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Pulmonary effects 
of dexmedetomidine infusion 
in thoracic aortic surgery 
under hypothermic circulatory 
arrest: a randomized 
placebo‑controlled trial
Seongsu Kim1, Soo Jung Park1, Sang Beom Nam1,2, Suk‑Won Song3, Yeonseung Han1, 
Sangmin Ko1 & Young Song1,2*

Dexmedetomidine has emerged as a promising organ protective agent. We performed prospective 
randomized placebo-controlled trial investigating effects of perioperative dexmedetomidine 
infusion on pulmonary function following thoracic aortic surgery with cardiopulmonary bypass 
and moderate hypothermic circulatory arrest. Fifty-two patients were randomized to two groups: 
the dexmedetomidine group received 1 µg/kg of dexmedetomidine over 20 min after induction of 
anesthesia, followed by 0.5 µg/kg/h infusion until 12 h after aortic cross clamp (ACC)-off, while the 
control group received the same volume of normal saline. The primary endpoints were oxygenation 
indices including arterial O2 partial pressure (PaO2) to alveolar O2 partial pressure ratio (a/A ratio), 
(A–a) O2 gradient, PaO2/FiO2 and lung mechanics including peak inspiratory and plateau pressures and 
compliances, which were assessed after anesthesia induction, 1 h, 6 h, 12 h, and 24 h after ACC-off. 
The secondary endpoints were serum biomarkers including interleukin-6, tumor necrosis factor-α, 
superoxide dismutase, and malondialdehyde (MDA). As a result, dexmedetomidine did not confer 
protective effects on the lungs, but inhibited elevation of serum MDA level, indicative of anti-oxidative 
stress property, and improved urine output and lower requirements of vasopressors.

Cardiovascular surgery under cardiopulmonary bypass (CPB) is commonly accompanied by postoperative pul-
monary dysfunction, ranging from temporary minor hypoxia to severe fatal manifestations, such as acute respira-
tory distress syndrome (ARDS)1. Regardless of its severity, pulmonary dysfunction impairs patient outcomes and 
substantially increases the healthcare burden2. The risk of it is significantly high in the aortic surgery because 
of massive inflammation and oxidative stress caused by profound ischemia–reperfusion (IR) after hypothermic 
circulatory arrest (HCA) and CPB, massive blood transfusion, and surgical damage3. Indeed, of the various 
surgery types, aortic surgery has been identified as a strong independent risk factor for postoperative ARDS 
occurrence4. However, there is currently no protective modality with consistent efficacy and safety.

Dexmedetomidine, a highly selective α2 adrenergic agonist that is widely used for sedation and analgesia, has 
emerged as a promising organ protective agent with its anti-inflammatory and anti-oxidative stress properties5,6. 
Putative mechanisms include inhibition of noradrenaline-overflow and activation of vagus nerve and nicotinic 
acetylcholine receptor, which are related to suppression of inflammatory cytokines7–9. It is also known that α 
adrenergic system is involved in activation of antioxidant enzymes, which supports anti-oxidative stress prop-
erty of dexmedetomidine10. In patients undergoing cardiac surgery with CPB, intraoperative dexmedetomidine 
infusion reduced the levels of pro-inflammatory cytokines during and after CPB11. Additionally, it was shown 
to reduce the rate of renal injury in adults12–14, pediatric cardiac surgery15, and major abdominal surgery16. With 
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regard to lung protection, it reduced lung injury in various animal experimental models including mechani-
cal ventilation-induced injury, toxic substances, hemorrhagic shock, sepsis, and IR of lungs and intestine17–22. 
Clinically, intraoperative dexmedetomidine infusion improved the quality of oxygenation and lung mechanics in 
patients undergoing lung resection surgery23. The protective effect was also shown in patients with morbid obesity 
and restrictive lung disease undergoing bariatric surgery24. However, it is not clear whether dexmedetomidine 
could protect the lungs in cardiovascular surgery settings.

Accordingly, this prospective randomized placebo-controlled trial aimed to investigate the effects of perio-
perative dexmedetomidine infusion on the oxygenation function and respiratory mechanics following thoracic 
aortic surgery with CPB and moderate HCA.

Methods
Participants.  This study was conducted in Gangnam Severance Hospital at the Yonsei University College 
of Medicine between February 2016 and February 2018 following approval of study protocol by institutional 
review board and hospital research ethics committee (# 3-2015-0252) and registration at http://​clini​caltr​ials.​gov 
(NCT02678728) on February 10, 2016. Patients aged ≥ 20 years scheduled for proximal thoracic aortic surgery 
under CPB and moderate HCA were considered eligible for enrollment. Exclusion criteria were the presence 
of pre-existing pulmonary disease requiring medication, such as bronchodilator or systemic steroids, hemody-
namic instability requiring inotropes and/or vasopressors, uncontrolled dysrhythmias, left ventricular ejection 
fraction (LVEF) < 30%, illiteracy, and pregnancy. Written informed consent was obtained from all the study 
participants.

Perioperative management .  All methods of this study were performed in accordance with the insti-
tution guidelines and regulations25. Briefly, monitoring during surgery included thermodilutional pulmonary 
artery catheter use, the measurement of bilateral radial arterial pressure, the calculation of the bispectral index 
(BIS, Medtronic, Dublin, Ireland), and the use of transesophageal echocardiography, cerebral oximetry (NIRS, 
INVOS 4100; Covidien, Mansfield, MA), and esophageal and rectal temperature probes. Anesthesia was induced 
using midazolam, sufentanil, and rocuronium bromide and maintained with sevoflurane and the continuous 
infusion of remifentanil. The right axillary artery and left femoral artery were cannulated for CPB. After sternot-
omy, non-pulsatile pump flow was conducted at a rate of 2.0–2.4 L/min/m2 under mild hypothermia (32–34 °C). 
Upon reaching a target rectal temperature of 28 °C, circulatory arrest to aid distal anastomosis was initiated 
while the antegrade cerebral perfusion via right axillary artery was maintained at a pressure of 60 mmHg. If the 
level of cerebral oxygen saturation during HCA decreased by 20% of the baseline value or lower, bilateral cer-
ebral perfusion was implemented. Lower body perfusion was performed through the femoral artery at a rate of 
0.8–1.0 L/min/m2 for 1 min every 15 min. After distal anastomosis, the proximal graft was cross-clamped (aortic 
cross clamp, ACC) and the left head vessels and proximal aorta were reconstructed. After ACC release (ACC-
off), the innominate artery was reconstructed, followed by separation from CPB. During surgery, the mean arte-
rial pressure (MAP) was maintained at > 60 mmHg and < 80 mmHg using norepinephrine, vasopressin (in the 
case of norepinephrine > 0.3 μg/kg/min), and nicardipine. Milrinone was infused when pulmonary hypertension 
or ventricular dysfunction persisted after ACC-off. Fluid resuscitation was performed with 6–8 mL/kg crystal-
loid solution (Plasma Solution-A Injection1000 mL; CJ Parma, Seoul, South Korea). Fresh frozen plasma and 
platelets were transfused immediately following weaning from CPB at a level of 390–650 mL and 240–480 mL, 
respectively, according to the patients’ body weight and bleeding pattern. Packed red blood cells were adminis-
tered if the hematocrit value was < 20% during CPB and < 24% otherwise. The same protocols, in terms of hemo-
dynamic management and transfusion, were applied during the intensive care unit (ICU) admission.

Study protocol.  The study participants were randomly assigned to either the control group or dexmedeto-
midine group at a 1:1 ratio according to a computerized randomization table created by an independent inves-
tigator, who then prepared 4 µg/ml of dexmedetomidine (Precedex, Hospira, Lake Forest, Illinois, USA) for the 
dexmedetomidine group or same volume of 0.9% normal saline for the control group in identical 50-ml syringes. 
Group allocation was concealed by opaque and sequentially numbered envelopes. Which were opened just 
before surgery by the attending anesthesiologist. The study drugs were administered intravenously by the attend-
ing anesthesiologist after the induction of anesthesia by the loading of 1 µg/kg over 20 min followed by a 0.5 µg/
kg/h infusion until 12 h after ACC-off, which was based on previous studies on cardiac surgery26, with some 
consideration of safety issues on hemodynamics and sedative effect. The lungs were ventilated after the induc-
tion of anesthesia using autoflow volume-controlled ventilation (Primus™, Draeger AG & Co. KGaA, Lübeck, 
Germany) with a tidal volume of 8 mL/kg of predicted body weight and positive end-expiratory pressure (PEEP) 
of 5 mmHg at an inspiratory: expiratory ratio of 1:2. The initial fractional inspired oxygen (FiO2) level was set at 
0.5 and the respiratory rate was adjusted for the maintenance of an end-tidal CO2 level of 30–40 mmHg. When 
a full CPB flow was achieved, mechanical ventilation was stopped while a continuous positive airway pressure 
of 5 cmH2O was applied. After weaning from CPB, the lungs were recruited manually at 40 cmH2O for 8 s and 
then the pre-CPB mechanical ventilation strategy was applied. If the arterial O2 partial pressure to FiO2 (PaO2/
FiO2) ratio was lower than 300 mmHg, the PEEP and FiO2 values were raised in a step-by-step manner, accord-
ing to the National Institutes of Health ARDS Clinical Network protocol. Extubation was conducted at the ICU 
in accordance with the standard care guidelines by the attending physician who was blinded to the group assign-
ment. The study drugs were discontinued in case of persistent hypotension (MAP < 60 mmHg) or bradycardia 
(heart rate [HR] < 50 bpm) in spite of the provision of proper fluid resuscitation and cardiovascular drug therapy, 
and resumed after recovery. The patients, surgeons, attending anesthesiologists, ICU physicians, and outcome 
assessors were all blinded to the group allocation throughout the study. 

http://clinicaltrials.gov
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Study endpoints.  The primary endpoints were the oxygenation indicators, including the arterial O2 partial 
pressure to alveolar O2 partial pressure ratio (a/A ratio), alveolar-arterial (A–a) O2 gradient, and PaO2/FiO2 as 
well as the indicators of lung mechanics, including dynamic compliance, static compliance, peak inspiratory 
pressure, and plateau pressure, all of which were assessed after the induction of anesthesia, 1 h, 6 h, 12 h, and 24 h 
after ACC-off. These data were obtained from the arterial blood gas analysis and ventilator-derived parameters.

The secondary endpoints were serum biomarkers of inflammation and oxidative stress, including inter-
leukin (IL)-6, tumor necrosis factor (TNF)-α, superoxide dismutase (SOD), and malondialdehyde (MDA), as 
measured with the Human IL-6 Quantikine ELISA kit, Human TNF-alpha Quantikine HS ELISA kit (R&D 
System Inc., Minneapolis, MN, USA), Human SOD ELISA Kit, and Human MDA ELISA Kit (MyBioSource, 
SD, CA, USA), respectively, at the same time points as the primary endpoint assessment. Postoperative 30-day 
morbidity endpoints, including ARDS, which was defined as acute onset hypoxemic respiratory insufficiency 
with PaO2/FiO2 < 300 mm Hg in the presence of bilateral pulmonary infiltrates and the absence of left atrial 
hypertension27, myocardial infarction, new-onset atrial fibrillation, delirium, cerebrovascular attack, gastro-
intestinal tract ischemia or hemorrhage, acute kidney injury (AKI)28, renal replacement therapy, deep sternal 
wound infection, mortality, and length of ICU and hospital stay were also evaluated. 

Other assessments.  The patients’ demographic data, including history of hypertension, diabetes mellitus, 
chronic kidney disease, cerebrovascular accidents, coronary artery disease, cardiovascular medications, Euro-
score, and LVEF were recorded. Preoperative pulmonary function test comprising forced vital capacity, forced 
expiratory volume in one second, and carbon monoxide diffusion capacity was recorded in elective cases only, 
because patients who received emergency surgery were not able to perform the test.

The perioperative variables included aortic pathology, emergency surgery, operation time, total CPB time, 
ACC time, HCA time, intraoperative and postoperative 24 h fluid intake, urine output, blood loss, transfusion, 
and the need for vasopressor and inotropic agents.

Statistical analysis.  Study sample size was calculated using the PASS 12 (NCSS, LLC, Utah, USA). In 
previous studies on pulmonary protection against IR during surgery, their interventions resulted significant 
improvement in the a/A O2; 0.06729 and 0.2330, which were related to better clinical outcomes. We assumed that 
improvement of a/A O2 within this range would reflect therapeutic efficacy of study drug. In our past record of 
aortic surgery, the a/A O2 at 12 h after ACC-off was 0.4 ± 0.15. With the expectation of an improvement of 0.1 
in the a/A O2 by dexmedetomidine, the sample size calculation for 5 times repeated measures design revealed 
that 22 patients would be required in each group for the obtainment of a power of 80% at an alpha value of 0.05. 
Assuming a 20% dropout rate, we decided to enroll 52 patients. 

Data were analyzed using SAS software 9.3 (SAS Inc., Cary, NC, USA) and SPSS version 23 (SPSS Inc., 
Chicago, IL, USA). After normality test using the Shapiro–Wilk test, the continuous variables were compared 
between the groups using an independent t-test or a Mann–Whitney U test and expressed as the mean ± standard 
deviation or median [interquartile range]. Categorical variables were compared between the groups using the 
chi-square or Fisher’s exact test and expressed as the number of patients (%). Serially measured variables, includ-
ing the indicators of oxygenation, lung mechanics, serum biomarkers, and hemodynamic data were analyzed 
using linear mixed models (LMMs), with group, time, and group-by-time as fixed effects. A P value < 0.05 was 
considered statistically significant.

Results
Of the 57 patients assessed for eligibility, 52 met the inclusion criteria and provided informed consent. One 
patient who withdrew consent after randomization was excluded, and a total of 51 patients were included in the 
analysis (Fig. 1). None developed serious adverse events related to administration of study drugs.

Patient demographics, pre-existing chronic disease and medication use, and preoperative cardiac and pul-
monary function were not different between the groups (Table 1).

Operative data including the type of aortic pathology, emergency surgery, duration of surgery, CPB, ACC, and 
HCA were similar between the groups (Table 2). The degree of intraoperative fluid intake, and volume of transfu-
sion were not different between the groups, but the urine output was significantly higher in the dexmedetomidine 
group than that in the control group (1435 [1165–1840] vs. 1070 [600–1330] mL; P = 0.005). In addition, the 
amount of norepinephrine administered during the surgery was significantly lower in the dexmedetomidine 
group than that in the control group (172.0 [40.0–344.0] vs. 360.0 [170.0–695.0] μg; P = 0.027). The postoperative 
24 h fluid balance was comparable between the groups. The number of patients requiring norepinephrine during 
the postoperative 24 h period was similar between the groups, whereas the amount of nicardipine during this 
period was significantly lower in the dexmedetomidine group than that in the control group (324.0 [100.1–820.9] 
vs. 796.1 [361.7–1591.0] μg; P = 0.026).

As shown in Fig. 2, the LMM analysis revealed that none of the primary endpoints showed time-group 
interactions or intergroup differences. In the post-hoc analysis of the intra-group changes over time, the a/A 
O2 was significantly decreased at 24 h after ACC-off compared to the baseline values in both groups (P = 0.026 
and 0.020 in the control group and dexmedetomidine group, respectively). The (A–a) O2 gradient value signifi-
cantly increased at 24 h after ACC-off compared to the baseline values in both groups (P = 0.020 and < 0.001 in 
the control group and dexmedetomidine group, respectively). The PaO2/FiO2was also significantly decreased 
at 24 h after ACC-off in both groups (P = 0.004 and < 0.001 in the control group and dexmedetomidine group, 
respectively) compared to the values at the baseline. The peak inspiratory pressure was significantly increased at 
6 h after ACC-off in both groups (P = 0.022 and 0.015 in the control and dexmedetomidine group, respectively) 
and 12 h after ACC-off in the control group (P = 0.020) compared to the baseline values. The plateau pressure was 
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significantly increased at 6 h and 12 h after ACC-off in the control group only (P = 0.010 and 0.002, respectively). 
The dynamic and static lung compliance values did not change significantly over time in both groups. Subgroup 
of chronic aneurysm patients who received non-urgent elective surgery showed no significant improvement by 
dexmedetomidine in the LMM analysis of lung oxygenation function indices (Supplemental Table 1).

The LMM analysis on the serum levels of IL-6, TNF-α, and SOD also showed no significant time-group 
interactions and no intergroup differences (Fig. 3). In the post-hoc analysis of intra-group changes over time, 
the level of IL-6 was significantly increased at 1 h, 6 h, 12 h, and 24 h after ACC-off compared to the baseline 
value in both groups (all P < 0.001) and the level of TNF-α was significantly increased at 1 h after ACC-off in 
both groups (P = 0.019 and 0.042 in the control group and dexmedetomidine group, respectively) and 6 h after 
ACC-off in the dexmedetomidine group only (P = 0.011) compared with the baseline values. The level of SOD 
was significantly decreased at 1 h after ACC-off in both groups (P < 0.001) and 6 h after ACC-off in the control 
group only (P = 0.002) compared to the baseline values. On the other hand, there were significant time-group 
interactions in the LMM analysis of MDA level (P = 0.033) and the post-hoc analysis revealed that the difference 
between the groups were in changes between the 1 h and 24 h after ACC-off (P = 0.012); it was increased in the 
control group and decreased in the dexmedetomidine group.

Changes in the MAP, HR, central venous pressure, diastolic pulmonary arterial pressure, and cardiac index 
over time were significant in each group (P < 0.05 in both group), but there were no time-group interactions in 
any of the variables, indicating no difference between the groups in hemodynamics (Fig. 4). 

The incidence of the postoperative 30-day morbidity endpoint was not statistically different between the 
groups. Duration of ventilator support at the ICU, need for prolonged ventilator support (> 24 h), need for re-
intubation, and lengths of ICU stay and hospital stay were also comparable between the groups. However, there 
was a trend toward a lower rate of ARDS occurrence in the dexmedetomidine group compared to that in the 
control group (0 vs. 4 [16%]; P = 0.051) (Table 3).

Discussion
In the present study, administration of dexmedetomidine did not confer protective effects on the lungs in aortic 
surgery under CPB and HCA. So far, there has been substantial evidence supporting the protective effects of 
dexmedetomidine on the lungs against various pathological states. In a rat experimental model of IR injury, 

Figure 1.   Flow chart showing the patient enrollment process based on CONSORT guidelines.
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dexmedetomidine reduced the rate of histological damage to the lungs and inhibited the degree of increase in 
the levels of inflammatory cytokines including TNF-α and IL-622. In a sepsis model, dexmedetomidine attenu-
ated the level of secondary lung and kidney damage19. In clinical studies, the use of dexmedetomidine improved 
the oxygenation and dynamic compliance in patients with moderate chronic obstructive pulmonary disease 
(COPD) during lung cancer surgery23 and prevented the occurrence of postoperative pulmonary complications 
following orofacial surgery31. Moreover, the intraoperative infusion of dexmedetomidine suppressed the increases 
in the level of high mobility group box-1 and IL-6 after CPB11. Similarly, the infusion of dexmedetomidine in 
sepsis patients following abdominal surgery attenuated the degree of increase in the levels of TNF-α, IL-1, and 
IL-632. Therefore, it was assumed that the laboratory and clinical indicators of IR injury of the lungs in patients 
undergoing aortic surgery would be improved with the use of dexmedetomidine.

However, perioperative infusion of dexmedetomidine in our study neither improved oxygenation and lung 
mechanics and nor reduced systemic inflammatory insults, which were inconsistent with previous findings22–24,31. 
Of the primary endpoints of our study, the a/A O2, which was used for the power calculation, accurately reflects 
lung oxygenation and is not easily influenced by FiO2. So it has long been used in clinical studies. It was signifi-
cantly improved by effective therapeutic modalities in studies on abdominal aortic surgery and lower extremity 
IR, and it was related to better clinical outcomes, such as shorter ventilator support29,30. Conversely, dexmedeto-
midine did not improve it, which seems to be associated with the lack of significant benefit on the clinical end 
points including requirement for ventilator support and the incidence of ARDS as well as mortality. Such an 
inconsistency between the previous studies and ours may be attributable to greater extent of IR injury, inflamma-
tory reaction, and oxidative stress induced by HCA in addition to CPB and ACC. A serum level of IL-6 at 1 h after 
ACC-off in our study patients was nearly twice as high as the value measured at the same time point in patients 
undergoing cardiac surgery without HCA11. Although the level of IL-6 was already a little higher at the baseline 
in our study, which is potentially due to pre-existing greater systemic inflammatory reaction induced by an aortic 
pathology, the maintenance of circulatory arrest for about 50 min itself could dramatically increase inflammatory 
response after reperfusion. The impact of dexmedetomidine may be insufficient in overcoming such extensive IR 
and the consequent lung damage. There was also a similar experimental report that dexmedetomidine treatment 
did not reduce lung injury induced by systemic IR17. More detailed studies focusing on stratified IR injury and 
the structured dose–response of dexmedetomidine in the clinical settings are clearly warranted.

Previous studies revealed the favorable effects of dexmedetomidine on lung compliance in chronic lung 
disease patients undergoing surgery. Dexmedetomidine infusion during bariatric surgery in morbidly obese 
patients decreased the dead space and plateau airway pressure24, while its administration during the lung cancer 
surgery increased dynamic compliance in patients with COPD23. We also observed an attenuated increase in the 
plateau pressure at 6 h and 12 h and peak inspiratory pressure at 12 h after ACC-off with dexmedetomidine use, 
although there was no significant time-group interaction between the dexmedetomidine group and the control 
group. Some plausible mechanisms include the inhibitory effects of dexmedetomidine on the airway smooth 

Table 1.   Preoperative clinical characteristics. Values are shown as the number of patients, mean ± standard 
deviation. DLCO carbon monoxide diffusion capacity, FEV1 forced expiratory volume in one second, FVC 
forced vital capacity, LVEF left ventricular ejection fraction, RAS renin-angiotensin system. ***This data was 
obtained from patients who received elective surgery.

Parameters Control group (n = 25) Dexmedetomidine group (n = 26) P value

Age (years) 61 ± 17 62 ± 17 0.838

Sex, male/female 14 /11 14/12 0.877

Height (cm) 165.7 ± 10.4 165.9 ± 10.4 0.937

Weight (kg) 64.5 ± 14.3 69.7 ± 15.2 0.215

Hypertension 17 (68.0) 18 (69.2) 0.925

Diabetes mellitus 3 (12.0) 3 (11.5) > 0.999

Chronic kidney disease 2 (8.0) 2 (7.7) > 0.999

Cerebrovascular accident 2 (8.0) 2 (7.7) > 0.999

Coronary artery disease 4 (16.0) 3 (11.5) 0.703

Medication

β-Blockers 7 (28.0) 5 (19.2) 0.461

Calcium channel blockers 11 (44.0) 8 (30.8) 0.329

RAS blockers 9 (36.0) 12 (46.2) 0.461

Diuretics 4 (16.0) 2 (7.7) 0.419

Preoperative pulmonary function***

FVC 96.1 ± 25.5 93.4 ± 16.2 0.814

FEV1 103.6 ± 24.3 96.4 ± 14.1 0.504

FEV1/FVC 73.3 ± 3.5 70.1 ± 8.3 0.382

DLCO 90.9 ± 17.0 90.83 ± 10.3 0.998

Euroscore 6 ± 5 7 ± 7 0.880

Preoperative LVEF (%) 62 ± 9 64 ± 6 0.538
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muscle contraction through the suppression of acetylcholine release and direct action to relax33. However, our 
result should be interpreted carefully, because some positive trend of airway pressure was not connected to the 
improvement of lung compliances at all.

We observed that dexmedetomidine could inhibit the increase in serum MDA level following reperfusion. 
Because production of MDA is a result of free radical oxidation of cell membrane phospholipids, serum MDA 
level is well-established as a biomarker of oxidative stress-induced tissue damage in IR34. Anti-oxidative stress 
property contributes to preventive effect of dexmedetomidine against apoptosis in alveolar epithelial cells35, which 
would be matched to our result. On the post hoc analysis, dexmedetomidine significantly reduced MDA level at 
24 h after ACC-off from the value at 1 h after ACC-off (T2), compared with its significant increase in the control 
group. Although the drug’s impact on changes in MDA from the baseline value (T1) lost statistical significance 
after calculating P values considering repeated measures, continuous decrease of MDA from reperfusion (T2), 
which contrasts starkly with its surge along the time course in the control group, may indicate potency of dex-
medetomidine enough. Nevertheless, it was not linked to significant clinical efficacy, so a careful interpretation 
is needed. There was a lack of impact of dexmedetomidine on the serum SOD level, which is conflicting with 
the changes in MDA. Dexmedetomidine could have influenced on other ant-oxidant enzymes, such as catalase 
and glutathione peroxidase, which warrants further analysis.

Notably, the intraoperative urine output was significantly higher in the dexmedetomidine group than that 
in the control group, although the incidence of AKI was not different. Protective effects of dexmedetomidine 
against renal injury in cardiac surgery settings have consistently been reported36. A recent randomized controlled 
trial on the aortic surgery under CPB and HCA also revealed a lower incidence of AKI in patients who received 
dexmedetomidine for 24 h13. The relatively smaller sample size and shorter duration of dexmedetomidine admin-
istration in our study may not have allowed for the achievement of statistically significant benefits in terms of the 

Table 2.   Perioperative data. Values are shown in number of patients(percentage), mean ± standard deviation 
or median (interquartile range). *P value < 0.05. ACC​ aortic cross clamp, CPB cardiopulmonary bypass, FFP 
fresh frozen plasma, HCA hypothermic circulatory arrest, IMH intramural hematoma, PAU penetrating 
atherosclerotic ulcer, pRBC packed red blood cell.

Parameters Control group (n = 25) Dexmedetomidine group (n = 26) P value

Aneurysm/dissection/IMH or PAU 10 (40)/14 (57)/1 (4) 7 (27)/16 (62)/3 (12) 0.428

Valve replacement 1 (4.0) 2 (7.7) > 0.999

Aortic root replacement 1 (4.0) 1 (3.9) > 0.999

Emergency 15 (60) 18 (69.23) 0.491

Operation time (min) 298 ± 63 311 ± 77 0.509

Total CPB time (min) 170 ± 48 174 ± 45 0.760

ACC time (min) 71 ± 41 83 ± 49 0.377

HCA time (min) 50 ± 14 51 ± 14 0.820

Intraoperative input and output

Crystalloid input (mL) 2330 (1675–2700) 1900 (1400–2425) 0.214

Urine output (mL) 1070 (600–1330) 1435 (1165–1840) 0.005*

Cell saver transfused (mL) 850 (733–1022) 1000 (300–1245) 0.627

pRBCs transfused (mL) 250 (0–750) 480 (0–750) 1

FFP transfused (mL) 733 ± 186 765 ± 190 0.545

Platelet transfused (mL) 576 ± 177 560 ± 204 0.780

Intraoperative cardiovascular drugs

Amount of norepinephrine (μg) 360.0 (170.0–695.0) 172.0 (40.0–344.0) 0.027*

Patients requiring vasopressin 6 (24.0) 7 (26.9) 0.811

Patients requiring milrinone 3 (12.0) 5 (19.2) 0.478

Amount of nicardipine (μg) 0.0 (0.0–200) 200.0 (0.0–1900) 0.081

Postoperative 24 h input and output (mL)

Crystalloid input (mL) 4295 ± 1107 4046 ± 1178 0.441

Urine output (mL) 3977 ± 1516 3706 ± 1222 0.484

Cell saver transfused (mL) 0 (0–0) 0 (0–213) 0.183

pRBCs transfused (mL) 0 (0–207) 0 (0–0) 0.543

FFP transfused, mL 0 (0–575) 0 (0–215) 0.204

Platelet transfused (mL) 0 (0–0) 0 (0–0) 1

Blood loss (mL) 628 (495–887) 640 (419–844) 0.836

Postoperative 24 h cardiovascular drugs

Patients requiring norepinephrine 11 (44.0) 12 (46.2) 1.000

Amount of nicardipine (μg) 796.0 (362.0–1591.0) 324.0 (100.0–821.0) 0.026*
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Figure 2.   Changes in the lung function indices. a/A, arterial O2 partial pressure to alveolar O2 partial pressure 
ratio; A–a, alveolar-arterial; PaO2, partial pressure of oxygen; FiO2, fraction of inspired oxygen; T1, post-
induction; T2, ACC 1 h; T3, ACC 6 h; T4, ACC 12 h; T5, ACC 24 h. *P < 0.05 versus baseline.
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clinical endpoint of renal injury. However, the patients in the dexmedetomidine group required a significantly 
lower amount of intraoperative norepinephrine and postoperative nicardipine. A large body of evidence states 
that dexmedetomidine reduces the requirement for exogenous norepinephrine, indicating its ability to preserve 
blood pressure through improvements of vascular reactivity to catecholamines and angiotensin II as well as its 
well-known vasoconstrictive property itself37–39. Its anesthetic/analgesic-sparing effects may also have contrib-
uted to this, although we did not assess those amount40. Meanwhile, dexmedetomidine attenuates the level of 
stress response and suppresses the release of catecholamines in response to a noxious stimulant, which may have 
stabilized the patients’ postoperative blood pressure, thereby reducing the nicardipine requirement41,42. On the 
other hand, cardiac index was a little lower in the dexmedetomidine group at 12 h after ACC-off, although it 
was within normal range and the difference was not significant in consideration of time group interaction. This 
could be attributable to HR-lowering effect and vasoconstrictive properties of dexmedetomidine39,43. Although 
changes of HR was comparable between the groups in our study, dexmedetomidine should be used with caution 
to avoid critical bradycardia and cardiac collapse43.

Limitation of the current study is as follows. Firstly, we calculated sample size with reference to previous 
studies on surgery associated with IR injury29,30. But it could have been insufficient, because IR induced by CPB 
and total circulatory arrest might be much greater than those of previous reports. Heterogeneity in the disease 
states and urgency of surgery should have been considered for the sample size determination as well. Secondly, 
we administered dexmedetomidine for up to 12 h after reperfusion; this duration is significantly shorter than 
that in previous studies on renal injury12,13. As our institutional postoperative recovery protocol includes the 
extubation at a relatively early time point and discharge from the ICU, we were unable to administer the study 
drug for longer considering the safety issue. Given the extensive IR injury that occurs upon HCA, a larger amount 
of dexmedetomidine may have been needed for the inhibition of the inflammatory flare-up and improvement 
of the lung function.

In conclusions, the administration of dexmedetomidine did not protect the lungs during proximal thoracic 
aortic surgery under CPB and moderate HCA. Although the levels of pro-inflammatory cytokines were not 
reduced, the MDA level was attenuated, indicative of the anti-oxidative stress action of dexmedetomidine in 
aortic surgery. Additionally, we observed improvement of urine output and less use of vasoactive agents during 
and after surgery by dexmedetomidine treatment.
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Figure 3.   Changes in the levels of biomarkers. TNF, tumor necrosis factor; SOD, superoxide dismutase; MDA, 
malondialdehyde; T1, post-induction; T2, ACC 1 h; T3, ACC 6 h; T4, ACC 12 h; T5, ACC 24 h. *P < 0.05 versus 
baseline; †time-group interaction.
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Figure 4.   Changes in the perioperative hemodynamic data. MAP, mean arterial pressure; HR, heart rate; CVP, 
central venous pressure; PAPd, diastolic pulmonary arterial pressure; T1, post-induction; T2, ACC 1 h; T3, ACC 
6 h; T4, ACC 12 h; T5, ACC 24 h. *P < 0.05 versus baseline; #P < 0.05 versus control.
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Data availability
The datasets collected and analyzed during this study are available from the corresponding author on reason-
able request.
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