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Dense Linear Algebra
• Common Operations

• A major source of large dense linear systems is problems involving the solution of 
boundary integral equations.
• The price one pays for replacing three dimensions with two is that what started as a 

sparse problem in O(n3) variables is replaced by a dense problem in O(n2).
• Dense systems of linear equations are found in numerous other applications, 

including:
• Airplane wing design;
• Radar cross-section studies;
• Flow around ships and other off-shore constructions;
• Diffusion of solid bodies in a liquid;
• Noise reduction; and
• Diffusion of light through small particles. 2

Ax = b;    min
x

|| Ax − b ||;    Ax = λx

4/1/21



Existing Math Software - Dense LA

http://www.netlib.org/utk/people/JackDongarra/la-sw.html

¨ LINPACK, EISPACK, LAPACK, ScaLAPACK
ØPLASMA, MAGMA 34/1/21

http://www.netlib.org/utk/people/JackDongarra/la-sw.html


DLA Solvers

• We are interested in developing Dense Linear 
Algebra Solvers

• Retool LAPACK and ScaLAPACK for multicore and 
hybrid architectures

4/1/21
4



Over the Past 50 Years Evolving SW and Alg
Tracking Hardware Developments

Software/Algorithms follow hardware evolution in time

EISPACK (1970’s) 
(Translation of Algol to F66)

Rely on
- Fortran, but row oriented

LINPACK (1980’s)
(Vector operations)

Rely on 
- Level-1 BLAS operations
- Column oriented

LAPACK (1990’s)
(Blocking, cache friendly)

Rely on 
- Level-3 BLAS operations

ScaLAPACK (2000’s)
(Distributed Memory)

Rely on 
- PBLAS Mess Passing

PLASMA / MAGMA (2010’s)
(Many-core friendly & GPUs)

Rely on 
- DAG/scheduler
- block data layout

SLATE (2020’s)
(DM and Heterogeneous arch)

Rely on  C++
- Tasking DAG scheduling
- Tiling, but tiles can come from anywhere
- Heterogeneous HW, Batched dispatch
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What do we mean by performance?
¨ What is the unit: floating point operations per second (flop/s)?

Ø flop/s is a rate of execution, some number of floating point operations per second. 
Ø Whenever this term is used it will refer to 64 bit floating point operations and the 

operations will be either addition or multiplication. 
Ø Tflop/s refers to trillions (1012) of floating point operations per second
Ø Pflop/s refers to 1015 floating point operations per second.
Ø Eflop/s is 1018 floating point operations per second.

¨ What is the theoretical peak performance?
Ø The theoretical peak is based not on an actual performance from a benchmark run, 

but on a paper computation to determine the theoretical peak rate of execution of 
floating point operations for the machine. 

Ø The theoretical peak performance is determined by counting the number of floating-
point additions and multiplications (in 64-bit precision) that can be completed during 
a period of time, usually the cycle time of the machine. 

Ø For example, an Intel Skylake core at 2.1 GHz can complete 32 floating point 
operations per cycle or a theoretical peak performance per core of:
32 fl.pt. ops / cycle * 2.1 G-cycles / second = 67.2 Gflop/s 
Ø With 24 cores per socket: 24*67.2 Gflop/s or 1.61 Tflop/s for the socket.



Peak Performance - Per Core
Floating point operations per cycle per core

Ø Most of the recent computers have FMA (Fused multiple add): 
(i.e. x ←x + y*z in one cycle)

Ø Intel Xeon earlier models and AMD Opteron have SSE2
Ø 2 flops/cycle/core DP & 4 flops/cycle/core SP

Ø Intel Xeon Nehalem (2009) & Westmere (2010) have SSE4
Ø 4 flops/cycle/core DP & 8 flops/cycle/core SP

Ø Intel Xeon Sandy Bridge(2011) & Ivy Bridge (2012) have AVX (vector instructions) 
Ø 8 flops/cycle/core DP & 16 flops/cycle/core SP

Ø Intel Xeon Haswell (2013) & Broadwell (2014) AVX2
Ø 16 flops/cycle/core DP & 32 flops/cycle/core SP
Ø Xeon Phi (per core) is at 16 flops/cycle DP & 32 flops/cycle SP

Ø Intel Xeon Skylake (server)  & KNL AVX 512 
Ø 32 flops/cycle/core DP & 64 flops/cycle/core SP
Ø Skylake w/24 cores & Xeon Phi (Knight’s Landing) w/68 cores

Ø Intel Xeon Cascade Lake, Kaby Lake, Coffee Lake, Ice Lake…
Ø 32 flops/cycle/core DP & 64 flops/cycle/core SP

Ø Next Gen Sapphire Rapids, with AMX (matrix instructions) 

Ø Sapphire Rapids w/AMX

We 
are
here



Commodity Processors … 
Over provisioned for floating point operations

Today it’s all about data movement

Each Core: 32 Flops per core / cycle
With 2.6 GHz 

(32 flops/cycle*2.6 Gcycles/sec = 83.2 Gflop/s)

Each Core Peak DP 83.2 Gflop/s
Each Socket (8 cores) Peak 665.6 Gflop/s

Memory Access Latencies in Clock Cycles
167 cycles to move a word from memory to a register

In 167 cycles single core: 5344 DP Flops, socket: >40K Flops

Need Cache Friendly Algorithms
Matrix Multiply and Data Reuse



Memory transfer
• One level of memory model on my laptop:

25.6 GB/sec

Cache
(6 MB)

CPU

Main memory
(16 GB)

The model IS simplified (see next slide) but it provides an upper bound on 
performance as well. I.e., we will never go faster than what the model predicts.     
(And, of course, we can go slower … )

( Omitting latency here. )

56 GFLOP/sec/core x 2 cores
Intel iCore7 4850HQ

Haswell
Cycle time = 2.3 GHz

Turbo Boost = 3.5 GHz
3.5 GHz*16 flops/cycle = 

56 Gflop/s per core 

4/1/21 9



FMA: fused multiply-add
α + AXPY:

y x y

DOT:
y xT yα

for ( j = 0; j < n; j++)
y[i] += a * x[i];

(without increment)

alpha = 0e+00;
for ( j = 0; j < n; j++)

alpha += x[i] * y[i];

(without increment)

n MUL
n ADD
2n FLOP
n FMA

n MUL
n ADD
2n FLOP
n FMA

Note: It is reasonable to expect the one loop codes shown here to perform as well as 
their Level 1 BLAS counterpart (on multicore with an OpenMP pragma for example).

The true gain these days with using the BLAS is (1) Level 3 BLAS, and (2) portability.



• Take two double precision vectors x and y of size n=375,000.

• Data size: 
– ( 375,000 double ) * ( 8 Bytes / double ) = 3 MBytes per vector
( Two vectors fit in cache (6 MBytes). OK.) 

• Time to move the vectors from memory to cache:
– ( 6 MBytes ) / ( 25.6 GBytes/sec ) = 0.23 ms

• Time to perform computation of DOT:
– ( 2n flops ) / ( 56 Gflop/sec ) = 0.013 ms

DOT:
y xT yα



Vector Operations 

total_time ≥ max ( time_comm , time_comp )
= max ( 0.23ms , 0.01ms ) = 0.23ms

Performance = (2 x 375,000 flops)/.23ms = 3.2 Gflop/s

Performance for DOT ≤ 3.2 Gflop/s
Peak is 56 Gflop/s

We say that the operation is communication 
bounded. No reuse of data.



Level 1, 2 and 3 BLAS

Level 2 BLAS  Matrix-Vector operations

Level 1 BLAS  Matrix-Vector operations

Level 3 BLAS  Matrix-Matrix operations

C A C
B

α + β

α + AXPY:
y x y

DOT:
y xT yα

α + GEMV:
y x y

A

GEMM:

2n FLOPs
2n memory references
AXPY: 2n READ, n WRITE
DOT:   2n READ

RATIO Fl Pt Ops to Memory Ops: 1:1

2n2 FLOPs
n2 memory references

RATIO Fl Pt Ops to Memory Ops: 2:1

2n3 FLOPs
3n2 memory references
3n2 READ, n2 WRITE

RATIO Fl Pt Ops to Memory Ops: n:2



• Double precision matrix A and vectors x and y of size n=860.

• Data size: 
– ( 8602 + 2*860 double ) * ( 8 Bytes / double ) ~ 6 MBytes

Matrix and two vectors fit in cache (6 MBytes).

• Time to move the data from memory to cache:
– ( 6 MBytes ) / ( 25.6 GBytes/sec ) = 0.23 ms

• Time to perform computation of GEMV:
– ( 2n2 flops ) / ( 56 Gflop/sec ) = 0.026 ms

α" +""GEMV:"
y" x" y"

A"



Matrix - Vector Operations 

total_time ≥ max ( time_comm , time_comp )
= max ( 0.23ms , 0.026ms ) = 0.23ms

Performance = (2 x 8602 flops)/.23ms = 6.4 Gflop/s

Performance for GEMV ≤ 6.4 Gflop/s

Peak is 56 Gflop/s

We say that the operation is communication 
bounded. Very little reuse of data.

!"#$%#&'()"*$%#*+,-*.*/01*2$3%456



• Take two double precision matrices A and B of size n=500.

• Data size: 
– ( 5002 double ) * ( 8 Bytes / double ) = 2 MBytes per matrix
( Three matrices fit in cache (6 MBytes). OK.) 

• Time to move the matrices in cache:
– ( 6 MBytes ) / ( 25.6 GBytes/sec ) = 0.23 ms

• Time to perform computation in GEMM:
– ( 2n3 flops ) / ( 56 Gflop/sec ) = 4.5 ms

C CBA
α + βGEMM:



Matrix Matrix Operations
total_time ≥ max ( time_comm , time_comp )

= max( 0.23ms , 4.46ms ) = 4.46ms
For this example, communication time is less than 6% of the computation time. 

Performance = (2 x 500 3 flops)/4.5ms = 55.5 Gflop/s
There is a lots of data reuse in a GEMM; 2/3n per data element. Has good 
temporal locality.

If we assume total_time ≈ time_comm +time_comp, we get 
Performance for GEMM ≈ 55.5 Gflop/sec

Performance for DOT ≤ 3.2 Gflop/s
Performance for GEMV ≤ 6.4 Gflop/s

(Out of 56 Gflop/sec possible, so that would be 99% peak performance efficiency.)
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dgemm Level-3 BLAS
dgemv Level-2 BLAS
daxpy Level-1 BLAS

Level 1, 2 and 3 BLAS
1 core Intel Haswell i7-4850HQ, 2.3 GHz (Turbo Boost at 3.5 GHz); 

Peak = 56 Gflop/s

1 core Intel Haswell i7-4850HQ, 2.3 GHz, Memory: DDR3L-1600MHz
6 MB shared L3 cache, and each core has a private 256 KB L2 and 64 KB L1. 
The theoretical peak per core double precision is 56  Gflop/s per core.
Compiled with gcc and using Veclib

1.6 Gflop/s
3.4 Gflop/s

54 Gflop/s



18 cores Intel Xeon Gold 6140, 2.3 GHz (Skylake)
The theoretical peak double precision is 1325 Gflop/s
Compiled with icc and using Intel MKL 2018  

Level 1, 2 and 3 BLAS
18 cores Intel Xeon Gold 6140 (Skylake), 2.3 GHz, Peak DP = 1325 Gflop/s 

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
Matrix size (N), vector size (NxN)

0

200

400

600

800

1000

1200

Gf
lo

p/
s

dgemm BLAS Level 3
dgemv  BLAS Level 2
daxpy   BLAS Level 1

25 Gflop/s

8 Gflop/s

1050 Gflop/s

42x

C = C + A*B 

y = y + A*x 

y = �*x + y 
Memory bound

Compute bound



Issues 

• Reuse based on matrices that fit into cache.
• What if you have matrices bigger than cache?

• Break matrices into blocks or tiles that will fit.

4/1/21 20



Issues 

• Reuse based on matrices that fit into cache.
• What if you have matrices bigger than cache?

• Break matrices into blocks or tiles that will fit.

4/1/21 21



LU Factorization in LINPACK (1970’s)

• Factor one column at a time
– i_amax and _scal

• Update each column of trailing matrix, one column at a time
– _axpy

• Level 1 BLAS
• Bulk synchronous

– Single main thread
– Parallel work in BLAS
– “Fork-and-join” model##



• Factor panel of nb columns
– getf2, unblocked BLAS-2 code

• Level 3 BLAS update block-row of U
– trsm

• Level 3 BLAS update trailing matrix
– gemm
– Aimed at machines with cache hierarchy

• Bulk synchronous
#$

The Standard LU Factorization LAPACK
1980’s HPC of the Day: Cache Based SMP



Parallelism in LAPACK
¨ Most flops in gemm update

24
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Last Generations of DLA Software

!"#!"
$%&'()*"+,-'(./01
2/3.3'-,343(.%*5'(34)+%6*
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Software/Algorithms follow hardware evolution in time
LINPACK (70’s)
(Vector operations)

Rely on 
- Level-1 BLAS

operations

LAPACK (80’s)
(Blocking, cache 
friendly)

Rely on 
- Level-3 BLAS 

operations

ScaLAPACK (90’s)
(Distributed Memory)

Rely on 
- PBLAS Mess Passing

PLASMA
New Algorithms 
(many-core friendly)

Rely on 
- a DAG/scheduler
- block data layout
- some extra kernels

4/1/21
25



ScaLAPACK
Scalable Linear Algebra PACKage

• Distributed memory
• Message Passing
– Clusters of SMPs
– Supercomputers

• Dense linear algebra
• Modules
– PBLAS: Parallel BLAS
– BLACS: Basic Linear Algebra Communication Subprograms
26



Parallelism in ScaLAPACK
• Similar to LAPACK
• Bulk-synchronous processing

– separate message passing & compute

• Most flops in gemm update
– 2/3 n3 term
– Can use sequential BLAS,

p x q = # cores
= # MPI processes,

num_threads = 1
– Or multi-threaded BLAS,

p x q = # nodes
= # MPI processes,

num_threads = # cores/node
27



Today’s HPC Environment for Numerical Libraries
• Highly parallel

– Distributed memory
– MPI + Open-MP programming model

• Heterogeneous
– Commodity processors + GPU accelerators

• Simple loop level parallelism too limiting in terms of performance

• Communication between parts very                                      
expensive compared to floating point ops 

• Comparison of operation counts may not reflect time to solution

• Floating point hardware at 64, 32, and 16 bit levels

ORNL Summit, 200 Pflop/s, 4608 nodes 
(node= 2-Power9 chips + 6-Nvidia GPUs)
2.3 x 106 Cores



Yesterday’s HPC

ScaLAPACK

• First released Feb 1995, 25 years old

• Lacks dynamic scheduling, look-ahead panels,
communication avoiding algorithms, ...

• Can’t be adequately retrofitted for accelerators

• Written in archaic language (Fortran 77)

SGI Origin 2000 (ASCI Blue Mountain, 1998)

• 6,144 MIPS R10000

• 3 Tflop/s

29

ASCI Blue Mountain
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SLATE: Software for Linear Algebra Targeting Exascale

• Distributed, GPU-accelerated, dense linear algebra library
– Target large HPC machines
– BLAS: matrix multiply (C = AB), etc.
– Linear systems (Ax = b)

• LU, Cholesky, symmetric indefinite
– Least squares (Ax ≈ b)

• QR, LQ
– Eigenvalue (Ax = λx)
– SVD (A = UΣVH)

• Modern replacement for ScaLAPACK
– Explicit multi-threading (OpenMP)
– C++
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Coverage

ScaLAPACK SLATE
LU (partial pivoting) ✓ ✓
LU, band (pp) ✓ ✓
LU (non-pivoting) ✘ ✓ (new)
Cholesky ✓ ✓
Cholesky, band ✓ ✓ (new)
Symmetric Indefinite (Aasen) ✘ ✓ (CPU only)
Mixed precision ✘ ✓
Inverses (LU, Cholesky) ✓ ✓

ScaLAPACK SLATE
Level 1 PBLAS ✓ ✘ (use Level 3)
Level 2 PBLAS ✓ ✘ (use Level 3)
Level 3 PBLAS ✓ ✓
Matrix norms ✓ ✓
Test matrix generation ✓ ✓ (new)

ScaLAPACK SLATE
QR ✓ ✓
LQ ✓ ✓ (new)
Least squares solver ✓ ✓

ScaLAPACK SLATE
SVD ✓ ✓ values (new)
Symmetric eigenvalues ✓ ✓ values (new)
Generalized symmetric eig. ✓ ✓ values (new)
Polar decomposition (QDWH) ✘ ✓ (new)
Non-symmetric eigenvalues ✘ pieces ✘ (2021–2022)

Basic linear algebra (C = AB, ...)

Linear systems (Ax = b)

Least squares (Ax ≅ b)

SVD, eigenvalues (A = UΣVH, Ax = λx)

All SLATE routines listed are GPU-accelerated,
except symmetric indefinite

(new) since Sep 2019 review



Tile Algorithms: Matrix Decomposition 

32

LAPACK Algorithm (right looking) SLATE: Tile Algorithm



Track dependencies — Directed acyclic graph (DAG)

33

Fork-join schedule on 4 cores
with artificial synchronizations

Reorder without
synchronizations

synchronize

Critical path
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Dataflow Based Design
• Objectives

• High utilization of each core
• Scaling to large number of cores
• Synchronization reducing algorithms

• Methodology
• Dynamic DAG scheduling using OpenMP 
• Explicit parallelism
• Implicit communication
• Fine granularity / block data layout

• Arbitrary DAG with dynamic scheduling

Cholesky; 45% improvement 



Merging DAGs
%"&'()*+,&-./)01&0+&%222&1&%222,&/03*&+04*&0+&#22&1&#225

time →

35

Multiply A-1 = L-T L-1

Cholesky A = LLT

Invert L-1 time →

Assume a t by t  matrix 
tiling then Cholesky
Factorization alone: 3t-2
Total: 25(7t-3)

Cholesky
matrix inverse

Total: 18(3t+6)
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Accelerator platforms

• Initial version with NVIDIA CUDA

• Port to AMD and Intel in progress

• Use BLAS++ as abstraction layer
– cuBLAS backend (done)
– hip/rocBLAS backend (done)
– oneAPI backend (in progress)

• Few CUDA kernels are memory bound
(batched add tiles, scale tiles, norms of tiles)
– Port to HIP using hipify (prototype done)
– Port to DPC++ in progress
– Alternatively, port to OpenMP offload



Machine Learning in Computational Science

• Climate 
• Biology 
• Drug Design
• Epidemology 
• Materials 
• Cosmology 
• High-Energy Physics

Many fields are beginning to adopt machine learning to augment modeling and simulation 
methods



Deep Learning Needs Small Matrix Operations
Matrix Multiply is the time consuming part.

Convolution Layers and Fully Connected Layers require matrix multiply

There are many GEMM’s of small matrices, perfectly parallel, can get by with 16-bit floating point

$" 6&%7

Convolution Step
In this case 3x3 GEMM

x1

x2

x3

x1
y1

y2

w11

w12

w13

w21

w22

w23

Fully Connected
Classification



• Define standard API for batched BLAS and LAPACK in 
collaboration with Intel/Nvidia/other users

• Fixed size: most of BLAS and LAPACK released
• Variable size: most of BLAS released
• Variable size: LAPACK in the branch
• Native GPU algorithms (Cholesky, LU, QR) in the branch
• Tiled algorithm using batched routines on tile or LAPACK 

data layout in the branch

• Framework for Deep Neural Network kernels
• CPU, KNL and GPU routines
• FP16 routines in progress

Standard for Batched Computations 



Batched Computations 

• Non-batched computation
• loop over the matrices one by one and compute using multithread (note that, since
matrices are of small sizes there is not enough work for all the cores). So we expect low
performance as well as threads contention might also affect the performance

for (i=0; i<batchcount; i++)
dgemm(…)

There is not enough work
to fulfill all the cores.

Low percentage of the 
resources is used



Batched Computations 

• Batched computation
• Distribute all the matrices over the available resources by assigning a matrix to each

group of core/TB to operate on it independently
• For very small matrices, assign a matrix/core (CPU) or per TB for GPU
• For medium size a matrix go to a team of cores (CPU) or many TB’s (GPU)
• For large size switch to multithreads classical 1 matrix per round.

Batched_dgemm(…)

Based on the kernel
design that decide the
number of TB or threads
(GPU/CPU)
and through the
Nvidia/OpenMP
scheduler

Tasks manager 
dispatcher

High percentage of the 
resources is used
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IEEE 754 Half Precision (16-bit) Floating Pt Standard
A lot of interest driven by “machine learning”

FP16

FP16

Google TPU different then IEEE
bfloat16
1 bit for the sign, 
8 bits for the exponent (same as SP) 
7 bits for the mantissa



Mixed Precision
• Today many precisions to deal with (IEEE Standard)

¨ Note the number range with 
half precision (16 bit fl.pt.)

44Google TPU: bfloat16

largest fl pt
number
65,504

largest fl pt
number
O(1038)float16

IEEE SP



Nvidia Volta peak rates

• 64 bit floating point (FMA): 7.5 Tflop/s
• 32 bit floating point (FMA): 15 Tflop/s
• 16 bit floating point (FMA): 30 Tflop/s
• 16 bit floating point with Tensor core: 120 Tflop/s

07
45

Mixed Precision Matrix Multiply
4x4 Matrices
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Leveraging Half Precision in HPC on V100

matrix size
2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k30k
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FP64 GEMM

Matrix matrix multiplication GEMM

• dgemm achieve about 6.4 Tflop/s

Study of the Matrix Matrix multiplication kernel on Nvidia V100 



Leveraging Half Precision in HPC on V100

matrix size
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Matrix matrix multiplication GEMM

• dgemm achieve about 6.4 Tflop/s
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Matrix matrix multiplication GEMM

• dgemm achieve about 6.4 Tflop/s
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Leveraging Half Precision in HPC on V100

• In LU factorization need matrix 
multiple but operations is a 
rank-k update computing the 
Schur complement

m=n
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Leveraging Half Precision in HPC on V100

• LU factorization is used to solve a 
linear system Ax=b

A  x = b 

LUx = b

Ly    = b 

then 
Ux = y

A x b

UL x b

L y b

U x y
matrix size
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Study of the LU factorization algorithm on Nvidia V100

3~4X



Iterative refinement for dense systems, Ax = b, can work this way.
L U = lu(A) lower precision O(n3)
x = U\(L\b) lower precision O(n2)
r = b – Ax FP64 precision O(n2)

WHILE || r || not small enough
1. find a correction “z” to adjust x that satisfy Az=r

solving Az=r could be done by either:
Ø z = U\(L\r) Classical Iterative Refinement lower precision O(n2)
Ø GMRes preconditioned by the LU to solve Az=r Iterative Refinement using GMRes lower precision O(n2)

2. x = x + z FP64 precision O(n1)
3. r = b – Ax FP64 precision O(n2)

END

Idea: use low precision to compute the expensive flops (LU O(n3)) and then iteratively refine 
the solution in order to achieve the FP64 arithmetic

Ø Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt results when using DP fl pt.
Ø It can be shown that using this approach we can compute the solution to 64-bit floating point precision.

Ø Need the original matrix to compute residual (r) and matrix cannot be too badly conditioned

Leveraging Half Precision in HPC on V100

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision
O(n2) work is done in high precision
Problems if the matrix is ill-conditioned

Higham and Carson showed can solve the inner problem with iterative method and not infect the solution.

E. Carson & N. Higham, “Accelerating the Solution of 
Linear Systems by Iterative Refinement in Three 
Precisions SIAM J. Sci. Comput., 40(2), A817–A847.



Improving Solution

• z is the correction or (xi+1 – xi)
• Computed in lower precision and then added to the approximate 

solution in higher precision xi + z

• Can be used in situations like this, i.e. 

xi
z

xi+1



Leveraging Half Precision in HPC on V100
Performance Behavior

• solving Ax = b using FP64 LU

Flops = 2n3/(3 time) 
meaning twice higher is twice faster

Matrix size
2k 4k 6k 8k 10k 14k 18k 22k 26k 30k 34k

Tf
lo

p/
s

0 
2 
4 
6 
8 

10
12
14
16
18
20
22
24

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy

FP16-TC->64 dhgesv
FP16->64 dhgesv
FP32->64 dsgesv
FP64 dgesv

κ
∞
(A

)
100

101

102

103

104

105

Problem generated with an arithmetic distribution of the singular values                                          and positive eigenvalues.

Investigating Half Precision Arithmetic to Accelerate Dense Linear System Solvers ScalA17, November 12–17, 2017, Denver, CO, USA

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10
11
12
13

Performance_rand_dominant_cond_100
FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

# 
ite

ra
tio

ns

0

1

2

3

4

5

6

3
5

3
3

3
3

3
3

3
3

2
4

2
3

2
3

2
4

2
4

3
4

2
3

(a) matrix with diagonal dominant.
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(b) matrix with positive l and where si is random number between 1
cond ,1 such that

their logarithms are uniformly distributed.
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(c) matrix with positive l and with clustered singular values, si=(1, · · · , 1, 1
cond )

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0

1

2

3

4

5

6

7

8
Performance_svd_cluster2_cond_100

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

# 
ite

ra
tio

ns

0  

94 

188

282

376

470

564

658

752

846

313 31
6

41
8

42
1

42
4

43
2

4
36

4
42

4
60

4
90

4
16

5

4
85

0

(d) matrix with clustered singular values, si=(1, · · · , 1, 1
cond )
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(e) matrix with positive eigenvalues and arithmetic distribution of its singular values
si = 1� ( i�1
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Figure 4: Performance in Tflop/s for the three linear solver (dgesv,dsgesv,dhgesv) and the required number of iterations to achieve
FP64 arithmetic solution using either the dsgesv (orange numbers) or the dhgesv (green numbers) solver, for different matrices size
and different type of matrices. Note that cond = 102 for these experiments.



Leveraging Half Precision in HPC on V100
Performance Behavior

• solving Ax = b using FP64 LU

• solving Ax = b using FP32 LU and iterative 
refinement to achieve FP64 accuracy

Flops = 2n3/(3 time) 
meaning twice higher is twice faster
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(b) matrix with positive l and where si is random number between 1
cond ,1 such that

their logarithms are uniformly distributed.
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(c) matrix with positive l and with clustered singular values, si=(1, · · · , 1, 1
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(d) matrix with clustered singular values, si=(1, · · · , 1, 1
cond )
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Figure 4: Performance in Tflop/s for the three linear solver (dgesv,dsgesv,dhgesv) and the required number of iterations to achieve
FP64 arithmetic solution using either the dsgesv (orange numbers) or the dhgesv (green numbers) solver, for different matrices size
and different type of matrices. Note that cond = 102 for these experiments.



Leveraging Half Precision in HPC on V100
Performance Behavior

• solving Ax = b using FP64 LU

• solving Ax = b using FP32 LU and iterative 
refinement to achieve FP64 accuracy

• solving Ax = b using FP16 LU and iterative 
refinement to achieve FP64 accuracy

Flops = 2n3/(3 time) 
meaning twice higher is twice faster
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(b) matrix with positive l and where si is random number between 1
cond ,1 such that

their logarithms are uniformly distributed.
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(c) matrix with positive l and with clustered singular values, si=(1, · · · , 1, 1
cond )
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(d) matrix with clustered singular values, si=(1, · · · , 1, 1
cond )
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si = 1� ( i�1

n�1 ) (1�
1

cond ).

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0

1

2

3

4

5

6

7

8
Performance_svd_arith_cond_100

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

# 
ite

ra
tio

ns

0  

22 

44 

66 

88 

110

132

154

176

198

220

3
21

4
39

4
72

4
11

8
4

20
0

40 40 40 40 40 40 40

(f) matrix with arithmetic distribution of its singular values si = 1� ( i�1
n�1 ) (1�

1
cond ).

Figure 4: Performance in Tflop/s for the three linear solver (dgesv,dsgesv,dhgesv) and the required number of iterations to achieve
FP64 arithmetic solution using either the dsgesv (orange numbers) or the dhgesv (green numbers) solver, for different matrices size
and different type of matrices. Note that cond = 102 for these experiments.
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Leveraging Half Precision in HPC on V100
Performance Behavior

• solving Ax = b using FP64 LU

• solving Ax = b using FP32 LU and iterative 
refinement to achieve FP64 accuracy

• solving Ax = b using FP16 LU and iterative 
refinement to achieve FP64 accuracy

• solving Ax = b using FP16 Tensor Cores LU and 
iterative refinement to achieve FP64 accuracy

4X

Flops = 2n3/(3 time) 
meaning twice higher is twice faster
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(b) matrix with positive l and where si is random number between 1
cond ,1 such that

their logarithms are uniformly distributed.

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

11

12
Performance_poev_cluster2_cond_100

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

# 
ite

ra
tio

ns

0

1

2

3

4

5

6

7

8

9

3
6

3
6

3
6

3
7

3
7

3
7

3
8

3
8

3
8

3
8

3
8

3
8

(c) matrix with positive l and with clustered singular values, si=(1, · · · , 1, 1
cond )
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(e) matrix with positive eigenvalues and arithmetic distribution of its singular values
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Figure 4: Performance in Tflop/s for the three linear solver (dgesv,dsgesv,dhgesv) and the required number of iterations to achieve
FP64 arithmetic solution using either the dsgesv (orange numbers) or the dhgesv (green numbers) solver, for different matrices size
and different type of matrices. Note that cond = 102 for these experiments.
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Leveraging Half Precision in HPC on V100
Performance Behavior

• solving Ax = b using FP64 LU

• solving Ax = b using FP32 LU and iterative 
refinement to achieve FP64 accuracy

• solving Ax = b using FP16 LU and iterative 
refinement to achieve FP64 accuracy

• solving Ax = b using FP16 Tensor Cores LU and 
iterative refinement to achieve FP64 accuracy

Flops = 2n3/(3 time) 
meaning twice higher is twice faster

Problem generated with an arithmetic distribution of the singular values                                          and positive eigenvalues.

Investigating Half Precision Arithmetic to Accelerate Dense Linear System Solvers ScalA17, November 12–17, 2017, Denver, CO, USA
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(b) matrix with positive l and where si is random number between 1
cond ,1 such that

their logarithms are uniformly distributed.
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(c) matrix with positive l and with clustered singular values, si=(1, · · · , 1, 1
cond )
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(d) matrix with clustered singular values, si=(1, · · · , 1, 1
cond )
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(e) matrix with positive eigenvalues and arithmetic distribution of its singular values
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Figure 4: Performance in Tflop/s for the three linear solver (dgesv,dsgesv,dhgesv) and the required number of iterations to achieve
FP64 arithmetic solution using either the dsgesv (orange numbers) or the dhgesv (green numbers) solver, for different matrices size
and different type of matrices. Note that cond = 102 for these experiments.



Critical Issues at Exascale for Algorithm and Software Design

• Synchronization-reducing algorithms
▪ Break Fork-Join model

• Communication-reducing algorithms
▪ Use methods which have lower bound on communication

• Mixed precision methods (half (16bit), single(32 bit), & double precision (64))
▪ 2x – 10x speed of ops and 2x - 4x speed for data movement

• Autotuning – Performance Debugging
▪ Today’s machines are very complicated, build “smarts” into software to adapt to the 

hardware

• Fault resilient algorithms
▪ Implement algorithms that can recover from failures/bit flips

• Reproducibility of results
▪ Today we can’t guarantee this. We understand the issues, but some of our “colleagues” 

have a hard time with this.
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The Take Away
• HPC Constantly Changing

▪ Scalar
▪ Vector
▪ Distributed
▪ Accelerated
▪ Mixed precision

• Data movement critical for performance.
• Algorithm / Software advances follows hardware

▪ And there is “plenty of room at the top”
▪ “There's life in the old dog yet”

62



Collaborators / Software / Support
u PLASMA

http://icl.cs.utk.edu/plasma/

u MAGMA
http://icl.cs.utk.edu/magma/

u SLATE
u https://icl.utk.edu/slate/
u https://bitbucket.org/icl/slate/src/default/

u PaRSEC (Parallel Runtime Scheduling & Execution Control)
• http://icl.cs.utk.edu/parsec/

Also see: http://www.netlib.org/utk/people/JackDongarra/papers.htm u Collaborating partners
University of Tennessee, Knoxville
University of California, Berkeley
University of Colorado, Denver

Looking for Grad Students and 
Post-Docs for work in this area.

http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/
https://icl.utk.edu/slate/
https://bitbucket.org/icl/slate/src/default/
http://icl.cs.utk.edu/parsec/
http://www.netlib.org/utk/people/JackDongarra/papers.htm
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Synchronization (in LAPACK)

•  Fork-join, bulk synchronous processing 27 
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Ø fork join
Ø bulk synchronous processing
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OpenMP tasking

• Added with OpenMP 3.0 (2009)
• Allows parallelization of irregular problems
• OpenMP 4.0 (2013) - Tasks can have 

dependencies
• DAGs
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Tiled Cholesky Decomposition
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Leveraging Half Precision in HPC on V100
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Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrix of size 10240 generated with positive � and clustered singular values,
�i=(1, · · · , 1, 1

cond ) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2
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Leveraging Half Precision in HPC on V100
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Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrices generated with positive � and clustered distribution of its singular values
�i=(1, · · · , 1, 1

cond ) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

• solving Ax = b using FP64 LU

Flops = 2n3/(3 time) 
meaning twice higher is twice faster
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Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrices generated with positive � and clustered distribution of its singular values
�i=(1, · · · , 1, 1

cond ) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

• solving Ax = b using FP64 LU
• solving Ax = b using FP32 LU and 

iterative refinement to achieve FP64 
accuracy

Flops = 2n3/(3 time) 
meaning twice higher is twice faster
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Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrices generated with positive � and clustered distribution of its singular values
�i=(1, · · · , 1, 1

cond ) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

• solving Ax = b using FP64 LU
• solving Ax = b using FP32 LU and 

iterative refinement to achieve FP64 
accuracy

• solving Ax = b using FP16 LU and 
iterative refinement to achieve FP64 
accuracy

Flops = 2n3/(3 time) 
meaning twice higher is twice faster

slow convergence affect 
the performance
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Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.
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Matrices generated with positive � and clustered distribution of its singular values
�i=(1, · · · , 1, 1

cond ) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

• solving Ax = b using FP64 LU
• solving Ax = b using FP32 LU and 

iterative refinement to achieve FP64 
accuracy

• solving Ax = b using FP16 LU and 
iterative refinement to achieve FP64 
accuracy

• solving Ax = b using FP16 Tensor Cores 
LU and iterative refinement to achieve 
FP64 accuracy

Flops = 2n3/(3 time) 
meaning twice higher is twice faster

4X
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(b) matrix with positive l and where si is random number between 1
cond ,1 such that

their logarithms are uniformly distributed.
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(c) matrix with positive l and with clustered singular values, si=(1, · · · , 1, 1
cond )
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(d) matrix with clustered singular values, si=(1, · · · , 1, 1
cond )
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Figure 4: Performance in Tflop/s for the three linear solver (dgesv,dsgesv,dhgesv) and the required number of iterations to achieve
FP64 arithmetic solution using either the dsgesv (orange numbers) or the dhgesv (green numbers) solver, for different matrices size
and different type of matrices. Note that cond = 102 for these experiments.

• Power consumption of the FP64 algorithm to 
solve Ax=b for a matrix of size 34K, it achieve 
5.5 Tflop/s and requires about 2021 joules 
providing about 14 Gflops/Watts.
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(b) matrix with positive l and where si is random number between 1
cond ,1 such that

their logarithms are uniformly distributed.
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(c) matrix with positive l and with clustered singular values, si=(1, · · · , 1, 1
cond )
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(d) matrix with clustered singular values, si=(1, · · · , 1, 1
cond )
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(e) matrix with positive eigenvalues and arithmetic distribution of its singular values
si = 1� ( i�1
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Figure 4: Performance in Tflop/s for the three linear solver (dgesv,dsgesv,dhgesv) and the required number of iterations to achieve
FP64 arithmetic solution using either the dsgesv (orange numbers) or the dhgesv (green numbers) solver, for different matrices size
and different type of matrices. Note that cond = 102 for these experiments.

• Power consumption of the FP64 algorithm to 
solve Ax=b for a matrix of size 34K, it achieve 
5.5 Tflop/s and requires about 2021 joules 
providing about 14 Gflops/Watts.

• Power consumption of the mixed precision 
FP32à64 algorithm to solve Ax=b for a 
matrix of size 34K, it achieve 10.7 Tflop/s and 
requires about 1041 joules providing about  
30 Gflops/Watts.

Mixed precision techniques can provide 
a large gain in energy efficiency
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(b) matrix with positive l and where si is random number between 1
cond ,1 such that

their logarithms are uniformly distributed.
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(c) matrix with positive l and with clustered singular values, si=(1, · · · , 1, 1
cond )
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(d) matrix with clustered singular values, si=(1, · · · , 1, 1
cond )
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(e) matrix with positive eigenvalues and arithmetic distribution of its singular values
si = 1� ( i�1
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Figure 4: Performance in Tflop/s for the three linear solver (dgesv,dsgesv,dhgesv) and the required number of iterations to achieve
FP64 arithmetic solution using either the dsgesv (orange numbers) or the dhgesv (green numbers) solver, for different matrices size
and different type of matrices. Note that cond = 102 for these experiments.

• Power consumption of the FP64 algorithm to 
solve Ax=b for a matrix of size 34K, it achieve 
5.5 Tflop/s and requires about 2021 joules 
providing about 14 Gflops/Watts.

• Power consumption of the mixed precision 
FP32à64 algorithm to solve Ax=b for a 
matrix of size 34K, it achieve 10.7 Tflop/s and 
requires about 1041 joules providing about  
30 Gflops/Watts.

• Power consumption of the mixed precision 
FP16à64 algorithm to solve Ax=b for a 
matrix of size 34K, it achieve 16.8 Tflop/s and 
requires about 609 joules providing about     
48 Gflops/Watts. 

Mixed precision techniques can provide 
a large gain in energy efficiency
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(b) matrix with positive l and where si is random number between 1
cond ,1 such that

their logarithms are uniformly distributed.
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(c) matrix with positive l and with clustered singular values, si=(1, · · · , 1, 1
cond )
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(d) matrix with clustered singular values, si=(1, · · · , 1, 1
cond )
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(e) matrix with positive eigenvalues and arithmetic distribution of its singular values
si = 1� ( i�1
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Figure 4: Performance in Tflop/s for the three linear solver (dgesv,dsgesv,dhgesv) and the required number of iterations to achieve
FP64 arithmetic solution using either the dsgesv (orange numbers) or the dhgesv (green numbers) solver, for different matrices size
and different type of matrices. Note that cond = 102 for these experiments.

• Power consumption of the FP64 algorithm to 
solve Ax=b for a matrix of size 34K, it achieve 
5.5 Tflop/s and requires about 2021 joules 
providing about 14 Gflops/Watts.

• Power consumption of the mixed precision 
FP32à64 algorithm to solve Ax=b for a 
matrix of size 34K, it achieve 10.7 Tflop/s and 
requires about 1041 joules providing about  
30 Gflops/Watts.

• Power consumption of the mixed precision 
FP16à64 algorithm to solve Ax=b for a 
matrix of size 34K, it achieve 16.8 Tflop/s and 
requires about 609 joules providing about     
48 Gflops/Watts. 

• Power consumption of the mixed precision 
FP16à64 TC algorithm using Tensor Cores 
to solve Ax=b for a matrix of size 34K, it 
achieve 24 Tflop/s and requires about 470 
joules providing about 74 Gflops/Watts. 

Mixed precision techniques can provide 
a large gain in energy efficiency
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Solving Ax=b on Nvidia V100

FP64 solver dgesv
FP32 --> 64 solver dsgesv
FP16 --> 64 solver dhgesv
FP16 --> 64 solver dhgesv (TC)

CPU: 10 cores E5-2650 v3
GPU: Nvidia V100

FP16-TC reach 
74 Gflops/Watt



Critical Issues at Peta & Exascale for 
Algorithm and Software Design

• Synchronization-reducing algorithms
§ Break Fork-Join model

• Communication-reducing algorithms
§ Use methods which have lower bound on communication

• Mixed precision methods
§ 2x speed of ops and 2x speed for data movement
§ Now we have 16 bit floating point as well

• Autotuning
§ Today’s machines are too complicated, build “smarts” into software to adapt to 

the hardware

• Fault resilient algorithms
§ Implement algorithms that can recover from failures/bit flips

• Reproducibility of results
§ Today we can’t guarantee this. We understand the issues, but some of our 

“colleagues” have a hard time with this.
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Collaborators / Software / Support
u SLATE 

http://icl.cs.utk.edu/slate/

u PLASMA
http://icl.cs.utk.edu/plasma/

u MAGMA
http://icl.cs.utk.edu/magma/

u PaRSEC(Parallel Runtime Scheduling 
and Execution Control)

• http://icl.cs.utk.edu/parsec/
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u Collaborating partners
University of Tennessee, Knoxville
University of California, Berkeley
University of Colorado, Denver

MAGMA PLASMASLATE

http://icl.cs.utk.edu/slate/
http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/plasma


ICL is hiring!

Projects include

• SLATE — distributed dense linear algebra

• CEED — tensor algebra, batched operations

• PEEKS — Krylov methods

• heFFTe — distributed FFT

• PAPI — performance measurement and 
modeling

• ParSEC — distributed tasking for exascale
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www.icl.utk.edu/jobs
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