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Temporal trajectory of biofluid 
markers in Parkinson’s disease
Min Seok Baek1,3, Myung Jun Lee2*, Han‑Kyeol Kim3 & Chul Hyoung Lyoo3

Full dynamics of biofluid biomarkers have been unknown in patients with Parkinson’s disease (PD). 
Using data from 396 PD patients and 182 controls in the Parkinson’s Progression Markers Initiative 
(PPMI) database, we estimated long-term temporal trajectories of CSF α-synuclein (α-syn), amyloid-β 
(Aβ), total tau (t-tau), phosphorylated tau (p-tau) and serum neurofilament light chain (NfL) by 
integrating function between the baseline levels and annual changes. At baseline, PD patients showed 
lower CSF α-syn, Aβ, t-tau and p-tau levels than those of the controls. In all PD patients, CSF α-syn and 
Aβ decreased in a negative exponential pattern before the onset of motor symptoms, whereas CSF 
t-tau and p-tau, and serum NfL increased. Patients with cognitive impairment exhibited faster decline 
of Aβ and α-syn and faster rise of t-tau, p-tau and NfL, when compared to those without. Similarly, 
low Aβ group showed earlier decline of α-syn, faster rise of t-tau, p-tau and NfL, and faster decline 
of cognitive performances, when compared to high Aβ group. Our results suggest that longitudinal 
changes in biomarkers can be influenced by cognitive impairment and Aβ burden at baseline. PD 
patients with Aβ pathology may be associated with early appearance of α-synuclein pathology, rapid 
progression of axonal degeneration and neurodegeneration, and consequently greater cognitive 
decline.

About 80% of Parkinson’s disease (PD) patients become demented in their clinical course with variable time 
intervals between the onset of motor symptoms and deterioration of cognition1–3. Pathologically, greater amount 
of cortical and limbic Lewy bodies (LB), amyloid-β (Aβ) plaque and neurofibrillary tangles are related with the 
development of dementia in PD4,5. CSF biomarkers for each pathological protein may reflect the pathological 
burden in brain, and thereby, long-term changes in CSF biomarkers may be related with both pathological and 
clinical progression in PD.

However, several studies observed inconsistent results of longitudinal changes in CSF biomarkers. Some 
exhibited an increase in CSF α-synuclein (α-syn) along with the disease progression and an association of 
α-syn with further deterioration of motor and cognitive deficits6,7, while others reported a decrease in CSF 
α-syn8,9. Likewise, contradictory results of the longitudinal changes in CSF Aβ1-42 were reported10,11. These 
studies observed the changes occurring in relatively short time period (from 18 months to 4 years) at different 
time points of disease course, and therefore, were insufficient for providing full dynamics of CSF biomarkers.

In the present study, using the longitudinal data for the biomarkers in the Parkinson’s Progression Markers 
Initiative (PPMI) study, we estimated long-term temporal trajectories of CSF α-syn, Aβ1-42, total tau (t-tau), 
phosphorylated tau (p-tau) and serum neurofilament light chain (NfL) by integrating the function between 
baseline level and annual change rates12,13. In addition, we investigated effects of cognitive impairment and low 
CSF Aβ1-42 level on the temporal trajectories of CSF biomarkers.

Results
Demographics, clinical measurement and biomarker levels at baseline.  Demographic character-
istics, clinical measurement and biomarker levels at baseline are summarized in Table 1. In total, 396 PD and 182 
control subjects were included in the analyses. PD patients had lower CSF Aβ1-42 (β = − 106.9, SE 39.9, p = 0.008), 
α-syn (β = − 183.1, SE 65.0, p = 0.005), t-tau (β = − 24.3, SE 5.7, p < 0.001) and p-tau levels (β = − 2.7, SE 0.6, 
p < 0.001) than those of the controls, while the serum NfL levels did not exhibit a significant difference. In addi-
tion, PD patients showed worse cognitive performance in MoCA and HVLT delayed recall (MoCA, β = − 1.3, SE 
0.2, p < 0.001; HVLT, β = − 3.9, SE 1.0, p < 0.001). Lower CSF α-syn and t-tau levels showed a trend of association 
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with higher MDS-UPDRS III total scores at baseline, however, generalized linear models did not reach statistical 
significance (CSF α-syn, β = − 7.15, SE 3.85, p = 0.065; CSF t-tau, β = − 0.62, SE 0.34, p = 0.069).

311 PD patients showed MoCA total scores greater than 25 at baseline and were classified as PDNC. Although 
the PDCI group was older age and showed worse parkinsonian motor deficits at baseline than the PDNC, there 
was no clear difference in baseline biomarker levels between the two groups. According to the baseline CSF 
Aβ1-42, 274 PD patients were classified as high Aβ1-42 group and remaining 122 patients as low Aβ1-42. PD patients 
with low Aβ1-42 showed higher frequency of APOE ε4 allele and lower baseline CSF α-syn and p-tau than those 
with high CSF Aβ1-42. Serum NfL and cognitive performances did not show significant differences between the 
two groups.

During the follow-up periods, entire PD patients showed an overall trend of decrease in CSF α-syn and Aβ1-42, 
whereas serum NfL were increased. CSF t-tau and p-tau levels remained almost constant from the baseline to 
3rd year of follow-up (Fig. 1). In group comparisons using linear mixed effect models using age, sex and groups 
(PD and controls) as fixed effects and subjects as random effect, PD patients showed lower CSF α-syn (estimate 
− 285.9, SE 56.8, p < 0.001), Aβ1-42 (estimate − 143.2, SE 37.0, p < 0.001), t-tau (estimate − 28.4, SE 5.7, p < 0.001) 
and p-tau (estimate − 3.1, SE 0.6, p < 0.001) than control subjects, whereas serum NfL did not exhibit a significant 
difference during study period.

Temporal trajectories in total PD patients.  The restricted cubic spline function for baseline values vs. 
annual changes in CSF Aβ1-42 showed lower estimated annual changes in PD group than control subjects. Esti-
mated annual changes were positive under 839 pg/mL of baseline baseline Aβ1-42 and 1014.1 pg/mL in controls, 
and then converted into negative at higher levels (Supplementary Fig. S1A). As a result, temporal trajectory 
of CSF Aβ1-42 in PD group initially showed a rapid decline from the premotor phase until about 5 years after 
the onset of motor symptoms and then slowly approached a plateau. Overall changes in CSF Aβ1-42 during the 
30 years after the onset was estimated as − 12% (Fig. 2A). In contrast, trajectory in control group exhibited stable 
CSF Aβ1-42 values during estimated period.

Restricted cubic spline curves for CSF α-syn showed similar pattern to those for Aβ1-42. Estimated annual 
changes continuously decreased along with the increase of baseline level, and converted into negative above 
1,152 pg/mL of baseline in PD group and 1,715 pg/mL in control group (Supplementary Fig. S1B). Temporal 
trajectory of CSF α-syn showed a decline from the premotor phase, and then slowly approached a plateau. Overall 
changes in CSF α-syn during the 30 years after the onset was estimated as − 26.9% whereas trajectory of CSF in 
α-syn control group showed nearly steady level (Fig. 2B).

Estimated annual changes of CSF t-tau level in control group were slightly positive against baseline values, 
however, PD patients were estimated to exhibit negative annual changes over 242 pg/mL of baseline t-tau level 
(Supplementary Fig. S1C). In the estimated trajectories, PD patients had a lower CSF t-tau (161.2 pg/mL) at 
disease duration 0 than controls (184.6 pg/mL). Estimated temporal trajectories of CSF t-tau in PD and control 
groups exhibited increase of biomarker levels over time, however, CSF t-tau levels in PD group became higher 

Table 1.   Baseline demographics, biomarker levels and cognitive outcomes in PD and control subjects. Data 
are presented as mean ± SD. *P < 0.05 for total PD vs. controls, low CSF Aβ1-42 vs. high CSF Aβ1-42, PDCU vs. 
PDCI. PDCU cognitively unimpaired PD; PDCI cognitively impaired PD patients; APOE apolipoprotein E; 
MDS-UPDRS III Movement Disorder Society sponsored Unified Parkinson’s Disease Rating Scale part III; 
H&Y stage Hoehn & Yahr stage; Aβ1-42 amyloid-β1-42; α-syn α-synuclein; t-tau total tau; p-tau = phosphorylated 
tau; NfL neurofilament light chain; MoCA total scores of Montreal Cognitive Assessment; HVLT-DR delayed 
recall score in Hopkins Verbal Learning Test; LNS total scores of Letter-Number Sequencing test; n.a. not 
available.

Control Total PD High CSF Aβ1-42 Low CSF Aβ1-42 PDCU PDCI

n 182 396 274 122 311 85

Age 60.6 ± 11.5 61.7 ± 9.7 61.5 ± 9.7 62.1 ± 9.8 60.91 ± 9.7 64.5 ± 9.5*

Sex (M:F) 115: 67 264: 132 181: 93 83: 39 204: 107 60:25:00

Education years 15.9 ± 2.9 15.5 ± 3.0 15.6 ± 2.9 15.5 ± 3.1 15.7 ± 3.0 15.1 ± 2.7

Disease duration n.a 2.0 ± 2.0 2.0 ± 2.0 2.0 ± 2.1 2.0 ± 1.9 2.1 ± 2.4

APOE ε4 + (n) 45/166 98/360 52/198* 46/64 80/282 18/78

MDS-UPDRS III n.a 21.3 ± 9.0 21.3 ± 8.8 21.4 ± 9.4 20.7 ± 8.7 23.5 ± 9.6*

H&Y stage (I/II/III) n.a 169/225/2 119/154/1 50/71/1 136/174/1 33/51/1

CSF Aβ1-42 1022.6 ± 502.1 916.0 ± 414.8* 1094.7 ± 373.7* 514.6 ± 109.1 913.5 ± 416.3 925.0 ± 412.0

CSF α-syn 1701.3 ± 770.7 1528.7 ± 678.7* 1693.0 ± 686.9* 1173.0 ± 503.5 1512.3 ± 646.7 1588.7 ± 786.5

CSF t-tau 192.9 ± 80.4 170.5 ± 57.9 181.1 ± 53.9 144.2 ± 59.2 169.8 ± 56.5 173.0 ± 63.3

CSF p-tau 17.6 ± 8.5 15.0 ± 5.4* 15.5 ± 5.0* 13.3 ± 6.0 14.8 ± 5.2 15.6 ± 6.1

Serum NfL 12.4 ± 9.9 13.7 ± 11.8 13.7 ± 13.0 13.6 ± 8.7 13.5 ± 12.9 14.3 ± 6.3

MoCA 28.2 ± 1.1 27.1 ± 2.3* 27.1 ± 2.3 27.4 ± 2.2 28.1 ± 1.3 23.6 ± 1.7*

HVLT-DR 48.8 ± 11.0 44.8 ± 11.1* 44.9 ± 11.0 44.5 ± 11.4 46.2 ± 10.8 39.6 ± 10.7*

LNS 10.9 ± 2.6 10.6 ± 2.6 10.5 ± 2.7 10.7 ± 2.4 10.8 ± 2.6 9.5 ± 2.4*
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Figure 1.   Measured biomarker levels in the PPMI study. Dots represent mean values of biomarkers at each 
follow-up visit. Error-bars denote 95% confidence interval (green lines and dots = PD patients; gray lines and 
dots = controls). Figures are illustrated using ggplot2 and patchwork packages in R software. Aβ1-42 amyloid-β1-42; 
α-syn α-synuclein; t-tau total tau; p-tau phosphorylated tau; NfL neurofilament light chain.
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about 19 years after motor onset compared to controls. Estimated CSF t-tau in PD group increased by 42% dur-
ing 30 years of motor stage (Fig. 2C).

PD patients exhibited a lower CSF p-tau level at motor onset than that of the controls and the mean annual 
changes in CSF p-tau was close to zero (0.06 pg/mL/year) and smaller than those in controls (0.31 pg/mL/year; 
Supplementary Fig. S1D). Although the temporal trajectory of CSF p-tau showed a steady increase even after 
30 years after the onset (Fig. 2D), it did not rose above the Z-score 0.

Finally, the curve for the estimated annual changes of serum NfL against baseline levels in PD group showed 
an inverted-U shape with a peak at 18.8 pg/mL of baseline. Restricted cubic spline curve for control group 
exhibited similar pattern, however estimated annual changes at peak (0.61 pg/mL/year at 13.4 pg/mL) was lower 
than that of PD patients (2.0 pg/mL/year). (Supplementary Fig. S1E). Temporal trajectory of serum NfL thereby 
showed a rapid increase compared to controls, and the increase rate was slowly decreased after 10 years after 
the onset. Compared to the estimated level at the onset, serum NfL in PD group showed an increase of 153% 
over the 30 years of symptomatic period (Fig. 2E), which was larger change than CSF Aβ1-42, α-syn, t-tau and 
p-tau. (Fig. 2F).

Figure 2.   Estimated trajectories of biofluid markers in PD (black line) and control groups (gray line) as 
function of time. The temporal trajectories were acquired by modified Euler’s method for solving the first 
order differential equation. Temporal trajectories of CSF Aβ1-42 and α-syn show negative exponential pattern 
with suspicious plateau (A,B), while those of the CSF t-tau and p-tau, and serum NfL show steady increase 
pattern (D) or sigmoid appearance (C,E). Z score change in serum NfL was the largest within biofluid markers 
(F). Figures are illustrated using ggplot2 and patchwork packages in R software. Aβ1-42 amyloid-β1-42; α-syn 
α-synuclein; t-tau total tau; p-tau phosphorylated tau; NfL neurofilament light chain.
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Influence of cognitive impairment at baseline on temporal trajectories of biomarkers.  Linear 
mixed effect models using groups (PDCU and PDCI), disease duration, and interaction between groups and 
disease duration and subjects as random effect showed significant effect of interaction between disease duration 
and groups in progressions of CSF Aβ1-42, α-syn, t-tau and p-tau levels. Compared to PDCU group, patients with 
cognitive impairment at baseline exhibited slower decrement of CSF Aβ1-42 (estimate 22.94, SE 9.52, p = 0.016) 
and α-syn (estimate 63.3, SE 18.9, p < 0.001) and faster increase of t-tau (estimate 4.41, SE 1.29, p = 0.001) and 
p-tau (estimate 0.34, SE 0.10, p = 0.001; Supplementary Table S1).

In the estimated trajectory, PDCI group showed a rapid decline of CSF Aβ1-42 and, while the PDCU group 
did not. During the 30 years of symptomatic period, PDCI group showed much greater change in CSF Aβ1-42 
(− 48%) than PDCU group (− 14%; Fig. 3A). In the trajectories of CSF α-syn, both PDCU and PDCI groups 
approached plateau about 15 years from motor onset. However, PDCI group had lower α-syn level at motor onset 
and exhibited greater reduction (− 36%) during the 30 years of motor phase than PDCU patients (− 25%; Fig. 3B).

PDCU subset had a lower CSF t-tau level than PDCI group. In the estimated trajectories, PDCU group showed 
a little increment of t-tau (increase of 4.4% during 30 years after motor onset), whereas estimated t-tau levels in 
PDCI group showed a consistent rise (increase of 123.0% during 30 years after the onset). Estimated CSF t-tau 
levels of PDCI group at motor onset was lower than those of PDCU and control groups, however, became higher 
5 and 8 years after motor onset, respectively (Fig. 3C). Similarly, CSF p-tau level in PDCI group was estimated 
to be lower than that in the PDCU and control groups at the onset. However, temporal trajectory of CSF p-tau 
in PDCI group exhibited steadily increasing pattern (increase by 124% during 30 years after the onset) close 
to that of controls. In contrast, the estimated CSF p-tau level barely changed throughout the disease course in 

Figure 3.   Temporal trajectories of biomarkers in PD patients with and without cognitive impairment at 
baseline. PD patients with cognitive impairment (red lines) show greater change in all five biomarkers (A: Aβ1-42, 
B: α-syn, C: t-tau, D: p-tau, E: NfL) across the disease course than those without (blue lines). NfL showed the 
most remarkable changes both in PDCU and PDCI groups (F). Gray lines represent temporal trajectories in 
control group. Figures are illustrated using ggplot2 and patchwork packages in R software. Aβ1-42 amyloid-β1-42; 
α-syn α-synuclein; t-tau total tau; p-tau phosphorylated tau; NfL neurofilament light chain.
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PDCU group (increase by only 3% during 30 years after the onset; Fig. 3D). Trajectories of serum NfL showed 
initial rapid rise and later deceleration pattern in both two groups. Serum NfL levels in both PDCU and PDCI 
groups were estimated to be higher than control group for 30 years after motor onset. PDCI group showed greater 
change in serum NfL level (285%) than PDCU group (217%; Fig. 3E). In both PDCU and PDCI groups, changes 
of z scores were most remarkable in serum NfL (Fig. 3F).

Effect of CSF Aβ1‑42 on temporal trajectories of biomarkers and cognitive outcomes.  In the 
comparison of measured biomarker levels for 5 years, PD patients with low Aβ1-42 showed significantly lower 
CSF α-syn (estimate − 438.43, SE 83.41, p < 0.001), t-tau (estimate − 40.66, SE 7.21, p < 0.001) and p-tau levels 
(estimate − 2.64, SE 0.71, p < 0.001), whereas serum NfL did not exhibit significant difference (Supplementary 
Table S2). In addition, linear mixed effect models showed rapid decline of cognitive performance for 6-years of 
study period (interaction between group and disease duration; MoCA, estimate − 0.22, SE 0.03, p < 0.001; HVLT, 
estimate − 0.49, SE 0.15, p = 0.001; LNS, estimate − 0.07, SE 0.03, p = 0.023; Supplementary Table S3).

Low Aβ1-42 group showed earlier reduction of CSF α-syn below Z-score 0 (8.1 years before the onset) than 
high Aβ1-42 group (0.1 years after the onset). As the trajectories of CSF α-syn approached to plateau, difference in 
CSF α-syn levels between two groups gradually decreased. However, low CSF Aβ1-42 group exhibited still lower 
estimated CSF α-syn level than that of the high CSF Aβ1-42 group (Fig. 4A). Although low CSF Aβ1-42 group 
showed lower estimated CSF t-tau and p-tau levels at baseline than high Aβ1-42 group, temporal trajectory of CSF 
tau proteins in low Aβ1-42 group showed rapid rise throughout the disease course (Fig. 4B and C), and eventually 
CSF t-tau and p-tau levels in low Aβ1-42 group became higher than those in the high Aβ1-42 group about 20 years 
(t-tau) and 5 years (p-tau) after motor onset. Compared to trajectories in control group, CSF t-tau in PD patients 
with low CSF Aβ1-42 became higher about 19 years after motor onset, whereas p-tau levels showed similar increase 
during estimated 30 years. For serum NfL, PD patients with high and low CSF Aβ1-42 exhibited rapid increase 
of biomarker level compared to controls. In high CSF Aβ1-42 group, estimated serum NfL level increased up to 
30.7 pg/mL (Z-score = 1.84) for 30 years, while low CSF Aβ1-42 group showed steady increase in serum NfL level 
up to 71.1 pg/mL (Z-score = 5.91) at 30 years after the onset (Fig. 4D). Temporal trajectories of serum NfL showed 
higher z score changes for 30 years after motor onset compared to other biofluid markers (Fig. 4E).

Both groups showed similar cognitive performances at the onset of motor symptoms. However, low CSF Aβ1-42 
group exhibited faster decline of cognitive performances than high Aβ1-42 group. During the course of 30 years of 
symptomatic period, there was a greater reduction in MoCA total score in low CSF Aβ1-42 group (− 28.6%) than 
that in high CSF Aβ1-42 group (− 4.8%; Fig. 4F). Compared to control group, PD patients had lower estimated 
HVLT delayed recall scores regardless of baseline CSF Aβ1-42 classification. HVLT delayed recall scores showed 
a greater reduction in low CSF Aβ1-42 (− 22.0%) than high CSF Aβ1-42 group (− 3.8%; Fig. 4G). Compared to the 
high CSF Aβ1-42 group, low CSF Aβ1-42 exhibited similar reduction of LNS total score during the first decade 
from the onset. However, after that time point, decline in high CSF Aβ1-42 group was attenuated, thus difference 
between both groups was increased up to 6.1 (Z score = 2.42) at 30 years after the onset (Fig. 4H).

Discussion
Our temporal trajectory models exhibited that CSF Aβ1-42 and α-syn levels progressively decreased in a negative 
exponential pattern even before the onset of motor symptoms and approached a plateau. In contrast, CSF t-tau 
and p-tau, and serum NfL levels increased with the disease progression. These temporal changes in biomarkers 
were more likely to be greater in the PD patients with a cognitive impairment at baseline and in those with low 
CSF Aβ1-42 at baseline. PD patients with low CSF Aβ1-42 showed faster decline of cognitive performance than 
those with high CSF Aβ1-42 at baseline. Therefore, longitudinal changes in biomarkers can be influenced by the 
underlying cognitive impairment and amyloid-β pathology in PD.

We applied restricted cubic spline function to annual changes of biomarkers and integration of annual changes 
using ordinary differential equation modeling. These methods do not provide any statistical metrics, thus our 
analyses suggest a trend of further changes in biomarkers rather than a confirmative conclusion. Statistical 
analyses using empirical measurements would provide relatively conclusive results, however, as stated above, it is 
practically difficult to compose a cohort investigating long-term changes in biofluid markers. Moreover, statisti-
cal analysis requires a pre-defined assumption for shape of the trajectory. Without such a priori assumption, we 
attempted the mathematical model to predict long-term changes of biomarkers. Therefore, our study requires 
further cross-validation by longitudinal measurement of biofluid markers.

Previous studies investigating the longitudinal changes in CSF biomarkers in PD patients have reported 
inconsistent results6–11,14. An increase in CSF α-syn level was observed in a subset of PD patients selected by 
diagnostic likelihood over 90% in Deprenyl and Tocopherol Antioxidative Therapy for Parkinsonism (DATATOP) 
study7, whereas a contrary result was found in a study analyzing full dataset of the same cohort8. In PD without 
dementia, an increase in CSF α-syn level was observed only in the patients with disease duration longer than 
5 years11. Moreover, contrary to our results, a previous analysis including 173 subjects PPMI database reported 
a significant increase in CSF Aβ1-42 during one year from baseline10. In our temporal trajectory models obtained 
from all PD patients in PPMI database, overall changes in CSF α-syn, Aβ1-42, t-tau and p-tau levels were only 
less than Z-score 1.0 during 30 years from the onset and more prominent in the patients with cognitive impair-
ment and low CSF Aβ1-42. We suspect that the inconsistency between the previous studies was attributable to 
the relatively small long-term changes in CSF biomarkers and a heterogeneity of PD patients included. Indeed, 
a previous study including full dataset of PPMI demonstrated progressive decline of CSF Aβ1-42 during 3 years 
from baseline15. Therefore, a consistent and meaningful change can be expected by much longer observational 
period in a large number of PD patients with relatively homogeneous clinical features vulnerable to changes in 
CSF biomarkers.
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Figure 4.   Temporal trajectories of biomarkers and cognitive performances in PD patients with high and low 
CSF Aβ1-42 at baseline. PD patients with low CSF Aβ1-42 levels (red lines) show greater change in four biomarkers 
(A: α-syn, B: t-tau, C: p-tau, D: NfL) and cognitive decline (F: global cognition, G: memory, H: executive 
function) across the disease course than those with high CSF Aβ1-42 (blue lines). NfL showed the greater changes 
in the temporal trajectory among biomarkers (E). Gray lines represent temporal trajectories in control group. 
Figures are illustrated using ggplot2 and patchwork packages in R software. α-syn α-synuclein; t-tau total tau; 
p-tau phosphorylated tau; NfL neurofilament light chain; MoCA Montreal Cognitive Assessment; LNS Letter-
Number Sequencing test; HVLT Hopkins Verbal Learning Test.
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Although the precise mechanism remains unclear, it was postulated that reduced CSF α-syn in PD may reflect 
altered dynamic of α-syn, possibly due to sequestration in intracellular LB pathology or enhanced extracellular 
clearance in α-synucleinopathy16–18. Nuclear imaging studies showed that decrease in CSF Aβ1-42 and increase in 
CSF t-tau and p-tau were correlated with increased amyloid and tau burden in brain19,20. Therefore, our results 
suggest that PD patients with cognitive impairment at early stage can be a phenotype resulting from an early 
appearance of LB load and rapid accumulation of amyloid and tau pathologies. LB and amyloid plaque patholo-
gies in cortical and limbic regions are highly associated with the occurrence of dementia in the clinical course 
of PD4,5,21, and the patients with PD dementia were more likely to show lower CSF Aβ1-42 and higher CSF t-tau 
and p-tau levels, when compared to those with normal cognition22–24. Similar to our results, PD patients with low 
CSF Aβ1-42 at early stage showed worse cognitive performance25,26 and faster decline of cognitive performance 
in memory, executive and visuospatial function than those with high CSF Aβ1-42

27,28.
NfL is a subunit of neurofilament protein, which is a major component of neuronal cytoskeleton and abun-

dant in myelinated axons with large caliber29,30. Axonal degeneration preceding neuronal death and damaged 
white matter integrity in cellular model and patients with Alzheimer’s disease are, for instance, the evidences for 
an involvement of white matter in neurodegenerative diseases31–33. Thus, CSF NfL level can be a biomarker for 
neuroaxonal damage in various kinds of neurodegenerative diseases34. A recent study showed a significant cor-
relation between CSF and serum levels of NfL in PD patients, suggesting that serum NfL also can be a potential 
biomarker for neurodegeneration replacing CSF NfL35. Although some studies did not find an increased CSF 
NfL in PD6,30,36, the other studies observed an increased CSF or plasma NfL level in PD patients compared to 
the healthy elderly35,37. In a large biomarker study including over 3,000 subjects with dementia, patients with late 
onset AD or dementia with Lewy body (DLB) showed higher CSF NfL than PD subjects30. Therefore, we may 
expect that additional amyloid pathology in PD enhances an increase of NfL in both CSF and serum. It is interest-
ing to note that estimated changes in serum NfL was much greater than CSF biomarkers in our study. Moreover, 
PD patients suspicious for having amyloid pathology exhibited great amount (almost 550%) of increase in serum 
NfL level over the 30 years. This suggests that the NfL level may be a potential biomarker for neurodegeneration 
induced by amyloid pathology6 or monitoring the disease progression in PD37.

It has been suggested that the dynamics of CSF α-syn, Aβ1-42, t-tau and p-tau may be intercorrelated in 
PD patients. Postmortem studies showed an association between cortical LB burden, amyloid plaque and tau 
grade38,39. Greater postmortem cortical LB burden was expected by the lower antemortem CSF Aβ1-42 level40. 
In transgenic mice model expressing cortical amyloid, early appearance of widespread α-syn pathology can be 
induced by an injection of preformed α-syn fibril into the hippocampus41. Similarly, α-syn pathology promoted 
fibrillization and phosphorylation of tau proteins in cellular and transgenic animal models42,43. Several studies 
demonstrated a correlation between CSF α-syn, Aβ1-42 and p-tau levels6,25,44,45. Therefore, amyloid load in central 
nervous system of PD patients may cause not only neurodegenerative process related with Alzheimer’s disease, 
but accelerated propagation of α-syn pathology. As stated above, our estimated trajectory of serum NfL suggested 
a possible impact of amyloid burden on neuroaxonal integrity, and disruption of white matter integrity are related 
to deterioration of cognitive performance in working memory, attention and executive function, visuospatial 
skills, and psychomotor speed46. Our estimated trajectories are consistent with previous studies showing predic-
tive value of CSF Aβ1-42 for global and domain specific cognitive decline15.

In this study, we stratified PD group either by CSF Aβ1-42 or cognition at the time point of baseline assess-
ment in PPMI database. Because the patients had various disease duration at baseline, our study can be limited 
by the absence of synchronization of CSF Aβ1-42 and cognition levels in dichotomizing groups. In addition, we 
extrapolated biomarker levels and cognitive outcomes about 30 years of disease duration using longitudinal 
measurement of 5–7 years. Because the PPMI database only included the PD patients in their early stage of 
disease course, our study is limited by missing biomarker data for the far advanced PD patients and the changes 
in biomarkers might be underestimated. Therefore, our temporal trajectory models require to be further revised 
by including advanced PD patients.

In summary, our temporal trajectory models suggest that longitudinal changes in biomarkers can vary with 
amyloid burden or cognitive impairment in PD patients. Early occurrence of cognitive impairment can be a 
clinical feature suspecting more rapid growth of LB and AD type pathologies. PD patients with low CSF Aβ1-42 
may be more vulnerable to LB pathology, neuroaxonal damage, and cognitive impairment in their clinical course. 
Our study results raised a possibility for the potential role of future amyloid-lowering therapy for delaying the 
pathological progression and cognitive decline in PD.

Methods
Participants.  Study design is summarized in Fig.  5. From the PPMI database (http://​ppmi-​info.​org), 
anonymized and de-identified results as of Feb 2020 were downloaded. Briefly, the PPMI study is an obser-
vational cohort study aimed at identifying biomarkers of PD progression. The eligibility criteria include PD 
patients older than 30 years of age, diagnosed with PD within the last 2 years with a Hoehn & Yahr (H&Y) stage 
not greater than II, untreated, and exhibiting striatal dopaminergic dysfunction on 123I-N-3-fluoropropyl-2β-
carbomethoxy-3β-4-iodophenyl tropane (123I-FP-CIT) single photon emission computed tomography (SPECT). 
The detailed study protocol can be found at www.​ppmi-​info.​org.

We included PD and control subjects who had undergone measurement of CSF α-syn, Aβ1-42, p-tau and serum 
NfL at least twice. Age-at-onset (AAO) was defined as the time interval between date of birth and self-declared 
motor onset, and disease duration as the time interval between the self-declared motor onset and sampling date. 
The severity of parkinsonian motor deficits was assessed by the Movement Disorder Society sponsored Uni-
fied Parkinson Disease Rating Scale (MDS-UPDRS) part III and H&Y stage. To estimate the effect of baseline 
CSF Aβ1-42 on longitudinal cognitive performance, we included total scores of Montreal Cognitive Assessment 

http://ppmi-info.org
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(MoCA), Letter-Number Sequencing (LNS) test, and delayed recall scores of Hopkins Verbal Learning Test 
(HVLT). In addition, genotyping of Apolipoprotein E (APOE) was included in the analyses. We classified PD 
patients into cognitively unimpaired (PDCU, MoCA total scores > 25) and cognitively impaired (PDCI, MoCA 
total scores ≤ 25) groups47.

The PPMI study is registered at ClinicalTrials.gov (NCT01141023). Each PPMI site received approval from 
an ethics committee on human experimentation prior to study initiation. All research was performed in accord-
ance with the relevant guidelines and regulations. The institutional review board of Pusan National University 
approved secondary analyses of publically shared data. The informed written consent has been waived off by the 
institutional review board of Pusan National University.

Measurement of biomarkers.  CSF was collected by standardized lumbar puncture procedures. Ship-
ment and storage were performed as described in the PPMI biological manual (http://​ppmi-​info.​org) and 
elsewhere26,48. The coded frozen aliquots of CSF were transferred from the PPMI Biorepository Core laborato-
ries to the University of Pennsylvania and to Covance for analyses. CSF Aβ1-42, t-tau and p-tau were measured 
using the electrochemiluminescence (ECL) immunoassays on a fully automated cobas e601 analyzer (Elecsys, 

Figure 5.   Study design. *Outliers were defined as patients with more than 3 interquartile ranges below the first 
quartile or above the third quartile in baseline biomarker levels, or patients with cognitive outcomes beyond the 
mean ± 4 SD. PPMI Parkinson’s Progression Markers Initiative; NfL neurofilament light chain; Hb Hemoglobin; 
MoCA Montreal Cognitive Assessment, total scores; HVLT Hopkin’s Verbal Learning test, total scores of delayed 
recall; LNS Letter-Number-Sequencing test, total scores; BL baseline; 6-, 12-, 18-, 24-, 30-, 36-, 48-, 54-, 60-, 66-, 
72-M = months from baseline visit; UN unscheduled measurement; ACR​ annual change rates; RCS restricted 
cubic spline.
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Roche diagnostic). The concentration of α-syn in CSF samples were analyzed using commercially available sand-
wich type ELISA kits (Covance, Dedham, MA), as previously described26. Serum NfL level was measured by 
the 2-step digital immunoassay using Single Molecule Array (Simoa) technology (NF-light; UmanDiagnostics, 
Umeå, Sweden). In the present study, CSF α-syn samples with low hemoglobin (< 200 ng/mL)9 were included in 
the analyses. As proposed by a recent study analyzing PPMI database15, we used cut-off 683.45 pg/mL for decid-
ing high and low Aβ1-42 groups. In addition, we excluded the PD patients with baseline biomarker levels more 
than 3 interquartile ranges below first quartile or above the third quartile.

Estimation of temporal trajectories.  As described in the previous literatures12,13, we first applied linear 
regression for each subject to calculate the annual change rates of CSF biomarker levels over time. Linear regres-
sion model of each subject had disease duration (year) as predictor and biomarker or scores of cognitive func-
tion tests as responder variable. In case of control group, time interval from baseline (year) was used as predictor 
term. In addition, CSF biomarker levels and scores of cognitive function tests at the onset of motor symptoms 
were calculated using the linear regression model. Then, we acquired a curve for annual changes in each bio-
marker as a function of baseline values by using restricted cubic spline with 4 knots. The knots were placed at 
5-, 35-, 65- and 95-percentile values of baseline levels. When sample size was under 100, we applied 3 knots at 
5-, 50-, 95-percentile values. Estimated levels as a function of time in year were acquired by using the modified 
Euler’s method for solving the first order differential equation. Finally, based on the calculated biomarker levels 
at motor onset, we plotted trajectories of estimated CSF biomarker levels between the time points at 5 years 
before and 30 years after the onset of motor symptoms. To compare with control subjects, we also calculated 
Z-score using the mean and SD obtained from baseline values of control groups. In addition, we estimated 
temporal trajectories of biomarkers and scores of cognitive function tests in control group using same method. 
Calculated trajectories of control group were anchored to time axis (age) using mean values of biomarkers and 
cognitive performances and median age at baseline visit of PPMI study. For comparison between PD and control 
groups, we converted age into disease duration using following formula: disease duration = age – median of age 
at motor onset in PD patients.

Statistical analyses.  Age, disease duration, education period and MDS-UPDRS III total scores were com-
pared using independent t-test. Chi-square test was employed to compare categorical variables including sex 
ratio, APOE e4 allele frequency, and H&Y stage. Comparison of longitudinal biomarker levels and cognitive 
outcomes between groups were testing by linear mixed effect models using group, disease duration, and inter-
action between group and disease duration as fixed effects and subjects as random effect. Biomarker levels and 
cognitive outcomes at baseline were tested using generalized linear model covariated with age and sex. Statistical 
significance was defined as p < 0.05. Estimation of temporal trajectories and statistical analyses were conducted 
by custom script written in R software (version 3.6.2; r-project.org) with Hmisc and rms packages.

Data availability
The full dataset from the PPMI study is available at www.​ppmi-​info.​org.
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