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INTRODUCTION

Timing ability is a core aspect facilitating human behavior 
at both the motor and perceptive levels.1 Adequate timing of 
behavior is not possible without temporal perception, and the 
temporal organization of motor output is greatly dependent 
on the representation of time in the brain.2 A self-initiated vol-
untary movement is preceded by a period of neural activity be-
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ginning up to 1 second or longer before the onset of voluntary 
movements and is maximal over the central-midline cortical 
areas.3 This activity, termed “movement-related potentials” 
(MRP), is probably generated by a summation of excitatory 
postsynaptic potentials in apical cortical dendrites. Electroen-
cephalographic (EEG) has a high level of temporal resolution 
and is sensitive to the timing of neuronal synaptic and dendritic 
activity. Larger negativity recorded over the scalp indicates larg-
er activity, reflecting a greater amount of depolarization in the 
apical dendrites of pyramidal neurons.4

MRPs are the EEG evidence of cortical involvement during 
the planning, preparation, execution, and evaluation of move-
ments.5 In motor tasks used to elicit MRPs, what subjects should 
actually do is to execute the same movements repeatedly. Like 
all event-related potentials, the motor-related potential is mea-
sured as the average of the potentials from repetitions of the 
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same event.6 the EEG signals from each trial are time-locked 
to the onset of voluntary muscle contractions and averaged to 
reduce noise.3,5 MRPs consist of Bereitschaftpotential (BP), a 
negative cortical potential that develops slowly from 1 second 
or longer before electromyographic (EMG) onset; the motor 
potential (MP) with peak negativity; and the movement moni-
toring potential (MMP) to rebound again.3,7 Several past stud-
ies show the contribution from the supplementary motor area 
(SMA) to this potential. The amplitude of the BP over midline 
central structures and amount of active SMA neurons are in-
creased during internally driven motor acts. The BP prior to 
incidental or externally triggered movements in early midline 
central neural activity was absent. This suggests that BP is cor-
related specifically with voluntary action.8

Neuro-cognitive models of time estimation have shown SMA 
and corticostriatal circuits to be the neuronal substrates of an 
internal clock that creates a representation of time on which 
mechanisms of voluntary movement initiation rely.9 The mo-
tor circuit including the SMA is also related to dopamine lev-
els. These brain systems guide the estimation of time intervals 
and the timing of movement. Since interval timing deficits have 
been observed in neuropsychiatric diseases, interval timing 
is considered a fundamental cognitive component. Examples 
of such psychiatric conditions with dopaminergic dysfunctions 
include Parkinson’s disease,10-12 schizophrenia,13 attention-def-
icit hyperactivity disorder,14,15 autism spectrum disorder,16 and 
Gilles de la Tourette syndrome.17 Motor timing could be ex-
plained as a fundamental aspect of the temporal organization 
of behavior,15,18 and a deficit in time perception might impact 
motor output and, consequently, motor skills.18

In an experimental setting, voluntary movements are the ab-
sence of any external trigger. If the physical manifestation of the 
behavior is prespecified and kept constant throughout the ex-
periment, the most likely behavior to be identified differently 
by the subjects will be the motor timing.19 In contrast to reflex 
action by external triggers, internal time processing is essential 
for voluntary control of movement, and time intervals should 
be internally generated between voluntary movements. Self-
initiated voluntary movements are accompanied by subjective 
temporal perception and motor timing skills.20,21 Perceptions 
of duration are scaled according to each subject’s internal clock. 
Subjective time is the internal experience of how fast time is 
passing, or how much time has passed since the occurrence of 
some event. Motor timing refers to the ability to withhold move-
ment voluntarily until the right moment to generate a correct 
time interval that equates to the output of behavior.22

Various researchers have attempted to examine purely mo-
toric or cognitive processes that contribute to the planning and 
preparation of self-initiated voluntary movements.9,19,23,24 How-
ever, much focus has been placed to date on the BP and the 

motor timing process contributing to the entire MRP activity 
has not been studied comprehensively, despite its great impor-
tance in self-initiated voluntary movements. It is worthwhile 
to explore MRPs in the temporal control of behavior for a fun-
damental understanding of the neural mechanisms in motor 
timing processes. Therefore, it is necessary to establish the rel-
ative contribution of motor timing processes to the MRPs. We 
expected that central-midline activity, particularly the SMA un-
derlying Cz, will reflect internal generation of motor timing. 
We hypothesized that there will be a greater activity when ac-
curately fit into the specified temporal range. The aim of this 
preliminary study was to investigate neural activity related to 
motor timing processes in healthy subjects. 

METHODS

Subjects
The present study was conducted from July 2019 to April 

2020 in a university-affiliated hospital (Severance Hospital, 
Seoul, Korea). Twenty-two healthy volunteers participated in 
the experiment. All subjects were part of an ongoing study con-
cerning Tourette’s disorder and motor tic disorder. Subjects were 
excluded if they met any of the following criteria: were young-
er than 18 years old, had brain lesions or a history of neurolog-
ical or psychiatric disorders, used psychiatric medications, or 
were deemed unable to participate in the study by a psychia-
trist. The 22 [17 (77.3%) female] subjects included in this in-
vestigation, the mean [±standard deviations (SDs)] age ranged 
from 19 to 58 years (33.1±12.7 years). All subjects were right-
handed as assessed by the Edinburgh handedness inventory. 
Each subject provided written, informed consent to participate 
in the study after being informed about the purpose and pro-
cedures involved. The Institutional Review Board of Severance 
Hospital, Yonsei University, reviewed and approved this study 
(no. 4-2019-0165). 

Procedures
Each subject sat comfortably in a chair with their forearm 

placed on an armrest in a quiet room. Subjects were instruct-
ed to initiate a new brisk movement with their right wrist re-
peatedly as closely as possible to the specified time interval (5 
seconds) without specifying the total number of movements. 
A total of 1,395 trials were included in this investigation, with 
the subjects ranging from 39 to 99 trials in 5 minutes and the 
mean (±SD) of 63.41±15.51.

This was completed by a personal judgement of the tem-
poral range without the use of any external time device. Before 
the task began, a brief warm-up round was conducted. Scalp 
EEG and surface EMG data were simultaneously recorded while 
subjects performed the instructed task. During the recording, 
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to minimize eye movement, subjects were asked to focus on a 
fixation mark straight ahead with their eyes open and jaw mus-
culature relaxed. The total duration for the completion of the 
tasks was approximately 30 minutes, with two breaks of approxi-
mately 5 minutes each offered. The importance and direct at-
tention to the timing of the movement were explained to the 
subjects. The instructions were given verbally to the subjects 
as follows:

1) Rest your forearm on the armrest with your hand hang-
ing downward. Face your palm downward without stretching 
your fingers. Keep your fingers relaxed. Fix your eyes on the 
fixation mark straight ahead while minimizing eye-related and 
jaw movement to prevent movement-related artifacts in the 
recording.

2) Extend your dominant wrist as briskly as possible, and then 
relax your hand muscles as quickly as possible (drop the hand 
below gravity back to its resting position) to avoid inducing any 
muscular tension, which could possibly affect the outcome. Ex-
tend the wrist with a moderate force to avoid muscular tiredness.

3) The interval between self-initiated wrist extensions should 
be approximately 5 seconds. Achieve a regular interval between 
two successive movements. It is important to comply with the 
temporal intervals and the time to movement onset. 

4) The arm and hand muscles should be completely relaxed 
during the interval between movements. Eye blinks, body ad-
justments, throat clearing, and other movements should be 
avoided. Avoid blinking for as long as possible.

5) A brief practice session is performed to help you under-
stand the task and enable brisk right movements. You may be 
interrupted during the practice session to ask if you are able 
to follow the instructions correctly. Short pauses are allowed 
during a task upon request or the presence of many artifacts 
on the on-line recordings.

Recording
EMG activity was measured using Ag/AgCl bipolar surface 

electrodes (HeartRode; HUREV Company, Wonju, Korea) 
placed over the right wrist extensor muscle (extensor digito-
rum muscle). The EMG data were digitized at 1 kHz using the 
Physio 16 MR input box (Electrical Geodesics, Eugene, OR, 
USA) and filtered online using a bandpass filter set at 10–120 
Hz. A 64-channel Hydrocel Geodesic Sensor Net (Electrical 
Geodesics, Eugene, OR, USA) was used to place electrodes on 
the scalp in accordance with the extended international 10–
20 system. EEG signals were amplified by the Net Amps 400 
Amplifier (Electrical Geodesics, Eugene, OR, USA) and EEG 
data were continuously recorded with the Net station version 
5.4 software (Electrical Geodesics, Eugene, OR, USA). The 
continuous EEG was sampled at 1 kHz. For all electrodes, the 
impedance was maintained below 50 kOhms. EEG data were 

band-pass–filtered at 0.5 to 100 Hz and notch-filtered at 60 Hz. 
All EEG channels were referenced to the vertex (Cz) of the scalp.

Analysis

EMG analysis
EMG data were exported and analyzed using MATLAB 2015b 

(MathWorks, Natick, MA, USA). The continuous EMG signal 
was rectified and then filtered using a second-order Butterworth 
filter; a cut-off frequency of 20 Hz was applied to smooth the 
features. The timing of EMG onset was defined as the point at 
which the EMG activity exceeded two SDs above the resting 
baseline in a manner that was maintained for at least 80 ms.25 
In each trial, EMG onset was determined both by visual inspec-
tion and by using computer-based onset determination for the 
smoothed EMG record. If the EMG onset could not be deter-
mined using any method, it was recorded as a missing value for 
the statistical analysis.26 The baseline shift was also corrected 
in the software afterward, defining the zero level from the trace. 
The amplitudes of the EMG and the latencies were measured 
with respect to the peak of the averaged rectified EMG activity. 

Behavior analysis
To quantify the behavior performance during the motor 

timing task, inter-movement time was calculated as the aver-
age of all intervals between consecutive EMG onsets performed 
for each of the subjects for 5 minutes (Supplementary Figure 1 
in the online-only Data Supplement). Since the subjects were 
instructed to extend their dominant wrist as actively as pos-
sible and then drop the hand under gravity to its resting posi-
tion, we considered the EMG peak latency between the onset 
and peak of the average rectified EMG activity as movement 
duration instead of the EMG offset. Motor timing error was 
calculated as an absolute discrepancy value between the sub-
jects’ produced and given time interval (5 seconds). The motor 
timing errors were calculated14 as follows: motor timing error= 
|the mean duration of intervals between consecutive EMG on-
sets - given time interval (5 seconds)|. This reflects the magni-
tude of the subjects’ motor timing errors regardless of direc-
tionality (over- or underestimates). 

MRP analysis
EEG data were preprocessed and analyzed using functions 

from the EEGLAB toolbox operating under MATLAB 2015b 
(MathWorks, Natick, MA, USA).27 The continuous EEG data 
were re-referenced to an average reference and filtered with a 
band-pass of 0.01 to 35 Hz. EEG artifacts were removed by 
independent component analysis. A total of 126 ICA compo-
nents were removed among the subjects. The number of ICA 
components removed per subject ranged from 3 to 9 with a 
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mean (±SD) of 5.73±1.96 (Supplementary Table 1 in the on-
line-only Data Supplement). MRP was derived from move-
ment onset trigger-averaged EEG signals. The EMG onset was 
marked on the EEG recording’s time axis (t=0 s). The contin-
uous EEG data were segmented into 3 s epochs, including 2 s 
before to 1 s after with respect to EMG onset. Meanwhile, the 
baseline was defined as the time window from -2 s to -1.9 s, ref-
erencing the EMG onset (t=0 s). All trials were visually inspect-
ed. Epochs with excessive artifacts were rejected and the re-
maining epochs were then averaged. The mean (±SD) number 
of trials left after data rejection was 57.8±12.9 per subject. For 
the MRP, we measured the voltage at the central-midline chan-
nel, Cz. Based on data observation, restricted time windows 
were selected to identify specific components and measure the 
amplitude of these components. Four components of move-
ment-related potentials (early BP, late BP, MP, and MMP) were 
considered: the early BP with a mean amplitude of -1 s to -0.5 s; 
the late BP with a mean amplitude of -0.5 s to 0 s (EMG onset); 
MP as the peak negativity and latency; MMP with a mean am-
plitude of 0 s to 0.5 s. Measurements were made on the indi-
vidual records.28-30 

Statistical analysis
Statistical analyses were performed using the Statistical Pack-

age for the Social Sciences version 25.0 (IBM Corp., Armonk, 
NY, USA) software. All p-values were two-tailed and statisti-
cal significance was set at less than 0.05. To determine the vari-
ables to be used in the regression model, Pearson’s correlation 
coefficient was used to test the possible significant correlations 
between MRP measures and behavior characteristics. Relation-
ships were determined using linear regression models to assess 
the associations between covariables of interest and MRP com-
ponents. A linear regression analysis with the “enter” method 
was conducted to evaluate the independent determinants of 
each MRP component.

RESULTS 

An overview of the results in subjects is depicted in Table 1 
and the grand average waveforms of the MRPs recorded dur-
ing the motor timing task for the subject is demonstrated in 
Figure 1. The plots also show the typical time course for MRPs 
from Cz electrodes. The slow negative potential began to in-
crease around 1.5 s prior to EMG onset and reached a peak 
amplitude around the point of EMG burst. After the peak, the 
potential returned to the baseline level. According to the be-
havioral data, the mean (±SD) for the total number of trials 
conducted by subjects in 5 minutes was 63.41±15.51. The mean 
(±SD) time interval between consecutive EMG onsets among 
the subjects was 5,911.2±1,233.1 ms, and the mean (±SD) for 
the motor timing errors was 1,092.7±1,067.4 ms.

Pearson’s correlation coefficients were used to establish the 
correlation between the MRP components and behavior char-
acteristics regarding the motor timing task. As shown in Fig-
ure 2, a significant correlation was found between the motor 
timing error and amplitude of early BP (r=0.485; p=0.022), late 
BP (r=0.5118; p=0.015), and MP (r=0.570; p=0.006). There was 
no significance between the motor timing error and amplitude 
of MMP (r=0.381; p=0.080). There was no correlation between 
EMG peak latency and MRP components (early BP, r=0.396, 
p=0.068; late BP, r=0.352, p=0.108; MMP, r=0.176 p=0.434). In 
contrast, MP showed a significant positive correlation with an 
EMG peak latency (r=0.440, p=0.040). There were no signifi-
cant correlations between EMG peak amplitude and MRP com-
ponents (early BP, r=-0.188, p=0.403; late BP, r=-0.203, p=0.365; 
MP, r=-0.79, p=0.727; MMP, r=-0155, p=0.492) (Table 2). 

In the linear regression models, motor timing error was in-
dependently and positively associated with the late BP (p=0.036) 
(Table 3) and MP (p=0.016) (Table 4) but not with early BP (p= 
0.056) and MMP (p=0.360). EMG peak latency was not asso-
ciated with MRP components: early BP (p=0.173), late BP (p= 

Table 1. Behavior, and electrophysiological data of the study sample

Mean SD Min Max
Trials 63.41 15.51 39.00 99.00
Interval time (ms) 5,911.20 1,233.14 4,457.88 9,069.19
Motor timing errors (ms) 1,092.69 1,067.43 24.37 4,069.19
EMG peak amplitude (μV) 174.19 60.06 71.89 321.74
EMG peak latency (ms) 241.67 234.72 85.00 967.00
Early BP (μV) -0.97 0.71 -2.43 0.29
Late BP (μV) -1.78 1.17 -4.92 0.20
MP (μV) -3.29 1.61 -6.26 -0.78
MMP (μV) -1.43 1.18 -3.59 0.32
EMG: electromyogram, BP: Bereitschaftpotential, MP:motor potential, MMP: movement monitoring potential, SD: standard deviation, Min: 
minimum, Max: maximum 



674  Psychiatry Investig  2021;18(7):670-678

Electrophysiological Correlates in Motor Timing

0.269), MP (p=0.114), and MMP (p=0.739). We found that a 
less accurate motor timing indicated attenuated the MRP am-
plitude. Motor timing error explained 34.8% of the peak am-

plitude of MRP [adjusted R2=0.348; F(2,21)=6.594, p=0.007; 
sum of squares regression=22.32, residual=32.15]. 
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DISCUSSION

MRPs are not confined to motor-specific processes, but in-
volve non-motor or cognitive factors.19 However, it remains 
somewhat unclear that internal time-processing is reflected in 
voluntary movement-related potential. We sought to investi-
gate the motor timing that contributed to self-initiated volun-
tary movement and to examine how the contribution of mo-

tor timing is reflected in movement-related neural activities 
in a sample of healthy subjects. To the best of our knowledge, 
this study is the first to examine the pattern of neural activity 
associated with motor timing processes during voluntary move-
ments for all components of the MRP.

The activation patterns observed in this study were similar 
to those of previous studies that analyzed MRP as the peak am-
plitude over the central-medial scalp using EMG as a move-
ment-onset trigger.11 During self-triggered movements, the neg-
ativities of all MRP components were concentrated around the 
vertex region.31,32 A slow negative event-related potential wave-
form, which spread over time before and after EMG onset, was 
observed in the surface recorded at the central-located elec-
trodes. The amount of neural activation followed the predict-
ed inverted-U—shaped pattern.7,33 The negative potential de-
veloped prior to the motor timing response was maximal at its 
peak and, thereafter, the rebound was observed.3,32 A plausible 
hypothesis to explain these results is that MRPs reflect the in-
tegral sum of activity or excitability over the SMA (Cz electrode 
sites—it has been suggested that the SMA is the origin of the 
MRP because it is maximally recorded at Cz, which overlies 
this anatomical structure) during self-initiated movement.34

Typical studies on BP restrict the intervals between move-
ments, which could be once every 5 seconds. To measure the 
rate from the subjective internal clock assumed to be the nat-
ural strategy adopted by subjects partaking in motor timing 
tasks for time intervals of longer than 3 seconds, motor timing 
tasks in this study required movements to be voluntarily self-
initiated by subjects without external trigger signals.10 The du-
ration of interval time is a factor that may influence the decrease 
in MRP intensity,30 and perception or processing of shorter and 
longer time intervals evoke different modes of temporal pro-
cessing.35 In particular, time intervals of less than three seconds 
are thought to fall within the range of the “perceived present.” 
This is supported by psychophysiological evidence suggesting 
that the threshold of a duration to be defined as the psychologi-
cal present—which can be perceived as an entity and therefore 
is not influenced by working memory—lies between 1 and 3 s. 
In contrast, longer intervals might activate silent counting or in-
ternal clocks as compared with the holistic processing of short-
er intervals.35,36 

In response to the requirement to repeat the same action in 
a self-initiated manner once every 5 seconds, subjects have an 
internal temporal guide on when to move. Subjects might set 
up and rely on some internally generated blurry-defined rhyth-
mical activity. The activity might be initiated periodically and 
then increase until some subjective threshold is reached, which 
is determined by the subject. This activity may be represented 
by the amplitudes of BP to MP. According to this suggestion, 
an actual movement is executed when random activity has ac-

Table 3. Linear regression models of late BP amplitude as pre-
dicted by behavior characteristics

β B (SE) t p
Model 1

(Constant) -2.395 (0.319) -7.517 <0.001
Motor timing errors 0.511 -0.001 (0.0002) 2.661 0.015*

Model 2
(Constant) -2.580 (0.356) -7.257 <0.001
Motor timing errors 0.448 0.0005 (0.0002) 2.252 0.036*
EMG peak latency 0.226 0.001 (0.001) 1.138 0.259

Linear regression analyses were performed with the late BP as de-
pendent variable, and motor timing errors and EMG latency as in-
dependent variables. Standardized regression coefficients (β). Un-
derstandardized coefficients (B) and standard errors (S.E.). *p<0.05. 
EMG: electromyogram, BP: Bereitschaftpotential

Table 2. Correlations between behavior characteristics and MRP 
components

Early BP Late BP MP MMP
Age -0.162 -0.296 -0.162 0.051
Motor timing errors 0.485* 0.511* 0.570† 0.381
EMG peak amplitude -0.188 -0.203 -0.079 -0.155
EMG peak latency 0.396 0.352 0.440* 0.176
Values are Pearson’s correlation coefficients. *p<0.05, †p<0.01. 
MRP: movement-related potential, EMG: electromyogram, BP: 
Bereitschaftpotential, MP: motor potential, MMP: Movement 
monitoring potential

Table 4. Linear regression models of MP amplitude as predicted 
by behavior characteristics

β B (SE) t p
Model 1

(Constant) -4.232 (0.419) -10.102 <0.001
Motor timing errors 0.570 0.001 (0.0003) 3.099 0.006†

Model 2
(Constant) -4.573 (0.452) -10.128 <0.001
Motor timing errors 0.484 0.001 (0.0003) 2.252 0.016*
EMG peak latency 0.304 0.002 (0.001) 1.138 0.114

Linear regression analyses were performed with the BP as depen-
dent variable, and motor timing errors and EMG latency as inde-
pendent variables. Standardized regression coefficients (β). Under-
standardized coefficients (B) and standard errors (S.E.). *p<0.05, 
†p<0.01. EMG: electromyogram, MP: motor potential
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cumulated enough power to cross an electrophysiological thresh-
old, indicating that the motor command requires a final trigger 
to actually generate movement. This explanation may reflect 
the triggering mechanism for actual movement.8,20,33 

Upon investigating the impact of the relationship between 
the degree of movement-related neural activity and the behav-
ior characteristics on motor timing tasks, a significant corre-
lation between the magnitude of the MRP and motor timing 
errors was found in BP and MP, not MMP. MP also had a sig-
nificant correlation with EMG latency. However, there was no 
significant correlation across all MRP components between 
the EMG amplitude and the MRP amplitude. Notably, as the 
motor timing error increase, the BP and MP magnitude de-
crease. To exclude the possibility that the modulation of the 
MRPs found in our study were induced by differences in mus-
cular activity during movements (for example, force and speed 
of the movements), a regression analysis was performed with 
the performance score as an independent variable and the MRP 
as a dependent variable. Motor timing error was found to have 
a significant effect on amplitude of late BP and MP. This find-
ing is consistent with the fMRI data in which the motor timing 
condition was associated with greater activation in the SMA. 
Relationships between SMA and time estimation have been 
well-established in fMRI studies. They were also mentioned 
long ago in studies on the relationship between SMA and BP.37 

SMA is a crucial region contributing to the sustained activ-
ity of the RP before movement.38 Our data are consistent with 
the involvement of SMA in internal time processes during vol-
untary movement. Several studies have reported that the time-
course of firing of neurons in the pre-motor and motor cortex 
bore are similar to the time-course of the MRP, and the acti-
vation of MFC is required for temporal processing. The post-
movement component (MMP) may represent activity, which 
reactivated after the initial activation peak of the MRP. We ex-
pected SMA to play a causal role in introspective motor tim-
ing and that the medial frontal cortex (MFC; electrode Cz from 
EEG) would be involved in motor timing and timing error de-
tection. However, there was no significant correlation between 
MMP and the motor timing error. 

In this study, the motor timing error contributed indepen-
dently to the amplitude of the late BP and MP measured at Cz, 
while the exerted force and speed did not contribute indepen-
dently to any component. Several studies have shown that BP 
is influenced by the exerted forces during movement and speed 
of movement. It is difficult to clearly distinguish the effects of 
psychological factors from those of physical factors because 
stronger and faster exertions are generally associated with great-
er intentions, motivations, and efforts of subjects. MRPs are also 
found in tasks where subjects only imagine their movement, 
rather than actually performing any movement, and no motor 

output is present. RP-like electrophysiological potentials have 
been identified, regardless of whether the movement is actual-
ly performed when subjects form a movement intention. Jan-
kelowitz and Colebatch8 compared average EEG potentials 
recorded at the central vertex electrode (Cz) during motor im-
agery and self-initiated movement; they observed equal early 
BPs in all the conditions. An important question is “how are 
cortical activities observed by imagination alone without any 
active motor execution?” In the same vein, brain areas activat-
ed by motor imagery were compared to motor execution us-
ing fMRI by Cunnington et al.39 They found that SMA was ac-
tive in both motor imagery and motor execution, whereas MI 
was active only in motor execution.

Control for action is not a single holistic process. The process 
reflected by MRPs is, of course, not the timing of mechanisms 
itself. MRPs could encode cognitive demands in addition to 
temporal information, such as attention,19 intention,23,32 or work-
ing memory.40 Accuracy and precision of time estimation and 
the exact timing of motor behavior are intimately linked to over-
all cognitive function. Considering the design of this study, it is 
reasonable to assume that movement preparation and the ac-
tivation of the internal clock may have occurred simultaneous-
ly, and internal clock activation may influence the magnitude 
of the MRP. 

We observed that MRPs recorded during self-initiated move-
ment were significantly different between the first quintile (Q1) 
and fifth quintile (Q5) of motor timing error with different 
performance capabilities of motor timing. Specifically, MRP 
amplitude was significantly attenuated more in Q1 than Q5. 
The absolute error was 2.63 seconds in Q1 and 0.09 seconds 
in Q5. The mean interval time of the latter was 5.03 seconds, 
and the former was 7.62 seconds, with the interval time de-
layed by 2 seconds. Our results confirmed that internally gen-
erated rhythms used as a self-reference for motor timing were 
slower in Q1 with larger motor timing errors. This could be 
due to the tendency among subjects in Q1 to overestimate the 
target interval, thus ending in a directional error.14 The current 
study focused on the link between absolute errors in temporal 
judgment and the MRP amplitude. However, temporal judg-
ments involve not only absolute but also directional errors. 
Hence, it remains unclear whether the attenuated mean MRP 
amplitude was the result of an absolute error or whether it was 
due to a directional error. This issue is likely due to the small 
study sample size, which constituted a limitation in the pres-
ent research. 

Furthermore, given the limited design scope of this study, 
it is not possible to exclude the possibility that subjects might 
have failed to maintain constant attention during all motor tim-
ing tasks or to rule out the potential that counting strategies 
may have been used by subjects for motor timing.9 Not count-
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ing seconds is a classical requirement in BP research, out of con-
cern that subjects may not act by free will. Verleger et al.41 in-
vestigated the BP between conditions of mental time estimation 
and conditions of no mental time estimation, but found no dif-
ference. They suggested that time tracking would be enabled 
through several strategies similar to counting in the mind when 
counting is not required.

Notwithstanding its limitations, the current study demon-
strated that increase in the level of motor timing error with the 
target timing caused a significant attenuation of late BP and MP 
at the central-midline electrode. Motor timing errors and MRPs 
measured during motor timing tasks have never been directly 
compared and therefore remain understudied. The notion of 
a link between a decrease in MRP negativity and motor timing 
deficits needs to be explored by further research. The temporal 
information has to be adequately processed for the control of 
perception and action. The current study provides further ev-
idence that MRPs are associated with a deficit in the sense of 
time, at least in that measured by motor timing tasks. The level 
of the motor timing error with the target timing was found to 
have an important effect on the late BP and MP amplitude of 
the MRP. Although these findings are only preliminary, they 
indicate that motor timing abilities may have a substantial in-
fluence on neural activities related to self-initiated voluntary 
movement. These results may help to improve the understand-
ing of motor timing and its possible role in central motor con-
trol processes.

Supplementary Materials
The online-only Data Supplement is available with this ar-

ticle at https://doi.org/10.30773/pi.2020.0434.
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Supplementary Table 1. The number of ICA components and tri-
als in EEG artifact removal

Subjects
ICA component Trials

Total Left Removal Total Left Removal
Subjects 1 65 61 4 44 43 1
Subjects 2 65 59 6 51 43 8
Subjects 3 65 62 3 97 57 40
Subjects 4 65 59 6 99 96 3
Subjects 5 65 57 8 73 58 15
Subjects 6 65 62 3 60 53 7
Subjects 7 65 59 6 39 36 3
Subjects 8 65 57 8 63 62 1
Subjects 9 65 62 3 51 51 0
Subjects 10 65 62 3 59 57 2
Subjects 11 65 56 9 41 40 1
Subjects 12 65 57 8 66 66 0
Subjects 13 65 61 4 69 63 6
Subjects 14 65 61 4 60 55 5
Subjects 15 65 59 6 77 69 8
Subjects 16 65 58 7 66 60 6
Subjects 17 65 58 7 66 64 2
Subjects 18 65 56 9 46 45 1
Subjects 19 65 60 5 57 52 5
Subjects 20 65 59 6 70 68 2
Subjects 21 65 61 4 73 68 5
Subjects 22 65 58 7 68 65 3
ICA: Independent component analysis, EEG: electroencephalo-
gram



Supplementary Figure 1. Simultaneous scalp EEG (E1-E65) and EMG (wrist) recording. Time intervals between consecutive EMG onsets 
performed. X-axis: time, Y-axis: signal amplitude, one row per channel. Events are displayed green line. EEG: electroencephalogram, EMG: 
electromyogram.


