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Abstract
In this work, we continue the examination of the role non-adaptivity plays in maintaining dynamic
data structures, initiated by Brody and Larsen. We consider non-adaptive data structures for
predecessor search in the w-bit cell probe model. In this problem, the goal is to dynamically
maintain a subset T of up to n elements from {1, . . . ,m}, while supporting insertions, deletions,
and a predecessor query Pred(x), which returns the largest element in T that is less than or equal
to x. Predecessor search is one of the most well-studied data structure problems. For this problem,
using non-adaptivity comes at a steep price. We provide exponential cell probe complexity
separations between (i) adaptive and non-adaptive data structures and (ii) non-adaptive and
memoryless data structures for predecessor search.

A classic data structure of van Emde Boas solves dynamic predecessor search in O(log logm)
probes; this data structure is adaptive. For dynamic data structures which make non-adaptive
updates, we show the cell probe complexity is O

(
min{ logm

log(w/ logm) ,
n logm
w }

)
. We also give a

nearly-matching Ω
(

min{ logm
logw ,

n logm
w logw}

)
lower bound. We also give an Ω(m/w) lower bound for

memoryless data structures.
Our lower bound technique is tailored to non-adaptive (as opposed to memoryless) updates

and might be of independent interest.
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1 Introduction

The goal in a dynamic data structure problem is to maintain a database that changes over
time, while supporting queries and updates to this data structure. A natural objective is to
support both efficient queries and efficient updates. Often, either one is easily accomplished,
but for many dynamic data structure problems, the optimal worst-case runtime on the
maximal query/update time is polynomial. Nevertheless, proving such a data structure lower
bound appears well beyond our current understanding. In fact, the highest lower bound
for any dynamic data structure is currently Ω((logn/ log logn)2) [8, 4, 17]. Identifying a
dynamic data structure problem which supports a polynomial number of queries, which has
a provably polynomial lower bound on either query or update time is one of the biggest open
problems in data structures.
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20:2 Non-Adaptive Data Structure Bounds for Dynamic Predecessor Search

Given the current difficulty in showing large data structure lower bounds, it is natural to
ask if one can prove large lower bounds for restricted classes of data structures. Brody and
Larsen [2] initiated a study of data structure bounds for non-adaptive data structures. In a
non-adaptive data structure, the memory cells probed during a query or update are chosen
in advance, independent of the contents of those cells. For many data structure problems,
the optimal solution is indeed non-adaptive. Brody and Larsen [2] showed polynomial lower
bounds for a large class of problems, both for when queries are non-adaptive and when
updates are non-adaptive. It is worth noting that their lower bounds for non-adaptive
updates were under an even more severe restriction called memoryless updates.

1.1 The Cell Probe Model
In the cell probe model defined by Yao [18], a data structure consists of a series of memory
cells or words, each storing a w-bit integer. We assume there are at most 2w cells in the
data structure, so that each cell can be addressed using a single w-bit integer. When a
query or update is executed, a number of cells are probed. During a query or update, which
cell is probed next may depend arbitrarily on previous computation, and similarly what is
written to a cell during an update may also depend arbitrarily on previous computation in
the update. We define the query complexity of a data structure, denoted tq, as the maximum
number of cells probed during a query. Similarly, the update complexity, denoted tu, is the
maximum number of cells probed during an update. As mentioned previously, it is often
easy to design data structures that have either low tq or low tu; our goal is to minimize the
cell probe complexity of a data structure, defined as max{tq, tu}.

Cell probe complexity measures only the number of memory accesses used by the data
structure. All other computation is not counted and essentially given for free. In particular,
no assumption is made about what CPU computations are allowed. The generality of the
cell probe model makes it ideally suited for studying lower bounds; these lower bounds will
apply to other computation models which make more CPU assumptions.

1.2 Non-Adaptive Data Structures
Given the current barriers in proving high cell probe lower bounds for dynamic data structures,
it makes sense to study restricted classes of data structures. Non-adaptivity is a natural
restriction. We examine several different kinds of non-adaptivity, listed below.

Non-Adaptive Query Algorithm. A cell probe data structure has a non-adaptive
query algorithm if the cells probed when answering a query depend only on the query
itself, and not on the contents of previously probed cells.
Non-Adaptive Update Algorithm. A cell probe data structure has a non-adaptive
update algorithm if the cells probed when answering an update depend only on the
update itself, and not on the contents of previously probed cells.
Memoryless Update Algorithm. A cell probe data structure has a memoryless update
algorithm if the update algorithm is non-adaptive, and additionally the contents written
to a cell depend only on the current contents of the cell and the update itself, and not on
contents of other cells previously probed during the update operation.

A non-adaptive data structure is a cell probe data structure that has non-adaptive queries
and updates. Similarly, a memoryless data structure is a cell probe data structure that has
non-adaptive queries and memoryless updates.
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The study of non-adaptivity in data structures is of both theoretical and practical interest.
Our original motivation in examining non-adaptive data structures was to generalize the
class of non-adaptive structures for which we can prove lower bounds, with an eye towards
proving polynomial lower bounds on dynamic data structures. This work expands the range
of non-adaptive data structures for which we can prove strong lower bounds.

From a more practical perspective, there are many real-world computational settings
where the number of memory accesses does not capture the true performance of a data
structure or algorithm. Instead, the computational bottleneck is the rounds of communication
between disk and memory (e.g. the external memory or I/O model [1, 16, 15]) or between
different processors (distributed/parallel computation [6, 7, 13]) This is directly related to how
adaptive the algorithm or data structures are. We anticipate that a better understanding of
the role non-adaptivity plays in data structures will shed further insight into data structures
for other models of computation as well.

1.3 Predecessor Search and Our Results
In this work, we primarily focus on two dynamic data structure problems: Predecessor
and Max. In the Predecessor data structure problem, we are to maintain a dynamic
set of up to n elements T ⊆ [m]1, initially empty, with updates Insert(i),Delete(i) which
insert/delete i from T . Each query Pred(i) should return the largest x ∈ T that is less than
or equal to i. In the Max problem, we again maintain a dynamic set T ⊆ [m] with the same
insert and delete operations. Additionally, there is a single query Max(), which must return
the largest element in T .

In either problem, we assume that each element of the universe [m] can fit into a single
cell of memory; i.e., we assume that w ≥ logm. We make a further reasonable assumption
that w ≤ m0.25.

Predecessor search is one of the most well-studied data structure problems, and it deserves
a complete study. Moreover, it is a common component in other data structure problems
such as binary search trees. In this way, our lower bounds are likely to apply to other data
structure problems as well.

As mentioned previously, the van Emde Boas tree [14] is an adaptive data structure
for Predecessor with cell probe complexity O(log logm). Our main result shows that
adaptivity is crucial for such an upper bound.

I Theorem 1. Let α := min{n,w/2}. Then, any non-adaptive data structure solving
Predecessor with tu = O(logm) must satisfy

tq ≥
α logm

2w log(w · tu) .

I Corollary 2. Fix any non-adaptive data structure for the dynamic predecessor problem
with query time tq, and update time tu. If n ≥ w/2 then we have

max(tq, tu) = Ω
(

logm
logw

)
.

If n < w/2, then we have

max(tq, tu) = Ω
(
n logm
w logw

)
.

1 We use [m] to denote the set {1, . . . , m}, and [y, z] to denote the set of integers {y, y + 1, . . . , z}.

FSTTCS 2017



20:4 Non-Adaptive Data Structure Bounds for Dynamic Predecessor Search

Is our non-adaptive lower bound the best possible? Our next result shows that it is close to
optimal.

I Theorem 3. There exists a non-adaptive data structure for Predecessor with tq, tu =
O

(
logm

log(w/ logm)

)
.

When w = Θ(logm) and n is large, our non-adaptive data structure bounds are loose by a
factor of log logm. When n is large and w ≥ (logm)1+Ω(1), our bounds are tight. For smaller
values of n, our non-adaptive data structure is suboptimal, as the trivial data structure which
stores an array of up to n values and probes the entire data structure on each operation uses
n log(m)/w words. In this case, our lower bound is off by a factor of logw.

Either way, Theorem 1 can be seen to interpolate between our non-adaptive data structure
from Theorem 3 and the trivial upper bound, allowing for a smooth tradeoff between n and
m.

Finally, we give a very strong lower bound for memoryless data structures solving Max.
Note that Max is essentially Predecessor with a further restriction that Pred(m) is the
only query allowed, so this lower bound holds for Predecessor as well.

I Theorem 4. Any memoryless data structure for Max must have max{tq, tu} ≥ m/w.

This lower bound is much higher than the cell probe complexity of the first trivial solution
and is a clean illustration of what is impossible to do with memoryless data structures.

1.4 Previous Results
The study of dynamic data structures, and data structures for predecessor search, has a
long history; here we give a brief synopsis. Yao [18] introduced the cell probe model and
gave cell probe bounds for the membership problem. Fredman and Saks [5] created the
chronogram technique and showed Ω(log(n)/ log log(n)) bounds for several dynamic data
structure problems, including partial sums. This remained the highest lower bound for
any dynamic data structures problem until Pǎtraşcu and Demaine gave an Ω(logn) bound
for dynamic connectivity. Pǎtraşcu and Thorup [10, 11] gave strong deterministic and
randomized lower bounds for static predecessor search. Pǎtraşcu also developed an exciting
line of attack for dynamic data structure lower bounds by connecting several conjectured
hard problems to a communication problem called Multiphase [9]. Pǎtraşcu conjectured a
strong communication lower bound for Multiphase and showed that this lower bound implies
polynomial lower bounds for several dynamic data structures. Chattopadhyay et al. [3]
disproved the strongest of Pǎtraşcu’s conjectures for Multiphase, but not in a way which
invalidates the implication for polynomial data structure lower bounds.

The highest lower bounds to date for any dynamic data structure problem is the bound
Ω((log(n)/ log log(n))2) of Larsen [8] for dynamic range counting. A similar lower bound was
later given by Clifford et al. [4] for Matrix Vector Multiplication and Pǎtraşcu’s Multiphase
problem.

Brody and Larsen [2] initiated the study of non-adaptive bounds for dynamic data struc-
tures and showed polynomial lower bounds for a number of problems including Multiphase.
The techniques in Chattopadhyay et al. [3], which preceded [2], give the same lower bounds.
Neither of these works showed lower bounds for non-adaptive (but not memoryless) updates.
I Remark. Recently Ramamoorthy and Rao [12] independently proved non-adaptive data
structure bounds for Predecessor Search. Ramamoorthy and Rao consider a similar set of
secondary problems (median, minimum vs. maximum) and obtain similar bounds, showing
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for predecessor search that either tq ≥ logm
logw+log logm or tu ≥ Ω

(
tqm

1/(2tq+2)

logm

)
. Our bounds

are stronger when tq = Ω( logm
log logm ). Additionally, our analysis and bounds provide tradeoffs

between the universe size m, word size w, and maximum number of items in the set n;
Ramamoorthy and Rao consider only the first two parameters. In both works, the lower
bounds for predecessor search apply even when insertions are the only updates. Ramamoorthy
and Rao only require queries to be non-adaptive; we require both queries and insertions to
be non-adaptive.

Both papers have been developed independently and in parallel.

1.5 Our Technique

For the non-adaptive data structure lower bound (Theorem 1), we prove something stronger
than is stated in the theorem. Specifically, we show that there must be a large set of cells C
along with a set A ⊆ [m] that is reasonably large such that for each i ∈ A, Pred(i) queries
every cell in C. We build this set C iteratively by using the pigeonhole principle along with
an encoding argument.

For complete details, see Section 2; we give a high-level sketch here. We begin with
C := ∅ and A = [m], and consider the first update Insert(1). This update has the potential
to affect every query. Furthermore, for any operation, the set of cells probed are fixed and
chosen in advance. Therefore, for each i ∈ A, the cells probed by Pred(i) and by Insert(1)
must intersect. Insert(1) probes at most tu cells, so by the pigeonhole principle, there must
be some cell c that is probed by Insert(1) and by at least m/tu queries. We fix that cell and
set A := {i : Pred(i) probes c}.

Next, we claim that if C is not too large and A is not too small, then there must be some
j ∈ A and a not-too-small fraction of A such that Insert(j) and Pred(i) intersect outside of
C. This claim, formalized in Lemma 9, is nontrivial and is our main technical tool. We prove
this using an encoding argument—essentially, we show that if there was no such update,
then C would contain at least ≈ log(m)2 bits of information, contradicting the assumption
that |C| is small. From here we apply another pigeonhole argument to show that there must
be some cell outside of c that is probed by a large enough fraction of the remaining queries.
Alternating applications of the pigeonhole argument and our main technical lemma allows us
to grow C iteratively, up to a size of |C| ≥ α logm

2w log(w·tu) .
Theorems 3 and 4 use more standard techniques. Our O(logm) non-adaptive data

structure uses range trees, and our Ω(m/w) lower bound on memoryless data structures
uses a direct encoding argument—we’re able to use a memoryless data structure for Max to
encode an arbitrary subset of [m], requiring m/w words.

Before getting into the lower bound proofs, we summarize the encoding arguments
common to data structure lower bounds.2

1.5.1 The Coding Lower Bound

In a typical encoding argument, an encoder is tasked with communicating information (say,
an element x ∈ S from a finite set) to a decoder. The encoder can encode this information in
any number of ways, as long as the decoder can unambiguously recover the information. In

2 Encoding arguments are often phrased in terms of input distributions and Shannon entropy. In this work,
we focus on deterministic data structure bounds, and simplify the Coding Lower Bound accordingly.

FSTTCS 2017



20:6 Non-Adaptive Data Structure Bounds for Dynamic Predecessor Search

order for the decoder to recover the encoder’s input, the encoder must at a minimum send a
different message for each distinct input.

When applying encoding arguments to show data structure lower bounds, the encoder
uses a data structure to encode an arbitrary element from S. If the data structure was
unreasonably efficient, then the length of the encoding would be too short for the decoder to
recover the input without error. We conclude that the data structure cannot be too efficient.
This intuition is formalized in the definition and fact below.

I Definition 5 (Encoding Procedure). An encoding procedure for a finite set S is a pair of
functions ENC : S → {0, 1}k,DEC : {0, 1}k → S such that for all x ∈ S, we have

DEC(ENC(x)) = x .

The length of the encoding is k.

The key feature of an encoding procedure is that the encoder must send a different
message for each element of S. Otherwise, the decoder cannot decode without error.

I Fact 6. [Coding Lower Bound]
In any encoding procedure for a finite set S, the length of the encoding must satisfy

k ≥ log(|S|).

1.6 Roadmap

We prove Theorems 1, 3, and 4 in Sections 2, 3, and 4 respectively, and introduce notation
relevant for each theorem in the relevant sections.

2 Non-Adaptive Lower Bound for Predecessor

For our non-adaptive lower bound, it is helpful to work with a more symmetric “wrap-around”
variation of the standard Predecessor problem. In this variation, we define Pred(i) to be
equal to
1. the largest x ≤ i in T , if such an element exists,
2. the largest x ∈ T , if T is nonempty but contains no elements ≤ i, or
3. ⊥ if T is empty.

It is easy to see that this variation affects the cell probe complexity by at most a factor
of 2. We resist notation expansion and in this section use Predecessor to denote this
wrap-around variation. The symmetry of this version of Predecessor will be useful because
each update has the potential to affect any query.

For this lower bound, we will need to compare the sets of cells probed by different updates
and queries. It will be helpful to introduce some notation to make this argument easier to
express.

For any i, j ∈ [m], we let uj and qi denote Insert(j) and Pred(i) respectively. By
convention, we use a subscript j to refer to updates and i to refer to queries. We use Uj and
Qi to denote the set of cells probed by uj , qi respectively. We’ll also abuse notation a bit
and use A ⊆ [m] to denote both a subset of indices and the corresponding subset of queries
or updates.
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I Theorem 7. [Restatement of Theorem 1] Let α := min{n,w/2}. Any non-adaptive data
structure solving dynamic predecessor with update time tu = O(logm), and query time tq
must satisfy

tq ≥
α logm

2w log(w · tu) .

I Corollary 8. Fix any non-adaptive data structure for the dynamic predecessor problem
with query time tq, and update time tu. If n ≥ w/2 then we have

max(tq, tu) = Ω
(

logm
logw

)
.

If n < w/2, then we have

max(tq, tu) = Ω
(
n logm
w logw

)
.

The proof of Theorem 1 depends on the following technical lemma, whose proof we defer
to Subsection 2.1.

I Lemma 9 (Main Technical Lemma). Let C be a set of cells in the data structure, and let
A ⊆ [m]. If
1. |A| ≥

√
m,

2. |C| ≤ α logm
5w , and

3. for all i ∈ A, qi probes all cells in C,
then there exists j ∈ A and a subset A′ ⊆ A such that |A′| ≥ |A|w2 and for each i ∈ A′ there is
a cell c 6∈ C such that uj and qi both probe c.

At a high level, this lemma says that if we have a large enough set of queries A and a small
enough set of cells C such that each query in A probes each cell in C, then there must be an
update uj that has a nontrivial intersection outside of C with a large subset of A.

Proof of Theorem 1. We prove this theorem by induction. Fix an arbitrary non-adaptive
data structure for Predecessor. As mentioned in the introduction, we’ll prove this theorem
by iteratively growing a large set of cells C in the data structure and a not-too-small set of
queries A such that each query in A probes each cell in C. If we can grow the set of cells
until |C| = α logm

2w log(w·tu) while keeping the set of queries nonempty, the theorem will follow.
This intuition is captured by the following inductive claim.

I Claim 10. For all integers 1 ≤ k ≤ α logm
2w log(w·tu) , there is a set of k cells C and a set queries

A ⊆ [m] such that
1. |A| ≥ m

w2(k−1)tku
2. C ⊆ Qi for all i ∈ A.

Setting k = α logm
2w log(w·tu) proves the theorem.

It remains to prove the claim. First, we prove the base case of k = 1. Fix an arbitrary
update uj , and note that Uj must intersect Qi for each i ∈ [m]. Otherwise, the contents of
the cells queried by qi would be the same for the empty set and for T = {j}, but Pred(i) = ⊥
when the set is empty, and Pred(i) = j when the set is {j}. Note also that |Uj | ≤ tu, so by
the pigeonhole principle, there must be a cell c ∈ Uj probed by at least m/tu queries i ∈ [m].
Fix this cell c, define C := {c}, and let A be the set of queries that probe c. This set of cells
C and queries A fit the premise of Claim 10, completing the base case.

FSTTCS 2017



20:8 Non-Adaptive Data Structure Bounds for Dynamic Predecessor Search

For the induction hypothesis, assume Claim 10 holds for some arbitrary k < α logm
2w log(w·tu) .

In the induction step, we’ll show that Claim 10 holds for k + 1 as well. By the induction
hypothesis, there is a set of k cells Ck and queries Ak such that |Ak| ≥ m/(w2(k−1)tku) and
Ck ⊆ Qi for all i ∈ A. To invoke Lemma 9, |Ak| must be at least

√
m. This holds as long as

k . log(m)
2 log(w2tu) , which is valid since α ≤ w/2.
By Lemma 9, there is an update j ∈ Ak and subset A′k ⊂ Ak such that |A′k| ≥ |Ak|/w2

and for each i ∈ A′k there is a cell c 6∈ Ck such that uj and qi both probe c. Next, we again
use the pigeonhole principle. Since |Uj \ C| ≤ |Uj | ≤ tu, there must be a cell c ∈ Uj \ C
and a set A′′k ⊆ A′k such that |A′′k | ≥ |A′k|/tu and such that for each i ∈ A′′k , Qi probes c.
Set Ck+1 := C ∪ {c} and Ak+1 := |A′′k |. Note that |Ak+1| ≥ |Ak|/w2tu and that Ck+1 ⊆ Qi
for all i ∈ Ak+1. The sets Ck+1, Ak+1 fit the premise of Claim 10 for k + 1, completing the
induction step. J

2.1 Proof of Main Technical Lemma
We prove Lemma 9 using an encoding argument—we show that if the lemma is false, then
we can use C to encode more than |C| · w bits of information, a contradiction.

Before delving into the technical details of the proof, we introduce some notation. Say
that a set of cells C satisfies (uj , qi) if Uj ∩Qi ⊆ C; that is, if C contains all cells probed
by both uj and qi. Similarly, for a set T ⊆ [m], say that C satisfies (T, qi) if C satisfies
(uj , qi) for all j ∈ T . Lemma 9 states that there is j ∈ A and a large subset A′ ⊆ A (with
|A′| ≥ |A|/w2) such that for all i ∈ A′, C fails to satisfy (uj , qi).

Proof of Lemma 9. Towards a contradiction, assume that for all j ∈ A, there are less than
|A|/w2 queries i ∈ A such that the given set of cells C fails to satisfy (uj , qi). We’ll then use
the data structure and C to encode the following set:

S := {T ⊆ A : |T | = α and |j − j′| ≥ |A|
w

for all j, j′ ∈ T} .

S is the set of all possible “spread-out” subsets of A with size α.

I Claim 11. |S| ≥ 2
α log(m)

4 .

Proof. We construct a subset of S with the desired size. Let x1, . . . , xα be arbitrary
elements of {1, . . . , |A|/w}. Set yi := (2i−1)|A|

w + xi, and set T := {yi}. Note that y1 >
|A|
w ,

yα ≤ (2α−1)|A|
w + |A|

w = 2α|A|
w ≤ |A|, and that by definition of T we have

2i− 1
w
|A| < yi ≤

2i
w
|A| = 2(i+ 1)− 1

w
|A| − |A|

w
≤ yi+1 −

|A|
w

.

This means that yi+1 − yi ≥ |A|w for all i, hence T is a valid element of S. There are |A|w
choices for each xi, and α elements of T , so there are (|A|/w)α choices for T . Thus, we have

|S| ≥
(
|A|
w

)α

= 2α log(|A|/w) ≥ 2α4 log(m) ,

where the final inequality holds because w ≤ m1/4 and |A| ≥
√
m. J

Encoding Procedure. Given an arbitrary T ∈ S, the encoder takes the non-adaptive data
structure, initially storing an empty set. She then inserts each j ∈ T . After performing all
insertions, the encoder sends the contents of each cell in C.
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Decoding Procedure. The decoder first takes the non-adaptive data structure, initialized
to store the empty set. Then, she overwrites the contents of each cell in C using the
encoder’s message. The decoder then executes qi for each i ∈ A and outputs the set of
all elements that appear at least |A|2w times as answers; that is, the decoder returns the set
T ′ := {j ∈ A : there are at least |A|2w elements i with Query(i) == j}.

Analysis. It is easy to see that the length of the encoding is w · |C| ≤ α log(m)
5 bits, since

the encoder sends the memory contents of each cell in C. Next, we claim that the decoder
correctly recovers T . By assumption, we have that for all j ∈ A, the set of cells C satisfies
(uj , qi) for all but at most |A|w2 queries. Therefore, for any T ∈ S, C satisfies (T, qi) for all
but at most |A|w2 α <

|A|
2w queries i ∈ A.

Now, consider what happens when C satisfies (T, qi). For any j ∈ T , C contains all cells
probed by both uj and qi. Since this holds for all j ∈ T , C contains all cells that changed
during insertions that were probed by qi. Thus the decoder can correctly compute qi when C
satisfies (T, qi).

When C does not satisfy (T, qi), then the decoder is not guaranteed to correctly compute
qi; we assume without loss of generality that this is an error. The decoder executes query
qi for each i ∈ A, but computes this query incorrectly whenever C does not satisfy (T, qi).
Moreover, since the decoder does not know T in advance, she cannot know a priori which
queries failed. We claim that because less than |A|2w queries are not satisfied, the decoder still
has enough information to recover T .

To see this, take any j ∈ T . By construction, |j − j′| ≥ |A|w for any j, j′ ∈ T . Hence j
is the correct answer to query qi for all i ∈ [j, j + |A|

w − 1]. Even if all errors were in this
range, there would still be more than |A|2w queries for which the decoder correctly computes
j. Hence, the decoder will place j ∈ T ′. Conversely, consider any j 6∈ T . Then, j is not a
correct answer for any query. In the worst case, the decoder computes j for each possible
query on which she errs. Since there are less than |A|2w such queries, the decoder will not place
j ∈ T ′. The decoder adds j to T ′ if and only if j ∈ T , hence the decoder correctly outputs T .

We’ve shown how to encode an arbitrary T ∈ S using w · |C| bits. By Fact 6 and Claim 11,
we must have

w · |C| ≥ log(|S|) ≥ α logm
4 .

Therefore, we must have |C| ≥ α log(m)
4w , contradicting our assumption that |C| ≤ α logm

5w . J

3 Non-Adaptive Upper Bound

In this section, we give an O( logm
log(w/ logm) ) non-adaptive upper bound for Predecessor by

using a form of range tree.

Proof of Theorem 3. We first handle the case where w = dlogme, so each cell stores a
single element from the universe [m]. Then, we adjust the construction to handle w � logm.

Let k be the least integer such that 2k ≥ m. Our data structure consists of a complete
binary tree with 2k leaves, labeled 1, . . . , 2k. At each node v in the tree, we store the largest
i such that (i) i ∈ T and (ii) i is a descendant of v. If no such i exists, we store ⊥. Note
that each leaf i stores either i or ⊥, and that the root node stores the maximal element of T .
Additionally, an interior node v with children l, r stores the maximum of what is contained
in the cells of l, r, treating ⊥ as 0. In other words, max(v) := max{max(l),max(r)}.
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To execute Insert(i), for each node v on the path from i to the root (including leaf i),
the data structure checks to see if i is now the largest element among descendants of v and
updates appropriately if so. Note that the set of nodes probed corresponds to all nodes on
the path from leaf i to the root. This is fixed in advance, so Insert(i) is indeed a non-adaptive
update.3

Implementing Delete(i) is similar. Using the invariant that a the cell corresponding to
node v maintains the max of whatever is stored in its children, the data structure must query
both children of node v. This must happen for each node v on the path from leaf i up to the
root, resulting in twice as many cell probes as an insert. However, as with insertions, which
cells to probe are known in advance, so the data structure remains non-adaptive. Unlike
insertions, these updates are not memoryless, since updating node v depends on the deletion,
the current contents of the cell, and the contents of both children.

To implement Pred(i), we traverse the path from the root down to leaf i. Each time we
take the right child, the data structure queries the cell corresponding to the left child. We
also query the node corresponding to leaf i, and return the maximal element found, or ⊥ if
all queried cells returned ⊥. In this way, the range {1, . . . , i} is partitioned into a series of
subranges, with at most one subrange per level of the binary tree. This sketch describes the
query algorithm as walking down the tree, but the nodes that are queried depend only on i
itself, and so they can be again chosen in advance.

Insertions, deletions, and queries can all be performed non-adaptively by querying at
most two cells per level of the tree. The tree has size 2k < 2 ·m, so the height is at most
k = O(logm). Since each operation probes at most two cells per level of the range tree, the
query complexity is also O(logm).

Finally, suppose that w � logm. In this case, we can pack w/ logm elements into a single
word. Fix h such that 2h = w/ logm, so that h = log(w/ logm). We modify the original
range tree argument to pack subtrees of height h into a single cell. So, for example, one cell
stores the root value and all values of nodes less than h away from the root. For each node
at level h of the range tree, we store in a single cell all descendants at distance less than h
from this node, and so on. Insertions, deletions, and queries happen as before, but the w-bit
memory cell containing the value stored at each node is probed as opposed to the node itself.
We still probe at most 2 cells per level, but this time, our “cells” consume h levels of the
original range tree. As a result, our new query complexity is O

(
logm
h

)
= O

(
logm

log(w/ logm)

)
.
J

4 Memoryless Lower Bound for Predecessor

Our final result is a strong lower bound for the cell probe complexity of memoryless data
structures that solve Predecessor. In fact, our result is a lower bound for a simpler problem
Max. Max easily reduces to Predecessor, so the lower bound applies to both problems.

Proof of Theorem 4. The proof is a simple encoding argument. Let the encoder be given a
set T ⊆ [m], and let D be a memoryless data structure for Max.

The encoder encodes T by first preprocessing a copy of D and then inserting each element
in T one at a time into D. She then writes the contents of each cell probed by Max. Call
these cells CMax. Because the query algorithm is non-adaptive, CMax can be determined
without knowledge of their contents and will not change regardless of any updates that occur.

3 In fact, insertions in this data structure are memoryless, since each cell update depends only on the
insertion and the current contents of the cell.
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The decoding protocol is as follows. The decoder preprocesses her own copy of D and
initializes T ′ = ∅. Then, she writes to the cells in CMax using the encoding provided by the
encoder. The decoder then performs the following until k = 0:
1. Run Max() on D. Let k be the value returned by Max().
2. If k = ⊥, the decoder ends the decoding algorithm and outputs T ′.
3. If k > 0, the decoder adds k to T ′, emulates Delete(k) on D, and repeats the process.

Note that the decoder cannot completely execute the Delete(k) operations, but does not
need to. Since queries and updates are non-adaptive, she knows which cells get probed by
Delete(k). Additionally, since the updates are memoryless, the contents of each cell written
by Delete(k) are a function of Delete(k) and the current contents of the cell. The decoder
only needs to maintain the cells probed by Max(). Since she is given the initial contents of
these cells by the encoder, and since she knows which update operations to perform, she
can maintain the contents of the cells probed by Max(). The decoder might not be able
to maintain cells outside of CMax that are probed by updates, but she does not need to,
since these cells are not queried by Max(). By repeating this process as long as Max returns
nonzero elements, the decoder can recover all of T .

We now analyze the length of the encoding to determine a lower bound on tq. The encoder
sends w bits for each cell in CMax. Since |CMax| = tq by definition, the length of the encoding
is wtq. The encoding is for an arbitrary subset S ⊆ [m], so by the coding lower bound, any
encoding must be at least m bits long. Thus, we get wtq ≥ m, hence tq ≥ m/w. J
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