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Abstract

Background: Early detection of developmental disabilities in children is essential because early intervention can improve the
prognosis of children. Meanwhile, a growing body of evidence has indicated a relationship between developmental disability and
motor skill, and thus, motor skill is considered in the early diagnosis of developmental disability. However, there are challenges
to assessing motor skill in the diagnosis of developmental disorder, such as a lack of specialists and time constraints, and thus it
is commonly conducted through informal questions or surveys to parents.

Objective: This study sought to evaluate the possibility of using drag-and-drop data as a digital biomarker and to develop a
classification model based on drag-and-drop data with which to classify children with developmental disabilities.

Methods: We collected drag-and-drop data from children with typical development and developmental disabilities from May
1, 2018, to May 1, 2020, via a mobile application (DoBrain). We used touch coordinates and extracted kinetic variables from
these coordinates. A deep learning algorithm was developed to predict potential development disabilities in children. For
interpretability of the model results, we identified which coordinates contributed to the classification results by applying
gradient-weighted class activation mapping.

Results: Of the 370 children in the study, 223 had typical development, and 147 had developmental disabilities. In all games,
the number of changes in the acceleration sign based on the direction of progress both in the x- and y-axes showed significant
differences between the 2 groups (P<.001; effect size >0.5). The deep learning convolutional neural network model showed that
drag-and-drop data can help diagnose developmental disabilities, with an area under the receiving operating characteristics curve
of 0.817. A gradient class activation map, which can interpret the results of a deep learning model, was visualized with the game
results for specific children.

Conclusions: Through the results of the deep learning model, we confirmed that drag-and-drop data can be a new digital
biomarker for the diagnosis of developmental disabilities.

(JMIR Serious Games 2021;9(2):e23130) doi: 10.2196/23130
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Introduction

Developmental disabilities are a set of common heterogeneous
disorders developing in 10%-15% of preschool-age children
and characterized by difficulties in one or more domains,
including learning, behavior, and self-care [1-3]. The prevalence
trend of all developmental disabilities increased from 1997 to
2017 in the United States, and the trend in low- and
middle-income countries has also increased in the number of
children surviving high-risk neonatal conditions from improved
obstetric and neonatal care [4,5]. Although the etiology and
cause of developmental disabilities are complicated and not
well understood, early intervention is conventionally considered
as an effective clinical treatment [6,7]. Early detection of
developmental disabilities is key because early intervention can
improve a child’s prognosis due to rapid brain growth and
neuroplasticity [8-10]. However, early detection or screening
has multiple challenges, including time constraints, financial
burden, scarcity of human resources, lack of consensus on the
tools for the general childhood population, and diagnostic
stability [11,12]. Given the phenotypical nature of
developmental disabilities, the assessment processes show high
variability [13,14]. Neuropsychological tests are often difficult
and tedious for preschool-age children to complete, leading to
inaccurate assessment [14]. Moreover, although it is important
to perform continuous clinical examinations and comprehensive
tracking for more accurate assessment [15-17], poor follow-up
adherence rates have been reported. This low follow-up rate
can induce a loss of chance for early intervention [18].

Meanwhile, a growing body of evidence has indicated a
relationship between developmental disability and motor control,
because the cerebellum is closely related to higher cognitive
function [19]. Motor skill is considered to be a factor in the
early diagnosis of developmental disability [20,21]. Despite
this evidence, the measurement of motor skill requires expensive
laboratory resources or clinical expertise and is not easily
applicable in repeated measurements. As an alternative to
measuring motor skill and without the constraints of time and
place, a serious game that is able to capture upper extremity
movements while touching a display could help in detecting
children with developmental disabilities.

Therefore, this study aimed to identify the possibility of
drag-and-drop data as a digital biomarker and to develop a
classification model based on drag-and-drop data with which
to classify children with developmental disabilities.

Methods

Serious Games
This study included children who had experiences with a serious
game known as DoBrain (DoBrain Inc). DoBrain is a

mobile-based game that provides programs for the cognitive
development of children. The games of this application consist
of chapters of 7 to 8 subgames targeting spatial awareness,
perceptual speed, repair, creativity, reasoning, composition,
memory, and visual discrimination of the cognitive area. Each
subgame can be classified into a tapping game where users have
to solve a problem by touching objects to answer a question or
a drag-and-drop game where users have to drag and drop cartoon
objects with their fingers. In addition, the difficulty of the game
is divided into 3 levels (A, B, and C) depending on the cognitive
level of the user. Chapter 1 comprises 7 subgames, including 4
tapping games or non–drag-and-drop games (first, fourth, fifth,
and seventh) and 3 drag-and-drop games (second, third, and
sixth). The second game is an imitation game in which users
must infer the correct answer from similar images of an object
and is designed to improve logical reasoning. The third subgame
requires the user to infer the correct answer from remnant
images and is designed to improve memory function. The sixth
subgame is designed to improve spatial awareness by requiring
the user to locate the object on the target region (Multimedia
Appendix 1).

Study Design
In this retrospective study, we obtained deidentified participant
data from 3 studies: (1) a retrospective study conducted between
June 1, 2018, and June 1, 2020, with children having profile
information in the application; (2) randomized clinical trials
conducted from March 1, 2019, to December 30, 2019, for
evaluation of cognitive improvement in children with
developmental disabilities; and (3) a prospective study
conducted from February 1, 2020, on a development
classification model. The profiles of children with typical
development included in the first study were entered by their
parents, and the children included in the second and third studies
were diagnosed by pediatric psychologists. In each study, 1594
children with typical development and 343 children with
developmental disabilities (173 and 170 children, respectively)
were included. Among the 1937 children with valid profiles,
we also excluded children without drag-and-drop data due to
server instability or unexpected shutdown of the game (n=646).
Moreover, in 1291 children with drag-and-drop data, we
included only those children who played games at difficulty
level A to make experienced games homogenous because games
at levels B and C have more objects to drag and drop than do
games at level A (n=623). Finally, we included children who
played at least one subgame among the second, third, and sixth
subgames because the other subgames in chapter 1 are played
with tapping answer objects (n=370). In these drag-and-drop
subgames, we analyzed the drag-and-drop log data to classify
those children with typical development and those with
disabilities (Figure 1).
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Figure 1. Eligible user selection flow.

Ethics Statement
The retrospective study was approved by the institutional review
board of Yonsei University College of Medicine in South Korea
(no. Y-2020-0076). The Division of Biomedical System
Informatics (Department of Medicine of Yonsei University)
and DoBrain work together as a nonprofit, joint research group
for the early detection of disabilities in children and improved
cognitive function. To conduct this research, we obtained
deidentified data from DoBrain, and we have no conflicts of
interest related to our dealings with DoBrain Inc.

Analytical Procedure
In our study, we compared the baseline characteristics of
children with and without developmental disabilities using the
t test or Mann-Whitney test for continuous variables (eg, age
and device size) and used chi-square test for categorical
variables (eg, sex). Furthermore, we derived features related to
drag-and-drop data to capture children’s kinetics (Multimedia
Appendix 2). We additionally analyzed these derived data to
identify differences in features from finger strokes between the
2 groups. Before comparative tests, we explored the normality
of distribution by visual methods and statistical tests
(Kolmogorov-Smirnov test) [22]. We determined normality
with consideration to the shape of the histogram and the results
of statistical tests [23]. In addition, we conducted an F test for
homoscedasticity (equal variance in 2 populations). We then
conducted a t test for normally distributed data and a
Mann-Whitney test for nonnormally distributed data.

P values <.05 were considered statistically significant for
2-sided hypothetical tests. In addition, we calculated effect sizes
to determine the possibility of type I statistical error. Cohen d
for continuous variables for normally distributed data and for
categorical variables were considered small depending on the

type of effect size (η2≈0.01; –0.20 < Cohen d < 0.20) [24]. For
nonparametric comparative methods, such as the Mann-Whitney
test, the common language effect size (CLES) was calculated
to identify the probability that a score sampled at random from
one distribution would be greater than a score sampled from
another distribution. CLES reflects the chance that a value for
a randomly selected child with typical development would be
higher than that from one with developmental disabilities [25].

For detecting children with developmental disabilities, we
developed a deep learning classification model based on a 1D
convolutional neural network for drag data. Using drag data,
we tried to leverage multiple inputs (time variant variables:
touch coordinates and their derived variables; time-fixed
variables: statistics acquired at the end of the game, such as
total touch area or demographic data) by joint fusion. We
subsequently modeled the classification algorithm using deep
learning and not conventional machine learning. In addition,
we applied a strategy to decompose coordinates (fine motor
movement) along the x- and y-axes. Through this decomposition
of coordinates, we were able to leverage information along each
axis by creating derived variables, such as velocity and
acceleration, along the axes and volatility of sign change.
Because this approach did not use positional information
(contextual information) in 2D, we developed a model with a
1D convolutional neural network.

Drag-and-drop data, including all touch traces, were leveraged
in our model. The traces of individual touch attempts were
captured and stored in the forms of logs when the user touched
an object on the display. We tried to use drag-and-drop data
regardless of intention to touch. Because the direction is guided
through sounds at the beginning of the game, we built the model
to capture unnecessary touches. Therefore, we used all touch
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records to classify children with or without developmental
disabilities.

At the end of the model, multiple inputs were concatenated by
the individual user ID, and the output node calculated the binary
prediction of developmental disabilities using a fully connected

layer. For time-variant variables, derived variables calculated
from each drag-and-drop feature were input. In contrast, for the
time-fixed variable, demographic characteristics and game
results that were generated after the end of the subgame were
input (Figure 2).

Figure 2. Deep learning model architecture. conv: convolution.

For hyperparameter optimization, we searched hyperparameters
with a grid search. A detailed description of this search is
included in Multimedia Appendix 3. Deep learning models
based on each subgame were also evaluated using 10-fold
cross-validation. The area under the receiver operating
characteristics curve (AUROC), area under the precision-recall
curve, F score, precision, recall (sensitivity), and specificity for
each subgame were calculated as the aggregation of the 10-fold
cross-validation results.

Finally, we not only focused on building a classification model
for developmental delay but also developed an interface with
which to examine the network’s decision to assess the fine motor
movement feature detected by the network. We applied the
gradient-weighted class activation mapping (Grad-CAM)
method to determine which coordinates of fine motor movement
touch were useful for predicting developmental disabilities in
children [26]. For this, we overlaid coordinates with an attention
map from the Grad-CAM, which showed the coordinates of
positive correlates with the output of the network. All statistical
analyses and model development were conducted using Python
3.6.8 and TensorFlow 1.14.0.

Ethics Statements
Our relationship with DoBrain Inc. involves no conflicts of
interest. We and DoBrain Inc. have experience in conducting
national research projects together (“Cognitive learning service
for children with developmental disabilities using on AI”
[unpublished data], 2019-2020) with funding from the National
Information Society Agency, South Korea. Within these national
projects, we obtained the deidentified data from DoBrain Inc.

Results

Baseline Characteristics
A total of 368 eligible children were included in the study. Of
these, 366, 361, and 337 played the second, third, and sixth
subgames, respectively (overall, 223 children had typical
development, and 147 had developmental disabilities). There
was a statistical difference in the chronological age of the 2
groups (P<.001; CLES=0.839) and in the mean playtime
(P<.001; CLES=0.687). In each played subgame, a difference
in the ratio of children who played games was only observed
for the sixth subgame (P=.04; CLES=0.002; Table 1).

JMIR Serious Games 2021 | vol. 9 | iss. 2 | e23130 | p. 4https://games.jmir.org/2021/2/e23130
(page number not for citation purposes)

Kim et alJMIR SERIOUS GAMES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Demographic characteristics in eligible users.

Effect sizeP valueTotal (n=370)Children with developmen-
tal disabilities (n=147)

Children with typical
development (n=223)

Variables

0.839a<.00145.0 (26.5)72.0 (32.5)40.0 (12.0)Age (months), median (IQR)

Diagnosis, n (%)

N/AN/Ab44 (0.11)44 (0.33)0 (0.0)Intellectual disability

N/AN/A41 (0.11)41 (0.27)0 (0.0)Autism spectrum disorder

N/AN/A33 (0.09)33 (0.22)0 (0.0)Developmental disorder

N/AN/A25 (0.09)25 (0.17)0 (0.0)Brain lesions

N/AN/A4 (0.01)4 (0.02)0 (0.0)Monogenic disorder

Children playing subgame, n (%)

<0.001.03366 (98.92)144 (97.96)222 (99.55)Second subgame

<0.001.24361 (97.84)145 (98.64)216 (97.31)Third subgame

0.002.04337 (91.98)139 (95.56)198 (88.79)Sixth subgame

0.469a<.0016.1 (4.2)6.1 (4.2)6.1 (4.2)Device size (inches), median (IQR)

0.687a<.00110.3 (8.2)8.1 (6.5)11.8 (8.5)Game playtime, (s/per game), median (IQR)

0.682a<.0017.0 (12.5)1.0 (14.2)9.0 (9.0)Games played, median (IQR)

aCommon language effect size of continuous variables; η2 for effect size of categorical variables.
bN/A: not applicable.

Characteristics of Drag-and-Drop Game Play
Although playtime did not consistently show statistically
significant differences in each subgame, the playtime in children
with typical development was significantly longer than that of
children with disabilities for the sixth subgame (P<.001;
CLES=0.616; Table 2). In the touch region, the variables related
to measurements of the touch area did not show a statistically
significant difference in median values. However, in the sixth
subgame, the median max of height and width that children
used for playing games showed a significant difference (P<.001;

CLES>0.65). In addition, although the median change of
velocity sign change along the x-axis did not show a difference
(P=.40, P=0.17, and P=0.08, respectively) in all subgames, the
IQR of children with typical development was smaller than the
that of children with developmental disabilities (Multimedia
Appendix 4). In 4 accelerator variables, including sign change
of acceleration along the x-axis and y-axis, with both count and
per line count, the number of sign changes for children with
typical development was larger than that for children with
developmental disabilities.
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Table 2. Comparison of movement features between children with typical development and children with developmental disabilities in each game.

CLESaP valueChildren with developmental disabilitiesChildren with typical developmentCharacteristic

Second game

N/AN/Ab144222Distribution, n

Play information, median (IQR)

0.513.331.98 (5.11)2.03 (6.39)Playtime (second/game)

0.376.242.0 (2.0)1.0 (2.0)Line number (n/game)

0.518.283.1 (4.24)3.04 (3.17)Line length (n/game)

0.409.150.52 (4.46)0.0 (3.31)Release to touch time (sec)

Touch region, median (IQR)

0.540.260.38 (0.08)0.38 (0.1)Height mean, ratio (%)

0.520.100.57 (0.06)0.58 (0.08)Height max, ratio (%)

0.534.130.72 (0.08)0.74 (0.08)Width max, ratio (%))

0.540.0060.38 (0.08)0.38 (0.1)Height mean, ratio (%)

Third game

N/AN/A145216Distribution, n

Play information, median (IQR)

0.524.222.44 (5.99)2.75 (6.63)Playtime (second/game)

0.344.461.0 (2.0)1.0 (2.0)Line number (n/game)

0.553.043.62 (6.28)3.12 (4.23)Line length (n/game)

0.372.450.0 (3.11)0.0 (2.84)Release to touch time (sec)

Touch region, median (IQR)

0.520.020.27 (0.06)0.29 (0.09)Height mean, ratio (%)

0.565.260.35 (0.17)0.35 (0.23)Height max, ratio (%)

0.528.180.71 (0.08)0.72 (0.1)Width max, ratio (%))

0.520.040.27 (0.06)0.29 (0.09)Height mean, ratio (%)

Sixth game

N/AN/A139198Distribution, n

Play information, median (IQR)

0.616<.0014.33 (10.03)7.85 (15.25)Playtime (second/game)

0.514.0012.0 (3.0)3.0 (3.0)Line number (n/game)

0.507.414.5 (7.66)4.64 (8.5)Line length (n/game)

0.549.0011.4 (6.27)2.9 (8.33)Release to touch time (sec)

Touch region, median (IQR)

0.695<.0010.34 (0.16)0.43 (0.06)Height mean, ratio (%)

0.766<.0010.49 (0.2)0.53 (0.09)Height max, ratio (%)

0.658<.0010.73 (0.09)0.78 (0.1)Width max, ratio (%))

0.695<.0010.34 (0.16)0.43 (0.06)Height mean, ratio (%)

aCLES: common language effect size.
bN/A: not applicable.

Model Performance
Overall, the average AUROCs for the second, third, and sixth
games were calculated as 0.746 (σ=0.116), 0.793 (σ=0.117),

and 0.817 (σ=0.070), respectively, in a 10-fold cross-validation;
meanwhile, average F scores of the deep learning models for
each targeted subgame were calculated as 0.627, 0.675, and
0.708, respectively (Table 3). The model for the sixth subgame
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showed relatively high performance compared to other models
using the second or third subgames in terms of average model
performance metrics (AUROC, accuracy, F score, precision,
recall). Recall (also called sensitivity), which refers to the
probability of a positive test given that the patient has a disease,
was highest in the model for the sixth game (0.757; σ=0.123)

(Figure 3). Specificity, which refers to the probability of a
negative test given that the patient is normal, was relatively
better in the model for the third subgame (0.783; σ=0.069) than
in the other models using the second or sixth subgame (second
subgame: 0.755, σ=0.089; sixth subgame: 0.740, σ=0.099).

Table 3. Average model performance result by 10-fold cross-validation in each drag-and-drop subgame.

Performance, mean (SD)Deep learning model for in-
dividual subgame

SpecificityRecallPrecisionF scoreAccuracyAUROCa

0.755 (0.089)0.683 (0.151)0.616 (0.136)0.627 (0.165)0.719 (0.094)0.746 (0.116)Second subgame

0.783 (0.069)0.688 (0.167)0.686 (0.142)0.675 (0.126)0.747 (0.082)0.793 (0.117)Third subgame

0.740 (0.099)0.757 (0.123)0.675 (0.183)0.708 (0.153)0.769 (0.078)0.817 (0.070)Sixth subgame

aAUROC: area under the receiver operating characteristics curve.

Figure 3. ROC curves and PR curves of the deep learning model. PR: precision-recall. ROC: receiver operating characteristic.

Prediction of Developmental Disabilities From Finger
Strokes
The visualization of variable weights for developmental
disabilities on game result images relied on a gradient-based
projection of the classification scores to the input pixels.
Children with typical development correctly implemented the
optimal path proximity to answers, as recorded by the game; in

Figure 4A, coordinates similar to the optimal path are visualized
in blue, as presented in Grad-CAM. In contrast, we could
confirm that children with developmental disabilities played
games and drew gestures in various locations before drawing
the optimal path (Figure 4B). Unlike the coordinates of children
with typical development, coordinates located in the nonoptimal
path are shown in red, as presented by Grad-CAM.
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Figure 4. Sixth subgame with Grad-CAM results of children with normal and abnormal development disability. Grad-CAM: gradient-weighted class
activation mapping.

Discussion

Principal Findings
This study showed that fine motor movements captured from
touching a mobile display can be a novel digital biomarker for
the classification of developmental delay. Our classification
model leveraged moment-by-moment drag-and-drop data to
capture fine motor movements for serious game play. This
suggests that serious games can be used as diagnostic assistant
tools or screen tools for detecting developmental disabilities.
Moreover, our model can be adaptive to clinicians because it
can visualize how much each coordinate of fine motor
movement contributes to classification.

Drag-and-Drop Data as a Digital Biomarker for
Detecting Developmental Delay
Early motor delay is often a sign of neurological dysfunction
[27]. Fine motor skills are related to the use of upper extremities
to engage and manipulate the environment [15,27]. This function
is necessary for children to play or accomplish work. At the age
of 3 years, children can copy circles and imitate a cross in the
course of reaching developmental milestones [28]. Similarly,
the games in our study require the user to select an object of
the same color or solve the game by imitating a given
environment (such as a picture on the left in Multimedia
Appendix 1). Although the screening delivery platform has been
changed into a digital device, it still seems capable of reflecting
developmental milestones.

In the clinic or community, parent- or teacher-reported screening
tools are used for large populations, including the Behavior
Rating Inventory of Executive Function II (BRIEF-II) and the

Denver Developmental Screening Tests II (DDST-II),. These
screening tools collect information on the kinesthetic ability of
children from parents or teachers. However, as these tools
leverage information obtained from parents or teachers to
calculate scores reflecting kinesthetic abilities, the results of
the screening tools may have inter- or intraobserver variability.
[29] Despite this, the use of drag-and-drop data in our model
has a strength in that our model presents more objective results.

Previous studies have reported that children with autism show
a rate of change in acceleration in movements that is
significantly greater than that in children with typical
development [30,31]. Although previous studies have reported
on acceleration of the device (inertia) captured from a gyroscope
in the device or infrared motion tracking system, our study
showed higher rates of sign changes in acceleration (in all
subgames) and velocity (in the sixth subgame) in finger strokes
for dragging and dropping objects in children with typical
development compared to children with developmental
disabilities. Given that children with developmental disabilities
had shorter playtimes and less variability, children with
developmental disabilities might not have intuitively understood
the problem and indiscriminately ran their finger across the
screen. It is also possible that the difficulty of the game may be
insufficient to screen problems even in children with
developmental disabilities because the purpose of the game is
to drag objects in a single straight line.

Early Detection and Diagnostic Stability
There are multiple challenges to screening children with
developmental disabilities in routine clinical practice [2]. In
step with the high clinical demand, there are long wait times
for children who require examination by specialists. If screening
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tools are negative for developmental delay and the parents
continue to be concerned about their child’s behavior, a more
intensive follow-up plan is needed, such as shorter-interval,
repetitive screening tests. Other barriers include a lack of
consensus on the best screening tools and insufficient physician
confidence [2,32,33]. A previous study on diagnostic stabilities
in children with and without autism spectrum disorder in the
United States showed that 21% of children were initially not
diagnosed with autism spectrum disorder [12]. From this point
of view, developmental disability classification using mobile
devices can be used as an element to potentially overcome these
challenges.

Further, for early identification of developmental disability,
cross-culturally appropriate and affordable tools are important,
although tools satisfying these conditions are limited [34].
Applying tools developed in Western-based norms to other
cultural contexts can induce overdetection in children, as there
is a disparity in global pediatric mental health, especially in
low- and middle-income countries [35]. Considering that many
children do not regularly visit medical or mental health
professionals in low- and middle-income countries [36], a
screening tool that is quick and inexpensive would be desirable.
In addition, tools with child-friendly characteristics for children
to complete by themselves and under repetitive use with lower
resources would be suitable. In this respect, a serious game with
drag-and-drop data can be a candidate for tools that satisfy these
requirements.

Limitations
This study has several limitations. First, the diagnostic profile
of children with typical development used in our study was
based on patient reports. Because children with typical
development were not confirmed by physicians, this could have
led to bias in the performance or results of the model due to the
reliability of the label. However, previous studies included
clinical trials using only limited samples, whereas our study
analyzed hundreds of children with developmental disabilities
diagnosed by a pediatrician. Therefore, compared to previous
studies, our study represents an improvement in the robustness
of the prediction results. Second, this study excluded children
with developmental disabilities who were unable to control the
mobile device by themselves. Because data acquisition assumed
children could handle the mobile device and understand the
instructions to the games, the characteristics of children with
severe or moderate developmental disabilities were not
considered in this study. Further research needs to be conducted
after analyzing children with consideration of the degree of
developmental disorders.

Conclusions
As continuous and comprehensive tracking for more accurate
assessment is important in screening developmental disabilities,
a screening tool that can be easily, repetitively, and objectively
used is needed. To the best of our knowledge, this retrospective
study is the first to show that a deep learning-based screening
model leveraging digital biomarkers could be feasible for
detecting developmental disabilities in children. Therefore,
finger strokes on a mobile touch display can be a novel digital
biomarker of use in screening for developmental disabilities.
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