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Abstract

This study aims to determine how randomly splitting a dataset into training and test sets

affects the estimated performance of a machine learning model and its gap from the test

performance under different conditions, using real-world brain tumor radiomics data. We

conducted two classification tasks of different difficulty levels with magnetic resonance

imaging (MRI) radiomics features: (1) “Simple” task, glioblastomas [n = 109] vs. brain

metastasis [n = 58] and (2) “difficult” task, low- [n = 163] vs. high-grade [n = 95] meningio-

mas. Additionally, two undersampled datasets were created by randomly sampling 50%

from these datasets. We performed random training-test set splitting for each dataset

repeatedly to create 1,000 different training-test set pairs. For each dataset pair, the least

absolute shrinkage and selection operator model was trained and evaluated using various

validation methods in the training set, and tested in the test set, using the area under the

curve (AUC) as an evaluation metric. The AUCs in training and testing varied among differ-

ent training-test set pairs, especially with the undersampled datasets and the difficult task.

The mean (±standard deviation) AUC difference between training and testing was 0.039

(±0.032) for the simple task without undersampling and 0.092 (±0.071) for the difficult task

with undersampling. In a training-test set pair with the difficult task without undersampling,

for example, the AUC was high in training but much lower in testing (0.882 and 0.667,

respectively); in another dataset pair with the same task, however, the AUC was low in train-

ing but much higher in testing (0.709 and 0.911, respectively). When the AUC discrepancy

between training and test, or generalization gap, was large, none of the validation methods

helped sufficiently reduce the generalization gap. Our results suggest that machine learning

after a single random training-test set split may lead to unreliable results in radiomics studies

especially with small sample sizes.
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Introduction

Since the advent of precision and personalized medicine, machine learning (ML) has received

great interest as a promising tool for identifying the best diagnosis and treatment for an indi-

vidual patient. ML research has expanded rapidly in various fields, including radiomics—a

method to uncover disease characteristics using a large number of features extracted from

medical images [1]. According to the PubMed database with the search term “(machine learn-

ing OR deep learning) AND radiomics”, the number of published papers per year was 2 in

2015 and increased to 556 in 2020 [2].

Millions of observations are often required for an ML model to be robust and reach accept-

able performance levels [3]. However, many ML studies with medical image data, including

radiomics-based ML, are often conducted in a small group of patients especially when rare dis-

eases are involved, but still reporting promising predictive accuracies [4]. For their potential

clinical usefulness to be ascertained, models must be rigorously validated in independent

external datasets. However, most published prediction models have not been validated exter-

nally [5], and the field of radiomics ML is no exception where the problem is magnified by the

intrinsic difficulty of acquiring large datasets. Recent reports showed that external validation

was missing in 81–96% of published radiomics-based studies [4, 6, 7].

In the absence of external validation data, one of the most common strategies to prove the

validity of a model’s performance is randomly splitting an available dataset into training and

test sets; a model is first tuned based on estimated performance in the training set and then val-

idated in the test set. However, it has been shown that random data splitting, by reducing sam-

ple sizes and adding more randomness, increases the errors in estimated model performance

and the instability of validation results, especially with small sample sizes, which may lead to

unstable and suboptimal model development, and overly optimistic performance estimation

[8–10].

Despite its importance, the stability issue has received little attention in the radiomics ML

community, as the main focus has been on model performance. In the field of radiomics-

based ML, to the best of our knowledge, no study has investigated the size of the variabilities

caused by random data splitting using real-world radiomics data. Specifically, we were inter-

ested in exploring how widely the radiomics ML results—model performance estimated in

training and that obtained in testing—can vary depending on how a dataset is split into train-

ing and test sets, which could be used as caveats when conducting radiomics ML studies and

interpreting the results.

Therefore, the purpose of this study was to investigate how splitting a dataset randomly

into training and test sets affects the ML model’s estimated performance and its difference

from internally validated performance using real-world brain tumor radiomics data under dif-

ferent conditions: the number of input features, sample size, and task difficulty.

Materials and methods

Fig 1 shows the flow of this study. This retrospective study was approved by the Severance

Hospital Institutional Review Board, and informed consent from the patients was waived (IRB

No. 2020-2996-001). All analyses were performed using Python 3.0 with scikit-learn 0.23.2 and

R 4.0.2. The 95% confidence interval (CI) of area under the receiver operating characteristics

curve (AUC) in a test set was estimated using the DeLong method, a nonparametric approach

by using the theory on U-statistics to generate an estimated covariance matrix [11]. Interested

readers can also find a detailed explanation on how to implement the DeLong method in a

review paper [12]. The difference in value was considered statistically significant when 95%
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CIs did not overlap. All the datasets and codes used in this study can be found on our GitHub

repository [13].

Data

Two classification tasks of different difficulty levels were performed using radiomics features

extracted from postcontrast T1-weighted and T2-weighted images of brain magnetic reso-

nance imaging (MRI).

The first task was a “simple” task of differentiating between glioblastoma (GBM) and single

metastasis, with the AUC of radiomics-based ML reported to be over 0.9. Chen et al. used post-

contrast T1-weighted images and reported an AUC of 0.800 [14]. Bae et al. used postcontrast

T1-weighted and T2-weighted images and reported an AUC of 0.956 in the external validation

[15]. In the current study, the dataset for the first task consisted of the radiomics features

extracted from pathologically confirmed single GBM (n = 109) or single brain metastasis

(n = 58) found in 167 adult patients who underwent brain MRI between January 2014 and

December 2017.

The second task was a “difficult” task of differentiating between low- and high-grade

meningioma by MRI, which is a well-known challenging task to clinicians and radiologists

Fig 1. Study flow.

https://doi.org/10.1371/journal.pone.0256152.g001
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[16]. Using radiomics features extracted from postcontrast T1-weighted images, Banzato et al.

reported an AUC of 0.68 [17], and Chen et al. reported an accuracy of 75.6% [18]. In the cur-

rent study, the dataset for the second task consisted of the radiomics features extracted from

low- (n = 163) or high-grade (n = 95) meningiomas in 258 adult patients who underwent

brain MRI between February 2008 and September 2018.

Both the datasets were taken from the same tertiary academic hospital; some subsets of

these patients were used in previous studies, where how MRI acquisition, image preprocessing,

and radiomics feature extractions were performed for the datasets are described in detail [15,

19]. Additionally, two undersampled datasets were created by randomly sampling 50% of the

datasets to determine the effect of sample size. Therefore, our final study subjects consisted of

the four datasets: 1) simple task (GBM vs. metastasis) without undersampling, 2) simple task

with undersampling, 3) difficult task (low- vs. high-grade meningioma) without undersam-

pling, and 4) difficult task with undersampling.

Random splitting of data

Each of the four datasets was randomly split into training and test sets with a 7:3 ratio while

maintaining the proportions of the outcome classes. This process was repeated while changing

the random seed number from 0 to 999 to create 1,000 training-test set pairs with different

data compositions.

Machine learning

Our ML model consisted of three modules: 1) data standardization using the mean and stan-

dard deviation derived from the training set, 2) feature selection, and 3) binary classification.

For feature selection, based on the results of analysis of variance F-tests, the top k radiomics

features with highest F-statistics (i.e., most relevant features) were selected, where k was a

hyperparameter. For classification, we mainly used the least absolute shrinkage and selection

operator (LASSO)—one of the least flexible algorithms—to minimize the effect of model selec-

tion on the results [20].

Variability in generalization gap by data splits

We investigated how the gap between the model performance estimated in the training set and

the model performance in the test set, which we henceforth call generalization gap, vary

among different training-test set pairs [21]. Model performance was represented by AUC in

differentiating between GBM and metastasis or between high- and low-grade meningioma.

Generalization gap was represented by the difference between the AUC estimated by cross val-

idation (CV) or bootstrap in the training set and the AUC in the test set.

First, we examined the effect of increasing the number of input features on the variability in

generalization gap by random data splitting, with other hyperparameters set to the default val-

ues. A model was trained in the training set and tested in the test set, followed by estimating

the model performance by 5-fold CV in the training set. In each of the 1,000 trials (i.e., train-

ing-test set pairs), this process was repeated while increasing k from 1 to 150. The number of

features for the lowest generalization gap ranged between 20 and 55 for any of the four data-

sets, which was used as the grid search range for hyperparameter tuning in the following

analyses.

Next, we examined the effects of task difficulty and undersampling on the variability in gen-

eralization gap by random data splitting. For each of the 1,000 trials, a model was trained fol-

lowing hyperparameter tuning via a grid search 5-fold CV in the training set and was tested in

the test set. The mean value of CV AUCs was used as a model performance estimate. The
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hyperparameter grid consisted of 1) number of input variables ranging from 20 to 55 and 2)

C-value ranging from 0.01 to 10.

Visual demonstration of data mismatch between training and test sets

induced by random data splitting

We attempted to visually demonstrate how a large difference in data composition (i.e., data

mismatch) between training and test sets induced by random data splitting can lead to a wide

generalization gap. Three trials from the meningioma task were selected as representative

cases out of the 1,000 random data splits: two trials with large generalization gaps and one trial

with a negligible generalization gap. For each of the three training-test set pairs, a linear sup-

port vector machine was fit to the training set and tested in the test set. On a two-dimensional

feature space using the top two (k = 2) radiomics features, each datapoint was plotted in differ-

ent colors according to the class. and a decision boundary was drawn, along with the mean CV

AUC in the training set and the AUC in the test set.

Comparison of validation methods

Lastly, we examined whether validation methods other than CV can be helpful in correcting

for the inherent optimism in model performance estimates obtained on the same sample used

to develop the model. For this purpose, among the trials where CV AUC was higher than test

AUC from the dataset for the meningioma grading task, we selected 10 trials with most opti-

mistic estimates (i.e., where the generalization gap was largest; severe data mismatch) and 10

trials with moderately optimistic estimates (i.e., where the generalization gap was in the middle

of the range; moderate data mismatch). In these training-test set pairs, we tuned models and

estimated their performances using four different methods: 1) 5-fold CV without a repetition,

2) 5-fold CV with 10 repetitions, 3) nested 5-fold CV, and 4) bootstrap with 10 repetitions. For

each of the two groups (i.e., moderate vs. severe data mismatch groups), the averages of mean

CV AUCs, test AUCs, and their differences were compared among the four validation

methods.

In CV with m repetitions, CV is repeated m times following shuffling data. The nested CV

has an inner loop CV nested in an outer CV (S1 Fig). The inner loop is responsible for model

selection and hyperparameter tuning, while the outer loop is used for error estimation [22].

The bootstrap is a data resampling method that is known to be good for model selection [23].

Given n samples available in the data, n samples are randomly chosen with replacement (i.e.,

the same samples can be chosen). A model is fit to the chosen samples and tested on the

remaining (out-of-bag) samples. This process is repeated multiple B times (e.g., B = 10 in our

case), and the out-of-bag scores are averaged as the final estimate of model performance.

Results

Variability in generalization gap by data splits

When averaged across the 1,000 different trials (i.e., training-test set pairs), as the number of

features increased, both the mean CV AUC (estimated performance) and the test AUC (vali-

dated performance) increased in the beginning and later decreased (Fig 2). However, without

averaging, in some trials the AUC did not decrease but plateaued with increased number of

features, while in some other trials the AUC dropped steeply well below average. Conse-

quently, as the number of features increased beyond a certain point, the variabilities in mean

CV AUC and test AUC by random data splits increased. All these variations and trends were

more pronounced with the difficult task and with the undersampled datasets (Fig 2).
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The overall model performance was better, and generalization gap was smaller, with the

simple task and without undersampling (Table 1 and Fig 3). The mean test AUC (model per-

formance) and mean AUC difference between CV and testing (generalization gap) were 0.928

and 0.039 for the simple task, and 0.799 and 0.054 for the difficult task, respectively. With

undersampling, both the model performance and the generalization gap worsened, with the

mean test AUC and the mean AUC difference between CV and testing of 0.879 and 0.079 for

the simple task, and 0.697 and 0.092 for the difficult task, respectively.

Fig 2. The relationship between the number of input features and the variability in estimated and test model performance by 1,000 different

random data splits. A, B, C, and D: Each colored line indicates a result from a single random training-test set split, and each thick black line shows the

average of the results from 1,000 data splits in relation to the number of features: mean cross-validated AUC without (A) or with undersampling (B),

and test AUC without (C) or with undersampling (D). On average, AUC increased in the beginning and later decreased with increased number of

features. However, without averaging, in some trials the AUC did not decrease even at higher numbers of features, widening the AUC variability by the

data splits with increased number of features. E and D: Each colored line indicates the average of the percentage AUC differences between CV and

testing (i.e., generalization gap) from 1,000 data splits in relation to the number of features, with datasets without (E) or with undersampling (F). The

vertical lines indicate 95% confidence intervals. Note that all these trends were more pronounced with the difficult task (i.e., meningioma grading) and

with undersampling.

https://doi.org/10.1371/journal.pone.0256152.g002
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The AUC difference between CV and testing (i.e., generalization gap) varied widely based

on samples comprising the training and test sets. Consequently, there were significant discrep-

ancies between expected and actual model performances in some of the trials. Three represen-

tative trials for each of the two tasks are summarized in Table 2.

Table 1. Model performance estimate and generalization gap according to the sample size and the level of task difficulty.

Simple task (GBM vs. Metastasis) Difficult task (Low- vs. High-grade meningioma)

Without under-sampling With under-sampling Without under-sampling With under-sampling

Performance estimation: Mean (±SD) test AUC 0.928 (±0.038) 0.879 (±0.072) 0.799 (±0.045) 0.697 (±0.073)

Generalization gap: Mean (±SD) CV-testing AUC difference 0.039 (±0.032) 0.079 (±0.063) 0.054 (±0.041) 0.092 (±0.071)

The values were averages of 1,000 trials with random training-test set splitting. GBM, glioblastoma; SD, standard deviation; AUC, area under the curve; CV, cross

validation.

https://doi.org/10.1371/journal.pone.0256152.t001

Fig 3. Model performance estimate and generalization gap in 1,000 different training-test set pairs according to the sample size and the level

of task difficulty. Each point indicates a model performance estimate in the training set (X axis) and its gap from the performance in the test set (Y

axis) from a single training-test set pair. Inspection of how closely clustered the datapoints are reveals that the variability in both the model

performance estimation and the gap between CV and testing were worse with the difficult task and with undersampling.

https://doi.org/10.1371/journal.pone.0256152.g003
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Visual demonstration of data mismatch between training and test sets

induced by random data splitting

The mechanism behind the large generalization gap is demonstrated by three representative

cases chosen among 1,000 trials of differentiating low- and high-grade meningiomas using

two radiomic features (Fig 4). In the first case (Trial no. 518), the mean CV AUC was high

(0.797 [SD: 0.046]) while the test AUC was low (0.550 [95% CI: 0.414–0.686]). The fitted linear

decision boundary separated the two classes well in the training set. However, when applied to

the test set, the samples from each class were often located on the wrong sides in the feature

space (Fig 4, right panel). In contrast, in the second case (Trial no. 602), the mean CV AUC

was low (0.610 [SD:0.042]) while the test AUC was high (0.894 [95% CI: 0.814–0.973]). In the

third case (Trial No. 563), the performance discrepancy was negligible (mean CV AUC: 0.711

[SD: 0.046]; test AUC: 0.711 [95% CI: 0.589–0.834]) owing to similar distributions of data-

points in the feature space.

Comparison of validation methods

In comparison to 5-fold CV without a repetition, 5-fold CV with 10 repetitions, nested 5-fold

CV, and bootstrap with 10 repetitions, with increasing order, tended to better correct for the

optimism in estimating model performance. However, when there was severe data mismatch

between training and test sets, the generalization gap remained large even after the correction

(Table 3).

Discussion

Our results demonstrated that both the radiomics ML model’s performance estimated in train-

ing and that obtained in testing can vary widely between different training-test set pairs, espe-

cially with small sample sizes or difficult tasks. Therefore, the model performance and

generalization gap that are estimated after a single random training-test set split may be unreli-

able when a sample size is not sufficient.

Splitting a dataset into training and test sets has a critical drawback that it reduces the num-

ber of samples in both the training and test sets, which leads to suboptimal models and unsta-

ble validation results [10, 23, 24]. A previous study demonstrated that a split sample approach

with 50% held out led to models with a suboptimal performance, on average similar to the

model obtained with half the sample size [23]. Another study showed that small sample sizes

Table 2. Model performance estimate and generalization gap according to the level of task difficulty in some representative training-test set pairs.

Training-test sets Trial No. Optimal No. of features Optimal C-value Mean AUC in CV (±SD) AUC in testing (95% CI) AUC difference

Simple task: glioblastoma vs. brain metastasis

Mismatch, high CV AUC 995 50 8 0.980 (±0.029) 0.761 (0.604–0.918) -0.219

Mismatch, high test AUC 656 40 0.09 0.888 (±0.083) 0.995 (0.985–1.000) +0.107

No mismatch 733 40 0.3 0.953 (±0.035) 0.946 (0.890–1.000) -0.007

Difficult task: low- vs. high-grade in brain meningioma

Mismatch, high CV AUC 346 40 0.9 0.882 (±0.059) 0.667 (0.539–0.796) -0.215

Mismatch, high test AUC 602 45 0.3 0.709 (±0.047) 0.911 (0.847–0.976) +0.202

No mismatch 106 45 1.5 0.830 (±0.046) 0.821 (0.724–0.919) -0.009

AUC, area under the curve; CV, cross validation; SD, standard deviation; CI, confidence interval.

https://doi.org/10.1371/journal.pone.0256152.t002
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Fig 4. Discrepancy between performance estimated from cross validation in the training set and performance in the test set (i.e., generalization

gap), explained by the distribution of datapoints in the feature space. The left panel shows that mean cross-validated AUC in the training set and

AUC in the test set in three representative trials. The horizontal error bars are standard deviation for CV and 95% confidence interval for testing. The

right panel shows the distribution of datapoints in the space consisting of two most important radiomics features (sphericity and flatness). The blue and

red dots indicate low- and high-grade meningioma cases, respectively. The linear line dividing the feature space into two areas is a decision boundary; if

a datapoint is located in the blue or red area, the model predicts that it is low- or high-grade meningioma, respectively.

https://doi.org/10.1371/journal.pone.0256152.g004

Table 3. Comparison of four methods to estimate model performance in the meningioma grading task.

Training AUC Test AUC AUC difference

In 10 trials with moderate data mismatch

CV 0.824 (0.792, 0.847) 0.760 (0.731, 0.78) 0.066 (0.06, 0.074)

CV with repetitions 0.819 (0.775, 0.834) 0.766 (0.739, 0.811) 0.051 (-0.023, 0.08)

Nested CV 0.809 (0.741, 0.838) 0.758 (0.739, 0.78) 0.045 (0.002, 0.08)

Bootstrap 0.758 (0.741, 0.798) 0.760 (0.731, 0.78) 0.005 (-0.021, 0.038)

In 10 trials with severe data mismatch

CV 0.861 (0.806, 0.881) 0.677 (0.629, 0.704) 0.184 (0.15, 0.232)

CV with repetitions 0.863 (0.783, 0.881) 0.662 (0.652, 0.685) 0.187 (0.128, 0.224)

Nested CV 0.844 (0.768, 0.885) 0.675 (0.62, 0.694) 0.166 (0.113, 0.226)

Bootstrap 0.806 (0.743, 0.840) 0.677 (0.629, 0.704) 0.134 (0.055, 0.182)

Numbers in cells are median (minimum, maximum). AUC, area under the curve; CV, cross validation.

https://doi.org/10.1371/journal.pone.0256152.t003
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inherently lead to unreliable CV results with large error bars, meaning that we cannot ascertain

whether a cross–validated model will perform in a set of new patients as well as expected [25].

In the current study, despite its larger sample size, the “difficult” meningioma grading task

suffered the significantly larger variability in generalization gap by random data splitting than

the “simple” GBM-metastasis differentiation task. This observation shows that a “not-too-

small” sample size depends on the task difficulty; the harder the ML task is, the more sample

we need. This is not a new finding, and it is well known that the sufficient training data size

depends on the complexity or difficulty of a task [20]. However, what we attempted to demon-

strate is that, ironically, the harder a radiomics ML task is, the more overly optimistic results

we can obtain by random data splitting.

By examining the effect of increasing the number of features on the model performance

and stability, we intended to demonstrate the necessity to limit the number of input features to

a sufficient minimum. When performing a hyperparameter tuning using a large grid of hyper-

parameters including the number of features, an unusually high number of features can be

selected as optimal simply by chance. However, such model is highly likely to fail to generalize

as seen in our result. In general, the higher the ratio of the number of training patterns to the

number of classifier parameters, the better the generalization property of the resulting classifier

[26]. A larger number of features means a higher number of classifier parameters. Thus, for a

limited number of training samples, keeping the number of features as reasonably small as

possible is helpful in selecting a classifier with a good generalization capability.

Our results can also be understood by imaging an n–dimensional feature space (in this

study, two-dimensional spaces were used for the sake of visualization; Fig 4). The Euclidean

distance between two random points in the two-dimensional unit square is approximately 0.52

on average. In the three-dimensional unit cube, the average distance is 0.66, and in the ten-

dimensional hypercube, it increases to approximately 3.16 [27]. In contrast, the average dis-

tance becomes smaller with a larger number of datapoints. Therefore, as the dimension (i.e.,

the number of features) increases, or the sample size decreases, the datapoints in the feature

space are located farther from one another, leading to a greater chance that two randomly split

subsets have significantly different data distributions. Additionally, as a classification task

becomes more challenging, there are more areas in a feature space where datapoints belonging

to different classes are mingled together; the datapoints in these areas are more critical in esti-

mating a decision boundary than datapoints in other areas. Thus, in a difficult task with many

such datapoints, a decision boundary may vary greatly according to how a dataset is split into

training and test sets.

For the above-mentioned reasons and others, some, including us, argue that a random sam-

ple split is best avoided especially with a small sample size [10, 23, 28]. Some went a step fur-

ther to advocate that external validation should not be included in the model development

study and should be performed by different researchers than those involved in the model

development [29]. However, it is not realistic to require external validation for all studies, and

some argued that many failed external validations could have been foreseen by rigorous inter-

nal validation, saving time and resources [30]. Several methods have been proposed to obtain

the reliable estimates of true model performance [8, 9, 22, 23, 31], supported by our results

that using some of these methods—nested CV or bootstrapping—could reduce the optimism

in estimating model performance. However, we also found that a significant data mismatch

between training and test datasets can be challenging to overcome by any technique, as others

also pointed out [25, 32, 33].

There are limitations in our study. We selected two “simple” and “difficult” ML tasks using

brain MRI radiomics features arbitrarily, but they cannot represent all real-world radiomics

ML tasks. Another limitation is that we did not perform mathematical analysis in this study.
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However, our focus was more on demonstrating the actual consequences of random data split-

ting on the results of real-world radiomic-based ML studies.

Conclusions

When a sample size is not sufficient for a radiomics ML task, the model’s performance esti-

mated in training and that obtained in testing may vary widely between different training-test

set pairs. Therefore, a single random split of a dataset into training and test sets may lead to an

unreliable report of the estimated model performance and generalization gap. Furthermore,

since the variability of generalization gap tends to be wider with smaller sample sizes and more

difficult tasks, ironically, the harder a radiomics ML task is, the more overly optimistic results

we can obtain by random data splitting. Therefore, we advise against splitting a small dataset

into training and test sets and recommend reducing the optimism in estimating model perfor-

mance by using bootstrapping, nested CV or other techniques to better predict generalization

gap, when external validation is not performed. Future study with real-world data other than

brain MRI radiomics is warranted to further investigate the impact of random data splitting

on ML study results.

Supporting information

S1 Fig. Nested cross validation. The inner loop is responsible for model selection and hyper-

parameter tuning, while the outer loop is used for error estimation.
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