

« OpenMP 4.0 (2013) - Tasks can have
dependencies ~

e DAGs

N~
<= Tiled Cholesky Decomposition

#pragma omp parallel
#pragma omp master
{ CHOLESKY(A); }
CHOLESKY(A) {
for (k = 0; k < M; k++) {
#tpragma omp task depend(inout:A(k,k)[0:tilesize]
{ POTRF(A(k,k)); }
for (m = k+1; m < M; m++) {
#pragma omp task \
depend (in:A(k,k)[0: tilesize]) \
depend (inout:A(m,k)[0: tilesize])
{ TRSM(A(k,k), A(m,k));

o W N » O
o W N B

for (m = k+1; m < M; m++) {
#pragma omp task \
depend (in:A(m,k)[0: tilesize]) \
depend (inout:A(mm)[0: tilesize])
{ SYRK(A(m,k), A(m,m)); }
for (n = k+1; n < m; n++) {
.xGEMM -FINAL #ipragma omp task \
depend (in:A(m,k)[0: tilesize], \
A(n,k)[0: tilesize]) \
depend (inout:A(m,n)[0: tilesize])
{ &aM(A(m,k), A(n,k), A(m,n)); }

1
i,

- XPOTRF . XTRSM . XSYRK

2

Leveraging Half Precision in HPC on Vioo

Convergence history for Classic Iterative Refinement Convergence history for Iterative Refinement using GMRes
o [(FPs2>64IR o |[©FPa2>64IRGM
10 FP16->64 IR 7 1071 FP16->64 IRGM T
FP16->64 IR (Tensor Cores) FP16->64 IRGM (Tensor Cores)
10 . 107+]
© ©
= =
S >
@ 10'10 _ § 10'10 | -
10'1 5 _ 10'1 5 | -
10'20 1 1 1 1 1 1 1 1 1 1 1 10'20 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 17 34 51 68 85 102 119 136 153 170 187 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
iterations # iterations

Matrix of size 10240 generated with positive A and clustered singular values,
oi=(1, -+, 1, CO%,L ~) and where its condition number is equal to 102.

Leveraging Half Precision in HPC on Vioo

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy

24 [{EiFPo4 dgesy] : Flops = 2n3/(3 time) |

22 - T meaning twice higher is twice faster
20 -]

18 -] « solving Ax = b using FP64 LU
16 -]
g_14— }
912 y
F 10l i

2k 4k 6k 8k10ki2ki4ki6ki8k 22k 26k 30k 34k
Matrix size

oON B O
T

Matrices generated with positive A and clustered distribution of its singular values

o;=(1, ---, 1, ==) and where its condition number is equal to 102.
cond

[—

Leveraging Half Precision in HPC on Vioo

Performance of solving Ax=b

using FP64 or IR with GMRes to achieve FP64 accuracy

24 r FP64 dgesv
29 FP32->64 dsgesv

20 -
18
16

L2141

S12f

F 1ot

Flops = 2n3/(3 time)
meaning twice higher is twice faster

oON B O
T

2k 4k 6k 8k10kl

Matrices generated with positive A and clustered distribution of its singular values

o;=(1, ---, 1, ==) and where its condition number is equal to 102.

' cond

2ki4ki6ki8
Matrix size

k 22k 26k 30k 34k

solving Ax = b using FP64 LU

solving Ax = b using FP32 LU and
iterative refinement to achieve FP64
accuracy

Leveraging Half Precision in HPC on Vioo

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy

24 [4FFFP64 dgesv =~ | | - = 703 ;
29 FP32->64 dsgesv] . FlOP.S 2.n /(3.t1me.)
FP16->64 dhsgesv meaning twice higher is twice faster
20 - slow convergence affect .
181 the performance 1 . .
« solving Ax = b using FP64 LU
16+ i « solving Ax = b using FP32 LU and
314+ 1 iterative refinement to achieve FP64
212+ . accuracy
10t T « solving Ax = b using FP16 LU and
8 . iterative refinement to achieve FP64
6 . accuracy
4l i
2 o -
0 1 1 1 1

2k 4k 6k 8k10ki2k14ki6ki8k 22k 26k 30k 34k
Matrix size
Matrices generated with positive A and clustered distribution of its singular values

o;=(1, ---, 1, ==) and where its condition number is equal to 102.
cond

[————

Leveraging Half Precision in HPC on Vioo

24
22
20
18
16

214

912

10

oON B O

Matrices generated with positive A and clustered distribution of its singular values
o;=(1, ---, 1, ==) and where its condition number is equal to 102.

e m\ﬁ

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy

FFI’64 Idgelsv |
_ FP32->64 dsgesv

FP16->64 dhsgesv
FP16->64 dshtgesv

2k 4k 6k 8k10ki2ki4ki6ki8k 22k 26k 30k 34k
Matrix size

' cond

Flops = 2n3/(3 time)
meaning twice higher is twice faster

solving Ax = b using FP64 LU

solving Ax = b using FP32 LU and
iterative refinement to achieve FP64
accuracy

solving Ax = b using FP16 LU and
iterative refinement to achieve FP64
accuracy

solving Ax = b using FP16 Tensor Cores
LU and iterative refinement to achieve
FP64 accuracy

Power awareness

| Solving Ax=b on Nvidia V100
T T T T

* Power consumption of the FP64 algorithm to
solve Ax=b for a matrix of size 34K, it achieve

GPU: Nvidia V100

T |
GPU: 10 cores E5-2650 v3| 5.5 Tflop/s and requires about 2021 joules

- providing about 14 Gflops/Watts.

340 - |=——FP64 solver dgesv_L

< 80 5.5

40 14

0 | | | | | 2021

- Power is for GPU + CPU + DRAM

Perforz mance
in Tflop/s

Gflops/Watts
Joule

0 1 2 3 4 5 6
Time (sec)

Problem generated with an arithmetic distribution of the singular values ¢; =1 — (=)(1 —

i—
n—

7 Intel Xeon E5-2650 v3 (Haswell) NVIDIA Volta GPU
CPU 2x10 cores @ 2.30 GHz V100 80 MP x 64 @ 1.38 GHz

1 1

cond

) and positive eigenvalues. l

1

Mixed precision techniques can provide

POWEI‘ awaI'EIIESS a large gain in energy efficiency

* Power consumption of the FP64 algorithm to
, . solve Ax=b for a matrix of size 34K, it achieve
CPU: 1D cores £5-2650 v3| 5.5 Tflop/s and requires about 2021 joules

- providing about 14 Gflops/Watts.

| Solving Ax=b on Nvidia V100
T T T T

i + Power consumption of the mixed precision
——FP64 solver dgesv FP32->64 algorithm to solve Ax=b for a
——FP32 --> 64 solver dsgesv matrix of size 34K, it achieve 10.7 Tflop/s and
- - - requires about 1041 joules providing about
(2 280 | It*ratlve refinement i 30 Gflops/Watts.

< Performance
80 - 10.7 55 o Triop/s

40 - 27 14 Gflops/Watts
20 - , , , 1041 2021 dJoule

0 1 2 3 4 5 6 7
Time (sec)

Problem generated with an arithmetic distribution of the singular values o; =1 — (,’l%ll)(l —

1

cond

) and positive eigenvalues. I

Mixed precision techniques can provide

POWCI’ awareness a large gain in energy efficiency

* Power consumption of the FP64 algorithm to

460 F | , Solving I',\x=b on Nv||d|a V100 , , . solve Ax=b for a matrix of size 34K, it achieve
440 - CPU: 1D cores £5-2650 v3| 5.5 Tflop/s and requires about 2021 joules
420 - . providing about 14 Gflops/Watts.
400 - .
gggg i ——FP64 solver dgesv 1 Power consumption of the mixed precision
g 340 - ——FP32 --> 64 solver dsgesv FP32->64 algorithm to solve Ax=b for a
Z300L ——FP16 --> 64 solver dhgesv| matrix of size 34K, it achieve 10.7 Tflop/s and
E 300 - requires about 1041 joules providing about
9280~ T 30 Gflops/Watts.
> 260 - i
0. 240 - . . .-
‘3 220 - i » Power consumption of the mixed precision
039 200 - 4 FP16—>64 algorithm to solve Ax=b for a
e 180 - . matrix of size 34K, it achieve 16.8 Tflop/s and
Q 128 i i requires about 609 joules providing about
S 100 | 1 48 Gflops/Watts.
2100+ L 1
< gg - 16.8 107 5.5 ﬁ‘e.’rff‘l’g;‘lgnce
40 - 48 27 14 Gflops/Watts
200 i , , 609 | 1041 , 2021 J°U'eq/w
0 1 2 3 4 5 6 7

Time (sec)

Problem generated with an arithmetic distribution of the singular values ¢; =1 — (r’l%ll)(l —

1

cond

) and positive eigenvalues.

Mixed precision techniques can provide

POWEI' awaI'EIIESS a large gain in energy efficiency

* Power consumption of the FP64 algorithm to

460F | , Solving I',\x=b on Nv||d|a V100 , , - solve Ax=b for a matrix of size 34K, it achieve
440 - CPU: 1D cores £5-2650 v3| 5.5 Tflop/s and requires about 2021 joules
420 - . providing about 14 Gflops/Watts.
400 - .
2.7380 i) + Power consumption of the mixed precision
§ 3601 T rPas o bd soleer dsgesy |1 FP32->64 algofithm t0 solve Axch for a
:FP15 -> 64 solver dhgesv i matrix of size 34K, it achieve 10.7 Tflop/s and
FP16 --> 64 solver dhgesv (TC)| | requires about 1041 joules providing about
7 30 Gflops/Watts.

+ Power consumption of the mixed precision

FP16-TC reach i FP16->64 algorithm to solve Ax=b for a

2 Glopsinat . matrix of size 34K, it achieve 16.8 Tflop/s and
i requires about 609 joules providing about
| 48 Gflops/Watts.
10.7 5.5 ﬁ‘e.’r‘}?g;‘/gnce « Power consumption of the mixed precision
7 FP16—>64 TC algorithm using Tensor Cores
20 27 14 Gf'°pq/wa“s to solve Ax=b for a matrix of size 34K, it
0 . A70 609 1041 . po21_Joule achieve 24 Tflop/s and requires about 470
0 1 2 3 4 5 6 7 joules providing about 74 Gflops/Watts.
Time (sec)
Problem generated with an arithmetic distribution of the singular values ¢; =1 — (ﬁ)(l — mlnd) and positive eigenvalues. I

ICL

Critical Issues at Peta & Exascale for
Algorithm and Software Design

Synchronization-reducing algorithms
= Break Fork-Join model

Communication-reducing algorithms
= Use methods which have lower bound on communication

Mixed precision methods
= 2x speed of ops and 2x speed for data movement
= Now we have 16 bit floating point as well
Autotuning

= Today’s machines are too complicated, build “smarts” into software to adapt to
the hardware

Fault resilient algorithms
= Implement algorithms that can recover from failures/bit flips

Reproducibility of results

= Today we can’t guarantee this. We understand the issues, but some of our
“colleagues” have a hard time with this.

77

N~

A\ 2

e Collaborators / Software / Support
. SLATE /)
3 intel e
http://icl.cs.utk.edu/slate/ < L-/ FUJITSU
BVIDIA. nag@ AMDZ
. PLASMA
http://icl.cs.utk.edu/plasmal/ J\The MathWorks
. MAGMA @ @ENERGY
http://icl.cs.utk.edu/magma/ X
+ Collaborating partners
) . University of Tennessee, Knoxville
. PaRSEC(Parallel Runtime Scheduling University of California, Berkeley
and Execution Control) University of Colorado, Denver
http://icl.cs.utk.edu/parsec/ SLATE MAGMA PLASMA

S5 i e

http://icl.cs.utk.edu/slate/
http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/plasma

Yy & | 1 4

ICL is hiring!

Projects include \ 1 am)
- SLATE — distributed dense linear algebra . lD -

CEED — tensor algebra, batched operations "\NOVATIVE

PEEKS — Krylov methods COMPUTING LABORATORY
heFFTe — distributed FFT

79 - PAPI — performance measurement and
modeling T
ParSEC — distributed tasking for exascale

www.icl.utk.edu/jobs

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

(ch - THE UNlVERSlTY OF
KNOXVILLE

	Lecture 11: The Road to Exascale and Legacy Software for Dense Linear Algebra
	Citation

	arkansas-0421

