

Investigation of the Mechanical, Collagen Microstructural, and Morphological Properties of Human Intracranial Aneurysms

A consortium of colleges and universities in Oklahoma seeking to improve the quantity and quality of students from underserved populations.

Eleana Cabello and Chung-Hao Lee, Ph.D.

Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering,
The University of Oklahoma

Background

- Intracranial aneurysms (ICAs) are focal dilations of cerebral arteries caused by the weakening of the arterial wall. [1]
- The resulting turbulent flow can cause further stress and growth of the site until its eventual rupture.

Methods

 Biaxial tension and stress relaxation tests were performed to examined the mechanical behaviors of the human resected aneurysm tissue.

 Load-dependent changes in aneurysm tissue's collagen microstructure were examined using polarized spatial frequency domain imaging.

References

[1] Laurence D.W., et al. Scientific Report, 11: 3525 (2021).

Acknowledgements

We greatly appreciate the support and funding we have received from OK-LSAMP, the National Science Foundation, and the Oklahoma Center for the Advancement of Science and Technology.

Results

Collagen Fiber Architecture

Discussion and Conclusion

- Our novel biomechanical and microstructural characterizations of human aneurysm tissue can help provide key insights into aneurysm growth and potential rupture risk.
- Such enhanced understanding of aneurysm tissue biomechanics is crucial for developing aneurysm therapeutics that has improved outcomes.