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ABSTRACT: Skin cancer is one of the most occurring cancers in the world and its 

occurrence is rising. Many factors contribute to the development of skin cancers 

such as UV light exposure, chronic inflammation, and genetic susceptibility. 

Cancers such as basal cell carcinomas and squamous cell carcinomas arise from 

cells within the epidermis. TP53 and TP63, members of the p53 protein family, play 

a major role in skin tumorigenesis and progression. While p53 is the most mutated 

gene in human cancers, p63 is seldom mutated in cancers. The functions of p53, 

“guardian of the genome”, have been well documented and studied. Nonetheless, 

many studies show that p63 is overexpressed in tumors. Other studies show that 

p63 is lost during tumorigenesis and cancer progression. Consequently, whether 

the p63 gene is a tumor suppressing gene or an oncogene remains a matter of the 

p63 protein’s isoforms present in these tumors and their interactions with p53 and 

MDM2. This challenge has two facets. First, the multiple spliced isoforms of p53 

and p63 which have different functions in skin development as well as skin cancers. 
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Second, the Mouse Double Minute 2 (MDM2) protein, a negative regulator of p53, 

which has been shown to have different proteomic affinities by which it binds these 

different p53 and p63 isoforms. The findings of this project are geared toward 

characterizing and semi-quantifying the histopathological expression of p63, p53 

and MDM2 in cutaneous basal cell carcinomas as well as squamous cell 

carcinomas, while addressing the aggregation propensities between these proteins. 

The project also aims to summarize the forensic use of p53 and p63 as potential 

biomarkers for the estimation of age in antemortem and postmortem wounds and 

lesions. We have used advanced softwares such as ImageJ from the NIH and 

QuPath to extract important data to better characterize the layer-by-layer 

expression of p53, p63, and MDM2 in specific areas such as the epidermis, the 

dermal layer, stroma, and tumor nests. We used multiple skin tumor biopsies and 

excisions from three different skin cancer patients. The molecular simulations using 

the PASTA 2.0, AGGRESCAN, and FELLS webservers is to compare and contrast 

the aggregation propensities of p53 and p63 and what locations of their protein 

sequences are hot spots for aggregation. Results showed that p63 has the most 

stain intensity and was strictly nuclear in all three cases (p-value of 0.0007). The 

consistent expression of p63 in all three cases indicates the important role of p63 in 

the tumorigenesis of skin epithelial cells and dysplasia. MDM2 has been shown to 

have a strong stain intensity both nuclear and cytoplasmic in all three cases but was 

of no significance in differentiating our cases (p-value of 0.718). p53 was partially 

absent in all three cases and had a weak stain intensity when present (p-value of 
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0.086). Data from the FELLS, PASTA 2.0, and AGGRESCAN showed that p53 has 

the highest number of residues susceptible to aggregation at 27.48% (108 

residues), whereas p63 and MDM2 have aggregation percentages of 7.94% (54 

residues) and 3.67% (18 residues) respectively. Clinically, studies show that p63, 

particularly the ∆Np63 isoform, has an essential role in epithelial wound repair. 

Forensically, studies show that p53’s expression increased in wounds with an 

interval of post-infliction of three to 77 days. This makes p53 a potential candidate 

for wound age estimation in ante-mortem wounds with longer survival time after the 

injury. Research also shows that these later conclusions cannot be applied to 

postmortem wounds and that further research is needed to evaluate the potential 

use of p53 in a postmortem setting.  
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carcinomas every year. The findings of this project are to expand our understanding 

of the specific proteins’ tissue expression, aggregation, and the effects of these 

proteins on cutaneous tumorigenesis, cancer progression, and downstream forensic 

pathology uses. The importance of this project lies in that it allows for the qualitative 

and semi-quantitative characterization of tumor tissue expression of p63, p53, and 

MDM2 in two histologically distinct cancers and to also use skin cancer biopsies as 

templates for future forensic skin wound age determination studies. These proteins 

are extensively investigated due to their important functional interactions necessary 

for tumorigenesis, apoptosis, and potential treatment for many human cancers. The 

presence of multiple isoforms of both p63 and p53 is another major confounding 

area in the study of these proteins, which is yet to be investigated by further 

research. Results can then be compared to and possibly complement previous 

findings. Both faculty and future UCO students interested in the field of histology, 

digital image processing, and software-assisted proteomic analyses can use the 

simplified methodologies herein and adopt them for their research projects.  
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Rationale and Hypothesis  

We hypothesize that since basal cell carcinoma and squamous cell 

carcinoma are two distinct cancers histologically, then the IHC quantification of p63, 

p53, and MDM2’s protein expression in the skin tissues will be different at the three 

major skin layers: the epidermis, the dermis, and the subcutaneous layers. The 

basis behind the hypothesis is that these proteins interact differently with each other 

depending on the presence or absence of mutant p53, TAp63, and ∆Np63 isoforms. 

These protein-to-protein interactions and aggregations remain complex to 

understand and have significant outcomes on tumorigenesis, progression, and 

prognosis of many cancers.  
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CHAPTER ONE: THESIS INTRODUCTION  

 Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the 

most occurring non-melanoma cancers and their incidence continue to rise (Geller 

and Annas 2003). The histological features of both BCC and SCC are well 

documented in the field of pathology and often times proper diagnosis is easily 

achieved based on clinical information (Ryu et al., 2018). However, Studies such as 

the one by Ryu et al., (2018) showed that SCCs have a higher chance to be 

clinically misdiagnosed as BCCs than Vice versa. p63 and p73 are homologous 

proteins of the tumor protein p53 and collectively these transcription proteins make 

up the p53 protein family (Yang et al., 1999). While both p63 and p73 can bind the 

p53 DNA promoters and induce processes such as apoptosis and cellular cycle 

arrest, both proteins have distinct and different functions than those of p53 (Yang et 

al., 2000). Unlike p53, p63 and p73 have distinct tissue specific patterns of 

expression mainly in ectodermally-derived tissues such the skin and the nervous 

system, respectively (Pozniak et al., 2000). During human development, p63 

induces the formation of epidermal tissue and the associated structures such as 

teeth, hair, and glands. In mature skin, p63 maintains the proliferation of epidermal 

and dermal stem cells which ensures the homeostasis and regeneration. This also 

ensures the specific commitment of keratinocytes towards terminal differentiation 

and stratification (Laurikkala et al., 2006) and (Su 2009). On the other hand, p73 is 

mainly associated with the development and the homeostasis of the nervous 

system (Pozniak et al., 2002) and (Truong 2006).   
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 Although p53 has been known as the “guardian of the genome” for many 

years with its direct roles in tumor suppression and apoptosis, the discovery and 

study of its cousin proteins p63 and p53 yielded a great amount of research. Many 

studies focus on the roles of p63 and p53 in skin development and cancers alike 

(Ryu et., 2018). p53 and its related protein p63 and p73 make up the p53 tumor 

protein family. While p53 is the commonly mutated gene in many human cancers, 

p63 is seldom mutated or deleted. However, many cancers show an over-

expression of p63 (Inoune and Fry 2014). Previous studies have shown that the 

loss of p63 is associated with tumorigenesis and cancer progression. As a result, 

whether p63 acts a tumor suppressor or as an oncogene has been argued. The 

reason for this, is that variably expressed p63 isoforms (via alternative splicing) 

appear to have different functions that are both like and different from p53 (Inoune 

and Fry 2014). There are strong structural similarities between p53 and p63 which 

allow p63 to bind to conventional p53 components (Stindt et al,. 2014). However, 

p63 has a very distinct function which plays a pivotal role in skin and limb 

development (Lustig 2012).  For example, p63 dependent processes range from 

epidermal development of linages, to epidermis differentiation, and basement 

membrane formation (Stindt et al., 2014). Nearly all human tumors possess 

inactivating mutations in tumor suppressing proteins such as p53 which is crucial for 

cell cycle checkpoints and apoptosis. The p63 protein is an essential protein for skin 

development, maintenance, and has six main isoforms (Rangel et al., 2014). 

The TAp63 isoforms (α, β, γ) can bind to DNA via p53 response elements 

(REs) and induce gene activation for cell cycle arrest and apoptosis (Rangel et al., 
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2014). It can also inhibit terminal cell differentiation (Rangel et al., 2014). The 

ΔNp63 isoforms (α, β, γ) can also bind to DNA via p53 REs while exerting a 

dominant effect on p53, p73, and p63. This happens via competition for DNA 

binding sites or by protein-protein interactions (Rangel et al., 2014). Many cancers 

express mutant p53 proteins without the wild type tumor suppressing activity via a 

single missense mutation resulting in a single amino acid change (Stindt et al., 

2014). Cancerous cells with wild-type p53 are expected to be more susceptible to 

cytotoxicity than those with mutant p53. However, wild-type p53 has been shown to 

enhance the pro-survival functions and increase survival advantages of cells. 

Mutant p53 can interact via aggregation with other proteins such as p63, p73, 

MDM2, and even wild type p53 (Inoune and Fry 2014). The MDM2 protein is a 

negative regulator of p53 which is responsible for p53 degradation and may have a 

binding affinity to p63 (Rangel et al., 2014). Some of these proteins can acquire 

oncogenic functions and contribute to tumorigenesis (Rangel et al., 2014).  
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CHAPTER TWO: THE p53, p63, p73 TRIO: AN EVOLUTIONARY 

FAMILLY AFFAIR OF HOMOLGY AND DIVERSE FUNCTIONLATY.  

1. The p53, p63, MDM2 Protein Trio 

1.1. Tumor Protein p53 

The p53 protein is an important transcription factor involved in many physio-

cellular pathways, especially that of programmed cell death (known as apoptosis), 

DNA repair, and cell cycle control (Oren 2003). This homo-tetrameric protein has 

three main functional and structural domains. These include the transactivation 

domain (TA) at the N-terminal which activates other genes, the DNA binding domain 

(DBD) which binds the promoter region of other p53 induced genes, and the 

oligomerization domain at the C-terminal which is responsible for the 

phosphorylation and acetylation of the p53 gene (Romer et al., 2006). Recent 

studies have proposed that the formation of mutant p53 is strongly associated with 

some pathological effects including gain-of-function (GoF), loss-of-function (LoF), 

and domain-negative (DN) (Costa et al., 2016). These later proteomic effects play a 

pivotal role in tumorigenesis and cancer progression. p53 is lost in nearly half of all 

human cancers and tends to form aggregates such as amyloids just like the 

globular prion protein (PrP) (Rangel et al., 2014). This indicates that prion-like 

aggregation of mutant p53 could offer a novel mechanism of oncogenesis and that 

of p53 gain-of-function effects.  

1.2 Transcription Factor p63 

The p63 protein of the p53 family is structurally similar to p53 but with 

different functions. Some of these functions include epithelial tissue development, 
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tissue maintenance, and tumor suppression (Yang et al., 1998). The p63 gene 

codes for six isoforms (Figure 1) TAp63 (α, β, γ) and ΔNp63 (α, β, γ) (Yang and 

McKeon 2000). It is suggested that the full length TAp63 has similar functions to 

p53. Meanwhile, the truncated ΔNp63 which lacks the transactivation (TA) domain, 

acts as an inhibitor to p53, TAp63 and, TAp73 (Yang and McKeon 2000). However, 

the three ΔNp63 isoforms are structurally different and appear to have different 

transactivation abilities due to the presence or the absence of the Sterile Alpha 

Motif (SAM) and the Post-Sam domain at the C-terminal (Ghioni et al., 2005).  Thus, 

it is commonly suggested that TAp63 is a tumor suppressor while the ΔNp63 is an 

oncogene. The p63 gene is responsible for the development and differentiation of 

normal skin, oral mucosa, and other tissues of ectodermal origin (Mills et al., 1999). 

The TAp63 isoform is expressed during the initial stages of epithelial layer 

development, while the ΔNp63 isoform is later expressed in mature skin (epidermis) 

to inhibit the effects of the TAp63 isoforms (Koster and Roop 2004) and (Nguyen et 

al., 2006). Mutations of the p63 gene appear to have many apoptotic, proliferative, 

and senescence-like effects in cancerous tissues (Moll and Slade 2004). Because 

of the six different p63 isoforms, the roles, and effects of p63 on apoptosis are 

complex (Gressner et al., 2005). In many tissues, TAp63 induces apoptosis while 

the dominant ΔNp63 isoforms suppress many apoptotic pathways (Thurfjell et al., 

2004). However, many studies have yielded unclear results concerning the 

functions and specific influences of the different p63 isoforms. The immunoreactivity 

of P63 is nuclear. The immunostaining of p63 has the diagnostic utility to prove 

squamous differentiation in poorly differentiated tumors, and to sort out malignant 
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versus benign proliferations in breast and prostate tumors (Kaufmann et al., 2001). 

p63 also identifies squamous differentiation in poorly differentiated carcinomas from 

various sites, particularly when expressed with cytokeratin 5/6 (CK5/6). p63+ and 

CK5/6+ are used by pathologist for poorly differentiated metastatic carcinomas that 

are likely to show squamous carcinoma primaries (Kaufmann et al., 2001). In 

normal tissues, p63 expression is restricted to epithelial cells of stratified epithelial 

such as skin, esophageal, cervical, tonsillar, and bladder tissues. In keratinocytes 

however, the expressed isoform is the ΔNp63 which presumably maintains 

epithelial cell proliferation at the stratum basale (Kaufmann et al., 2001).  

1.3 Murine Double Minute 2 Protein (MDM2)  

 

The Murine (Mouse) Double Minute 2 (MDM2) protein homolog, known also 

as the E3 ubiquitin-protein ligase MDM2, and is an important negative regulator of 

the tumor protein p53 in humans. MDM2 has two main functions. First, it functions 

as a ligase which recognizes and binds the N-terminal of p53. Second, it inhibits 

p53 transcriptional activation (Wade et al., 2006). MDM2 is an oncoprotein which 

induces ubiquitination, antagonizes p53, and may even carry p53-independent 

functions (Wienken et al., 2016). MDM2 is needed for organ and tissue 

development along with homeostasis. This is because unobstructed p53 activation 

leads to p53-overactivation-dependent cell death known as podoptosis (not 

apoptosis). MDM2 has an important mitogenic effect in wound healing after injury, 

where its inhibition interferes with the re-epithelization process (Ebrahim et al., 

2015). MDM2 is a negative regulator of wild type p53 causing its degradation via 

ubiquitination. However, MDM2 cannot degrade mutant p53 due to the presence of 
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a phosphate group. MDM2 also shows different aggregation affinities when binding 

all three related proteins, both individually and collectively. Differences and 

mutations in the DNA binding domain of p53, p63, p73 play a crucial role in the 

binding affinity of MDM2 (Wienken et al., 2016). MDM2 plays an important role in 

the prognosis of many human cancers such as sarcomas, gliomas, melanomas, 

and carcinomas (Onel and Cordon-Cardo 2004). An autoregulatory feedback loop 

made of p53 and MDM2, strongly regulates p53 intracellular levels. Both p53 

mutations and MDM2 overexpression can interrupt this loop and eventually be used 

as a negative prognostic indicator for cancer development (Javid et al., 2015). Even 

though MDM2 overexpression is common in many cancers, MDM2 can be both a 

positive or a negative indicator in tumors, thus still a controversial tumor 

differentiation biomarker (Onel and Cordon-Cardo 2004). In non-small cell lung 

cancer (NSCLC), the immunohistochemical detection of MDM2 favors MDM2 as a 

prognostic marker without the associated p53 expression (Ko et al., 2000). The 

overexpression in NSCLC gives a good prognosis without gene amplification, yet it 

can be correlated with high levels of MDM2 mRNA. Onel and Cordon-Cardo (2004) 

state that the prognostic value of MDM2 remains limited. This is due to the 

complexity of mechanisms involved in MDM2 overexpression in many tissues as 

well as the different physiological pathways regulating the MDM2 activity.   
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2. Functional Interplay 

2.1. The Functions of the p53 and p63 Isoforms in Cancer 

 

Recent oncology studies have shown that the expression of different p53 

isoforms in different patterns may play a role in the regulation of normal and 

cancerous cells. The p53 genes encodes for 12 isoforms (SeJin and Seong, ,2016). 

These isoforms are expressed in normal cells via alternative translational initiation, 

alternative splicing, and alternative promoters. Research has also shown that the 

presence of mutant p53 aggregates may be linked to tumor pathogenesis because 

of the loss-of function (LoF), gain-of function (GoF), and the dominant-negative 

(DN) (SeJin and Seong, 2016). Many efforts have been made to single out 

correlations between the different expressed p53 isoforms (at the protein and the 

mRNA levels) and various cancers. studies such as Hofstetter et al. (2011) used 

different cell lines to study the p53 isoforms and their expression. These cells range 

from colorectal adenomas, mucinous and serous ovarian cancers, breast cancer, to 

squamous cell carcinomas of the head and neck (SCCHN) just to name a few 

(Boldrup and Bourdon, 2007). Fujita et al., (2009) showed that the ratio of p53β to 

Δ133p53α can be used to predict the progression of a colorectal adenoma to a 

carcinoma. The expression of Δ40p53α was found to improve recurrence-free 

survival rates in mucinous ovarian cancer (Hofstetter et al., 2011). Furthermore, 

SCCHNs showed elevated levels of the p53β isoform (Boldrup and Bourdon, 2007). 

Figure 1, from the meta-analysis by SeJin and Seong (2016), summarizes the 

expression pattern of the p53 isoforms in different cancers. Many studies focused 
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on the central core domain of p53 because it is considered as a hot spot for nearly 

all genetic mutations such as R248Q. This later p53 mutant appears to self-

aggregate more than wild type p53 and can seed further aggregation (Bom et al., 

2012). SeJin and Seong (2016) state that p53 aggregation might be partially due to 

a decrease in the thermodynamic stability in the mutant protein’s conformation. 

Additionally, p53 aggregates can further co-aggregate with wildtype p53 and cause 

cytotoxic effects on cells (Bom et al., 2012). 

 

 

Figure 1: p53 isoform expression and distribution in various cancers (SeJin and 

Seong 2016).  

 p53 is suspected as a “seed” for co-aggregation with other homologs such as 

p63 and p73 (Xu et al., 2011). Other in vivo studies demonstrated the accumulation 

of p53 aggregates using a fibrillar specific antibody (OC) or an amyloid oligomer 

specific antibody (A11) in breast cancer and basal cell carcinoma (BCC) FFPE 
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tissue biopsies (SeJin and Seong 2016). Figure 2 shows the independent research 

that is geared toward p53 aggregation. Currently, cancer is being considered as an 

aggregation disease (Bom et al., 2012). During malignancy proteins are 

uncontrollably expressed with conformational changes. It has been demonstrated 

that the conformation of the p53 DNA-binding domain (DBD) is unstable (Stindt et 

al., 2014). Mutations such as R175H, R249S, and R273H additionally destabilize 

the DBD in p53. Thus, high percentages of these mutant proteins are unfolded and 

thus inactive (Switch laboratory “Cancer as an aggregation disease,” 2014). These 

mutants are found in about 30% of the documented clinical cases and are named 

“structural” mutants. Furthermore, the gain-of-function (GoF) and the dominant-

negative (DN) activity of these structural mutants increase their aggregation 

tendency (Stindt et al., 2014). Figure 3 Shows a native-PAGE of p53 transfected in 

SaOS-2 cells. Furthermore, the structure of the DNA-binding domain (DBD) of p53, 

p63, and p73 exhibit high homology along with aggregation sequences in the same 

structural protein motif which is highlighted in red (Figure 5). The R110P mutant 

p53 was shown to be co-expressed with p63 in SaOS-2 cells. Figure 6 represents a 

3D confocal microscopy image of a formed large p53 and p63 aggregates in the 

perinuclear region. This aggregation furthers explains p53’s oncogenic gain of 

function. 
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Figure 2: Independent research on the aggregation of p53. 

 

Figure 4: Native-PAGE: p53 transfected in SaCo-2 cells. (Switch Laboratory. 

Cancer as an aggregation disease, 2014).  
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 Figure 7 shows a schematic diagram of cell responses to DNA damage and 

the hypothesis of p53 aggregation. Under normal conditions, wildtype p53 tetramers 

are formed in response to cellular stress due to DNA damage. p53 then bind to the 

response elements and activate other tumor suppressing proteins such as p21. 

However, when a TP53 gene mutation occurs, it alters the expression of p53. This 

leads to the aggregation of expressed mutant p53, wildtype p53, and different 

isoforms. 

2.2  The Functional Interplay of p53, p63, p73 and MDM2 

During malignancy, Proteins are either uncontrollably over-expressed or 

structurally changed due to mutations causing changes in protein-protein 

interactions and functional activity (Stindt et al., 2014). Sometimes, it is still unclear 

whether the aggregation of tumor suppressors and oncogenes contribute to cancer 

progression and malignancy. 

 

Figure 5: The shared homology of the DBD of p53, p63, and p73. (Switch 
Laboratory, Cancer as an aggregation disease, 2014). 
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Figure 6: p53-p63 aggregation formation in the perinuclear region of a SaOS-2 cell. 

(Switch Laboratory, Cancer as an aggregation disease, 2014). 

 

MDM2 is a key regulator of p53 function and can also bind to mutant p53 via the N-

terminal binding region (Stindt et al., 2014). MDM2 also binds to nuclear p63 and 

facilitates its transport to the cytoplasm for degradation (Galli 2010). Studies by 

(Wang and Fersht, 2015) and (Stindt et al., 2014) showed that there is a possible 

favored binding of MDM2 with mutant and wild type p53 rather than with p63 and 

that MDM2 reliefs the inhibition of p63 activity by binding mutant p53. Figure 6 by 

Gannon (2012) shows the signaling pathway of p53, MDM2, and MDMX. Some 

studies showed that MDM2 inhibits p53 by interacting with the N-terminal 

transactivation (TA) domain. This leads to the suppression of downstream target 

genes associated with tumor suppression (Stindt et al., 2014). On the other hand, 

other studies showed that MDM2 destabilizes p53 via its E3 ligase activity. 
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Furthermore, p53 can also upregulate the expression of MDM2 by binding the p53 

consensus sequence found on the MDM2 promoter region. Ryan et al (2001) has 

demonstrated that p53 is also able to maintain its own levels of expression via the 

upregulation of MDM2. This later pattern of interactions forms a negative feedback 

mechanism which maintains low levels of p53. p73 is another p53 family member. It 

is also involved in cell cycle regulation and apoptosis. Thus, considered a tumor 

suppressor as well (Harms and Chen, 2006). Unlike p53, MDM2 overexpression 

stabilizes p73 instead. However, many studies have shown inconsistent data on the 

effects of MDM2 on p63 transactivation, stability, and binding affinity (Lustig 2012). 

 

Figure 7: a schematic diagram of cell responses to DNA damage and p53 
aggregation. 
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Figure 8: p53-MDM2-MDMX signaling pathway (Gannon, 2012) 

Little (2001) states that MDM2 is unable to physically interact with either the 

Tap63 or ΔNp63. On the other hand, findings by (Lusting 2012) show that unlike 

p53, MDM2 cannot block the p63 transactivation of p21 which is one of the 

pathways for cell cycle arrest. This shows that many interactions between these 

proteins remain unclear. Figure 9 by (Stindt et al., 2014) shows a representation of 

the binding effects of MDM2 on the inhibitory function of mutant p53 on p63 and 

p73.  

 

Figure 8: Representation of the binding effects of MDM2 on the inhibitory function 
of mutant p53, p63,and p73  (Stindt et al., 2014). 



From Cancer to Forensics: The Immunohistochemical Characterization of TP63, TP53, and MDM2 Proteins 
Expression in Skin Basal Cell and Squamous Cell Carcinomas. 

18 
 

3. References   

 

Boldrup L, Bourdon JC, Coates PJ, et al. Expression of p53 isoforms in squamous  

cell carcinoma of the head and neck. Eur J Cancer 2007; 43:617–23. 

Bom APDA, Rangel LP, Costa DCF, et al. Mutant p53 aggregates into prion-like  

amyloid oligomers and fibrils implications for cancer. J Biol Chem 

2012;287:28152–62.  

Costa, D. C., de Oliveira, G. A., Cino, E. A., Soares, I. N., Rangel, L. P., & Silva, J.  

L. (2016). Aggregation and Prion-Like Properties of Misfolded Tumor  

Suppressors: Is Cancer a Prion Disease?. Cold Spring Harbor perspectives 

in biology, 8(10), a023614. https://doi.org/10.1101/cshperspect.a023614 

Ebrahim M, Mulay SR, Anders HJ, Thomasova D (November 2015). “MDM2 beyond  

cancer: podoptosis, development, inflammation, and tissue regeneration”. 

Histology and Histopathology. 30 (11): 1271–82. 

Fujita K, Mondal AM, Horikawa I, et al. p53 isoforms Delta133p53 and p53beta are  

endogenous regulators of replicative cellular senescence. Nat Cell Biol 2009. 

Galli F. MDM2 and Fbw7 cooperate to induce p63 protein degradation following  

DNA damage and cell differentiation. J Cell Sci. 2010: 123: 2423. 

Gannon, H. S. (2012). Mdm2-p53 Signaling in Tissue Homeostasis and the DNA  

Damage Response: A Dissertation. 

Ghioni, P., D’Alessandra, Y., Mansueto, G., Jaffray, E., Hay, R. T., La Mantia, G.  

and  Guerrini, L. (2005). “The protein stability and transcriptional activity of 

p63 alpha are regulated by SUMO-1 conjugation.” Cell Cycle 4(1): 183-90. 

Gressner, O., Schilling, T., Lorenz, K., Schulze Schleithoff, E., Koch, A., Schulze- 

Bergkamen, H., Maria Lena, A., Candi, E., Terrinoni, A., Valeria Catani, M., 

Oren, M., Melino, G., Krammer, P. H., Stremmel, W. and Muller, M. (2005). 

“Tap63alpha induces apoptosis by activating signaling via death receptors 

and mitochondria.” Embo J 24(13): 2458-71. 

Harms, K. L., & Chen, X. (2006). P19ras brings a new twist to the regulation of p73  

Hofstetter G, Berger A, Schuster E, et al. D133p53 is an independent prognostic  

marker in p53 mutant advanced serous ovarian cancer. Brit J Cancer  

https://doi.org/10.1101/cshperspect.a023614


From Cancer to Forensics: The Immunohistochemical Characterization of TP63, TP53, and MDM2 Proteins 
Expression in Skin Basal Cell and Squamous Cell Carcinomas. 

19 
 

2011;105:1593–9. 

Javid, J., Mir, R., Julka, P., Ray, K., & Saxena, C. (2015). Association of p53 and  

mdm2 in the development and progression of non-small cell lung cancer. 

Tumor Biology, 36(7), 5425-5432. 

Kaufmann, O., Fietze, E., Mengs, J., & Dietel, M. (2001). Value of p63 and  

cytokeratin 5/6 as immunohistochemical markers for the differential diagnosis 

of poorly differentiated and undifferentiated carcinomas. American Journal of 

Clinical Pathology, 116(6), 823-30. 

Ko, J.-L., Cheng, Y.-W., Chang, S.-L., Su, J.-M., Chen, C.-Y. and Lee, H. (2000),  

MDM2 mRNA expression is a favorable prognostic factor in non-small-cell 

lung cancer. Int. J. Cancer, 89: 265–270. 

Koster, M. I. and Roop, D. R. (2004). “The role of p63 in development and  

differentiation of the epidermis.” J Dermatol Sci 34(1): 3-9. 

Laurikkala J. p63 regulates multiple signaling pathways required for 

ectodermal organogenesis and differentiation. Development. 

2006;133(8):1553. 

Little NA. Hdmx and Mdm2 can repress transcription activation by p53 but not by  

p63.Oncogene. 2001;20:457. 

Lustig, D. (2012). Molecular Mechanisms of p63-Derived Ectodermal Dysplasia: A  

Dissertation.   

Mills, A. A., Zheng, B., Wang, X. J., Vogel, H., Roop, D. R. and Bradley, A. (1999).  

“p63 is a p53 homologue required for limb and epidermal morphogenesis.” 

Nature 398(6729): 708-13. 

Moll, U. M. and Slade, N. (2004). “p63 and p73: roles in development and tumor  

formation.” Mol Cancer Res 2(7): 371-86. 

Nguyen, B. C., Lefort, K., Mandinova, A., Antonini, D., Devgan, V., Della Gatta, G.,  

Koster, M. I., Zhang, Z., Wang, J., Tommasi di Vignano, A., Kitajewski, J., 

Chiorino, G., Roop, D. R., Missero, C. and Dotto, G. P. (2006). “Cross-

regulation between Notch and p63 in keratinocyte commitment to 

differentiation.” Genes Dev 20(8): 1028-42  

Onel, K., & Cordon-Cardo, C. (2004). MDM2 and prognosis. Molecular  



From Cancer to Forensics: The Immunohistochemical Characterization of TP63, TP53, and MDM2 Proteins 
Expression in Skin Basal Cell and Squamous Cell Carcinomas. 

20 
 

Cancer Research: MCR, 2(1), 1-8 Oren, M. (2003). “Decision making by p53:  

life, death and cancer.” Cell Death Differ 10(4): 431-42. 

Pozniak CD. An anti-apoptotic role for the p53 family member, p73, during 

 developmental neuron death. Science. 2000;289(5477):304. 

Pozniak CD. p73 is required for survival and maintenance of CNS neurons. The  

Journal of neuroscience. 2002;22(22):9800. 

Rangel, Luciana P, Costa, Danielly CF, Vieira, Tuane CRG, & Silva, Jerson L.  

(2014). The aggregation of mutant p53 produces prion-like properties in 

cancer. Prion, 8(1), 75–84. https://doi.org/10.4161/pri.27776 

Romer, L., Klein, C., Dehner, A., Kessler, H. and Buchner, J. (2006). “p53–a natural  

cancer killer: structural insights and therapeutic concepts.” Angew Chem Int  

Ed Engl 45(39): 6440-60. 

Ryan KM, Phillips AC, Vousden KH. Regulation and function of the p53 tumor  

suppressor protein. Curr Opin Cell Biol. 2001;13(3):332-7. 

SeJin K, Seong S. A. An. Role of p53 Isoforms and Aggregations in Cancer.  

Medicine, vol. 95, no. 26, 2016, pp. 1 

Stindt M H, Muller P A J, Ludwig R L, Kehrloesser S, Dötsch V, & K H Vousden.  

(2014). Functional interplay between MDM2, p63/p73 and mutant p53. 

Oncogene, Oncogene, 2014. 

Su X. TAp63 prevents premature aging by promoting adult stem cell maintenance.  

Cell stem cell. 2009;5(1):64. 

Thurfjell, N., Coates, P. J., Uusitalo, T., Mahani, D., Dabelsteen, E., Dahlqvist, A.,  

Sjostrom, B., Roos, G. and Nylander, K. (2004). “Complex p63 mRNA  

isoform expression patterns in squamous cell carcinoma of the head and 

neck.” Int J Oncology 25(1): 27-35. 

Truong AB. p63 regulates proliferation and differentiation of developmentally mature  

keratinocytes. Genes development. 2006;20(22):3185. 

Wade M, Wong ET, Tang M, Stommel JM, Wahl GM (November 2006). “Hdmx  

modulates the outcome of p53 activation in human tumor cells”. The Journal  

of Biological Chemistry. 281 (44): 33036–44 

Wang, G., & Fersht, A. (2015). Propagation of aggregated p53: Cross-reaction and  

https://doi.org/10.4161/pri.27776


From Cancer to Forensics: The Immunohistochemical Characterization of TP63, TP53, and MDM2 Proteins 
Expression in Skin Basal Cell and Squamous Cell Carcinomas. 

21 
 

coaggregation vs. seeding. Proceedings of the National Academy of 

Sciences of the United States of America, 112(8), 2443-8. 

Wienken M, Dickmanns A, Nemajerova A, Kramer D, Najafova Z, Weiss M, Karpiuk  

O, Kassem M, Zhang Y, Lozano G, Johnsen SA, Moll UM, Zhang X, 

Dobbelstein M (January 2016). “MDM2 Associates with Polycomb Repressor 

Complex 2 and Enhances Stemness-Promoting Chromatin Modifications 

Independent of p53”. Molecular Cell. 61 (1): 68–83. 

Xu J, Reumers J, Couceiro JR, et al. Gain of function of mutant p53 by  

coaggregation with multiple tumor suppressors. Nat Chem Biol 2011; 7:285–

95.Yang A. p63 is essential for regenerative proliferation in limb, craniofacial 

and epithelial development. Nature. 1999;398(6729):714. 

Yang A. p73-deficient mice have neurological, pheromonal and inflammatory  

defects but lack spontaneous tumours. Nature. 2000;404(6773):99. 

Yang, A. and McKeon, F. (2000). “P63 and P73: P53 mimics, menaces and more.”  

Nat Rev Mol Cell Biol 1(3): 199-207. 

Yang, A., Kaghad, M., Wang, Y., Gillett, E., Fleming, M. D., Dotsch, V., Andrews, N.  

C., Caput, D. and McKeon, F. (1998). “p63, a p53 homolog at 3q2729, 

encodes multiple products with transactivating, death-inducing, and 

dominant-negative activities.” Mol Cell 2(3): 305-16. 

 

 

 

 

 

 

 

 

 

 

 

 



From Cancer to Forensics: The Immunohistochemical Characterization of TP63, TP53, and MDM2 Proteins 
Expression in Skin Basal Cell and Squamous Cell Carcinomas. 

22 
 

CHAPTER 3: IMAGEJ AND QuPath DIGITAL SEMI-
QUANTIFICATION OF THE IMMUNOHICTOCHEMICAL 
EXPRESSION OF TP53, TP63, AND MDM2 IN SKIN BASAL CELL 
AND SQUAMOUS CELL CARCINOMAS. 

1. Abstract: 

 Objective: The objective of this study was to evaluate and characterize the 

pattern of p53, p63, and MDM2 tissue expression in 2 types of skin cancers through 

immunohistochemistry (IHC) via innovative image processing softwares such as 

ImageJ and QuPath. Study Design: Three cases of cutaneous cancers: one basal 

cell carcinoma (BCC) and two squamous cell carcinomas (SCCs) were included in 

this study. The cases were diagnosed and classified by a trained pathologist before 

digital pathology image processing. Multiple regions of interest (ROIs) were 

identified in all three cases and captured at different magnifications. For each case, 

every ROI was  at the exact region of the slide for each protein stained. This was 

repeated for each cancer case. 13 ROIs for each protein in the BCC case (total of 

39 ROIs), 14 ROIs for each protein in the SCC (HIV+) case (total of 42 ROIs), and 9 

ROIs for each protein in the SCC case (a total of 27 ROIs). Materials and 

Methods: Formalin-Fixed Paraffin-Embedded biopsies were obtained from 

Heartland Pathology Consultants Edmond, OK USA. Immunohistochemical staining 

was carried out using monoclonal antibodies for p53, p63, and MDM2. The semi-

quantification of positive stain percentages in each ROI was performed via manual 

thresholding and the IIHC profiler plugin, both features of the ImageJ (FIJI) image 

processing software. The nucleus to cytoplasm ration was determined in all cases 

using the most representative ROIs. This was achieved via QuPath, a software for 
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quantitative pathology. Results and Conclusions: Our results indicate that an 

increase in dysplasia and histological tumorous features such as tumor nests 

correlates with an increase in tissue expression of p63 and MDM2 but not p53.    

p53 was the least expressed protein in all three cases with weaker in intensity when 

present. P53 was strong in intensity in one specific region of the epidermis in the 

SCC. p63 exhibited strong and strict nuclear expression in all cases while MDM2 

had strong immunoreactivity but was expressed both in the nucleus and cytoplasm 

of cells in all three cases. MDM2 also was expressed in the subdermal layer and 

connective tissue. p63 was highly significant in differentiating the three cancer 

cases (p-value = 0.0007) followed by p53 which was marginally significant (p-value 

= 0.086) while MDM2 was of no significance in differentiating the cancer cases (p-

value = 0.718).  

2. Introduction  

 

The ability to have high resolution images and scans of whole tissue slides is 

critical to tumor identification, biomarker expression, and digital analytics. This 

emerging field of tissue image analysis is referred to as digital pathology (Bankhead 

et al., 2017) and (Hamilton et al., 2014). Digital pathology uses computer and 

software platforms to view digital images of tissue slides via whole slide images 

(WSIs) or regions of interest (ROIs) cropped from the WSIs (Williams et al., 2017). 

WSIs are usually obtained from high resolutions microscopes made specifically for 

digital pathology downstream quantification protocols (Pell et al., 2019). Current 

pathology professionals and researchers have a selection of working softwares to 

choose from, such as CellProfiler (Lamprecht et al., 2007), Icy (De Chaumont et al., 
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2012), and Fiji which is an updated version of ImageJ (Schindelin et al., 2012). 

These softwares allow researchers to share their findings and analysis solutions in 

the form of plugins, scripts, pipelines, and workflows. This enhances the  

reproducibility of high content imaging results and research protocols respectively 

(Bankhead et al., 2017). The field of digital pathology continues to lack a 

standardized peer-accepted open and accessible software platform for image 

analysis (Satyanarayanan et al., 2013). This means, that without access to 

expensive commercial analytical platforms, users will have to resort to ineffective 

methods such as downsampling and cropping of images (Bankhead et al., 2017). 

This eventually allows them to apply general analysis tools to only a subset of 

imagery data. Thus, compromising reproducibility and causing high result variability 

(Tuomien et al., 2010) and (Marée et al., 2016).  

Our project aims to use image analysis on semi-quantitative tissue 

morphological metrics of cancerous skin in key areas, such as the standardization 

of immunohistochemical stain interpretation, the assessment of tumor cellular 

characteristic, and the correlation of findings with that of pathologist’s diagnostic 

findings. Image processing and analysis in digital pathology potentially provide 

better accuracy, more reproducible results, standardization, and the extraction of 

new information from both novel and existing features and software plugins. (Pell et 

al., 2019). A pathologist’s assessment remains the golden standard in diagnostic 

pathology due to the experience of a trained eye. However, digital pathology helps 

complement such assessment and diagnoses, further improve prediction models, 

and perform functions outside manual capability (Pell et al., 2019). Quantification of 
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immunohistochemical tissues, circularity of cells and nuclei, and nucleus to 

cytoplasm ratios are one of the many metrics digital pathology help incorporate into 

clinical practice and trials (Koelzer et al., 2018). These latter methods provide 

quantifiable data about individual cells of interest and tissue components such as 

glands and tumor nests (Pell et al., 2019). QuPath and ImageJ (currently known as 

FIJI) are open source softwares which allow for digital pathology image analysis. 

These softwares are user friendly, allow whole slide images (WSI) analysis 

including regions of interest (ROIs), and offer extendable solutions complementary 

to diagnoses by a pathologist. The image analysis methodology offers tumor 

identification and biomarker expression evaluation tools (Schindelin et al., 2012). It 

also allows the user to perform powerful batch processing, share new functionality 

algorithms, and analyze complex tissue images (Bankhead et al., 2017). Whole 

slide imaging can easily generate large 2D images or z-stacks where each plane 

may contain up to 40 GB of data. Manual scoring by a pathologist can be difficult 

and sometimes is not satisfactory for large-scale biomarkers studies. This is due to 

the need for reliable, accurate, reproducible analyses for tissue biomarkers and 

their selection for clinical trials. Lately, this has led to the development of new image 

processing softwares for whole slide pathology slides (Bankhead et al., 2017).  

The QuPath software has been a user friendly and a great open-source 

software that addresses many said challenges facing image analysis. It is by far the 

first comprehensive open-source software geared toward whole slide image 

analysis and applications. QuPath is characterized by a functional cross-platform 

core that is multithreaded and has a tile-based whole slide viewer. This software 
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also offers new algorithms for powerful scripting functionality. The QuPath 

functionality has algorithms such as tissue microarray (TMA) analysis, whole tissue 

section analysis, cell detection and classification, feature computation, and survival 

analysis (Bankhead et al., 2017). One of the main advantages of QuPath and 

ImageJ is that users can add their own extensions based either on challenges they 

have faced or aims of their projects. Furthermore, one the key feature of this 

software is that it is an “object” based data model (Bankhead et al., 2017). In this 

case the word “object” refers to a region or a structure of interest within the image 

being analyzed. One can subsequently manipulate such object by either using 

annotations (e.g., drawings, symbols) or automated segmentation commands (e.g., 

detection and separation of individual cell or nuclei). These later functions allow a 

researcher to display any possible relationships between multiple image-objects 

using gigapixel images and object classifiers (Bankhead et al., 2017). One of the 

most applied examples of QuPath and ImageJ is the ability to evaluate the 

presence, localization, and the intensity of biomarkers’ expression in IHC slides 

(Bankhead et al., 2017). These biomarkers are classic tools in the field of 

immunohistochemistry and pathology alike. They are typically detected using 

specific antibodies and chromogens (Bankhead et al., 2017).  In addition to 

measuring biomarker expression, stain intensity, and cell morphology, QuPath and 

ImageJ have a built-in “cell segmentation algorithms” which can detect thousands of 

cells within a single whole slide image (WSI). This later classifies different cell types 

creating a comprehensive phenotypic cellular profile of the WSI or ROI (Bankhead 
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et al., 2017). This allows for the semi-quantitative map out the tissue section and 

the discovery of any subtle morphological features not visible by the naked eye.  

p53 Immunohistochemistry in Pathology  

The most common genetic alterations in human tumors are mutation of the 

TP53 tumor suppressing gene (Rangel et al., 2014). The resulting altered protein 

has an extended half-life and is detectable with IHC. One should also note that 

epigenetic changes can cause protein accumulation. The gene product is a nuclear 

protein; hence the stain is nuclear. One must also note that p53 is detected by 

immunohistochemical stains only if a mutation renders it stable. Nonetheless, the 

protein may not be functional. A mutation can also cause a physiological response 

to genetic damage to some pathways such as that of MDM2 controlling p53. Thus, 

the p53 immunostain is not an obligatory marker for a mutated gene (Pernick, N., 

MD. (2012). P53. Retrieved September 25, 2020, from 

http://www.pathologyoutlines.com/topic/stainsp53.html).  

p63 Immunohistochemistry in Pathology  

The p63 protein is consistently expressed in basal and stem cells of the 

stratified epithelium. Six different isoforms exist with unknown functions. Both p63 

and p53 belong the second tier of antibodies required by a standard surgical 

pathology laboratory. Positive staining (normal) for p63 consists of the following 

tissues and tissue organs: 1) Breast’s myoepithelium (Am J Surg Pathol 

2001;25:1054). 2) Gynecologic tract’s basal and parabasal cells of mature cervical, 

vaginal, and vulval squamous epithelium. 3) prostate basal cells. 4) Skin basal cells. 

http://www.pathologyoutlines.com/topic/stainsp53.html
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5) thymus epithelial cells. 6) Urothelium. 7) Lungs’ bronchial reserve cells, 

metaplastic squamous bronchial epithelium of the lower strata. Tumor protein 63 

can positively be diagnostic to diseases such squamous cell carcinoma and 

squamous component of adenosquamous carcinoma. The p63 stain is typically 

nuclear (Pernick, N., MD. (2012). P53. Retrieved September 25, 2020, from 

http://www.pathologyoutlines.com/topic/stainsp63.html).  

MDM2 Immunohistochemistry in Pathology  

Overexpressed in atypical lipomatous tumors such as dedifferentiated, and 

well differentiated liposarcomas (along with CDK4). Sarcomas like 

myxofibrosarcoma, leiomyosarcoma, and synovial sarcomas also show an 

MDM2/CDK4 overexpression (Pernick, N., MD, 2013. Retrieved September 25, 

2020, from http://www.pathologyoutlines.com/topic/stainsmdm2.html). The MDM2 

protein preferentially labels the perinuclear membrane in the granular layer of 

verrucous carcinoma tumor cells whereas it shows weak and sometimes strong 

cytoplasmic staining (Ouban et al., 2003). 

Image Fundamentals  

Digital images are made of pixels or picture elements where each pixel is a 

number. When image is displayed, the pixels’ values are converted to squares of 

shades of gray (Bankhead et al., 2017). The goal of image analysis is to make 

sense of the converted values in a meaningful display pattern. Fluorescent images 

are additive and quantitative while brightfield images are subtractive and far less 

quantitative (Bankhead et al., 2017).  

http://www.pathologyoutlines.com/topic/stainsp63.html
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Object Annotation 

 An object refers to a pathological feature in the representative section of a 

specimen which is annotated which mean selected or drawn (Bankhead et al., 

2017). This term can refer to a cell, a nucleus, or a selected region also referred to 

as a region of interest (ROI). Drawing regions of interest is one of the most 

frequently used features in digital pathology. ROI uses include the measurement of 

lengths and areas, the identification where of location where an analysis should be 

applied, and the selection of training regions for the classifier feature (Bankhead et 

al., 2017). The following picture (Figure 1) shows the type of annotations possible 

for an ROI selection.  

 

 

Figure 9: The figure shows multiple selected ROIs of different shapes (Bankhead et 
al., 2014). 

 

Cell count 

Counting cells is an especially important task for image analysis purposes 

and there are different ways to do it (Schindelin et al., 2012). Some methods are 

manual while others are automated. The automated method allows for simultaneous 

specifications about each cell such as diameter, area, pixel intensity, and nucleus to 
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cytoplasm ratio (Bankhead et al., 2017). Both the QuPath and imageJ platforms 

offer instructions to manually click on individual cell and count them (Bankhead et., 

2017).  

Object detection and classification.  

The classification in this study is divided into positive and negative cells in 

reference to the stain in question (p53, p63, or MDM2). While manual counting can 

be very laborious and does not scale up to large number of objects (nuclei or cells). 

Softwares such QuPath and ImageJ have detection capabilities that are fast, 

accurate, and can yield reproducible results (Bankhead et al., 2017). Features such 

as object detection can help identify regions where the tumor is proliferating faster. 

For example, the number of tumor cells staining positive for Ki67, a marker for 

proliferation (Bankhead et al., 2017). Cells will also be classified as either negative 

or positive depending on the score compartment of nucleus. This score indicates 

how much DAB (3,3′-Diaminobenzidine) is in the nucleus (Schindelin et al., 2012). 

In other words, how brown do the nuclei look to the software. DAB is the chromogen 

used in immunohistochemistry. The DAB chromogen is attached to the secondary 

antibody specific to the protein of interest in IHC.  

3. Methods  

 Skin Cancer Cases 

A total of 3 Formalin-Fixed Paraffin-Embedded (FFPE) skin biopsies 

representing one BCC, one SCC, and one more SCC from an HIV positive patient 

were obtained from Heartland Pathology Consultants (HPC), Edmond Oklahoma. 



From Cancer to Forensics: The Immunohistochemical Characterization of TP63, TP53, and MDM2 Proteins 
Expression in Skin Basal Cell and Squamous Cell Carcinomas. 

31 
 

The regions of interest (ROIs) make up the total samples For this study. The three 

cases will be graded per accepted and validated pathology diagnosing standards. 

The histology slides will be developed from pathology archival FFPE blocks. 

Hematoxylin and Eosin (H&E) staining will be performed to examine the morpho-

pathology of the skin biopsies. Slides of the same biopsies will be stained for p63, 

p53, and MDM2 protein immunohistochemistry using the standard antibody 

protocols. Immunohistochemistry is a useful diagnostic tool for the differentiation of 

biomarkers’ expression in different tissues. 

 Formalin-Fixed Paraffin-Embedded Tissue Biopsies 

Archival formalin-fixed paraffin embedded (FFPE) tissue biopsies, along with 

their related diagnoses, represent an invaluable source for retrospective studies 

where prognosis and responses to treatment are well documented. The status of 

archival FFPE biopsies is that they serve an important source of material for many 

studies, including cancer proteomics. Nonetheless, proteomic studies face 

challenges such as diseases that progress slowly or malignancies with a larger time 

gap between recurrence and treatment. Furthermore, chemical reactions with 

formaldehyde and the harsh histology processing of the FFPE biopsies remain a 

hurdle for many analyses other than immunohistochemistry. Recent advances have 

been made in proteomic analysis protocols of FFPEs such as liquid-

chromatography and mass spectrometry.  Currently, for pathological diagnosis and 

differentiation, tissues are received from various medical facilities for pathological 

testing and analysis. The tissues are subsequently grossed, sectioned, and 

representative sections or whole biopsies are sent for processing in graded 
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formalin, alcohol, and xylene. The tissue sections are later embedded in paraffin. 

The frozen tissue blocks are mounted on a microtome, sectioned 5 to 10 μm in 

thickness, and then mounted on charged glass slides for either H/E staining or 

immunohistochemistry.   

Grossing of Specimen  

The skin cancerous biopsies differ in size, body location, patient medical 

history, and preoperative workup, particularly those of the head and neck. The 

grossing starts by describing the biopsies’ shape, color, appearance, and 

measurement. Any abnormal changes located on the superior or inferior surfaces of 

the biopsy such as papules, macules, warts, or lesions should be thoroughly 

described and measured. One proceeds to inking the inferior margin of the 

specimen with any attached soft or adipose tissue, if inking is required for 

cancerous margin determination. Then one starts sectioning the specimen and 

describing the presence of hemorrhagic material, fluids, and the internal 

homogeneity of the specimen. One can either send the whole specimen or 

representative sections given the standard operating procedures. There are two 

general requirements to a skin biopsy grossing technique: representative and 

informative. The representative or adequate technique requires that the sample 

presented should show the most diagnostically valuable parts of the biopsy. The 

informative or definite technique requires the sample presented to have clear and 

unmistakable instructions for embedding and microtomy. When tissue biopsies are 

large, one should cut the biopsy into 3 mm thick sections with an area of 

approximately 20 mm x 30 mm if possible. 
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Tissue Fixation and Processing  

 

Modern biopsy processing includes different auxiliary techniques requiring 

different modes of preservation. Fixation is the most universal technique of 

preservation. As a type of preservation, fixation plays two crucial roles. Besides its 

role of preserving the cellular structures, it also ensures the hardening of the 

specimen. The typical fixative for paraffin embedded tissues is neutral buffered 

formalin (NBF). This is equal to 4% paraformaldehyde in a buffer with added 

methanol to prevent the conversion of formaldehyde to formic acid. For an optimal 

histology protocol, a period of 24 to 48 hours is required for adequate tissue fixation. 

Inadequate fixation can lead to tissue dehydration which eventually results in hard, 

stiff, and breakable specimens while cutting with a microtome. 

Using the tissue processor, the following steps are crucial for preparing tissue for 

embedding and microtomy: 

1. 70% alcohol for 1 hour. 

2. 95% ethanol (95% + 5% methanol).  

3. First absolute ethanol for 1 hour.  

4. Second absolute ethanol for 11/2 hour.  

5. Third absolute ethanol 11/2 hour.  

6. Fourth absolute ethanol for 2 hours.  

7. First clearing agent (Xylene) for 1 hour. 

8. Second first clearing agent (Xylene) for 1 hour.  

9. First wax at 58o C for 1 hour.  

10. Second wax at 58o C for 1 hour.  
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 Paraffin Infiltration, Embedding, and Microtomy 

 

During this step of tissue processing, tissues are dehydrated through graded 

alcohols and xylene to remove the water and allow the infiltration of paraffin into the 

tissue. The tissues are then embedded in paraffin blocks to be cut and stored for 

long periods of time. The most common waxes used are commercial paraffin 

waxes. These waxes normally made of straight carbon chain or n-alkanes between 

20 to 40 carbons. The optimal histological use of the melting points of paraffin 

waxes range from 65o C to 70o C. For routine histology, paraffin melting 

temperature is usually between 56o C to 58o C. Increasing the temperature to 60o to 

65o C range decreases viscosity which allows for better tissue infiltration. While the 

representative sections sent to be embedded are preferably 3mm thick, the slide-

mounted cut sections range from 4 to 6 microns in thickness. 

 Immunohistochemistry  

The IHC staining of all three cases was performed by NEO-Genomics (USA) 

using the proper antibodies for the p53, p63, and MDM2 special IHC staining.  

Image Acquisition  

 Using a combination of CelSens software (Olympus Corporation of the 

Americas, Center Valley, PA, USA) and the IX-71 Olympus inverted fluorescent 

microscope with a DP 72 high-speed camera (Olympus Corporation of the 

Americas, Center Valley, PA, USA), and IHC stained FFPE samples from one BCC 

and two SCC cases. Objectives used include: 4x, 10x, 20x, and 40x. Images were 

acquired individually with the camera and processed via ImageJ and QuPath. 13 
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ROIs were captured from the BCC slides for each of the proteins p53, p63, and 

MDM2 totaling 39 ROIs. 14 ROIs were captured from the SCC (HIV+) slides for 

each of the three proteins totaling 42 ROIs. The ROIs all measured around 4128 x 

2820 pixels.  

Software Download    

The QuPath and ImageJ (FIJI) source code, download, and documentation 

are available at the following webpage respectively: 

https://qupath.readthedocs.io/en/latest/docs/intro/about.html 

https://imagej.net/Fiji 

ImageJ or (FIJI)  is an open-source software which aims to improve and standardize 

the speed, objectivity, and reproducibility of digital pathology image analyses. These 

analyses are geared toward to the interpretation of biomarkers for whole slide 

images and regions of interest. Due to the lack of high-tech instrumentation for 

whole slide imaging, only regions of interests form each slide of each case will be 

considered for this study. QuPath has been developed for research purposes and 

applications by the Centre for Cancer Research & Cell Biology at Queen’s 

University Belfast. This is part of a research project funded by Invest Northern 

Ireland and Cancer and Research UK. On the other hand, the imageJ software 

platform which is a property of the NIH and is also used to analyze the images of 

the histology tissue sections in this study. The research protocol consists of three 

main steps. The first step is the H&E staining of the selected skin pathologies. This 

is a standard step to evaluate the cancer pathological manifestations and to single 

https://qupath.readthedocs.io/en/latest/docs/intro/about.html
https://imagej.net/Fiji
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out areas of cellular interest. The second step is the immunohistochemical staining 

of p63, p53, and MDM2 of the three cancers using the standard antibody protocols. 

Routine diagnosis will be performed by a trained pathologist via visual inspection 

and scoring. The third step is to use a QuPath and ImageJ as tools to compare the 

three cases of skin cancers semi-quantitatively.   

RGB Measurement 

ImageJ analyzes the Red, Green, and Blue (RGB) channels of an image. 

Stain vectors are characterizations of how blue the hematoxylin is and how brown 

the DAB is. This lets the user know if the image is suitable for a semi-quantitative 

downstream analysis using ImageJ itself.  

Manual Thresholding versus The IHC Profiler Plugin 

 In the field of anatomical pathology, immunohistochemistry (IHC) serves as 

the diagnostic and prognostic tool for the identification of diseases markers in 

tissues samples and biopsies (Varghese et al., 2014). These markers are crucial in 

the classification and grading of tumors and diseased tissues. In today’s world of 

pathology, the intensity of the antibodies used in IHC staining of specific markers is 

manually judged and often times require more than one opinion of a pathologist 

(Varghese et al., 2014). The use of a plugin such as IHC Profiler from ImageJ 

facilitates and streamlines the assessment of antibody staining intensity in tissue 

sections. IHC Profiler ImageJ plug-in requires only very few steps to yield semi-

quantifiable data about stain intensity resulting in the thresholding (segmentation) of 

only the positively stained cells in the image (Varghese et al., 2014). This gives a 
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binary view of the image where the stained tissue is black and white. For an 8-bit 

image the value of zero is assigned to a black pixel and the value of 255 is assigned 

to a very black pixel (Varghese et al., 2014). This means the positive nuclei and 

tissue will be black whereas the rest of the ROI is white where tissue, cell, and 

nuclei are unstained. The IHC Profiler plugin is able to do so by deconvoluting the 

IHC image’s colors to 3-3’Diaminobenzadine (DAB) which is the actual stain for the 

biomarker in question and the hematoxylin the counter stain.  

Interactive 3-D Surface Plot  

 The interactive 3-D surface Plot plugin from ImageJ is a tool used to provide 

three-dimensional characterization of the tissue samples and shows the 

homogeneity of tissue samples and also show areas of high conductivity (Schindelin 

et al., 2012).  

4. Results 
 

RGB Measurement  

All the ROIs semi-quantified in this study had values of RGB that fell between 

0 to 255 but not equal to neither 0 nor 255. This indicates that all images were 

suitable for all downstream analyses using imageJ including thresholding of the 

DAB stain and hematoxylin counterstain. 

IHC semi-Quantification of p53, p63, and MDM2 in BCC and SCC cases 

Finally, 9 ROIs were captured from the SCC slides for each of the proteins 

totaling 27 ROIs. This allowed us to semi-quantify the immunohistochemical tissue 
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expression of all three proteins in a total of 108 ROIs under different magnification. 

The semi-quantification of the DAB stain was achieved via ImageJ manual 

thresholding for the SCC (HIV+) case whereas the BCC and the SCC were semi-

quantified via the IHC profiler plug-in in ImageJ also. We chose two different 

methods to show the optional methods to achieve such results. Table 1 shows the 

average percentages of IHC DAB stain in every case for all three proteins.  

 

Table 1: Percent stain of p53, p63, MDM2 in all three skin cancers from all ROIs 
processed via ImageJ manual Thresholding and ImageJ IHC Profiler. 

 

The results of the semi quantification of showed that p53 was the least expressed in 

all three cases. p53 was nearly absent in BBC and but was present in both SCC 

cases. MDM2 had the highest average percentage of positive staining and this is 

due to the act that MDM2 was diffusely positive in the nuclei, cells’ cytoplasm, a 

subdermal tissue of in all cases. p63 stained positive in all cases butt higher in the 

basal cell carcinoma case. 

IHC of p53, p63, and MDM2 in Basal Cell Carcinoma 

  

 
Figure 10: ROI# 2 at X100 magnification. Left p53, middle p63, right MDM2.  
 

p53 % Stain p63 % Stain MDM2 % Stain

BCC 0.21 12.93 15.94

SCC (HIV+) 1.53 7.25 19.96

SCC 1.88 5.97 21.94
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Figure 11: ROI # 11 at X40 magnification. Left p53, middle p63, right MDM2. 
 

 
Figure 12: ROI # 13 at X200 magnification. Left p53, middle p63, right 
MDM2.  
  

IHC of p53, p63, and MDM2 in Squamous Cell Carcinoma (HIV+) 

 
Figure 13: ROI #1 at X40 magnification. Left p53, middle p63, right MDM2.  
 

 
Figure 14: ROI #4 at X100 magnification. Left p53, middle p63, right MDM2.  
 

 
Figure 15: ROI #7 at X200 magnification. Left p53, middle p63, right MDM2.  
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IHC of p53, p63, and MDM2 in Squamous Cell Carcinoma  

 

Figure 16: ROI #2 at X100 magnification. Left p53, middle p63, right MDM2.  

 

Figure 17: ROI #4 at X40 magnification. Left p53, middle p63, right MDM2.  

 

Figure 18: ROI #8 at X100 magnification. Left p53, middle p63, right MDM2.  

          Our results indicate that the tissue expression of p53 was weakly present in 

BCC and SCC (HIV+) tumor cells and was nearly absent in cells of the overlying 

healthy or unhealthy epidermis. However, a considerable part of the unhealthy SCC 

epidermis had strong p53 immunoreactivity whereas there was no tissue expression 

of p53 in the underlying dermal layer. Results also showed that p63’s expression 

increased in the in the tumor cells and features of all cases. p63 epidermal 

expression was normal in the healthy epidermis of all cases. This means that p63 

was absent in the outer most layers of the epidermis, the stratum granulosum 
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(granular layer) and the stratum corneum (cornified layer). p63 was nearly absent in 

the normal unaffected stroma of all cases. MDM2 immunoreactivity was decreased 

in BCC compared to SCC and SCC (HIV+). MDM2.

3D Surface Plot and Tissue Homogeneity Assessment  

          Three ROIs were chosen due to the presence of tumorous features that were 

assessed using the 3D-Surface-Plot ImageJ plugin. One ROI represent each of the 

different cases. Both squamous cell carcinoma cases show less tissue 

heterogeneity whereas the basal cell carcinoma case shows higher homogeneity. 

P63 was chose this analysis due to its strong stain intensity allowing for a better 3D 

surface plotting. 

 

Figure 19: BCC ROI #4 at X40 magnification.  
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Figure 20: BCC ROI#4 shows a lesser color variation compared to both SCC and 
SCC (HIV+) ROIs.   
 
 

 
 
Figure 21: SCC p63 ROI #7 at X40 magnification. 
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Figure 22: SCC p63 ROI #7 3D surface plot.  

 

Figure 23: SCC HIV+ p63 ROI #4 at X100 magnification. The image shows the 
formation of possible lesional skin barrier (red arrow).   
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Figure 24: SCC HIV+ p63 ROI #4 shows 3D surface plot shows the most 
heterogeneity.  

 The 3D surface plot analysis shows the histological epidermal differentiation 

between cases. In all 3 cases, healthy regions of the skin are homogenous while in 

the tumorous skin regions are more heterogenous. The blue areas in the 3D surface 

plot diagrams are expressed with greater number of pixels and correspond to higher 

conductivity.  

5. Discussion  

During this study, using ImageJ and QuPath, we were able extract valuable 

semi-quantifiable IHC data of p63, MDM2 and p53, although p53 was hard protein 

to quantify. This is due to the strong and strict nuclear expression of p63, the diffuse 

nuclear and cytoplasmic MDM2 expression. p53 was hard to quantify in both BCC 

and SCC (HIV+) due to its weak immunoreactivity. Again, the methodology along 

with the results herein emphasize the important and complementary role of digital 
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pathology image processing platforms and software have in the field of pathology. 

p53 as a tumor suppressor is pivotal in the pathogenesis of many cutaneous 

cancers (Oh et al., 2020). The relevance of p53 and p53 mutations in the 

tumorigenesis of BCC and SCC is still not completely understood (Ishibashi et al.,  

2003) and (Campbell et al., 1993).  The p63 protein is expressed as to isoforms. 

Research has shown that Tap63 is a tumor suppressing isoform whereas the 

∆Np63 is an oncogenic isoform (Oh et al., 2020). One can speculate from the 

results herein and the finding of new studies whether the increased expression of 

p53, p63 and MDM2 in BCC and SCC is a consequence of the functional interplay 

between MDM2, wildtype p53, mutant p53, Tap63 and ∆Np63. The study by (Oh et 

la., 2020) factors in the formation of pyrimidine dimers and breaks DNA as a cause 

to such increase in tissue expression of these proteins. MDM2 is one of the major 

negative regulators of p53 (Oh et al., 2020). MDM2 does this either via the E3 

ubiquitin ligase which recognizes the N-terminus of the trans-activation domain of 

p53 or via the inhibition of p53’s transcription (Oh et al., 2020). Millon et al., (2001) 

showed a decrease in MDM2’s expression in human head and neck SCC and that 

this decrease in expression was strongly associated with advanced stages of 

tumors and poor prognoses. The study by Oh et al. (2020) showed a  decrease in 

MDM2 expression in BCC cells as opposed to the healthy overlying epidermis. To 

the best of our knowledge, this contradicts some of our finding where MDM2 was 

increased in expression and p53 was nearly absent in BCC. The ImageJ 3D surface 

plot-in shows significant variation in the tissue histology between BCC, SCC, and 

SCC (HIV+). According to Grammenandi et al., (2016), the 3D plot surface analysis 
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via ImageJ shows epidermal differentiation between the three cases. The SCC 

(HIV+) appears to be the most heterogenous which can indicate the formation of 

lipophilic tissue environment due to damaged cellular components.  Grammenandi 

et al., (2016) suggest that the epidermal tissue differences are due to an increase in 

minerals such calcium anions and potassium and a decrease in low molecular 

weight antioxidants.  

Here in we used advanced digital pathology software to extract valuable data 

from the IHC of p53, p63, and MDM2 in in BCC and SCC cancer cases. We found 

that both p53 and p63 can be used in tandem to differentiate between BCC and 

SCC in some cases where diagnosis can be difficult. We also found conflicting 

results from current research about the tissue expression of p53, p63, and MDM2 in 

BCC and SCC cutaneous cancers. We suggest that future research ought to focus 

exclusively on the IHC of p53 and p63 protein isoforms present in BCC and SCC 

skin cancers. This is due to the direct and pivotal roles these isoforms play in 

different skin layers. We also suggest that future projects can look at the presence 

of p53 and p63 amyloid aggregate in skin cancer due to the role they play in the 

gain-of-function (GoF) or the loss-of- functions of these proteins. We encountered 

few limitations in this study such a small sample (only three cases which make our 

findings comprehensive. Also, QuPath was not optimally compatible with the 

images used in this study because QuPath was originally designated for high 

resolution whole slide images (WSIs) which require specific digital pathology 

scanners.  
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CHAPTER 4:  A SOFTWARE ASSISTED PROTEOMIC MOLECULAR 
COMPARISON OF p53, p63, and MDM2. 

 

1. Abstract: In recent years, protein aggregation has been at the center of 

proteomic and cancer research. Aggregation indicates the troubling instability of 

proteins. Identifying the molecular mechanisms dictating protein aggregation is 

crucial to understanding the pathogenesis of many diseases, the development of 

new diagnostic tests and drug therapeutics. Objective: The objective of this 

chapter was to summarize the data generated by three distinct web servers 

which use artificial intelligence and coding programs about the aggregation 

propensities of p53, p63, and MDM2, protein sequences, locations of amino 

acids and their hydrophobic and hydrophilic characteristics. Study Design: We 

have used three different web servers PATSA 2.0. AGGRESCAN, and FELLS to 

compare and contrast aggregation energies of p53, p63, and MDM2 and 

determine the location of hotspots in their protein sequences. Materials and 

Methods: We used the FASTA sequences of p53, p63, and MDM2 retrieved 

from the Protein Data Bank to run our aggregation stimulations. Results and 

Conclusions: Our results showed differences in the possible aggregation prone 

regions between PASTA 2.0 and AGGRESCAN. PASTA 2.0 predicted only one 

possible region of possible aggregation in p53, p63, and MDM2. Meanwhile 

AGGRESCAN predicted multiple hot spots most of which were clustered in the 

DBD of p53 and dispersed throughout multiple domains in p63. PASTA 2.0 also 

predicted that both p63 and MDM2 have 20 amyloids where p53 only has 6. The 
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FELLS webserver showed that p53 had the highest percentage of possible 

aggregation of 27.48% spanning 108 residues. 

2. Introduction  

Proteins misfolding, aggregation, and multiprotein complexes (MPCs) 

formation occur in numerous human degenerative diseases and are referred to as 

protein misfolding diseases (PMDs) (Dill and McCullum, 2012). These diseases are 

characterized by protein oligomers, protein fibrils, and mature fibrils which can occur 

both intra and extracellularly (Chiti and Dobson, 2006). One of the main models that 

explain the occurrence of these aggregates in their respective diseases is the prion 

model. This later model is based on the prion hypothesis which was pioneered by 

Stanley Prusiner in 1980s. Amyloid aggregates are caused directly by protein 

misfolding and recent research links p53 aggregation with the prion hypothesis 

(Walsh et al., 2014). An increasing number of diseases in different organ systems 

are associated with pathological deposition of protein aggregates (Aguzzi and 

O’connor, 2010). Diseases such as Alzheimer’s disease and amyloidosis are the 

quintessence of such diseases (Aguzzi and O’connor, 2012). Nonetheless, with 

advancements in bottom-up proteomic testing, analytics, and artificial intelligence, 

research has shown that protein aggregation also occurs in the cytoplasm and the 

nucleus as opposed to the extracellular matrix only (Walsh et al., 2014). This 

indicates that amyloidosis encompasses many more diseases than previously 

thought of (Aguzzi and O’connor, 2012). Figure (1) by (Santos et al., 2020) 

summarizes how protein aggregation works against the normal physiological 

functions of proteins.  
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Figure 25: The innate competition between normal protein functions and non-
functional aggregation (Santos et al., 2020).  

 

The ability and tendency of protein to self-aggregate and Co-aggregate with 

other proteins or establish cross-amyloid molecular interactions between co-

aggregated proteins, all depend on the stability of the amyloid "cross-beta" structure 

of the protein (Walsh et al., 2014). Herein, we used three distinct web servers 

PATSA 2.0, AGGRESCAN, and FELLS which use computational algorithms and 

bio-coding (using codes and programs for downstream biological analysis) and 

artificial intelligence to give a sequence based proteomic analysis of aggregation 

propensities and aggregation-prone regions (APRs) known as aggregation hot 

spots (Walsh et al., 2014). Amyloids are protein aggregates which fold together to 

form distinct shapes of many copies of the same protein known as fibrils (Walsh et 

al., 2014). Recent studies have shown that mutant p53 forms aggregates are 
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directly associated with gain-of-function (GoF), loss-of-function (LoF) and a 

dominant negative (DN) effect. ∆N63 isoforms do also show similar characteristics 

when exerting a negative dominant effect on all members of the p53 family. Rangel 

et al (2014) have proposed that these phenomena can be explained via a prion-like 

behavior of mutant p53. Figure (26) by Freed-Pastor and Prives (2012) shows the 

most frequent p53 mutations which occur mainly in the DBD of p53.  

Figure 26: p53 spectrum of mutations in human cancers. (A) Missense mutation 
data of p53 in human patients (N=19,262). (B) Six hot spots residues in p53 with 
their corresponding frequency of occurrence. (C) Most common missense mutations 
at hot spots p53 residues (Freed-Pastor and Prives, 2012). 

The primary function of the ancestral p53 protein is to protect cells from DNA 

damage. This role has been conserved for over a billion years (Belyi et al., 2010). In 

the p53 family, p53 is the most divergent protein when compared to p63 and p73 
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which have a far more stable DBD (Belyi et al., 2010). This is due to the fat that p53 

has taken on multiple tumor suppressing functions when protecting cells from DNA 

damage (Rangel et al., 2014). The evolutionary divergence of the p53 family protein 

is seen in their protein sequences. p53 is remarkably shorter (390 amino acids) than 

p63 (680 amino acids) and p73 (Belyi et al., 2010). p63 and p73 have all of the 

domains whereas p53 lacks some domains such as the Sterile Alpha Motif (SAM) 

domain. The p53 DBD only shares about 60% identify with those of p6 and p73 

(Cino et al., 2016). The DNA binding domain (DBD) of p53 is innately unstable and 

is the cite for nearly all of the cancer causing p53 mutations (Cino et al., 2016). This 

is due to p53’s DBD possessing amyloidogenic sequences and amyloid fibrils 

resulting in a loss-of-function (LoF) (Rangel et al., 2014).  

3. Methods 

 Herein, we propose the use of three different protein aggregation webservers 

to characterize the aggregation propensities of p53, p63, and MDM2. The Prediction 

of Amyloid Structure Aggregation server (PASTA 2.0), Aggregation Scanner 

(AGGRESCAN) server, and the Fast Estimator of Latent Local Structure (FELLS) 

server are platforms that use computational algorithms based on existing and 

validated proteomic data in order to yield accurate stimulations about the protein 

aggregation energies along with the location of the probable aggregation hot spots 

in a protein sequence.  
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PASTA 2.0 Aggregation Web Server 

The redesigned Prediction of Amyloid Structure Aggregation 2.0 (PASTA 2.0) 

software represents a versatile web server for the amino where protein propensities 

can be predicted and calculated from a simple genetic sequence input (preferably a 

FATSA file from UniProt or NCBI online protein data bases). The calculated energy 

functions by PASTA 2.0 shows the stability of the cross-beta amino acid pairing 

between different sequence stretches. The PASTA 2.0 server works best with 

FASTA type protein sequences of any database such as the PDB, UniProt, or NCBI 

databases. These protein amino acid sequences can be either copied and pasted 

from sites such as PDB and NCBI into the input window or downloaded from a 

saved file containing the protein sequence as shown in Figure (27). After entering 

the protein amino acid sequence, it is optional for the user to adjust the energy 

settings such as the top pairing energies and the energy threshold. Walsh et al., 

(2014) state that increasing sensitivity (TPR) will have a negative effect on 

specificity (FPR) of the stimulation and vice versa. The settings during this 

aggregation analysis of p53, p63, and MDM2 were kept on their default values. 

AGGRESCAN Aggregation Web Server 

AGGRESCAN is web server for predicting aggregation-prone regions in a 

protein sequence. It also analyzes the effect of mutations on the aggregation 

propensities of proteins and compares data between different sets (Conchillo-Sole 

et al., 2007). AGGRESCAN also uses FASTA protein sequences from the PDB, 

UniProt, or NCBI databases. Figure (28) shows the sequence input window of 

AGGRESCAN 
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Figure 27:  Screenshot of the PASTA 2.0 input window for protein sequences.  

FELLS Aggregation Web Server.  

The FELLS web server is geared toward visualizing structural features from 

protein sequences. The FELLS webserver yields aggregation and low complexity 

stimulations, disorder regions, and local residual propensities such regions of both 

hydrophobic and amphipathic clusters (Piovesan et al., 2017). The servers can be 

directly accessed via the following links:  

PASTA 2.0: http://old.protein.bio.unipd.it/pasta2/  

AGGRESCAN: http://bioinf.uab.es/aggrescan/  

FELLS: http://old.protein.bio.unipd.it/fells/help 

All of the protein sequences use in our study are in FASTA format and were 

retrieved from the UniProt database. 

 

 

http://old.protein.bio.unipd.it/pasta2/
http://bioinf.uab.es/aggrescan/
http://old.protein.bio.unipd.it/fells/help
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Figure 28: AGGRESCAN protein sequence input window. 

 

Figure 29: The FELLS protein sequence input window.  

4. Results  

We used the PASTA 2.0, AGGRESCAN, and FELLS web servers to extract 

different data which helped characterize the aggregation propensities, the presence 

of beta-sheets, and the possible location of aggregation prone areas (APRs) also 
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known as hot spots. AGGRESCAN showed that nearly all of the DBD domains of all 

9 main p53 isoforms contained aggregation hot spots as shown in Figure (30 to 

38). Surprisingly, none of the most occurring mutations such as R175H, R248Q, 

and R273H which occur in the p53 DBD do not fall within these aggregation prone 

regions. Furthermore, AGGRSCAN shows that many of these aggregation hot spots 

are clustered next to each other in the DBD of p53. The presence of Proline 

residues causes a break in the sequence of aggregation prone regions.  

 

Figure 30: p53 isoform #1 normalized hot spot areas (red squared peaks) and DNA 
binding domain region (green square).  

 

Figure 31: p53 isoform #2 normalized hot spot areas (red squared peaks) and DBD 
region (green box).  
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Figure 32: p53 isoform #3 normalized hot spot areas (red squared peaks) and DBD 
region (green box).    

 

Figure 33: p53 isoform #4 normalized hot spot areas (red squared peaks) and DBD 
region (green box).  

 

Figure 34: p53 isoform #5 normalized hot spot areas (red squared peaks) and DBD 
region (green box).  

 

Figure 35: p53 isoform #6 normalized hot spot areas (red squared peaks) and DBD 
region (green box).  
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Figure 36: P53 isoform #7 normalized hot pot areas (red squared peaks) and DBD 
regions (green box).  

 

Figure 37: P53 isoform #8 normalized hot spot area (red squared peaks) and DBD 
region (green box) 

 

Figure 38: p53 isoform #9 normalized hot spot area (red squared peaks) and DBD 
region (green box).  
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Figures (39) to (50) show the AGGRESCAN aggregation prone regions of p63. The 

p63 protein also a significant number of aggregation hot spots in the DBD regions 

but unlike p53 the hot stops appear less clustered. For both p53 and p63, the 

isoforms do not have the same sequence length which is due to the alternative 

splicing of the p53 and p63 genes. The presence of hot spots in shorter isoform 

makes the protein less stable as the probability of the APRs of being exposed 

increases. When the protein conforms to its quaternary structure some of the hot 

spots end up hidden within the protein and thus have less chance of interacting with 

DNA or other protein regions.  

 

Figure 39: p63 isoform #1 normalized hot spot areas (red squared peaks) DBD 
(green box). 

 

Figure 40: p63 isoform #2 normalized hot spot areas (red squared peaks), DBD 
(green box).  



From Cancer to Forensics: The Immunohistochemical Characterization of TP63, TP53, and MDM2 Proteins 
Expression in Skin Basal Cell and Squamous Cell Carcinomas. 

62 
 

 

Figure 41: p63 isoform #3 normalized hot spot areas (red squared peaks), DBD 
(green box).  

 

Figure 42: p63 isoform #4 normalized hot spot areas (red squared peaks), DBD 
(green box). 

 

Figure 43: p63 isoform #5 normalized hot spot areas (red squared peaks), DBD 
(green box).  

 

Figure 44: p63 isoform #6 normalized hot spot areas (red squared peaks), DBD 
(green box).  



From Cancer to Forensics: The Immunohistochemical Characterization of TP63, TP53, and MDM2 Proteins 
Expression in Skin Basal Cell and Squamous Cell Carcinomas. 

63 
 

 

Figure 45: p63 isoform #7 normalized hot spot areas (red squared peaks), DBD 
(green box).  

 

Figure 46: p63 isoform #8 normalized hot spot areas (red squared peaks), DBD 
(green box).  

 

Figure 47: p63 isoform #9 normalized hot spot areas (red squared peaks), DBD 
(green box).  

 

Figure 48: p63 isoform #10 normalized hot spot areas (red squared peaks), DBD 
(green box).  
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Figure 49: p63 isoform #11 normalized hot spot areas (red squared peaks), DBD 
(green box).  

 

Figure 50: p63 isoform #12 normalized hot spot areas (red squared peaks), DBD 
(green box).  

 

 Results from the FELLS software show that p53 had the highest aggregation 

percentage of 27.5% covering a total of 108 residues, p63 had the second highest 

aggregation percentage of 7.9% covering a total of 54 residues, ad third is MDM2 

with the least amount of aggregation with 3.7% covering only 18 residues Figures 

(51, 52, 53). FELLS also showed less aggregation percentages for shorter isoforms 

for both p53 and p63 which is expected with shorter sequences. Relative to their 

protein sequences, p53 has a higher ratio of beta-sheets to residue of 21.6% while 

p63 has only 12.2%. The increased presence of beta-sheets correlates with the 

increase in aggregation propensity of p53 as beta-sheets play a major role in 

inducing protein self and co-aggregation. This correlation does not hold true to for 

MDM2 as it has 14% of beta-sheets, more than p63, but a lesser aggregation 

propensity Figure (53).    
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 Figure 51: Total FELLS structural and aggregation analysis of p53 isoform #1. 

 

Figure 52: Total FEELs structural and aggregation analysis if p63 isoform #1.  
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Figure 53: Total FELLS structural and aggregation analysis of MDM2 isoform #1.  

 The hydrophobic cluster analysis (HCA) shown in Figure (54) and (55) allow 

the user to delineate the protein amino acid sequence and gain insights about regions 

of interest which are likely to be ordered under specific conditions as well as 

disordered regions solely from the amnio acid sequence of the protein. In other words, 

HCA gives a total picture of the protein’s texture with regard to the foldable sequence 

regions.   



From Cancer to Forensics: The Immunohistochemical Characterization of TP63, TP53, and MDM2 Proteins 
Expression in Skin Basal Cell and Squamous Cell Carcinomas. 

67 
 

 

Figure 54: FELLS output for the secondary structure and disorder for p53. p53 DBD 
has prominent hydrophobic clusters and high number of beta strands.  
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Figure 55: FELLS output for p63 also showing prominent hydrophobic clusters in 
the p63 DBD (labeled as p53 DBD due to high homology), the tetramerization motif, 
and the Sterile Alpha Motif (SAM) domain. 

 

 Self-aggregation results showed MDM2 and p63 have the best energies for 

self-aggregation and this is due partly due to the higher number of possible 
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amyloids(20 amyloids) than that of p53 (six amyloids). Nonetheless, p53 has the 

highest percentage of beta-strands Figure (56). 

 

Figure 56: The PASTA 2.0 web server showed that individually, MDM2 (FASTA ID 
spQ00987) and p63 (FASTA ID spQH3D4) have 20 amyloids each whereas p53 
(FASTA ID spP04637) have only six amyloids but a higher percentage (23.41%) of 
beta-strands.  

 

 

Figure 57: The PASTA 2.0 co-aggregation predictions compared with the self-
aggregation propensities of p53, p63, and MDM2.  

 

PASTA 2.0 predicted that p53  (FASTA ID spP0437) and MDM2 (FASTA ID 

spQ00987) have the least energy required (-5.3024626 PASTA units) for co-

aggregation whereas p53 and p63 require more energy below aggregation 

threshold to co-aggregate. Figure (58) shows that even when mutations happen the 
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aggregation free energy of p53 remains the same indicating that other factors along 

mutations induce changes in the aggregation energy of p53. 

 

Figure 58: Free Energy graph of six of the some of the most occurring p53 
mutations generated via PASA 2.0 (green horizontal line represent the default 
energy threshold of -5 PASTA where 1 PASTA unit = 0.593 Kcal/mol).  

 

5. Discussion  

The tumor suppressing role of p53 is dependent on the p53’s structure and 

its presence in the nucleus. This allows p53 to bind to DNA sequences 

consequently inducing the activation of other genes sine qua non for DNA stability 

(Levine, 1997) and (Vousden et al., 2002). In Normal cells, the expression of p53 is 

strictly regulated leading to a short half-life of 15 to 30 min (Oren et al., 1981). 
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However, when mutations occur, they prolong the half-life of p53 causing 

cytoplasmic and nuclear inclusions (Slade and Moll 2003). The p53 DBD contains 

more that 95% of the cancer-causing missense mutations (Olivier et al., 2002), and 

this causes p53 to lose its functions via changing the conformation of the DBD 

and/or decreasing the molecular thermodynamic stability of protein regions. Results 

from the PASTA 2.0 and the AGGRESCAN web servers yielded different results 

when predicting the aggregation prone regions. For p53, PASTA 2.0 predicted only 

one parallel aggregation hot spot from residue 251 to residue 257 (ILTIITL). This 

region is highly conserved in p53 (Ghosh et al., 2014). This However, 

AGGRESCAN predicted multiple hot spots for p53, which included the conserved 

region from 251 to 257 (ILTIITL), and most of which were clustered in the DBD. It is 

important to note that mutations rarely occur in the conserved region. One can infer 

that this conserved region serves as hot spot for the aggregation of wild-type p53 to 

gain function. Furthermore, Ghosh et al., (2014) state that 327-332 (YFTLQI) 

residue region, another highly conserved region in p53’s tetramerization domain, 

does not aggregate into an amyloid. Our AGGRESCAN results were consist with 

those of Ghosh et al. (2014) except in the p53 isoform 3 where this region was 

predicted as a hot spot. Both PASTA 2.0 and FELLS showed a more stable p63 and 

MDM2 due to their protein length, presence of multiple interactive domains, and 

highly textured protein region both through the hydrophobic cluster analysis (HCA) 

and the disordered sequence regions which help with stable protein folding. p53 

was shown to be the least stable protein due to its shorter protein length of 393 



From Cancer to Forensics: The Immunohistochemical Characterization of TP63, TP53, and MDM2 Proteins 
Expression in Skin Basal Cell and Squamous Cell Carcinomas. 

72 
 

amino acids, the occurrence of most mutations in its DBD, and also the presence of 

beta-strands in areas that induce aggregation and protein instability.  

Currently, cancer is being considered as an aggregation disease (Bom et al., 

2012). During malignancy proteins are uncontrollably expressed with conformational 

changes. It has been demonstrated that the conformation of the p53 DNA-binding 

domain (DBD) is unstable (Stindt et al., 2014). Mutations such as R175H, R249S, 

and R273H additionally destabilize the DBD in p53. Thus, high percentages of 

these mutant proteins are unfolded and thus inactive. These mutants are found in 

about 30% of the documented clinical cases and are named “structural” mutants. 

Furthermore, the gain-of-function (GoF) and the dominant-negative (DN) activity of 

these structural mutants increase their aggregation tendency (Stindt et al., 2014). 

Mutations and aggregation alike cause the structural changes that lead to protein 

instability, the inability to bind DNA and induce gene transactivation, and the loss of 

function such as the suppression of tumors (Ghosh et al., 2014). Our web-server 

based analyses, although not confirmatory, showed different aspects of aggregation 

in p53, p63, and MDM2. Our results showed that there are multiple factors that 

dictate potential aggregation such as mutations, conserved protein sequences, 

length of the protein sequence, and the presence of beta-strands and hydrophobic 

clusters. Our stimulations also show the presence of intrinsic aggregation and 

amyloidogenic sequences in p53. When wild-type p53, some of these aggregation 

prone regions are hindered within the folded proteins. Nonetheless, factors such as 

mutations, stress, and solubility can cause a full-length aggregation of proteins such 
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as p53 leading to the formation of amyloids and amyloid fibrils. This causes the loss 

of function and the accumulation of aggregates in cells. 
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CHAPTER 5: THE POTENTIAL USES OF p53 IN THE AGE 
ESTIMATION OF ANTERMORTEM AND POSTMORTEM WOUNDS 
FOR FORENSIC PATHOLOGY APPLICTAIONS. 

 

1. Introduction  

In forensic pathology, wound examination is an indispensable practice. It is of 

great importance to determine the age of a wound and its vitality (Toshikazu 2006). 

This can correctly determine the age of cutaneous trauma such as wounds, bruises, 

and scratches. Wound age determination is a classic practice in forensic pathology 

and remains a challenge to interpret in a forensic-judicial setting (Toshikazu 2006). 

The healing of a skin wound is a well-orchestrated physiological and anatomical 

process (Azza et al.,2019). Wound healing consists of three main stages. First is 

inflammation which last about 48 hours, second is proliferation of cells such 

fibroblast and keratinocytes, and third is maturation of the skin and tissue 

(Toshikazu 2006). Hundreds of biological molecules and substances are involved in 

the process of wound healing (Li et al., 2018). In this summary we focus on the 

potential use of both p53 to estimate the age of skin injuries such as wounds, 

bruises, and scratches in a forensic setting. Due to the direct involvement of this 

protein in skin development and skin cell apoptosis. We proposed a rational that is 

deduced from previous research findings to present p53 as a potential candidate for 

the estimation of cutaneous injuries. We also propose that future proteomic tests 

ought to be developed to complement the existing biomarkers for wound age 

determination. This rational stems from the way the p53 gene is activated due to 

cellular stress and damage, how pr53 is expressed, and also degraded before and 
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after death. p53 is a potential candidates when estimating the age of cutaneous 

injuries. 

2. Summary of Research Findings   

Recent progress in forensic scientific techniques has opened the door for 

many molecules as potential biomarkers for wound age estimation and wound 

vitality (Li et al., 2018). In recent years, methods such as immunohistochemistry and 

bottom-up proteomics have been used in forensic pathology and have also been 

validated by multiple scientific groups (Dettmeyer 2011). Most of the 

immunohistochemistry studies have focused on inflammatory cells and markers 

associated with the extracellular matrix such as TNF-α, fibronectin, and IL-6 

(Dettmeyer 2011). Wound age estimation is a major aspect in forensic science. 

Forensic pathologists use wound appearance, scab formation, and subdermal 

hemorrhage discoloration as indices for wound age estimation (Yagi et al., 2016). 

Conventional staining methodologies such as the Berlin blue stain can only detect 

hemosiderin in subdermal tissues seven days post-infliction (Yagi et al., 2016). 

However, it remains difficult to objectively estimate wound age in the first few 5 days 

post-infliction (Yagi et al., 2016). Nonetheless, many biomarkers exist, and 

immunohistochemistry remains a valuable tool to visualize the presence of such 

biomarkers. Expressed proteins such the Tau protein, interleukins (ILs), and 

clusters of differentiation (CDs) remain some of the most useful biomarkers in 

forensic pathology.  
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The early expression of p53 protein in wounds from thermal wounds from 12 

hours to 12 days has been shown (Nagata et al., 1999). In this study and the study 

by (Taran et al., 2004), the authors investigated whether the expression of p53 can 

indicate if skin burns in human had taken place ante-mortem or post-mortem. They 

used immunohistochemistry to quantify the level of p53 expression in burned skin 

which did  assist in the estimation of an ante-mortem burn injury. The normal half-

life of p53 protein is in the range of five to 40 minutes (Taran et al., 2004). Hence, 

p53 does not accumulate in cells due to its rapid degradation (Taran et a., 2004). 

Nonetheless, the level of p53 can increase once a wound takes place and this is 

due to DNA damage in the affected area. Once p53 is activated, a tetramer of wild-

type p53 is formed which stabilizes p53, and consequently allow it to accumulate in 

cell (SeJin and Seong 2016).  Studies such as the one by Taran et al., (2004) used 

burn wound biopsies from antemortem and postmortem victims and showed that 

results from living victims cannot be generalized on postmortem wounds. In the 

antemortem samples, the study showed that high levels of p53 expression in 

examined epithelia suggest an early wound where peak expression occurred on day 

two. In the postmortem wounds, peak p53 wound expression was observed in day 

77 postmortem. We have shown through the functional interplay between p53 and 

other proteins necessary for programmed cell death, the p53 expression skin 

cancer pathologies as well as normal epithelia, and the self-aggregation and co-

aggregation of p53, that p53 can potentially be an accurate biomarkers for the 

determination of cutaneous injuries. This particularly possible in antemortem 

injuries. Few studies demonstrated a considerable increase in the expression of p53 
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within the first two day while peak positivity was observed during day nine post 

injury in antemortem rats (Figure 59). The decline of p53 positive cells was shown 

in antemortem skin injuries on day 23. We also suspect a lesser expression of p53 

in postmortem as opposed to antemortem skin trauma. 

 

 

Figure 59: IHC images of skin sections from an adult rat 9 days after a burn injury 
showing strong p53 nuclear staining in the epithelium basal layer (a and b), and in 
the hair follicle (c) in the dermis (Taran et al., 2004). 
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Our literature search did not yield any studies that focus on the application of 

p63 IHC to determine wound age and wound vitality. This does not rule out p63 as a 

candidate for future studies. Future research has to focus on the use of the p53 and 

p63 IHC in the estimation of wound age. This can also be combined with other 

diagnostic tests such as nucleic acid isolation and amplification (p53 mRNA) from 

formalin-fixed paraffin-embedded (FFPEs) skin biopsies from both antemortem and 

postmortem human wounds. Other bottom-up proteomic tests such as protein 

aggregation assays and staining methodologies such as the Congo Red which is 

specific for p53 aggregates that are similar in nature to prion amyloid oligomers and 

fibrils can be complimentary to the p53 IHC of injured skin (Ano et al., 2012). The 

possibility of multiple methodologies will also provide the investigator the 

opportunity to validate and reference their findings about timing skin wounds and 

their vitality both in an antemortem and a postmortem scenario.  
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