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Simple Summary: Cancer-associated fibroblasts (CAFs) promote tumor progression and play an
important role in evading immune surveillance. The previous study showed that BAG2 could be
elevated in cancer associated fibroblasts (CAFs). Here, we evaluated BAG2 expression of CAF and
tumor cells and assessed metastasis risk in patients with breast cancer. We found that patients with
either BAG2-high or BAG2(+) CAF had significantly worse distant metastasis-free survival than
those with BAG2-double negative. Evaluation of BAG2 expression on both CAFs and tumor cells
could be helpful to estimate the risk of metastasis in breast cancer.

Abstract: Few studies have examined the role of BAG2 in malignancies. We investigated the
prognostic value of BAG2-expression in cancer-associated fibroblasts (CAFs) and tumor cells in
predicting metastasis-free survival in patients with breast cancer. Tissue-microarray was constructed
using human breast cancer tissues obtained by surgical resection between 1992 and 2015. BAG2
expression was evaluated by immunohistochemistry in CAFs or the tumor cells. BAG2 expression
in the CAFs and cytoplasm of tumor cells was classified as positive and negative, and low and
high, respectively. BAG2-CAF was evaluated in 310 patients and was positive in 67 (21.6%) patients.
Kaplan–Meier plots showed that distant metastasis-free survival (DMFS) was lesser in patients
with BAG2(+) CAF than in patients with BAG2(−) CAF (p = 0.039). Additionally, we classified the
310 patients into two groups: 109 in either BAG2-high or BAG2(+) CAF and 201 in BAG2-low and
BAG2(−) CAF. DMFS was significantly reduced in patients with either BAG2-high or BAG2(+) CAF
than in the patients of the other group (p = 0.005). Multivariable analysis demonstrated that DMFS
was prolonged in patients with BAG2(−) CAF or BAG2-low. Evaluation of BAG2 expression on both
CAFs and tumor cells could help in determining the risk of metastasis in breast cancer.
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1. Introduction

The Bcl-2 associated athanogene (BAG) family was first reported as a group of proteins
that prevented cell death through their interactions with B-cell lymphoma 2 proteins (Bcl-
2) [1,2]. The BAG domain of the BAG family directly interacts with the ATPase domain of
heat shock protein 70 (Hsp70)/heat shock chaperone 70 (Hsc70) [3]. The BAG protein is
known as a negative regulator of the chaperone-associated ubiquitin ligase C terminus of
Hsc70-interacting protein (CHIP), which participates in ubiquitin-mediated proteasomal
degradation of misfolded substrate proteins [4].

Among these, BAG2 is known as an Hsp70/Hsc70 molecular chaperone-interacting
group protein [2]. The regulatory function of BAG2 via inhibition of CHIP activity has
been reported to be involved in neurodegenerative diseases such as Parkinson disease
and Alzheimer’s disease [4,5]. Unlike BAG1, which has been widely studied as a favor-
able prognostic marker in breast cancer [6], the role of BAG2 in malignancies has been
examined only in a few studies. A previous study of cancer cell lines showed that BAG2
overexpression promoted the accumulation of mutant p53 in the nucleus and inhibited the
degradation of mutant p53 through E3 ligase mouse double minute 2 homolog (a negative
regulator of the p53 tumor suppressor) [7]. Furthermore, our group showed that BAG2
regulates the dual functions of cathepsin-B, facilitating the progression of triple-negative
breast cancer [8].

Cancer-associated fibroblast (CAF) is a constituent of the tumor stroma, which in-
fluences tumor growth, invasion, metastasis, and evasion of immune responses. Tumor
cells and stromal cells, which include CAFs, interact and co-evolve to create a suitable
micro-environment for tumor growth [9]. In solid carcinomas, including breast cancer, the
presence of abundant CAFs is correlated with worse survival outcomes [10]. A recent study
showed that BAG2 expression is elevated in fibroblasts co-cultured with ovarian cancer
cells, indicating that BAG2 could be elevated in CAFs and playing a role in stress response
and cellular senescence pathways [11]. However, the effect of BAG2 expression in CAF on
the prognosis of breast cancer patients remains unknown.

Here, we evaluated the prognostic impact of BAG2 expression in CAF on the metastasis-
free survival in breast cancer. Furthermore, we stratified the metastasis-free survival in
these patients based on BAG2 expression in both CAFs and tumor cells.

2. Materials and Methods
2.1. Materials

Available formalin-fixed paraffin-embedded (FFPE) tumor samples were collected
from the database of breast cancer patients treated between January 1992 and December
2015 at Gangnam Severance Hospital, Yonsei University Medical College, Seoul, Korea.
BAG2 immunohistochemistry (IHC) expression was evaluated in tissue micro-array (TMA)
blocks using these FFPEs. We included the tissue samples from 310 patients whose BAG2
expression was successfully evaluated in both tumor cytoplasm and the stroma using TMA
slides. All these patients were diagnosed with stage I to stage III primary breast cancer.
These patients were treated according to standard protocols. The patients’ clinical data
included age at the time of surgery, histological grade, tumor size, lymph node status,
estrogen receptor (ER) status, progesterone receptor (PR) status, human epidermal growth
factor receptor-2 (HER2) status, lympho-vascular invasion (LVI), treatment modalities,
events of distant metastasis, and death. Tumor grade was determined using the modified
Scarff–Bloom–Richardson grading system. The study was conducted in accordance with
good clinical practice guidelines and per the Declaration of Helsinki, and the protocol was
approved by the institutional review board (IRB) (No. 3-2018-0067) of Gangnam Severance
Hospital. The need for informed consent was waived under the approval of the IRB because
of the retrospective design of our study.
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2.2. Immunohistochemistry and Molecular Subtyping

As described in previous studies [12], 3 µm thick tissue sections were cut from the
TMA block. After deparaffinization and rehydration using xylene and alcohol graded
solutions, respectively, immunohistochemistry (IHC) was performed using Ventana Dis-
covery XT Automated Slide Stainer (Ventana Medical System, Tucson, AZ, USA). Cell
conditioning 1 buffer (citrate buffer, pH 6.0; Ventana Medical System) was used for antigen
retrieval. Appropriate positive and negative controls were included. Staining of all the
IHC markers was assessed using light microscopy. A cut-off value of 1% nuclear staining
or more was considered positive for ER and PR [13]. HER2 staining was interpreted based
on the 2018 American Society of Clinical Oncology/College of American Pathologists
guidelines [14]. Only strong and circumferential membranous HER2 expression (3+) was
considered positive, while 0 and 1+ HER2 staining was considered negative. Cases with
equivocal HER2 expression (2+) were further evaluated for HER-2 gene amplification using
silver in situ hybridization.

2.3. TMA Blocks and IHC Staining for BAG2 Expression Evaluation

TMA paraffin blocks were constructed as previously described, using an Accu Max
Array tissue-arraying instrument (Petagen Inc., Seoul, Korea) [12]. For IHC stating, each
tissue microarray slide was stained with a BAG2-specific antibody (1:100, Rib monoclonal
antibody, Abcam, Cambridge, UK), and counter-stained with hematoxylin. After staining,
CAF- and cytoplasmic-BAG2 expression on each slide was scored by a pathologist (Yoon
Jin Cha), using a light microscope (400× magnification). The results of IHC staining were
scored as: negative (0), 1+, 2+, and 3+. As nuclear expression was rare and focal in most of
the cases, the intensity of cytoplasm in the tumor cells and CAFs in the tumor-associated
stroma were examined to grade the BAG2 expression (Figure 1). Normal luminal cells
were used as internal control for staining intensity 2+. Weaker and strong nuclear staining
as compared to the luminal cells were considered as 1+ and 3+, respectively. For BAG2
expression in CAFs, 1+ to 3+ were defined as positive (Figure 1a, BAG2-positive CAFs;
Figure 1b, BAG2-negative CAFs). For cytoplasmic BAG2 expression of tumor cells, we
considered negative and weak (1+) staining as low and moderate (2+) and strong (3+)
expression as high, in accordance with the previous study (Figure 1c, BAG2-high expression
in the cytoplasm of tumor cells, Figure 1d, BAG2-low expression in the cytoplasm of tumor
cells) [8].

When analyzing the CAF- and tumor-BAG2 expression simultaneously, negative CAF-
and low-cytoplasm-BAG2 expression were considered as double-negative, and all the other
cases were classified as either BAG2(+) CAF or BAG2-high. IHC evaluation was carried out
in a blinded manner, without any information regarding clinical parameters or outcomes.

2.4. Statistical Methods

Continuous variables were compared between the two groups using Student’s t-test
or Mann–Whitney test. Categorical variables were compared using chi-squared test or
Fisher’s exact test. Survival outcome and distant metastasis-free survival (DMFS) were
depicted using the Kaplan–Meier method, and the two groups were compared using
log-rank test. Univariate and multivariate Cox proportional hazard models were used
to identify the factors related with DMFS. The variables used in the multivariate Cox
proportional hazard model were those that showed statistical significance in the univariate
analysis. DMFS was defined as the period from primary curative surgery to the date of
systemic recurrence, death from any cause, or the last follow-up. To identify risk factors for
metastasis, binary logistic regression model was used. Significant factors in univariable
analyses were included in multivariable model.
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Figure 1. BAG2 expression in cancer-associated fibroblasts (CAFs) and cancer cells (400× magnification); (a) BAG2-positive 
CAFs in stroma; (b) BAG2-negative CAFs in stroma; (c) BAG2-high expression in the cytoplasm of primary breast cancer 
cells; (d) BAG2-low expression in the cytoplasm of primary breast cancer cells. 
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Figure 1. BAG2 expression in cancer-associated fibroblasts (CAFs) and cancer cells (400× magnification); (a) BAG2-positive
CAFs in stroma; (b) BAG2-negative CAFs in stroma; (c) BAG2-high expression in the cytoplasm of primary breast cancer
cells; (d) BAG2-low expression in the cytoplasm of primary breast cancer cells.

SPSS version 24 (SPSS Inc., Chicago, IL, USA) was used for statistical analyses. Statis-
tical significance was defined as p-value less than 0.05, and 95% confidence interval (CI)
not including 1 was determined.

3. Results
3.1. Patients’ Characteristics According to BAG2 Expression in CAF

Breast cancer tissue samples from 310 patients were included in this study. Among
these patients, 67 (21.6%) patients had positive BAG2 expression in CAFs and 243 (78.4%)
patients had no BAG2 expression in their CAFs. Table 1 compares the clinical characteristics
of both the groups (positive and negative BAG2-CAF).

Positive BAG2 expression in the CAFs was related with HER2-negative status and
the treatment modalities of chemotherapy and radiotherapy. However, BAG2 positivity of
CAFs was not related to larger tumor size, lymph node involvement, hormonal receptor
status, or histological grade.
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Table 1. Clinical characteristics according to BAG2 expression in cancer-associated fibroblast (CAF).

Variables BAG2-Negative in
CAF, n = 243 (%)

BAG2-Positive in
CAF, n = 67 (%) p-Value

Age (year, mean ± SD) 48.82 ± 10.94 47.36 ± 10.71 0.332
ER 0.501
Positive 163 (67.1) 42 (62.7)
Negative 80 (32.9) 25 (37.3)
PR 0.105
Positive 144 (59.3) 47 (70.1)
Negative 99 (40.7) 20 (29.9)
HER2 0.001
Positive 74 (30.5) 7 (10.4)
Negative 151 (62.1) 55 (82.1)
Missing 18 (7.4) 5 (7.5)
HG 0.137
I, II 160 (65.8) 38 (56.7)
III 68 (28.0) 25 (37.3)
Missing 15 (6.2) 4 (6.0)
Tumor size 0.665
≤2 cm 84 (34.6) 25 (37.3)
>2 cm 156 (64.2) 41 (61.2)
Missing 3 (1.2) 1 (1.5)
Lymph node metastasis 0.723
Negative 121 (49.8) 32 (47.8)
Positive 120 (49.4) 35 (52.2)
Missing 2 (0.8) 0
LVI 0.117
Negative 186 (76.5) 60 (89.6)
Positive 38 (15.6) 6 (9.0)
Missing 19 (7.8) 1 (1.5)
Breast surgery 0.001
Wide excision 57 (23.5) 30 (44.8)
Mastectomy 183 (75.3) 36 (53.7)
Missing 3 (1.2) 1 (1.5)
Axilla surgery 0.003
SLNB 62 (25.5) 6 (9.0)
ALND 169 (69.5) 60 (89.6)
Not done 9 (3.7) 0
Missing 3 (1.2) 1 (1.5)
Chemotherapy 0.024
Done 197 (81.1) 62 (92.5)
Not done 41 (16.9) 4 (6.0)
Unknown 5 (2.1) 1 (1.5)
Chemotherapy regimen
(including duplicate)
Anthracycline 142 (72.1) 36 (58.1)
Taxane 63 (32.0) 12 (19.4)
Others 51 (25.9) 26 (41.9)
Radiotherapy 0.001
Done 81 (33.3) 36 (53.7)
Not done 159 (65.4) 28 (41.8)
Unknown 3 (1.2) 3 (4.5)
Endocrine therapy 0.460
Done 157 (64.6) 40 (59.7)
Not done 86 (35.4) 27 (40.3)
Anti-estrogen regimen 0.050
Tamoxifen 114 (72.6) 35 (87.5)
Aromatase inhibitor 43 (27.4) 5 (12.5)

SD, standard deviation; ER, estrogen receptor; PR, progesterone receptor; HER-2, human epidermal growth factor
receptor-2; HG, histological grade; TNBC, triple negative breast cancer; LVI, lympho-vascular invasion; SLNB,
sentinel lymph node biopsy; ALND, axillary lymph node dissection.
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3.2. The Prognostic Influence of BAG2 Expression on Metastasis-Free Survival

At a median follow-up time of 111 months (6–325), 54 distant metastasis events
occurred. First, we evaluated the prognostic influence of cytoplasmic BAG2 expression
in tumor cells. The survival analysis suggested that DMFS tended to be lower in BAG2-
positive patients than in BAG2-negative patients (Figure S1, p = 0.064).

Next, we evaluated DMFS according to BAG2 expression in CAFs. Positive BAG2
expression in CAF was significantly associated with decreased DMFS (Figure 2, p = 0.039 by
log-rank test). Significant factors in univariate analysis for DMFS were as follows: age less
than 40 years old at the time of surgery, tumor size larger than 2 cm, nodal metastasis, LVI,
and positive BAG2 expression in CAF (Table 2). When adjusted for other factors, positive
BAG2 in CAF was not a significant factor in reduced DMFS (Table 2, HR 1.584, 95% CIs
0.886–2.832, p = 0.121).
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Figure 2. Kaplan–Meier survival curve of distant metastasis free survival (DMFS) according to BAG2
expression in cancer-associated fibroblasts (CAFs). Patients with positive BAG2 expression showed
poorer DMFS (p = 0.0393, log-rank test).

3.3. BAG2 Expression by the CAFs Combined with Cytoplasmic BAG2 Expression by the Tumor
Cells

Of the 310 breast cancer patients, 10 (3.3%) patients had double positive for BAG2
expression by CAF and tumor cells, 99 (31.9%) had positive, and 201 (64.8%) patients had
double negative BAG2 expression. DMFS significantly differed among these three groups
(Figure S2; p = 0.018). Owing to the small number of patients in the double-positive group,
we re-classified the patients into two groups: 109 (35.2%) in positive and 201 (64.8%) in
double negative.

Clinical characteristics of both the groups (BAG2 expression positive and negative) are
compared in Table 3. The group with either positive BAG2 in CAF- or tumor-cytoplasm was
related only with a higher rate of receipt of chemotherapy and radiotherapy. DMFS differed
significantly between the two groups (Figure 3; p = 0.0049). In the Cox proportional hazard
model for DMFS, positive BAG2 expression was a significant factor in the multivariable
analysis (Table 4, HR 1.764, 95% CIs 1.020–3.052, p = 0.042).
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Table 2. Hazard ratios (HRs) and 95% confidence intervals (CIs) for distant metastasis-free survival (DMFS).

Variables
Univariate Analysis Multivariate Analysis

HRs (95% CIs) p-Value HRs (95% CIs) p-Value

Age 0.001 0.001
≤40 1 1
>40 0.391 (0.229–0.669) 0.399 (0.231–0.691)
ER 0.942
Negative 1
Positive 0.979 (0.556–1.725)
PR 0.861
Negative 1
Positive 1.051 (0.604–1.827)
HER2 0.886
Negative 1
Positive 1.047 (0.556–1.972)
HG 0.752
I, II 1
III 0.954 (0.712–1.278)
Tumor size 0.022 0.057
≤2 cm 1 1
>2 cm 2.180 (1.121–4.236) 1.933 (0.981–3.807)
Lymph node metastasis 0.002 0.013
Negative 1 1
Positive 2.469 (1.387–4.392) 2.176 (1.179–4.017)
BAG2 expression in CAF 0.042 0.121
Negative 1 1
Positive 1.788 (1.021–3.133) 1.584 (0.886–2.832)
LVI 0.020 0.272
Negative 1 1
Positive 2.229 (1.133–4.385) 1.493 (0.731–3.051)
Chemotherapy 0.192
Not done 1
Done 1.972 (0.711–5.466)
Radiotherapy 0.106
Not done 1
Done 1.578 (0.908–2.741)
Endocrine therapy 0.707
Not done 1
Done 0.900 (0.519–1.559)
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Figure 3. Kaplan–Meier survival curves of DMFS according to BAG2 expression in the cytoplasm
and CAF. Patients with strong BAG2 expression (either high cytoplasm BAG2 or positive BAG2 in
CAF) showed a poorer DMFS (p = 0.0049, log-rank test) as compared to patients with double-negative
BAG2 expression (low cytoplasm BAG2 and negative BAG2 in CAF).
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Table 3. Clinical characteristics according to BAG2 expression in cytoplasm and CAF.

Variables
Double-Negative BAG2

Expression in Cytoplasm and CAF,
n = 201 (%)

Positive BAG2 Expression in
Cytoplasm and CAF, n = 109

(%)
p-Value

Age (year, mean ± SD) 49.28 ± 11.10 47.07 ± 10.40 0.089
ER 0.786
Positive 134 (66.7) 71 (65.1)
Negative 67 (33.3) 38 (34.9)
PR 0.094
Positive 117 (58.2) 74 (67.9)
Negative 84 (41.8) 35 (32.1)
HER2 0.417
Positive 56 (27.9) 25 (22.9)
Negative 132 (65.7) 74 (67.9)
Missing 13 (6.5) 10 (9.2)
HG 0.469
I, II 130 (64.7) 68 (62.4)
III 57 (28.4) 36 (33.0)
Missing 14 (7.0) 5 (4.6)
Tumor size 0.825
≤2 cm 70 (34.8) 39 (35.8)
>2 cm 129 (64.2) 68 (62.4)
Missing 2 (1.0) 2 (1.8)
Lymph node metastasis 0.383
Negative 103 (51.2) 50 (45.9)
Positive 97 (48.3) 58 (53.2)
Missing 1 (0.5) 1 (0.9)
LVI 0.054
Negative 153 (76.1) 93 (85.3)
Positive 34 (16.9) 10 (9.2)
Missing 14 (7.0) 6 (5.5)
Breast surgery 0.028
Wide excision 48 (23.9) 39 (35.8)
Mastectomy 150 (74.6) 69 (63.3)
Missing 3 (1.5) 1 (0.9)
Axilla surgery 0.058
SLNB 46 (22.9) 22 (20.2)
ALND 143 (71.1) 86 (78.9)
Not done 9 (4.5) 0
Missing 3 (1.5) 1 (0.9)
Chemotherapy 0.018
Done 160 (79.6) 99 (90.8)
Not done 36 (17.9) 9 (8.3)
Unknown 5 (2.5) 1 (0.9)
Chemotherapy regimen (including
duplicate)
Anthracycline 114 (71.3) 64 (64.6)
Taxane 55 (34.4) 20 (20.2)
Others 42 (26.3) 35 (35.4)
Radiotherapy 0.023
Done 67 (33.3) 50 (45.9)
Not done 131 (65.2) 56 (51.4)
Unknown 3 (1.5) 3 (2.8)
Endocrine therapy 0.575
Done 130 (64.7) 67 (61.5)
Not done 71 (35.3) 42 (38.5)
Anti-estrogen regimen 0.027
Tamoxifen 92 (70.8) 57 (85.1)
Aromatase inhibitor 38 (29.2) 10 (14.9)
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Table 4. HRs and 95% CIs for DMFS at BAG2 expression in cytoplasm and CAF.

Variables
Univariate Analysis Multivariate Analysis

HRs (95% CIs) p-Value HRs (95% CIs) p-Value

Age 0.001 0.002
≤40 1 1
>40 0.391 (0.229–0.669) 0.411 (0.237–0.713)
ER 0.942
Negative 1
Positive 0.979 (0.556–1.725)
PR 0.861
Negative 1
Positive 1.051 (0.604–1.827)
HER2 0.886
Negative 1
Positive 1.047 (0.556–1.972)
HG 0.752
I, II 1
III 0.954 (0.712–1.278)
Tumor size 0.022 0.045
≤2 cm 1 1
>2 cm 2.180 (1.121–4.236) 2.005 (1.016–3.959)
Lymph node metastasis 0.002 0.018
Negative 1 1
Positive 2.469 (1.387–4.392) 2.096 (1.135–3.874)
BAG2 expression 0.006 0.042
Double Negative 1 1
Either Positive 2.116 (1.239–3.614) 1.764 (1.020–3.052)
LVI 0.020 0.191
Negative 1 1
Positive 2.229 (1.133–4.385) 1.621 (0.786–3.344)
Chemotherapy 0.192
Not done 1
Done 1.972 (0.711–5.466)
Radiotherapy 0.106
Not done 1
Done 1.578 (0.908–2.741)
Endocrine therapy 0.707
Not done 1
Done 0.900 (0.519–1.559)

To identify risk factors for metastasis per se, we conducted binary logistic regres-
sion analyses. In these analyses, positive BAG2 expression in cytoplasm and CAF was
demonstrated to be a significant factor for distant metastasis (Table S1; HR 2.422, 95% CIs
1.260–4.658, p = 0.008).

4. Discussion

In this study, we found that BAG2 could be expressed in CAF and showed that
tumors with BAG2+ CAF tend to have reduced DMFS in breast cancer. In addition, we
demonstrated a negative prognostic value of BAG2 expression by either CAF or tumor cells
for patients with breast cancer, in terms of DMFS. Our findings suggest that evaluation of
BAG2 expression in the tumor stroma in addition to within the tumor cells could contribute
to finer stratification of the metastatic risk in patients with breast cancer. As we already
demonstrated that BAG2 expression in the tumor cytoplasm is associated with a reduced
recurrence-free survival or breast cancer-specific survival, our findings have a novelty that
the addition of BAG2 evaluation in tumor stroma could lead to better estimation of the risk
of metastasis in breast cancer [8].
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Interactions between the tumor and the CAFs play an important role in tumor pro-
gression in several solid cancers [15–18]. Across multiple studies, increasing CAF density
or activated oncogenic signaling pathways in CAFs are found to be associated with poor
prognosis in head and neck, oral, gastric, hepatocellular, and esophageal cancers [15–18].
Activated CAF may enhance metastasis, directly or indirectly, by releasing growth factors
and cytokines to stimulate growth and epithelial-mesenchymal transition [19–21]. In breast
cancer, CAFs-derived tenascin C and VEGFA are the key molecules involved in metastasis
to the lung [22]. In addition, CAF-derived interleukin-32 promotes tumor cell invasion and
metastasis by activating the p38 mitogen-activated protein kinase signaling [23]. Moreover,
a recent study reported that the level of BAG2 protein is increased in fibroblasts that are
co-cultured with ovarian cancer and inferred that BAG2 expression in CAF could be associ-
ated with tumor progression through multiple cellular processes [11]. From this viewpoint,
our finding is noteworthy that elevated BAG2 expression in the tumor stroma could be a
risk factor for metastasis in patients with breast cancer.

Increasing evidence has implicated BAG2 in the pathogenesis of various diseases,
including cancers and neurodegenerative diseases [4,5,24,25]. Particularly, the mechanisms
through which BAG2 contributes to epithelial-mesenchymal transition by inhibiting the
degradation of mutant p53 [7] or its interaction with microRNA-1180 [26] in cancer cells
have been determined. Additionally, our previous study revealed that BAG2 stimulates
distant metastasis by promoting the secretion of pro-cathepsin B in breast cancer [8]. These
mechanistic studies support our results showing that high BAG2 expression is associated
with frequent metastasis in patients with breast cancer.

Interestingly, we previously noted that serum BAG2 levels were higher in patients
with breast cancer than in healthy volunteers, suggesting that BAG2 in cancer patients
could be secreted into blood [8]. Further studies are required to elucidate whether serum
BAG2 level is associated with BAG2 expression in either tumor cells or CAFs.

Our study has some major limitations. Selection bias is inevitable owing to the retrospec-
tive nature of the study as we only used the available FFPEs that were recruited over a long
time span. In addition, these subjects were treated with uncontrolled adjuvant treatments,
which might have evolved gradually over the years. Furthermore, the sample size was small.
As a result, the prognostic significance of conventional markers such as ER or subtypes was
not reproducible in our study. In this context, the prognostic impact of BAG2 cytoplasmic
expression by tumor cells on DMFS, which was underscored in our previous study, was not
statistically significant in this study. Another limitation is that we did not use CAF-specific
markers such as vimentin or alpha-smooth muscle actin [27]. Future study is warranted to
address the relationship between CAF-related protein and BAG2 expression in breast cancer.

Despite these limitations, our study clearly revealed differential metastatic events
according to BAG2 expression in patients with breast cancer. Additionally, our results
suggest the prognostic value of measuring BAG2 expression in CAF along with that in the
tumor cells of breast cancer. Thus, BAG2 may be a valuable target for preventing metastasis
in patients with breast cancer.

5. Conclusions

We demonstrated that strong expression of BAG2 in either the tumor cells or CAFs is a
significant risk factor for metastasis in patients with breast cancer. Further study is warranted
to elucidate the role of BAG2 in the interaction between the cancer cells and the tumor stroma,
which contributes to metastasis. Evaluation of BAG2 expression on both CAFs and tumor
cells could lead to better evaluation of the risk of metastasis in patients with breast cancer.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13184654/s1, Figure S1: Kaplan-Meier survival curve of distant metastasis free survival
(DMFS) according to BAG2 expression in the tumor cytoplasm, Figure S2: Kaplan-Meier survival
curves of DMFS according to BAG2 expression in the cytoplasm and CAF, Table S1: Hazard ratios
(HRs) and 95% confidence intervals (CIs) for distant metastasis-free survival (DMFS) using binary
logistic regression analysis.

https://www.mdpi.com/article/10.3390/cancers13184654/s1
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