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ABSTRACT 

Antifibrotic Effects of Ethyl Pyruvate via Inhibition of HGMB1 

 on Keloid Fibroblasts and Keloid Spheroids 

 

Lee, Youngdae 

 

Department of Medicine  

The Graduate School, Yonsei University  

 

(Directed by Professor Won Jai Lee) 

 

 
 Keloids are fibrous skin lesions; how keloids develop and treatment for them remain unclear. 

The etiology of keloids is characterized by an abnormally increased proliferation of cells, 

excessive accumulation of extracellular matrix, and reduction of apoptosis and autophagy. We 

investigated the role of high-mobility group box 1 (HMGB1) protein regulation in modulating 

the etiology of keloids. HMGB1 is a nuclear protein present in eukaryotic cells, known to 

regulate inflammation, immunity, and cell proliferation and death, and has been reported to be 

associated with various fibrous lesions. In particular, HMGB1 is known to regulate homeostasis 

between apoptosis and autophagy. In addition, effects of ethyl pyruvate, which is known to 

inhibit the extracellular action of HMGB1, on keloids with respect to the regulation of cell death 

by limiting the function of HMGB1 were examined. 

Immunohistochemical staining confirmed that HMGB1 expression was increased in keloid 

tissues compared to that in normal tissues. Flow cytometry confirmed that autophagy was 

increased in fibroblasts treated with TGF-β and HMGB1. Furthermore, immunochemical 

staining verified that the expression of HMGB1 was significantly reduced by ethyl pyruvate 

treatment of keloid cells. Western blotting revealed that the expression of type 1, 3 collagen, 
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fibronectin, elastin, TGF-β, Smad 2/3, and ERK1 / 2 in keloid cells were significantly decreased 

by ethyl pyruvate treatment. Based on these results, autophagy was increased in keloids, 

whereas autophagy decreased, apoptosis increased, and fibrosis decreased with ethyl pyruvate 

treatment, an inhibitor of HMGB1. These results suggest that ethyl pyruvate may be applied for 

suppression and treatment of keloids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             

Key words: High-Mobility Group Box 1 (HMGB1), Ethyl pyruvate, keloid, keloid spheroid 
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I.  INTRODUCTION  

Keloids, considered to be benign fibrotic phagocytic tumors from abnormal skin fibrosis to 

their apex, are characterized by excessive deposition of extracellular matrix (ECM), mainly 

collagen fiber. As a rule, such tumors invade adjacent normal tissues and rarely spontaneously 

degenerate1. In recent years, interest in the field of pathological scars has increased, and 

various mediators have been found to affect the etiology of keloids; however, there is no clear 

understanding of the underlying mechanism of their development. The excess of ECM because 

of uncontrolled proliferation of keloid fibroblasts (KFs) is one of the best known causes 

involved in keloid development2-7. Thus, keloid formation has generally been assumed to be 

caused by an increased cell proliferation and decreased apoptosis rate in KFs8-10. Proper 

therapy may be related to inhibiting proliferation of KFs or reversing pathological fibrosis. 

Autophagy is a highly conserved cell death process that involves the breakdown of cellular 

components through lysosomal degradation. This contributes to maintaining cell homeostasis 

by disassembling and recycling unnecessary or damaged cell components11. In particular, 

autophagy is considered a pro-survival mechanism that adapts cellular subjects to stress, such 
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as malnutrition, prolonged inflammation, hypoxia, or chemotherapy. Thus, autophagy is 

associated with various human pathophysiologies, such as fibrosis, aging, tissue remodeling, 

and neurodegenerative diseases12. In particular, extensive research has been conducted on the 

importance of autophagy in cell homeostasis under stress; however, a single study that 

adequately deals with autophagy in pathological skin fibrosis, such as keloid formation, is 

lacking. As autophagy promotes cell viability even under stress conditions, we speculate that 

dysregulated cell death in keloids is associated with uncontrolled proliferation of KFs and 

development of keloids. The first major research question in this study is whether autophagy 

activity is altered in keloids. High-mobility group box 1 (HMGB1) is a ubiquitous nuclear 

protein that acts as a DNA chaperone that participates in DNA replication, recombination, 

transcription, and repair13. Upon cellular activation or injury, HMGB1 translocates to outside 

of the nucleus and is released into the cytosol or extracellular space. Overexpressed cytosolic 

HMGB1 is associated with increased cellular proliferation, mobility, angiogenesis, and 

resistance to apoptosis, whilst promoting autophagy and inflammation14-19. Thus, extracellular 

HMGB1 functions as a damage-associated molecular pattern, protein that activates the 

inflammatory response, and promotes cellular proliferation, differentiation, and migration20. 

All of these processes contribute to tumorigenesis, as well as pathologic fibrosis. Accordingly, 

recent evidence suggests that HMGB1 is involved in chronic inflammation, cancer, and 

various fibrotic diseases13,14,21-27. Thus, HMGB1 has been regarded as a key regulator of 

autophagy, because both cytosolic HMGB1 and extracellular HMGB1 enhance autophagic 

activity in response to cellular stress19,28. Because extranuclear HMGB1 promotes cell survival 

under stressed conditions by inducing autophagy, we sought to determine if HMGB1 is 

associated with keloid pathogenesis through regulation of the cellular death process29. Thus, 

we hypothesized that the inhibition of autophagic activity, while inducing apoptosis, would 

exert therapeutic effects on keloids. It has been shown that ethyl pyruvate, which is a derivative 
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of pyruvic acid, directly effects HMGB1 and inhibits its chemotactic and mitogenic activities 

in the extracellular space. Further, this compound has been shown to inhibit the cytoplasmic 

translocation of HMGB130,31. The protective effects of ethyl pyruvate have been demonstrated 

on inflammation, pathologic fibrosis, and oncogenesis29,31. Consequently, inhibition of 

HMGB1 with ethyl pyruvate may disrupt keloid progression and attenuate fibrosis in keloids. 

In this study, we focused on the autophagic activity of keloids in regulating fibrogenesis, along 

with possible involvement of HMGB1. In addition, we highlighted the potential of ethyl 

pyruvate, a potent inhibitor of HMGB1, as a promising agent for the treatment of keloids. 

 

II. MATERIAL AND METHODS 

1. Preparation of cells  

Normal human dermal fibroblasts (HDFs) and KFs were obtained from the American Type 

Culture Collection (Manassas, VA, USA). Cells were cultured in Dulbecco’s modified Eagle’s 

medium (Gibco, Grand Island, NY, USA) containing 10% fetal bovine serum (Sigma-Aldrich, 

St. Louis, MO, USA), penicillin (30 U/mL), and streptomycin (300 µg/mL). Cultures were 

maintained at 37°C in a humidified incubator under 5% CO2, and the medium was changed 

every 2 days. In all experiments, cells were used before passage #7.  

2. Preparation of keloid spheroids 

Keloid and adjacent normal dermal tissues were obtained during a surgical procedure from 

patients with active-stage keloids. Keloid spheroids were prepared as described previously32 by 

dissecting the central dermal tissue of the keloid into 2 mm-diameter pieces with sterile 21-

gauge needles. Explants were plated onto HydroCell® 24 multi-well plates (Nunc, Rochester, 

NY, USA) and cultured for 4 hours in Iscove’s modified Dulbecco’s medium (Gibco) 
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supplemented with 5% fetal bovine serum, 10 μM insulin, and 1 μM hydrocortisone. Ethyl 

pyruvate, an inhibitor of HMGB1, was added into the plates containing keloid spheroids at 0, 

1, 10, 20, and 40 mM, and incubated at 37°C in 5% CO2 for 3 days. The treated keloid spheroids 

were then fixed with 4% formalin, paraffin-embedded, and cut into 5 μm-thick sections. 

3. Methyl thiazolyl-diphenyl-tetrazolium bromide (MTT) assay  

To assess cellular viability after ethyl pyruvate treatment of KFs and HDFs, a 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed, wherein 

1 × 104 cells/cm2 of KFs and HDFs were seeded in triplicate in 96 wells. After exposing the 

cells for 48 h to 0, 1mM, 5mM, 10nM, and 20mM of ethyl pyruvate (Sigma-Aldrich), 200 μL 

of a 0.5 mg/mL MTT solution (Boehringer, Mannheim, Germany) was added to each well and 

the plates were incubated at 37°C for 3 h. To dissolve the resulting formazan, 200 μL of dimethyl 

sulfoxide (Sigma-Aldrich) was added to each well after the MTT solution was removed. 

Absorbance was measured at 570 nm using a microplate reader (Bio-Rad, Hercules, CA, USA). 

4. Histology and immunohistochemistry (IHC) of keloid spheroids  

 Keloid spheroids were treated with 0, 10, 20, and 40mM of ethyl pyruvate for 48 h. The 

spheroids were then washed, fixed with 4% formalin, paraffin-embedded, and cut into 5 μm-

thick sections. Representative sections were stained with picrosirius red and then examined by 

light microscopy. For IHC staining, the keloid spheroid sections were incubated at 4°C 

overnight with mouse anti-HMGB1 (Abcam), mouse anti-collagen type I (Abcam), mouse anti-

collagen type III (Sigma-Aldrich), mouse anti-elastin (Sigma-Aldrich), mouse anti-fibronectin 

(Santa Cruz Biotechnology), rabbit anti-transforming growth factor (TGF)-β (Abcam), 

collagenase inhibitor (MMP1) (Abcam), or rabbit anti-Smad 2/3 primary antibodies. Sections 

were then incubated at room temperature for 20 minutes with the Envision™ kit (Dako, 

Glostrup, Denmark) as a secondary antibody. Diaminobenzidine/hydrogen peroxidase (Dako) 
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was used as the chromogen substrate. All slides were counterstained with Meyer’s hematoxylin. 

The expression levels of HMGB1, collagen type I, collagen type III, elastin, fibronectin, TGF-

β, MMP1, and Smad 2/3 were semi-quantitatively analyzed using Metamorph® image analysis 

software. Results are expressed as the mean optical density of different digital images. 

5. Western blotting analysis for collagen markers and profibrotic markers 

Quantitative measurement of representative profibrotic makers, collagen I, collagen III, 

fibronectin, elastic, MMP1, and TGF-β was performed using western blotting. HDFs, KFs, and 

KFs treated with 0mM, 10mM, 20mM, and 40mM ethyl pyruvate (cells were seeded at 105 

cells/well) were cultured in 100 mm × 20 mm dishes for 48 h. Cells were lysed in 50 mM Tris-

HCl (pH 7.6), 1% Nonidet P-40, 150 mM NaCl, and 0.1 mM zinc acetate in the presence of 

protease inhibitors. Protein concentrations were determined by the Lowry method (Bio-Rad), 

and 20 µg of each sample was separated by 10% sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis. Proteins were then electrophoretically transferred onto a polyvinylidene 

difluoride membrane (Millipore, Billerica, MA). The membrane was blocked with blocking 

buffer for 1 h and incubated overnight at 4°C with primary antibodies against collagen I, 

collagen III, fibronectin, elastic, MMP1, and TGF-β. After 2 h of incubation at room 

temperature with the secondary antibody (horseradish peroxidase-conjugated anti-rabbit, or 

anti-mouse; Santa Cruz Biotechnology), protein bands were visualized using 

chemiluminescence reagents (Amersham Pharmacia Biotech, Piscataway, NJ, USA) according 

to the manufacturer’s instructions. Protein expression was analyzed using Image J software 

(National Institutes of Health, Bethesda, MD, USA).  
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III. RESULTS 

1. Ethyl pyruvate reduces human dermal fibroblast proliferation  

To determine whether inhibition of HMGB1 with ethyl pyruvate affected human dermal cell 

proliferation, we performed an MTT assay. To assess cellular viability after ethyl pyruvate 

treatment, various concentrations of ethyl pyruvate (0, 1 mM, 5 mM, and 10 mM) were applied 

to HDFs 48 h before the MTT assay. The results showed a significant decrease in HDF 

proliferation after treatment with all tested concentrations of ethyl pyruvate (Figure 1).    

These results suggest that ethyl pyruvate reduces the viability of HDF cells.  

 

 

 

 

 

 

Figure 1. Effects of ethyl pyruvate on viability of normal human dermal 

fibroblasts (HDFs): MTT cell proliferation assay showed that ethyl 

pyruvate significantly inhibited the proliferation of HDFs.  
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2. Ethyl pyruvate reduces keloid fibroblast proliferation  

To determine whether inhibition of HMGB1 with ethyl pyruvate affects keloid fibroblast cell 

proliferation, we performed an MTT assay. To assess cellular viability after ethyl pyruvate 

treatment, various concentrations of ethyl pyruvate (0, 10 mM, and 20 mM) were applied to 

KFs 48 h before the MTT assay. The results showed a significant decrease in KF proliferation 

after treatment with all tested concentrations of ethyl pyruvate (Figure 2). These results suggest 

that ethyl pyruvate reduces the viability of KF cells.  

 

 

 

 

 

 

 

Figure 2. Effects of ethyl pyruvate on viability of keloid fibroblasts (KFs): 

MTT cell proliferation assay showed that ethyl pyruvate significantly 

inhibited the proliferation of KFs.  



10 

 

3. Ethyl pyruvate reduces HMGB1 expression in HDFs  

If exogenous HMGB1 promotes autophagic activity in keloids, then inhibition of HMGB1 

should reduce cellular viability of keloids. We assessed this hypothesis by treatment with ethyl 

pyruvate, which suppresses HMGB1 extracellular activities, as well as inhibits cytoplasmic 

translocation of HMGB1. Although ethyl pyruvate is recognized as a potent HMGB1 inhibitor, 

no study has investigated the effect of this compound on keloids. Therefore, we used keloid 

spheroids to assess whether ethyl pyruvate could reduce HMGB1 expression in keloids.     

We generated keloid spheroids following an established protocol32 to mimic the keloid 

microenvironment. After treatment of keloid spheroids with various concentrations of ethyl 

pyruvate (0, 10, 20, and 40 mM), IHC staining for HMGB1 was performed. As shown in   

Figure 3, non-treated keloid spheroids showed a higher expression of HMGB1, whereas ethyl 

pyruvate-treated keloid spheroids showed a markedly decreased HMGB1 expression. The data 

were graphed using Metamorph® image analysis software. The results showed significantly 

decreased HMGB1 expression in keloid spheroids treated with 10, 20, or 40 mM of ethyl 

pyruvate. 
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Figure 3. Effects of ethyl pyruvate on HMGB1 expression in keloid spheroids (a) Western 

blot was used to identify HMGB1 in keloid spheroids. Following the addition of ethyl 

pyruvate, the density of the HMGB1 was notably decreased in keloid spheroids (b). Semi-

quantitative analysis indicated significantly decreased HMGB1 in ethyl pyruvate 

(20mM)-treated keloid spheroids versus non-treated keloid spheroids (c). 
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4. Ethyl pyruvate effects collagen I and III, TGF-β, and p-smad 2/3 in KFs and keloid 

tissue 

To assess the consequence of ethyl pyruvate-induced autophagic cell death in keloids, we 

examined changes in collagen I and III, TGF-β, and p-smad 2/3 expression in fibroblast cell 

types by western blot. The western blot results indicated that the levels of collagen I and III, 

TGF-β, and p-smad 2/3 conversion rate in KFs were markedly higher, by 1.2 or 1.1 fold,          

in comparison with that in HDFs. Further, the significantly enhanced levels of collagen 3 and 

TGF-β in KFs compared with that in HDFs were notably increased following treatment with 

20mM ethyl pyruvate. These results are concordant with those of the IHC data for keloid 

tissue that revealed a significant decrease in collagen 3 and TGF-β after ethyl pyruvate 

treatment (Figure 4-1). Collagen I and p-smad 2/3 expression levels in keloid tissues treated 

with ethyl pyruvate (20mM) were significantly reduced by 18.11% and 24.64%, respectively, 

in comparison with that in non-treated keloid tissue (***p < 0.001, Figure 4).    
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Figure 4. Effects of ethyl pyruvate on the expression of fibrotic markers in 

human dermal fibroblasts. Collagen I and p-smad 2/3 decreased after ethyl 

pyruvate treatment. Western blot analysis of fibrotic markers in HDFs showed 

that TGF-β and collagen III levels are increased in HDFs. HDFs show 

significantly decreased fibrotic markers after treatment with 20mM of ethyl 

pyruvate. (*p < 0.05, **p < 0.01).  
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5. Ethyl pyruvate treatments affect MMP-1 and -3 mRNA expression in HDFs and KFs, 

and analysis of the MMP-1 mRNA/TIMP1 mRNA ratio 

We investigated the effects of ethyl pyruvate on the expression of metalloproteinase I (MMP1) 

and metalloproteinase III (MMP3) in HDFs and KFs. Matrix metalloproteinases (MMPs) have 

been directly implicated in keloids because they degrade extracellular proteins. In particular, 

the expression of tissue inhibitors of metalloproteinase I (TIMP-1) is upregulated leading to 

the inhibition of MMP activity and subsequent accumulation of matrix proteins in the 

extracellular space. MMP1 and MMP3 mRNA levels increase sequentially according to the 

concentration of ethyl pyruvate in HDFs. Additionally, the MMP1 mRNA levels increased in 

KFs, and MMP3 mRNA levels did not show the reverse effect. The MMP1/TIMP1 ratio did 

not show a constant trend in HDFs and did not show significant results. However, in KFs, there 

was a tendency to increase as the concentration of ethyl pyruvate increased, but the results 

were not significant. 
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Figure 5. Effects of ethyl pyruvate on the expression of MMP1 and MMP3 in 

human dermal fibroblasts and keloid fibroblasts. MMP1 and MMP3 mRNA 

levels in HDFs increased sequentially according to the EP level (0mM, 10mM, 

and 20mM). MMP1 mRNA levels in KFs increased with the EP level. Other 

parameters and the ratio were not related with the EP concentrate level. (*p < 

0.05, ***p< 0.01). 
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6. Ethyl pyruvate suppresses HMGB1, EKR1/2, and AKT expression in keloid 

spheroids 

We investigated the effects of ethyl pyruvate on HMGB1, EKR1/2, and AKT expression. 

These molecules are quantitative profibrotic markers. Profibrogenic signaling molecules 

involved in collagen synthesis and cellular proliferation, such as ERK1/2 and AKT, were 

assessed by western blot analysis. We found significant changes in the expression levels of 

these molecules in HMGB1-treated HDFs. As shown in Figure 6, markedly decreased 

expression of all of the factors was observed after simultaneous treatment with ethyl pyruvate 

(10mM, 20mM, 40mM) (*p < 0.05; Figure 6). These results indicated that ethyl pyruvate 

reversed the action of HMGB1 and inhibited profibrotic signaling. 
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7. Ethyl pyruvate suppresses collagen I and III, fibronectin, and elastin in keloid 

spheroids 

We further investigated the effects of ethyl pyruvate on collagen I and III, fibronectin, and 

elastin expression; these molecules are crucial regulators of fibrogenesis. Immunohistochemical 

staining revealed significantly reduced collagen I and III, fibronectin, and elastin levels in ethyl 

pyruvate (40mM)-treated keloid spheroids by 05.67%, 64.81%, 63.42%, and 62.30%, 

respectively, versus that of non-treated keloid spheroids (p < 0.001, Figure 5). Collectively, 

these data suggest that ethyl pyruvate modulates TGF-β and its signaling pathway, thereby 

reducing fibrosis in keloids. 

Figure 6. Effects of ethyl pyruvate on the expression of profibrotic factors 

in human dermal fibroblasts. HMGB1, ERK1/2, and AKT expression was 

significantly decreased after ethyl pyruvate (10mM, 20mM, and 40mM) 

treatment simultaneously with HMGB1 (100 ng) (*p < 0.05)  
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IV. DISCUSSION 

 Keloids, which represent human fibrotic disorders characterized by dermal fibrotic 

proliferative tumors, extend beyond the boundaries of the original scar and invade adjacent 

normal skin33. Although various factors influence the development of keloids, excessive ECM 

accumulation because of the over-proliferation of KFs and the difficulty in regulating apoptosis 

are the major pathophysiological factors involved34. Autophagy is a form of cell death that 

involves lysosomal degradation and recycling of damaged or excessive organelles. Autophagy 

is a process of cell death, but there is increasing evidence that this process acts as a protective 

cellular mechanism that ensures proper energy metabolism under stress conditions, such as 

starvation, oxidative stress, hypoxia, and anticancer therapy35-39. Thus, we hypothesized that 

autophagy activity was associated with the development of keloids40. In various 

microenvironments, the increase and decrease of autophagy play an important role in the 

pathogenesis of diseased tissue36. Keloids and hypertrophic scar tissue look clinically similar, 

but their molecular basis and clinical behavior are quite different. For example, they exhibit 

distinct sensitivity to different apoptotic cell death pathways and KF growth factors. HMGB1, 

a ubiquitous and abundant nuclear protein, has chemotactic and mitotic activity in inflammatory 

cells and fibroblasts41. New evidence suggests that HMGB1 is involved in pathological fibrosis, 

which affects various organs of the human body, including tumor formation, as well as the 

regulation of inflammation, tissue fibrosis, immune responses, and cell death41-43. Cytoplasmic 

translocation of HMGB1 promotes autophagy and limits programmed atherosclerosis cell death. 

Figure 7. Histochemical analysis of collagen I and III, fibronectin, and elastin in 

ethyl pyruvate-treated keloid spheroids. Representative images of collagen I and III, 

fibronectin, and elastin IHC staining of keloid spheroids treated with ethyl pyruvate 

(10, 20, and 40mM). Collagen I and III, fibronectin, and elastin were significantly 

decreased in keloid spheroids following ethyl pyruvate application. 
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Endogenous HMGB1 regulates the balance of apoptotic self-predation. Cellular stress promotes 

HMGB1 release from cells and the HMGB1 promotes autophagy flux41. Therefore, we 

speculate that HMGB1 is associated with abnormal cell death in keloids exhibiting weakened 

apoptosis activity. Thus, we confirmed the presence and overexpression of HMGB1 in human 

keloid tissue. In addition, enhanced autophagy activity was confirmed in HDF treated with 

exogenous HMGB1 or TGF-β, leading to a fibrous state. Subsequently, we inhibited HMGB1 

activity and observed changes in factors related to fiber death and fibrosis in keloids. Recent 

evidence has shown that ethyl pyruvate, which binds directly to HMGB1, impairs extracellular 

activity, inhibits extracellular release, and reduces the chemical attractant and mitotic activity 

of HMGB1. Here, we showed that ethyl pyruvate inhibited mitotic activity in HMGB1-

expression-attenuated keloids. In agreement with previous studies using ethyl pyruvate as an 

HMGB1 inhibitor in fibrotic disease, we showed that this compound improves fibrosis of keloid 

spheroids. TGF-β is a crucial factor in the proliferation and collagen synthesis in keloids 

because it enhances the mitogenic response44-46. Pivotal mediators of the TGF-β signaling 

pathway, and Smad 2/3 and ERK1/2 complexes, are highly activated in keloids and have been 

implicated in keloid pathogenesis47. We found that the expression of TGF-β and the Smad 2/3 

and ERK1/2 complexes were significantly attenuated by ethyl pyruvate in keloid spheroids. 

Together, these results revealed that ethyl pyruvate exerts a potent antifibrotic effect on keloids. 

The direct inhibitory effect of ethyl pyruvate on HMGB1 is already well known, ethyl pyruvate 

possesses various pharmacological and biological activities against inflammation, oxidative 

stress, and tumorigenesis, suggesting that the present effects may not be solely attributable to 

the inhibitory effect of HMGB148. Further, the inhibition of autophagic activity in keloids was 

not the only contributing factor to the antifibrotic action of ethyl pyruvate. The HMGB1 blocker, 

ethyl pyruvate, was shown to ameliorate fibrosis in keloids. This effect may result from the 

inhibition of the TGF-β-related pathways, as well as regulation of the cell death process. 
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V. CONCLUSION 

Inhibition of HMGB1 by ethyl pyruvate reduces fibrosis and autophagy and increases 

apoptosis in keloids. These results represent a new strategy for keloid treatment targeting 

HMGB1-mediated fibrosis. 
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ABSTRACT (IN KOREAN) 

켈로이드 섬유 아세포 및 스페로이드에서  

HMGB1 억제를 통한 Ethyl pyruvate의 항 섬유 효과 

 

<지도교수 이원재> 

 

연세대학교 대학원 의학과 

 

이영대 

 

켈로이드는 발생기전 및 치료방법이 명확하게 밝혀지지 않은 섬유성 피부 

병변이다. 켈로이드의 병인은 비정상적으로 세포의 증식이 증가되어 세포 외 

기질이 과도하게 축적되며 자멸사 및 자가 포식 역시 감소하는 것을 특징으로 

한다. 우리는 이와 같은 켈로이드의 병인을 조절하기 위해 High mobility group 

box 1 (HMGB1) 단백질 조절을 선택하였다. HMGB1은 진핵 세포에 존재하는 핵 

단백질로 염증, 면역, 세포의 증식 및 사멸 등을 조절하는 것으로 알려져 있으며, 

여러가지 섬유성 병변과 관련되어 있는 것으로 보고되었다. 특히 HMGB1은 세포 

자멸과 자가 포식과의 항상성을 조절하는 것으로 알려져 있으며 우리는 

켈로이드의 병인이 자멸사와 자가 포식의 감소와 연관되어 있는지 선행연구를 

통해 확인하였다. 또한, HMGB1의 세포 외 작용을 억제하는 것으로 알려진 Ethyl 

pyruvate을 이용하여 keloid에서 Ethyl pyruvate가 HMGB1의 역할을 제한하여 

세포 사멸의 균형에 미치는 영향을 알아보고 이를 통한 항섬유화 효과를 확인해 

보고자 하였다. 

면역화학염색을 통해 정상조직에 비해 keloid 조직에서 HMGB1의 발현이 

증가함을 확인하였고, 선행연구를 통해 포분석을 통해 대표적 섬유성 인자인 

TGF-β와 HMGB1을 처리한 섬유 모세포에서 자가 포식이 증가함을 확인하였다. 

켈로이드 세포에 Ethyl pyruvate를 처리하여 HMGB1의 발현이 감소함을 

면역화학염색을 통해 확인하였으며, MTT 분석을 통해 정상 섬유 모세포와 

켈로이드 섬유 모세포에서 Ethyl pyruvate (0, 10, 20mM) 처리 후 세포의 증식이 
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유의하게 감소함을 확인하였다. 켈로이드 세포구에서 type 1, 3 collagen, 

fibronectin, elastin과 TGF-β, Smad2/3, ERK1/2의 발현이 Ethyl pyruvate 

처리에 따라 유의하게 감소함을 western blot을 통해 확인하였다. 이 결과들을 

토대로, 켈로이드에서 자가 포식이 증가되어 있고, HMGB1의 억제제인 Ethyl 

pyruvate의 처리에 따라 자가 포식이 억제되고, 세포 자멸이 증가하며, 섬유화가 

감소하는 결과를 확인하였다. 이를 통해 keloid의 억제 및 치료방법 개발에 

응용할 수 있을 것으로 사료된다. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

핵심되는 말: High Mobility Group Box 1 (HMGB1), Ethyl pyruvate, 켈로이드,   

켈로이드 스페로이드 


