
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Mathematical Sciences Spring Lecture Series Mathematical Sciences

4-5-2021

Lecture 10: Preconditioned Iterative Methods for Linear Systems Lecture 10: Preconditioned Iterative Methods for Linear Systems

Edmond Chow
Georgia Institute of Technology

Follow this and additional works at: https://scholarworks.uark.edu/mascsls

 Part of the Dynamical Systems Commons, Harmonic Analysis and Representation Commons,

Numerical Analysis and Computation Commons, and the Partial Differential Equations Commons

Citation Citation
Chow, E. (2021). Lecture 10: Preconditioned Iterative Methods for Linear Systems. Mathematical
Sciences Spring Lecture Series. Retrieved from https://scholarworks.uark.edu/mascsls/9

This Video is brought to you for free and open access by the Mathematical Sciences at ScholarWorks@UARK. It
has been accepted for inclusion in Mathematical Sciences Spring Lecture Series by an authorized administrator of
ScholarWorks@UARK. For more information, please contact ccmiddle@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/mascsls
https://scholarworks.uark.edu/masc
https://scholarworks.uark.edu/mascsls?utm_source=scholarworks.uark.edu%2Fmascsls%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/179?utm_source=scholarworks.uark.edu%2Fmascsls%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/181?utm_source=scholarworks.uark.edu%2Fmascsls%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=scholarworks.uark.edu%2Fmascsls%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/120?utm_source=scholarworks.uark.edu%2Fmascsls%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/mascsls/9?utm_source=scholarworks.uark.edu%2Fmascsls%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ccmiddle@uark.edu

Preconditioned Iterative Methods for Linear Systems

Edmond Chow
School of Computational Science and Engineering

Georgia Institute of Technology, USA
https://cse.gatech.edu

46th University of Arkansas Spring Lecture Series
April 5, 2021

Iterative methods for solving linear systems

Given nonsingular matrix A and vector b,

solve Ax = b

Two major classes of solution methods:

1. Direct methods
e.g., A = LU, x = U−1(L−1b)

2. Iterative methods

x (0) = initial approximation
for j = 0, 1, . . . until convergence do

x (j+1) = x (j)+
end for

where generally involves a matrix-vector multiplication with A

2

Stationary iterative methods (linear fixed-point iteration)

Choose a splitting A = M − N

I M nonsingular and may approximate A

I “easy” to solve with M

(M − N)x = b

x = (M−1N)x + M−1b

Stationary iterative method:

x (j+1) = x (j) + M−1(b − Ax (j))

Define the residual r (j) = b − Ax (j) and the error e(j) = x − x (j)

e(j+1) = (I −M−1A)︸ ︷︷ ︸
iteration matrix

e(j)

3

Semi-iterative methods

Example (Chebyshev method):

x (j+1) = x (j) +

j∑
i=0

γj ,i r
(i)

x (1) = x (0) + γ0,0r
(0)

x (2) = x (1) + γ1,1r
(1) + γ1,0r

(0)

x (3) = x (2) + γ2,2r
(2) + γ2,1r

(1) + γ2,0r
(0)

...

e(j) = pj(A)e(0), pj(0) = 1

‖e(j)‖ ≤ ‖pj(A)‖‖e(0)‖

4

Semi-iterative methods

If A is SPD,

min ‖pj(A)‖2 = min
pj

max
λ∈spec(A)

|pj(λ)|

≈ min
pj

max
λmin≤s≤λmax

|pj(s)|

The approximate solution pj(s) is a shifted and scaled Chebyshev polynomial, but we
need to estimate λmin and λmax.

5

Krylov subspace methods

Find x (m) ∈ x (0) + Km(A, r (0)), Km(A, r (0)) = span{r (0),Ar (0),A2r (0), . . . ,Am−1r (0)}

x (m) = x (0) + α0r
(0) + α1Ar

(0) + α2A
2r (0) + · · ·+ αm−1A

(m−1)r (0)

= x (0) + qm−1(A)r (0)

e(m) = e(0) − qm−1(A)Ae(0)

e(m) = (I − Aqm−1(A))︸ ︷︷ ︸
pm(A) with pm(0)=1

e(0)

x (m) is chosen from x (0) + Km(A, r (0)) to (exactly or approximately) minimize ‖r (m)‖2
or ‖e(m)‖A (if A is SPD).

6

Krylov subspace methods

Formally, to solve min ‖e(m)‖A = min ‖pm(A)e(0)‖A:

let the columns of Vm be a basis for Km(A, r (0)) (Arnoldi/Lanczos algorithm), then

x (m) = x (0) + Vm(V T
m AVm)−1V T

m︸ ︷︷ ︸
approx A−1

r (0)

Note analogy to 1 cycle of a 2-level method:

x (1) = x (0) + P(PTAP)−1PT r (0)

where P is the (sparse) interpolation operator and PT is the restriction operator.

I No estimation of the spectrum of A was needed to find pm(A)

I However, inner-product operations are now required (Arnoldi/Lanczos)

7

Preconditioning

Goal: improve the convergence rate of an iterative method with the transformation

M−1Ax = M−1b (left preconditioning)

For SPD matrix A and SPD M,

I reduce λmax(M−1A)/λmin(M−1A)

I cluster the eigenvalues of M−1A

I move the spectrum farther from zero

8

Preconditioning: another goal

Given a matrix Aµ (that depends on a parameter µ),
find Mµ such that there exist constants c1, c2:

c1x
TMx ≤ xTAx ≤ c2x

TMx , for all x 6= 0,

i.e., the condition number of M−1A is bounded above by c2/c1 independently of µ.

9

Preconditioned conjugate gradient method

x (0) = initial approximation
r (0) = b − Ax (0)

p(0) = M−1r (0)

z(0) = M−1r (0)

for j = 0, 1, . . . until convergence do
α(j) = (r (j), z(j))/(p(j),Ap(j))
x (j+1) = x (j) + α(j)p(j)

r (j+1) = r (j) − α(j)Ap(j)

z(j+1) = M−1r (j+1)

β(j) = (r (j+1), z(j+1))/(r (j), z(j))
p(j+1) = z(j+1) + β(j)p(j)

end for

Main cost of algorithm:

I one matrix-vector multiplication and one preconditioning operation per iteration

I two dot products per iteration

10

Parallelization

Matrix-vector multiplication (“loosely” synchronous)
A11 A12 · · · A1P

A21 A22 · · · A2P
...

. . .
...

AP1 AP2 · · · APP

z1
z2
...
zP

Inner product when result must be distributed (synchronous)
y1
y2
...
yP

 ·

z1
z2
...
zP

Load imbalance may cause processors to be idle.
11

Avoiding/reducing the cost of parallel inner products

I Pipelined algorithms: in CG, it is possible to compute the two inner products
together, and overlap these inner products with the matrix-vector multiplication
(Ghysels and Vanroose, 2014)

I Preconditioning, especially polynomial preconditioning:

M−1r = p(A)r

(for recent work, see Embree, Loe, and Morgan, 2021)

I Hybrid methods:

Phase 1 with inner products: Estimate the eigenvalues of A
Phase 2 with no inner products: Construct and apply a polynomial method p(A)

using these estimates

(for a review, see Nachtigal, Reichel, and Trefethen, 1992)

12

Two topics in more depth

I Asynchronous iterative methods

I Fine-grained parallel incomplete factorization preconditioning

13

Preconditioned iterative methods for large, dense kernel matrices

Given n points xi , i = 1, . . . , n, define the n× n dense SPD kernel matrix A with entries

aij = κ(xi , xj)

To solve iteratively with A, we desire matrix-vector multiplications by A in O(n) time
as well as a SPD preconditioner M for A.

Represent A in H2 format:

Inexpensive to construct.

Construct M in HSS format:

Expensive to construct.

Use the H2 matrix to help rapidly construct the HSS matrix.
14

Preconditioned iterative methods for large, dense kernel matrices

Represent A in H2 format: Construct M in HSS format:

X. Xing, H. Huang, and E. Chow, Efficient construction of an HSS preconditioner for symmetric
positive definite H2 matrices, SIAM Journal on Matrix Analysis and Applications, to appear (2021).

H. Huang, X. Xing, and E. Chow, H2Pack: High-Performance H2 Matrix Package for Kernel Matrices
Using the Proxy Point Method, ACM Transactions on Mathematical Software, 47, No. 1, Article 3
(2020).

https://github.com/scalable-matrix/H2Pack/

15

Asynchronous iterative methods

16

Fixed-point iteration for solving x = G (x)

x (j+1) = G (x (j)), j = 0, 1, 2, . . .

Written explicitly:

x1 ← g1(x1, x2, x3, x4, · · · , xn)

x2 ← g2(x1, x2, x3, x4, · · · , xn)

x3 ← g3(x1, x2, x3, x4, · · · , xn)

x4 ← g4(x1, x2, x3, x4, · · · , xn)
...

xn ← gn(x1, x2, x3, x4, · · · , xn)

Two factors make asynchronous iterations different from synchronous iterations:

I Not all updates are performed at the same time instant

I Updates may use stale information (communication delays in reading or writing)

17

Mathematical model of asynchronous iterations

Bertsekas and Tsitsiklis 1989. (See also Chazan-Miranker 1969, Baudet 1978.)

Let x
(j)
i denote the ith component of x at time instant j .

x
(j)
i =

x
(j−1)
i , if i /∈ Jj

gi (x
(s i1(j))
1 , x

(s i2(j))
2 , . . . , x

(s in(j))
n), if i ∈ Jj

where Jj is the set of indices updated at instant j , and s ik(j) is the instant that xk is
read when computing gi at instant j (and account for read/write communication
delays).

Assumptions:

1. s ik(j) < j , i.e., at instant j , a process cannot read other values computed at
instant j or in the future of instant j

2. Cannot have a sequence s ik(j) over time such that iterations only use old values,
i.e., newer values must eventually be used

3. No component i is abandoned forever, i.e., no process stops updating

The model is very general and includes synchronous iterations as special cases. 18

Mathematical model of asynchronous iterations

Bertsekas and Tsitsiklis 1989. (See also Chazan-Miranker 1969, Baudet 1978.)

Let x
(j)
i denote the ith component of x at time instant j ,

x
(j)
i =

x
(j−1)
i , if i /∈ Jj

gi (x
(s i1(j))
1 , x

(s i2(j))
2 , . . . , x

(s in(j))
n), if i ∈ Jj

where Jj is the set of indices updated at instant j , and s ik(j) is the instant that xk is
read when computing gi at instant j (and account for read/write communication
delays).

I It is reasonable (but not necessary) to assume s ik(j1) ≤ s ik(j2) if j1 < j2, i.e., once
a value of xk is read, an older version of xk is not read.

I It could be reasonable to assume that, for a given k and j , all s ik(j) are equal for
different i , i.e., at instant j , all computations are performed with the same values
of x .

I When xi depends on xi itself (not in the case of Jacobi), x
(j)
i might not be

computed using the latest value x
(j−1)
i . This handles the case that the

computation of xi is assigned to different processes at different times.
19

Convergence theorem for linear case

To solve the nonsingular system Ax = b, rewrite the equation in the form x = G (x) as

(M − N)x = b

x = (M−1N)x + M−1b

Define the iteration matrix T = M−1N. The corresponding synchronous iterative
method converges for any initial guess if and only if ρ(T) < 1.

The corresponding asynchronous iterative method converges for any initial guess if and
only if

ρ(|T |) < 1.

Note: ρ(T) ≤ ρ(|T |).

If ρ(|T |) ≥ 1, then there exists an initial guess x (0) and a sequence of asynchronous
iterations that does not converge to the fixed point.

20

Convergence theorem for linear case

To solve the nonsingular system Ax = b, rewrite the equation in the form x = G (x) as

(M − N)x = b

x = (M−1N)x + M−1b

Define the iteration matrix T = M−1N. The corresponding synchronous iterative
method converges for any initial guess if and only if ρ(T) < 1.

The corresponding asynchronous iterative method converges for any initial guess if and
only if

ρ(|T |) < 1.

Note: ρ(T) ≤ ρ(|T |).

If ρ(|T |) ≥ 1, then there exists an initial guess x (0) and a sequence of asynchronous
iterations that does not converge to the fixed point.

21

Synchronous and asynchronous Jacobi convergence with 20 threads

2D isotropic diffusion PDE with unstructured FEM discretization, n = 3081
ρ(T) = ρ(|T |) > 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

10-3

10-2

10-1

100 Sync

Async

22

The convergence theory gives an overly negative view of asynchronous
iterative methods

For synchronous methods, ρ(T) < 1 reliably predicts that the iterations will converge
for any initial guess.

If ρ(T) ≥ 1, the iterations “converge” if the initial error does not lie in the subspace
spanned by the eigenvectors of T corresponding to eigenvalues ≥ 1.

For asynchronous methods, ρ(|T |) < 1 guarantees the iterations will converge.

But, if ρ(|T |) ≥ 1, the iterations may converge anyway (seems more likely if ρ(|T |) is
not too large).

23

The convergence theory gives an overly negative view of asynchronous
iterative methods

For synchronous methods, ρ(T) < 1 reliably predicts that the iterations will converge
for any initial guess.

If ρ(T) ≥ 1, the iterations “converge” if the initial error does not lie in the subspace
spanned by the eigenvectors of T corresponding to eigenvalues ≥ 1.

For asynchronous methods, ρ(|T |) < 1 guarantees the iterations will converge.

But, if ρ(|T |) ≥ 1, the iterations may converge anyway (seems more likely if ρ(|T |) is
not too large).

24

Simulating asynchronous iterations

Asynchronous iterations vs. Synchronous iterations

I Differences in convergence (e.g., use of stale values)

I Differences in computational efficiency (e.g., synchronizations, data copies)

Simulating asynchronous iterations lets us study convergence independently of
computational efficiency.

Simulation parameters:

I Update probability: at each time instant a variable is updated with a given
probability

I Delay bound: when a variable is updated, the data is read from k past time
instants, up to the delay bound (k = 1 is most recent data)

J. Wolfson-Pou and E. Chow, “Convergence models and surprising results for the asynchronous Jacobi
method,” 32nd IEEE Int. Parallel & Distributed Processing Symp., 940-949 (2018).

J. Wolfson-Pou and E. Chow, “Modeling the asynchronous Jacobi method without communication
delays,” J. Parallel & Distributed Computing, 128, 84-98 (2019).

25

Simulation of asynchronous Jacobi convergence

2D isotropic diffusion PDE with unstructured FEM discretization, n = 3081
ρ(T) = ρ(|T |) > 1

0 50 100 150 200

Time instant

10
-2

10
-1

10
0

R
e
l.
 r

e
s
id

.
2
-n

o
rm

synchronous

upd prob = 0.5, del bound = 3

upd prob = 0.5, del bound = 1

upd prob = 1.0, del bound = 3

26

Two mysteries

1. Why does asynchronous Jacobi converge when some updates are not performed at
every step?

2. Why does asynchronous Jacobi converge when some updates use stale values?

0 50 100 150 200

Time instant

10
-2

10
-1

10
0

R
e
l.
 r

e
s
id

.
2
-n

o
rm

synchronous

upd prob = 0.5, del bound = 3

upd prob = 0.5, del bound = 1

upd prob = 1.0, del bound = 3

27

Weighted Jacobi

To understand the effect of using stale values, one can think of comparing to weighted
Jacobi iterations:

x
(j)
i = (1− ω)x

(j−1)
i + ω gi (x

(j−1))

= x
(j−1)
i + ω

1

aii
(bi −

∑
k

aikx
(j−1)
k)

If ω < 1, the new iterate does not get the full correction compared to standard Jacobi.

For SPD systems, if Jacobi does not converge, weighted Jacobi can obtain
convergence.

28

Asynchronous Jacobi with delay bound 3

0 10 20 30 40 50

Time instant

10
-1

10
0

R
e

l.
 r

e
s
id

.
2

-n
o

rm

29

Asynchronous Jacobi with delay bound 3 and w-Jacobi(0.5)

0 10 20 30 40 50

Time instant

10
-1

10
0

R
e

l.
 r

e
s
id

.
2

-n
o

rm

Iterates are not the same, but the residual norms match well.
(Discrepancies are smaller than those for different right-hand sides.)

30

Weighted Jacobi

0 10 20 30 40 50

Time instant

10
-1

10
0

R
e

l.
 r

e
s
id

.
2

-n
o

rm

w = 0.4

w = 0.8

31

Weighted Jacobi seems to model asynchronous Jacobi using stale values

0 10 20 30 40 50

Time instant

10
-1

10
0

R
e

l.
 r

e
s
id

.
2

-n
o

rm

w = 0.4

w = 0.8

del bound 4

del bound 3

del bound 2

32

Synchronous and asynchronous Jacobi

2D isotropic diffusion PDE with 5-point FD discretization, n = 90, 000

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

10-2

10-1

Sync

Async

33

Synchronous and asynchronous Jacobi - with background processes

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

10-2

10-1

Sync

Async

34

Synchronous and asynchronous Jacobi - with background processes

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

10-2

10-1

Sync

Async

35

Asynchronous Jacobi - with “failure” of thread 10

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

10-2

10-1

Async

Async with failure

36

Second order Richardson

To solve Ax = b,

x (j+1) = x (j) + β(x (j) − x (j−1)) + (1 + β)α(b − Ax (j))

Optimal parameter values, given A is SPD and spec(A) ⊂ [a, b]:

α =
2

a + b

β =

(√
b −
√
a√

b +
√
a

)2

found by optimizing the spectral radius of the block 2× 2 iteration matrix, Tα,β.

In the following figures, assume a = 1− ρ > 0 and b = 1 + ρ.

E. Chow, A. Frommer, and D. B. Szyld, “Asynchronous Richardson iterations: Theory and practice,”
Numerical Algorithms, 2020.

37

Second order Richardson - Synchronous case, spectral radius of Tα,β

synchronous, = 0.1

0
.2

0
.2

0
.3

0
.3 0
.3

0
.3

0
.4

0
.4

0
.4

0
.4

0
.4

0
.5

0
.5

0
.5

0
.5

0
.5

0
.5

0
.6

0
.6

0.6

0
.6

0
.6

0
.6

0
.7

0
.7

0
.7

0.7

0
.7

0
.7

0.7

0
.8

0
.8

0
.8

0.8

0.8

0
.8

0
.8

0.8

0
.9

0
.9

0.9
0.9

0.9

0
.9

0
.9

0
.9

1
1

1
1111

1
1

1

1.1

1.1

1.1

1
.1

1.2

1.2

1.2

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5
synchronous, = 0.5

0
.4

0
.4

0
.5

0
.5

0
.5

0
.5

0
.6

0
.6

0.6

0
.6

0
.60

.7

0
.7

0.7

0.7

0
.7

0
.7

0.8

0.8

0
.8

0.8

0.8

0
.8

0
.8

0
.8

0.9

0.9

0.9

0
.9

0.9

0.9

0.9

0
.9

0
.9

0
.9

1111

1
1

1 1 1 1

1
1

1

1
1.1

1.1

1.1

1
.1

1.1

1.1
1.1

1.2

1.2

1.2

1
.2

1.2

1.2

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5
synchronous, = 0.9

0
.7

0
.7

0
.8

0
.8

0
.8

0
.8

0.9

0
.9

0.9
0.9

0
.9

0
.9

0.92

0
.9

2

0
.9

2

0.92
0.92

0
.9

2
0

.9
2

0.94

0
.9

4

0
.9

4

0.94
0.94

0
.9

4
0

.9
4

0.96

0.96

0
.9

6

0.96
0.96 0.96

0
.9

6
0

.9
6

0.98

0.98

0.98

0
.9

8

0.98
0.98 0.98 0.98

0
.9

8
0

.9
8

1111

1
1

1 1 1 1

1
1

1.1
1.1

1.1

1
.1

1.1

1.1

1.1
1.1

1.2

1.2

1.2

1
.2

1.2

1.2

1.2
1.2

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5

As ρ increases from 0 to 1, the optimal β increases from 0 to 1.

38

Second order Richardson - Asynchronous case, spectral radius of |Tα,β|

asynchronous, = 0.1

0
.20

.3

0
.3

0
.4

0
.4

0
.4

0
.5

0
.5

0
.5

0
.50

.6

0
.6

0.6

0
.6

0
.6

0
.7

0
.7

0
.7

0
.7

0
.7

0.7 0
.8

0.8

0
.8

0.8

0
.8

0
.8

0.8 0
.9

0.9

0
.9

0
.9

0.9

0
.9

0
.9

1

1

1

1

11

1
1

1

1
.1

1.1

1.1

1
.1

1
.1

1.1

1
.1

1.2

1
.2

1
.2

1.2

1.2

1.2

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5
asynchronous, = 0.5

0
.6

0
.7

0.7

0
.70

.8

0.8

0
.8

0
.8

0.9

0
.9

0.9

0.9

0
.9

0
.9

11

1
1

1

1 1

1

1

1

1.1

1.1

1
.1

1
.1

1.1

1
.1

1
.2

1.2

1
.2

1
.2

1.2

1
.2

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5
asynchronous, = 0.9

0
.9

20
.9

4

0
.9

4

0
.9

6

0
.9

6

0.96

0
.9

6

0.98

0
.9

8

0.98

0
.9

8
0
.9

8

11

1

1

1 1 1

1

1
.1

1.1

1
.1

1
.1

1
.1

1.1

1.2

1
.2

1
.2

1
.2

1.2

1
.2

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5

For moderate or large values of ρ, the optimal value of β gives |Tα,β| > 1.

39

Second order Richardson
synchronous, = 0.1

0
.2

0
.2

0
.3

0
.3 0
.3

0
.3

0
.4

0
.4

0
.4

0
.4

0
.4

0
.5

0
.5

0
.5

0
.5

0
.5

0
.5

0
.6

0
.6

0.6

0
.6

0
.6

0
.6

0
.7

0
.7

0
.7

0.7

0
.7

0
.7

0.7

0
.8

0
.8

0
.8

0.8

0.8

0
.8

0
.8

0.8

0
.9

0
.9

0.9
0.9

0.9

0
.9

0
.9

0
.9

1
1

1

1111

1
1

1

1.1

1.1

1.1

1
.1

1.2

1.2

1.2

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5
synchronous, = 0.5

0
.4

0
.4

0
.5

0
.5

0
.5

0
.5

0
.6

0
.6

0.6

0
.6

0
.60

.7

0
.7

0.7

0.7

0
.7

0
.7

0.8

0.8

0
.8

0.8

0.8

0
.8

0
.8

0
.8

0.9

0.9

0.9

0
.9

0.9

0.9

0.9

0
.9

0
.9

0
.9

1111

1
1

1 1 1 1

1
1

1

1
1.1

1.1

1.1

1
.1

1.1

1.1
1.1

1.2

1.2

1.2

1
.2

1.2

1.2

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5
synchronous, = 0.9

0
.7

0
.7

0
.8

0
.8

0
.8

0
.8

0.9

0
.9

0.9
0.9

0
.9

0
.9

0.92

0
.9

2
0
.9

2

0.92
0.92

0
.9

2
0

.9
2

0.94

0
.9

4

0
.9

4

0.94
0.94

0
.9

4
0

.9
4

0.96

0.96

0
.9

6

0.96
0.96 0.96

0
.9

6
0

.9
6

0.98

0.98

0.98

0
.9

8

0.98
0.98 0.98 0.98

0
.9

8
0

.9
8

1111

1
1

1 1 1 1

1
1

1.1
1.1

1.1

1
.1

1.1

1.1

1.1
1.1

1.2

1.2

1.2

1
.2

1.2

1.2

1.2
1.2

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5

asynchronous, = 0.1

0
.20

.3

0
.3

0
.4

0
.4

0
.4

0
.5

0
.5

0
.5

0
.50

.6

0
.6

0.6

0
.6

0
.6

0
.7

0
.7

0
.7

0
.7

0
.7

0.7 0
.8

0.8

0
.8

0.8

0
.8

0
.8

0.8 0
.9

0.9

0
.9

0
.9

0.9

0
.9

0
.9

1

1

1

1

11

1
1

1

1
.1

1.1

1.1

1
.1

1
.1

1.1

1
.1

1.2

1
.2

1
.2

1.2

1.2

1.2

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5
asynchronous, = 0.5

0
.6

0
.7

0.7

0
.70

.8

0.8

0
.8

0
.8

0.9

0
.9

0.9

0.9

0
.9

0
.9

11

1
1

1

1 1

1

1

1

1.1

1.1

1
.1

1
.1

1.1

1
.1

1
.2

1.2

1
.2

1
.2

1.2

1
.2

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5
asynchronous, = 0.9

0
.9

20
.9

4

0
.9

4

0
.9

6

0
.9

6

0.96

0
.9

6

0.98

0
.9

8

0.98

0
.9

8
0
.9

8

11

1

1

1 1 1

1

1
.1

1.1

1
.1

1
.1

1
.1

1.1

1.2

1
.2

1
.2

1
.2

1.2

1
.2

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5

40

Second order Richardson - 5 threads
2D isotropic diffusion PDE with 5-point FD discretization, n = 90, 000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Sync

Async

Asynchronous convergence is possible (and likely) for 5 threads.
41

Second order Richardson - 10 threads
2D isotropic diffusion PDE with 5-point FD discretization, n = 90, 000

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

10-6

10-4

10-2

100

Sync

Async

Asynchronous convergence is degraded for 10 threads.
42

Second order Richardson - 10 threads - β = 0.95
2D isotropic diffusion PDE with 5-point FD discretization, n = 90, 000

0 0.05 0.1 0.15
10-5

10-4

10-3

10-2

10-1

100

Sync

Async

Asynchronous convergence can be improved by using a value of β = 0.95 that is
smaller than optimal β = 0.979341620608331. 43

Second order Richardson - 10 threads - β = 0.95
2D isotropic diffusion PDE with 5-point FD discretization, n = 90, 000

0 0.05 0.1 0.15
10-5

10-4

10-3

10-2

10-1

100

Sync

Async

Sync beta=0.979

Asynchronous convergence can be improved by using a value of β = 0.95 that is
smaller than optimal β = 0.979341620608331. 44

2nd order Richardson - 20 threads - shifted system (0.99)

0 0.005 0.01 0.015 0.02 0.025
10-15

10-10

10-5

100

Sync

Async

Asynchronous iterations may converge faster than synchronous iterations for matrices
that are well-conditioned. Here, ρ = 0.9899, β = 0.752164611259891.

45

References: other, advanced asynchronous solvers

Asynchronous multigrid
J. Wolfson-Pou and E. Chow, “Asynchronous multigrid methods,” IPDPS, Rio de Janeiro,
Brazil, May 20-24, 2019, pp. 101-110.

Asynchronous optimized Schwarz
I. Yamazaki, E. Chow, A. Bouteiller, and J. Dongarra, “Performance of asynchronous optimized
Schwarz with one-sided communication,” Parallel Computing, 86, 66-81 (2019).

Asynchronous two-level domain decomposition
C. Glusa, E. G. Boman, E. Chow, S. Rajamanickam, and D. B. Szyld, “Scalable asynchronous
domain decomposition solvers,” SIAM Journal on Scientific Computing, 2021 (to appear).

46

Summary

Existing theory for asynchronous iterative methods covers asymptotic convergence, but
not convergence rates, which depend on properties of the parallel computation
(partitioning, computer characteristics) and require a probabilistic analysis.

The numerical behavior of asynchronous iterative methods can be better than what
might be expected from existing theory.

47

Fine-grained parallel incomplete factorization preconditioning

48

Conventional ILU factorization

Given sparse A, compute LU ≈ A, where L and U are sparse.

Define S to be the sparsity pattern, (i , j) ∈ S if lij or uij can be nonzero.

for i = 2, . . . , n do
for k = 1, . . . , i − 1 and (i , k) ∈ S do

aik = aik/akk
for j = k + 1, . . . , n and (i , j) ∈ S do
aij = aij − aikakj

end for
end for

end for

49

Conventional ILU factorization

Given sparse A, compute LU ≈ A, where L and U are sparse.

Define S to be the sparsity pattern, (i , j) ∈ S if lij or uij can be nonzero.

for i = 2, . . . , n do
for k = 1, . . . , i − 1 and (i , k) ∈ S do
aik = aik/akk
for j = k + 1, . . . , n and (i , j) ∈ S do

aij = aij − aikakj
end for

end for
end for

50

Level scheduling ILU

At each step, find all rows that can be eliminated in parallel
(rows that only depend on rows already eliminated).

Figure from Saad 2003

Regular grids: van der Vorst 1989; Joubert & Oppe 1994
Irregular problems: Heroux, Vu, & Yang 1991; Pakzad, Lloyd, & Phillips 1997; Gonzalex, Cabaleiro,
& Pena 1999; Dong & Cooperman 2011; Gibou & Min 2012; Naumov 2012
Triangular solves: Anderson & Saad 1989, Saltz 1990; Hammond & Schreiber 1992

51

Multicolor reordering for ILU

Multicolor reorderings can increase parallelism, but the resulting factorization is
different and is a worse preconditioner.

D1 A12 A13 A14

A21 D2 A23 A24

A31 A32 D3 A34

A41 A42 A43 D4

PCG iterations for Laplacian problem

2D (10012 grid) 3D (1013 grid)

natural 719 89
red-black 1159 142

Degradation due to ordering can be much worse for harder problems.

Refs: Poole & Ortega 1987; Elman & Agron 1989; Jones & Plassmann 1994; Nakajima 2005
GPUs: Li & Saad 2010; Heuveline, Lukarski & Weiss 2011

52

Domain decomposition ILU

ILU on each subdomain in parallel. Somehow eliminate the interface rows in parallel.
B1 F1

B2 F2
. . .

...
Bm Fm

E1 E2 · · · Em C

Convergence does not degrade if subdomains are large.
This is a coarse-grained parallelization.

Refs: Ma & Saad 1994, Karypis & Kumar 1997; Vuik et al 1998; Hysom and Pothen 1999; Magolu
monga Made & van der Vorst 2002

53

Fine-grained parallel ILU factorization

An ILU factorization, A ≈ LU, with sparsity pattern S has the property

(LU)ij = aij , (i , j) ∈ S .

Instead of Gaussian elimination, we compute the unknowns

lij , i > j , (i , j) ∈ S

uij , i ≤ j , (i , j) ∈ S

using the constraints
min(i ,j)∑
k=1

likukj = aij , (i , j) ∈ S .

If the diagonal of L is fixed, then there are |S | unknowns and |S | constraints.

54

Fine-grained parallel ILU factorization

An ILU factorization, A ≈ LU, with sparsity pattern S has the property

(LU)ij = aij , (i , j) ∈ S .

Instead of Gaussian elimination, we compute the unknowns

lij , i > j , (i , j) ∈ S

uij , i ≤ j , (i , j) ∈ S

using the constraints
min(i ,j)∑
k=1

likukj = aij , (i , j) ∈ S .

If the diagonal of L is fixed, then there are |S | unknowns and |S | constraints.

55

Solving the constraint equations

The equation corresponding to (i , j) gives

lij =
1

ujj

(
aij −

j−1∑
k=1

likukj

)
, i > j

uij = aij −
i−1∑
k=1

likukj , i ≤ j .

The equations have the form x = G (x). It is natural to try to solve these equations via
a fixed-point iteration

x (k+1) = G (x (k))

with an initial guess x (0).

56

Admittedly a strange approach...

Write matrix factorization as a set of bilinear equations

I More bilinear equations than original equations

I Equations are nonlinear

Potential advantages

I Do not need to solve the nonlinear equations exactly (no need to compute the
incomplete factorization exactly)

I Nonlinear equations may have a good initial guess
(e.g., time-dependent problems)

I Lots of parallelism: up to one thread per nonzero in L and U

57

Admittedly a strange approach...

Write matrix factorization as a set of bilinear equations

I More bilinear equations than original equations

I Equations are nonlinear

Potential advantages

I Do not need to solve the nonlinear equations exactly (no need to compute the
incomplete factorization exactly)

I Nonlinear equations may have a good initial guess
(e.g., time-dependent problems)

I Lots of parallelism: up to one thread per nonzero in L and U

58

Numerical tests

I Do the asynchronous iterations converge?

I Effect of number of threads?

I How good are the approximate factorizations as preconditioners?

Measure performance in terms of solver iteration count.

59

2D FEM Laplacian, n = 203841, RCM ordering,
240 threads on Intel Xeon Phi (KNC)

Level 0 Level 1 Level 2

PCG nonlin ILU PCG nonlin ILU PCG nonlin ILU
Sweeps iter resid resid iter resid resid iter resid resid

0 404 1.7e+04 41.1350 404 2.3e+04 41.1350 404 2.3e+04 41.1350
1 318 3.8e+03 32.7491 256 5.7e+03 18.7110 206 7.0e+03 17.3239
2 301 9.7e+02 32.1707 207 8.6e+02 12.4703 158 1.5e+03 6.7618
3 298 1.7e+02 32.1117 193 1.8e+02 12.3845 132 4.8e+02 5.8985
4 297 2.8e+01 32.1524 187 4.6e+01 12.4139 127 1.6e+02 5.8555
5 297 4.4e+00 32.1613 186 1.4e+01 12.4230 126 6.5e+01 5.8706
IC 297 0 32.1629 185 0 12.4272 126 0 5.8894

Very small number of sweeps required

E. Chow and A. Patel, Fine-grained Parallel Incomplete LU Factorization, SIAM Journal on Scientific
Computing, 37, C169-C193 (2015).

H. Anzt, E. Chow, and J. Dongarra, ParILUT - A New Parallel Threshold ILU Factorization, SIAM
Journal on Scientific Computing, 40, C503-C519 (2018).

60

Timing comparison, ILU(2) on 100× 100 grid
(5-point stencil)

1 2 4 8 15 30 60 120 240
10

−4

10
−3

10
−2

10
−1

Number of threads

T
im

e
 (

s
)

Level Scheduled ILU

Iterative ILU (3 sweeps)

Intel Xeon Phi

1 2 4 8 16 20
10

−4

10
−3

10
−2

10
−1

Number of threads

T
im

e
 (

s
)

Level Scheduled ILU

Iterative ILU (3 sweeps)

Intel Xeon E5-2680v2, 20 cores

61

Results for NVIDIA Tesla K40c

SPD matrices from SuiteSparse Collection

PCG iteration counts for given number of sweeps Timings [ms]
0 1 2 3 4 5 IC 5 swps IC s/up

apache2 1430 1363 1038 965 960 958 958 8.8 61. 6.9
ecology2 2014 1765 1719 1708 1707 1706 1705 6.7 107. 16.0
G3 circuit 1254 961 968 993 997 997 997 12.1 110. 9.1
offshore 428 556 373 396 357 332 330 25.1 219. 8.7
parabolic fem 763 636 541 494 454 435 393 6.1 131. 21.6
thermal2 1913 1613 1483 1341 1411 1403 1398 15.7 454. 28.9
2D Lap 653 703 664 621 554 551 550 7.4 112. 15.2
3D Lap 43 37 35 35 35 35 35 47.5 94. 2.0

IC denotes the exact factorization computed using the NVIDIA cuSPARSE library.

62

Iterative and approximate triangular solves

Trade accuracy for parallelism
Approximately solve the triangular system Rx = b

x (j+1) = (I − D−1R)x (j) + D−1b

where D is the diagonal part of R.

I implementations depend on SpMV

I iteration matrix T = I − D−1R is strictly triangular and has spectral radius 0
(trivial asymptotic convergence)

I for fast convergence, want the norm of T to be small

I R from stable ILU factorizations of physical problems are often close to being
diagonally dominant

E. Chow, H. Anzt, J. Scott, and J. Dongarra, Using Jacobi Iterations and Blocking for Solving Sparse
Triangular Systems in Incomplete Factorization Preconditioning, Journal of Parallel and Distributed
Computing, 119, 219-230 (2018).

63

Summary

I Approach: writing matrix factorizations as a set of nonlinear equations

I Efficient methods for parallel triangular solves are necessary

64

	Lecture 10: Preconditioned Iterative Methods for Linear Systems
	Citation

	Preconditioned Iterative Methods for Linear Systems

