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Protective ventilation is a prevailing ventilatory strategy these days and is comprised of 
small tidal volume, limited inspiratory pressure, and application of positive end-expiratory 
pressure (PEEP). However, several retrospective studies recently suggested that tidal vol-
ume, inspiratory pressure, and PEEP are not related to patient outcomes, or only related 
when they influence the driving pressure. Therefore, this review introduces the concept of 
driving pressure and looks into the possibility of driving pressure-guided ventilation as a 
new ventilatory strategy, especially in thoracic surgery where postoperative pulmonary 
complications are common, and thus, lung protection is of utmost importance. 

Keywords: Driving pressure; Positive end-expiratory pressure; Postoperative complica-
tions; Protective ventilation.

Introduction 

Postoperative pulmonary complications are not rare in thoracic surgery due to direct 
surgical injury of the lung tissues and one lung ventilation which is prone to volutrauma, 
barotrauma, atelectrauma, and oxygen toxicity [1–3]. In addition, immune cells are abun-
dant on the pulmonary vascular endothelium and alveolus [4], thus, direct and indirect 
injuries to the lung tissues trigger a profound inflammatory response and increase pul-
monary vascular permeability in both dependent and non-dependent lungs [5]. These 
reactions often precede systemic inflammatory response syndrome, acute respiratory dis-
tress syndrome (ARDS), and pneumonia [6–8]. Therefore, lung protection is of utmost 
importance, and protective ventilation is strongly recommended in thoracic surgery 
[9,10]. 

The usual settings for protective ventilation during one lung ventilation are tidal vol-
ume (VT) 5 to 6 ml/kg of predicted body weight (PBW), positive end-expiratory pressure 
(PEEP) to 5 cmH2O and plateau pressure (Pplat) to less than 25 cmH2O [9–13]. However, 
a high incidence of postoperative pulmonary complications is still being observed even 
with a protective ventilatory strategy [3,12,14–16]. 

Driving pressure was first introduced by Amato et al [17] in 2015 in their meta-analy-
sis study for ARDS patients. The authors suggested that high driving pressure was most 
strongly associated with worse survival. VT, Pplat and PEEP were not related to patient 
outcomes, or only related when they influenced the driving pressure. Several retrospec-
tive and prospective studies confirmed the importance of driving pressure in ARDS pa-
tients [18,19] and surgical patients [12,20–22].  

This review article introduces the concept of driving pressure through previous publi-
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cations, and will discuss the possibility of driving pressure-guided 
ventilation as a new ventilatory strategy in surgical patients in-
cluding thoracic surgery. 

Driving pressure 

Definition 

Driving pressure is [Pplat – PEEP] and is the pressure required 
for the alveolar opening [17]. Static lung compliance (Cstat) is ex-
pressed as [VT / (Pplat – PEEP)]. Thus, driving pressure is also ex-
pressed as [VT / Cstat]. Driving pressure has an inverse relation-
ship with Cstat and an orthodromic relationship with VT accord-
ing to this formula. High driving pressure indicates poor lung 
condition with decreased lung compliance. 

Driving pressure =  Pplat – PEEP

Retrospective studies for ARDS patients 
Most studies regarding driving pressure were retrospective 

studies for ARDS patients. Following Amato’s meta-analysis [17], 
subsequent retrospective studies also showed that driving pressure 
is more strongly associated with survival than VT and PEEP in 
ARDS patients [18]. Driving pressure was closely related to hospi-
tal mortality even among patients who received protective ventila-
tion [19]. The cut-off value of driving pressure for high mortality 
was approximately 15 cmH2O for ARDS patients [17,23], and 
each unit increase of driving pressure (1 cmH2O) was associated 
with a 5% increment in mortality [18]. 

High driving pressure was also associated with increased mor-
tality in patients receiving pressure support mode ventilation in a 
recent retrospective cohort study [24]. The driving pressure was 
higher in non-survivors than in survivors, but the difference was 
only 1 cmH2O [11 (9 to 14) vs. 10 (8 to 11) cmH2O; P =  0.004]. 
Cstat was lower [40 (30 to 50) vs. 51 (42 to 61) ml/cmH2O] in the 
non-survivors, but peak pressure was not different between 
non-survivors and survivors [all values median (IQR)]. Lower 
Cstat [odds ratio, 0.92 (95% CI, 0.88 to 0.96)] and higher driving 
pressure [odds ratio, 1.34 (95% CI, 1.12 to 1.61)] were inde-
pendently associated with increased risk of death, but peak inspi-
ratory pressure was not associated with mortality [24]. 

Retrospective studies for general surgical patients 
For surgical patients, a meta-analysis was published based on 17 

randomized controlled trials of protective ventilation (n =  2,250) 
[22]. In its multivariable analyses, driving pressure was associated 
with the development of postoperative pulmonary complications, 
whereas no association was found with VT and PEEP [22]. The 
odds ratio for postoperative pulmonary complications was 1.16 for 
each 1 cmH2O increase in driving pressure. In a mediator analysis, 
driving pressure was the only significant mediator of the effects of 
protective ventilation on development of pulmonary complications 
[22]. In its sub-group analysis, high PEEP was related to a greater 
risk of postoperative pulmonary complications if high PEEP in-
creased driving pressure (OR 3.11, 95% CI 1.39 to 6.96; P =  0.006, 
compared to the low PEEP group). The same high PEEP trended 
toward decreasing the risk of pulmonary complications if it de-
creased the driving pressure (OR 0.19, 95% CI 0.02 to 1.50; P =  
0.154, compared to the low PEEP group) [22]. 

In a cohort study of cardiac surgery patients published in 2019 
(n =  4,694), a lung-protective ventilation bundle was applied to 
1,913 patients (40.8%) [20]. Postoperative pulmonary complica-
tions were reduced by its application (13.9% vs. 6.6%, OR 0.56, 
95% CI 0.42 to 0.75). This protective ventilation bundle was com-
prised of VT <  8 ml/kg ideal body weight, modified driving pres-
sure [peak inspiratory pressure - PEEP] <  16 cmH2O, and PEEP 
≥  5 cmH2O. Of these components, modified driving pressure <  
16 cmH2O was independently associated with decreased pulmo-
nary complications (OR 0.51, 95% CI, 0.39 to 0.66), but VT <  8 
ml/kg and PEEP ≥  5 cmH2O were not [20]. 

These retrospective studies clearly show that high driving pres-
sure is the best indicator of poor prognosis, but do not confirm 
that active control of driving pressure reduces complications or 
improves outcomes. The previous cohort study conducted in car-
diac surgery patients did not give a detailed account of the tech-
nique to reduce driving pressure in their protective ventilation 
bundle [20]. 

Suggested mechanism of how driving pressure 
guided-ventilation can decrease morbidity 

‘Functional lung size’ is the volume of aerated lung available for 
ventilation (Fig. 1) [25]. ‘Functional lung size’ is derived from the 
‘baby lung’ concept. Computed tomography (CT) examinations 
showed that the ARDS patients only have the same amount of 
normally aerated lung tissue as a 5–6 year-old child [25]. The re-
spiratory system compliance is linearly related to the ‘baby lung’ 
dimensions. Thus, the ARDS lung is not “stiff ” but instead small, 
with nearly normal intrinsic elasticity. The ‘baby lung’ concept 

VT

Pplat – PEEP
Cstat =

VT

Driving pressure
=

Driving pressure =
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195https://doi.org/10.4097/kja.20041

Korean J Anesthesiol 2020;73(3):194-204



conveys that the VT/‘baby lung’ ratio is more important than the 
VT/kg ratio, and the smaller the ‘baby lung’, the greater the poten-
tial is for ventilation induced lung injury. The ‘baby lung’ is not a 
distinct anatomical structure. The CT density redistribution in 
prone position showed that the ‘baby lung’ is a functional but not 
an anatomical concept [25]. 

Similarly with ARDS, ‘functional lung size’ would be smaller 
than expected if the patients have lung pathologies such as atelec-
tasis, consolidation, bullae, effusion, or fibrosis. Either over-dis-
tending (barotrauma) or under-ventilating (atelectrauma) the 
lungs beyond the functional lung size would increase driving 
pressure [17,25]. Driving pressure would be lowest when the 
PEEP maintains alveoli at the functional residual capacity at the 
end of expiration and VT expands the lungs within the ‘functional 
lung size’ [1,21,26–31]. Fig. 2 shows that ventilation occurring in 
the high compliance zone shows the lowest driving pressure. 

Therefore, driving pressure can be used to guide individualized 
ventilation based on each patient’s functional lung size. Technical-
ly, it is easier to use driving pressure as guidance than to use Cstat 
because driving pressure is the calculation of two simple pressures 
[Pplat – PEEP] and Cstat is the interaction of pressures and tidal 
volumes [VT / (Pplat – PEEP)] which is more difficult to calculate 
and may show more erratic changes during surgical manipulation 
than driving pressure. 

Fig. 1. Functional lung size. ‘Functional lung size’ is different with anatomical lung size. Only aerated alveoli during ventilation (black arrow: 
hypoechoic alveoli) contributes to functional lung size. Areas of inflammation, collapse, fibrosis, or consolidation are not aerated properly during 
ventilation and do not contribute to functional lung size (white arrow: hyperechoic alveoli).

The two methods to reduce driving pressure 

There are no established techniques to reduce driving pressure 
yet. Driving pressure is dependent on PEEP and VT [driving pres-
sure =  Pplat – PEEP =  VT / Cstat]. Therefore, adjustment of 
PEEP and VT has the potential to reduce driving pressure. There 
are few studies regarding PEEP adjustment based on driving pres-
sure [21,30,32] and no studies yet on the VT titration based on 
driving pressure. 

PEEP titration 

Previously, high PEEP (13 to 15 cmH2O) was compared to low 
PEEP (8 cmH2O) in a large scale acute respiratory distress syn-
drome net (ARDSnet) trial and found no difference in mortality 
and unassisted breathing (n =  549) [33]. In a subsequent multi-
center randomized controlled trial of 767 adults with acute lung 
injury, patients were randomly assigned to a moderate PEEP strat-
egy (5–9 cmH2O, mean PEEP 7 cmH2O) or to a level of PEEP set 
to reach a Pplat of 28 to 30 cmH2O (mean PEEP 15 cmH2O). The 
primary outcome, 28-day mortality rate and the hospital mortality 
rate were not different between the two groups [34].  

According to electrical impedance measurement, each patient 
and each lung region have different lung compliance [35]. In ad-
dition, the majority of patients with chronic obstructive pulmo-
nary disease develop intrinsically variable PEEPs during mechan-
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ical ventilation [36]. Therefore, fixed PEEP would be inappropri-
ate regardless of whether it is high or low, and individualized 
PEEP based on driving pressure may be the next step of protective 
ventilation. Fig. 3 shows that the same PEEP decreases or increas-
es driving pressure according to the underlying lung pathologies 
or functional lung size [22,26]. 

For PEEP titration, most previous studies were small scale stud-
ies and PEEP was titrated using Cstat. However, PEEP titration 
using Cstat also decreased driving pressure. In one study of ab-
dominal surgery patients, PEEP was titrated to yield the highest 
Cstat (n =  36) in the experimental, or ‘individualized PEEP’ 
group while the control group received fixed PEEP of 5 cmH2O 
[30]. Individualized PEEP decreased driving pressure by 28% 
compared to fixed PEEP. Mean driving pressure was 5.6 ±  1 cm-
H2O and 7.4 ±  1 cmH2O for the individualized PEEP group and 
fixed PEEP group, respectively (P <  0.001). The average PEEP 
was 8 cmH2O with a range from 6 to 14 cmH2O in the individual-
ized PEEP group [30]. 

Pereira et al. [32] used electrical impedance tomography to de-
termine individual PEEP such that both lung collapse and hyper-
distension are minimized simultaneously in abdominal surgery (n 
=  40). This study showed PEEP titration reduces driving pressure 
compared to fixed PEEP 4 cmH2O (8.0 ±  1.7 vs. 11.6 ±  3.8 cm-
H2O; P <  0.001). The median PEEP was 12 cmH2O but the range 
varied from 6 to 16 cmH2O in the individualized PEEP group 
[32]. The primary outcome was the size of atelectasis detected in 
the lung CT taken just after operation. Compared with PEEP 4 
cmH2O, individualized PEEP patients showed less postoperative 
atelectasis (6.2 ±  4.1% vs. 10.8 ±  7.1% of lung tissue mass; P =  

0.017). Interestingly, this beneficial effects of individualized PEEP 
for the reduction of driving pressure and atelectasis were more 
prominent in laparoscopy compared to open surgery [32]. 

In Park et al. [21], conventional protective ventilation was com-
pared with driving pressure-guided ventilation in thoracic surgery 
(n =  312). In the driving pressure-guided ventilation, PEEP was 
titrated to deliver the lowest driving pressure in each patient and 
applied during one lung ventilation. The PEEP of control group 
was fixed at 5 cmH2O. The incidence of postoperative pulmonary 
complications measured by Melbourne scale was 12.2% with con-

Fig. 2. Pressure volume curve. Ventilation occurring in the high compliance zone shows the lowest driving pressure.

Fig. 3. PEEP application and different response. The same PEEP may 
decrease or increase driving pressure according to the underlying lung 
pathologies or functional lung size. PEEP: positive end-expiratory 
pressure. Adapted from Silva and Rocco [26].
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ventional protective ventilation, and 5.5% with driving pres-
sure-guided ventilation (OR 0.42, P =  0.047) [21]. The mean dif-
ference of driving pressure was just 1 cmH2O [median (IQR), 10 
(9 to 11) vs. 9 (8 to 10), P <  0.001] as shown in the previous study 
of ARDS patients [24]. The authors suggested that the application 
of individualized PEEP and lower number of patients who 
showed high driving pressure (>  15 cmH2O, 1/145 vs. 9/147 pa-
tients) as the reasons of better outcomes in driving pressure-guid-
ed ventilation group. 

According to these few prospective studies, PEEP titration can 
reduce driving pressure and  has a possibility as a more advanced 
ventilation technique. 

VT titration 

Usually, reduction of VT would decrease driving pressure, but 
only until the point where reduction of VT does not bring alveolar 
collapse. In some instances, increased VT was associated with re-
duction of driving pressure and pulmonary complications [12]. 
This would probably result from reduction of atelectasis, especial-
ly when the level of PEEP is inappropriate [12]. 

According to 3D lung CT scans, lung size calculation based on 
the patient’s PBW showed discordance with actual lung size fre-
quently. The correlation between actual lung capacity and PBW 
based on patient’s height was not strong (R =  0.58–0.65), and was 
especially poor in patents with low lung compliance (Fig. 4) [37]. If 

PBW does not reflect patients’ actual lung size reliably, and patients 
have different ‘functional lung size’ due to underlying lung pathol-
ogies, applying fixed VT based on PBW would frequently result in 
alveolar over-distension or atelectasis. Therefore, additional VT ti-
tration guided by driving pressure may be beneficial. However, no 
randomized studies are available currently. 

Alveolar recruitment 

Alveolar recruitment is frequently employed to open up the 
collapsed alveoli before initiation of mechanical ventilation be-
cause high PEEP alone is not enough [33,34,38]; When the PEEP 
increased from 9 to 16 cmH2O, only 47% of patients showed re-
cruitment, but 53% of patients did not. Oxygenation did not im-
prove and static lung elasticity significantly increased in these pa-
tients [39]. Recruitment is also essential before starting PEEP ti-
tration for driving pressure measurement. However, we do not 
know how to recruit lungs with various functional sizes. 

These days, the ‘open lung’ approach is gaining popularity as a 
recruitment technique. The open lung approach is to achieve high 
levels of lung aeration by first conducting recruitment maneuvers 
to reverse atelectasis and then applying high levels of PEEP to 
keep recruited alveoli open [40–46]. Recent open lung approaches 
use a stepwise increase in inspiratory pressure or VT for the re-
cruitment (inspiratory pressure up to 35–60 cmH2O, driving pres-
sure up to 20 cmH2O, or VT up to the ventilator limit), and then 

Fig. 4. Computed tomography 3D reconstruction of the lungs. Lung capacity is not well correlated with predicted body weight (PBW). Adapted 
from Hoftman et al. [37].

Total lung capacity 1,800 ml 
PBW 70 kg

Total lung capacity 3,700 ml 
PBW 63 kg

https://doi.org/10.4097/kja.20041198

Ahn et al.  · Driving pressure



decremental PEEP titration is performed using volume-controlled 
ventilation until the highest Cstat is found. The chosen PEEP is 
usually applied after secondary recruitment (Fig. 5) [40,42,44,45]. 

However, the open lung approach is not showing consistent re-
sults in ICU and surgery. When the open lung approach (recruit-
ment: inspiratory pressure 45 cmH2O + PEEP 30 cmH2O, mainte-
nance PEEP: 13 cmH2O) was compared with a control group (re-
cruitment: inspiratory pressure 20 cmH2O, maintenance PEEP: 8 
cmH2O) for ICU patients who showed respiratory insufficiency 
after open heart surgery, pulmonary severity score was lower 
(score 2.1 vs. 1.8, P =  0.003, OR 1.86), hospital stay (12 vs. 11 
days, P =  0.04) and ICU stays (5 vs. 4 days, P =  0.01) were short-
er in open lung approach with no difference in in-hospital mor-
tality (n =  320) [47]. Other large scale randomized studies con-
ducted for ARDS patients showed no improvement in clinical 
outcomes with the open lung approach compared to regular AR-
DSnet protocol (n =  200, n =  983) [41,48]. Only lung compliance 
was increased [41] and the incidence of hypoxia was reduced with 
open lung approach [41,48]. The latest and largest randomized 
trial called ART showed worse outcomes with the open lung ap-
proach compared to an ordinary ARDSnet protocol (n =  1,200) 

[42]. In this study, the open lung approach was associated with a 
higher 28-day mortality, 6-month mortality, and fewer ventila-
tor-free days. This poor outcome seems to be related to barotrau-
ma and hemodynamic instability induced by the open lung ap-
proach [42]. 

Besides the above-mentioned ARDS patients, several studies 
have been published for surgical patients. For abdominal surgery 
(PROVHILO trial, n =  900), an open lung approach group (re-
cruitment: inspiratory pressure 35 cmH2O, maintenance PEEP: 13 
cmH2O) was compared to a low PEEP group (≤  2 cmH2O) with-
out recruitment [49]. In the open lung approach group, lung com-
pliance improved, but the incidence of hypotension and the use of 
vasopressors were higher. Postoperative pulmonary complica-
tions, the primary outcome, were reported in 40% and 39% in the 
open lung approach group and low PEEP group, respectively (rel-
ative risk 1.01; 95% CI 0.86–1.20, P =  0.86) [49]. 

For obese patients (PROBESE trial, n =  2,013, BMI ≥  35), the 
open lung approach with high PEEP (recruitment: Pplat 40–50 
cmH2O, maintenance PEEP: 12 cmH2O) was compared to low 
PEEP (4 cmH2O) without recruitment in non-cardiac, non-neu-
rological surgery under general anesthesia. Fewer patients showed 

Fig. 5. Representative method of the open lung approach. High pressure stepwise recruitment and decremental PEEP titration is performed. Pplat: 
plateau pressure, PEEP: positive end-expiratory pressure, TV: tidal volume, VC: volume controlled. PC: pressure controlled, Cstat: static lung 
compliance, Pr: pressure.
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hypoxemia (SpO2 <  92%) with the open lung approach [5.0% vs. 
13.6%, risk reduction −8.6% (95% CI, −11.1% to 6.1%); P <  
0.001], but pulmonary complications were not different [21.3% in 
the high PEEP group, 23.6% in the low PEEP group; risk ratio, 
0.93 (95% CI, 0.83 to 1.04); P =  0.23] [40]. 

For thoracic surgery, the open lung approach was performed be-
fore and after one lung ventilation with the inspiratory pressure 40  
and PEEP 20 cmH2O for recruitment. The maintenance PEEP was 
8 cmH2O in both the open lung approach and the control groups. 
The primary outcome was only dead space and PaO2, which were 
improved with the open lung approach (n = 40) [50].  

Overall, the open lung approach seems to improve oxygenation 
but the beneficial effect on clinical outcome is not certain. Baro-
trauma may be the main harm of the open lung approach. Baro-
trauma is an important risk in thoracic surgery and use of recruit-
ment maneuvering at high pressures can cause tension pneumo-
thorax especially in thoracic surgery [51–53]. 

Opening pressures of normal and collapsed alveoli are known as 
0  and 30–40 cmH2O, respectively, and consolidated alveoli never 
open with even higher pressures (Fig. 6) [38]. Non- recruited por-
tion was almost 24% with open lung approach according to the 
whole-lung CT in ARDS [54]. Healthy alveoli may be damaged 
during forceful recruitment of collapsed/consolidated alveoli [25]. 
In an animal study, large VT ventilation recruited more alveoli than 
small VT ventilation during one lung ventilation, but produced 
more atelectatic alveoli after the finish of one lung ventilation [55]. 
Patients who showed a higher percentage of lung recruitment with 
open lung approach had poorer oxygenation and respiratory-sys-
tem compliance, and higher rates of death than patients who 

showed a lower percentage of lung recruitment in ARDS [54]. This 
may indicate that effective recruitment with the open lung ap-
proach only reflects an underlying poor lung condition, but does 
not necessarily result in improved outcomes. 

We do not aim for high oxygenation during ventilation. Instead, 
we aim for lung protection with acceptable oxygen delivery to tis-
sues. We do not aim for reopening of collapsed/consolidated alve-
oli at the cost of healthy alveoli. It may be more protective to allow 
part of the lung to stay closed with permissive atelectasis than to 
use aggressive effort to keep the lung open [56]. 

Therefore, regarding recruitment before PEEP titration, we still 
do not know the best technique for patients with various func-
tional lung sizes. Moderate alveolar recruitment limiting inspira-
tory pressure <  30 cmH2O or even no recruitment may provide 
more benefit than the open lung approach [42], but no relevant 
studies are published yet. 

Application of driving pressure-guided 
ventilation 

For driving pressure-guided ventilation, we (the Samsung med-
ical center) usually performs recruitment and PEEP titration as 
follows. First, recruitment is performed by increasing PEEP from 
5 up to 15 cmH2O by 5 cmH2O intervals. Each PEEP level is 
maintained for 4–5 respiratory cycles (requires <  90 s). During 
recruitment, respiratory rate is 10 /min, inspiratory:expiratory 
duration =  1:1, inspiratory pause 30%, VT 8 ml/kg PBW for two 
lung ventilation, 5 ml/kg PBW for one lung ventilation. Recruit-
ment is stopped if Pplat reaches 30 cmH2O. The second step is 

Fig. 6. Opening pressure of various alveoli. Adapted from Umbrello et al. [38].
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PEEP titration. PEEP starts at 10 cmH2O and is then decreased to 
0 cmH2O by 1–2 cmH2O intervals. Driving pressure is measured 
at each PEEP level after maintaining for 5 respiratory cycles. The 
PEEP which shows the lowest driving pressure is determined. If 
multiple levels of PEEP show the same lowest driving pressure, 
the lowest PEEP is chosen. During PEEP titration, respiratory rate 
is 12 /min, inspiratory:expiratory duration =  1:2, inspiratory 
pause 30%, VT 8 ml/kg PBW for two lung ventilation, 5 ml/kg 
PBW for one lung ventilation (requires <  150–275 s). The chosen 
PEEP is applied throughout the ventilation. Additional recruit-
ment and PEEP titration is performed when driving pressure in-
creases by 2 cmH2O from the baseline, or when the ventilator set-
ting is changed. The optional step is VT titration. If driving pres-
sure is still higher than 15 cmH2O, VT is decreased by 1 ml/kg 
PBW until driving pressure falls below 15 cmH2O (VT down to 6 ml/
kg PBW for two lung ventilation and to 3 ml/kg PBW for one lung 
ventilation). If driving pressure increases with VT reduction, VT is 
increased by 1 ml/kg PBW until driving pressure falls below 15 cm-
H2O (VT up to 10 ml/kg PBW for two lung ventilation and to 7 ml/
kg PBW for one lung ventilation). Usually, recruitment and PEEP ti-
tration finish within 5 minutes and VT titration is not required. If 
driving pressure is maintained higher than 15 cmH2O with either 
method, we expect high postoperative pulmonary complications 
and prepare more advanced postoperative care.  

Currently undergoing large randomized studies 
for thoracic surgery  

PROTHOR 

In this study, an open lung approach with maintenance PEEP 
10 cmH2O is being compared to PEEP 5 cmH2O without recruit-
ment (n =  2,378) [43]. 

iPROVE-OLV 

In this study, PEEP 5 cmH2O without recruitment is compared 
to the open lung approach with individualized PEEP based on 
Cstat (n =  1,380) [44]. The same group used the same protocol 
for abdominal surgery but failed to show a difference between the 
two ventilation techniques (iPROVE trial, n =  1,012, relative risk 
0.74 to 1.07) [45]. In the previous abdominal surgery study, they 
performed 4 group comparisons, resulting in an underpowered 
study. They changed their protocol to a comparison of two groups 
for the iPROVE-OLV trial [44]. In this trial, individualized high 
flow O2 or fixed O2 supply at post-anesthesia care unit is also in-
cluded in the protocol. 

These studies using individualized PEEP based on Cstat are 
currently underway. It would be a very important finding if this 
ventilatory strategy proves to be effective and brings improved 
outcomes. However, there is a concern regarding the use of a 
high-pressure open lung approach. 

Conclusion 

Driving pressure guided ventilation might be another technique 
to reduce postoperative pulmonary complications and improve 
recovery in thoracic and general surgery patients. However, there 
are not many studies on this topic yet. Thus, more prospective, 
randomized trials are requested to assess the independent role of 
driving pressure and PEEP titration for clinical outcomes. VT ti-
tration based on driving pressure would also warrant further 
study. 

Conflicts of Interest 

No potential conflict of interest relevant to this article was re-
ported. 

Author Contributions 

Hyun-joo Ahn (Conceptualization; Data curation; Formal analy-
sis; Investigation; Supervision; Validation; Writing – original draft; 
Writing – review & editing)
MiHye Park (Conceptualization; Data curation; Formal analysis; 
Investigation; Writing – original draft; Writing – review & edit-
ing)
Jie Ae Kim (Writing – original draft; Writing – review & editing)
Mikyung Yang (Writing – original draft; Writing – review & edit-
ing)
Susie Yoon (Conceptualization; Writing – original draft; Writing 
– review & editing)
Bo Rim Kim (Conceptualization; Writing – original draft; Writing 
– review & editing)
Jae-Hyon Bahk (Conceptualization; Writing – original draft; 
Writing – review & editing)
Young Jun Oh (Conceptualization; Writing – original draft; Writ-
ing – review & editing)
Eun-Ho Lee (Conceptualization; Writing – original draft; Writing 
– review & editing)

ORCID 

Hyun Joo Ahn, https://orcid.org/0000-0003-1576-5308 

201https://doi.org/10.4097/kja.20041

Korean J Anesthesiol 2020;73(3):194-204

http://orcid.org/0000-0003-1576-5308


MyHye Park, https://orcid.org/0000-0002-3760-1067
Jie Ae Kim, https://orcid.org/0000-0001-7087-2187
Mikyung Yang, https://orcid.org/0000-0002-4737-3117 
Susie Yoon, https://orcid.org/0000-0001-5281-5904
Bo Rim Kim, https://orcid.org/0000-0002-9464-0150 
Jae-Hyon Bahk, https://orcid.org/0000-0002-3082-5244
Young Jun Oh, https://orcid.org/0000-0002-6258-5695 
Eun-Ho Lee, https://orcid.org/0000-0002-6369-7429 

References 

1. Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino 
GP, Lorenzi-Filho G, et al. Effect of a protective-ventilation strat-
egy on mortality in the acute respiratory distress syndrome. N 
Engl J Med 1998; 338: 347-54. 

2. Acute Respiratory Distress Syndrome Network, Brower RG, 
Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ven-
tilation with lower tidal volumes as compared with traditional 
tidal volumes for acute lung injury and the acute respiratory dis-
tress syndrome. N Engl J Med 2000; 342: 1301-8. 

3. Lohser J. Evidence-based management of one-lung ventilation. 
Anesthesiol Clin 2008; 26: 241-72. 

4. de la Gala F, Pineiro P, Garutti I, Reyes A, Olmedilla L, Cruz P, et 
al. Systemic and alveolar inflammatory response in the depen-
dent and nondependent lung in patients undergoing lung resec-
tion surgery: a prospective observational study. Eur J Anaesthe-
siol 2015; 32: 872-80. 

5. Baudouin SV. Lung injury after thoracotomy. Br J Anaesth 2003; 
91: 132-42. 

6. Sugasawa Y, Yamaguchi K, Kumakura S, Murakami T, Kugimiya 
T, Suzuki K, et al. The effect of one-lung ventilation upon pul-
monary inflammatory responses during lung resection. J Anesth 
2011; 25: 170-7. 

7. Glynn P, Coakley R, Kilgallen I, Murphy N, O’Neill S. Circulat-
ing interleukin 6 and interleukin 10 in community acquired 
pneumonia. Thorax 1999; 54: 51-5. 

8. Takenaka K, Ogawa E, Wada H, Hirata T. Systemic inflammato-
ry response syndrome and surgical stress in thoracic surgery. J 
Crit Care 2006; 21: 48-53. 

9. Yang M, Ahn HJ, Kim K, Kim JA, Yi CA, Kim MJ, et al. Does a 
protective ventilation strategy reduce the risk of pulmonary 
complications after lung cancer surgery?: a randomized con-
trolled trial. Chest 2011; 139: 530-7. 

10. Slinger PD, Campos JH. Anesthesia for thoracic surgery. In: Mill-
er’s Anesthesia. 8th ed. Edited by Miller RD, Cohen NH, Eriks-
son LI, Fleisher LA, Wiener-Kronish JP, Young WL: Philadel-
phia, Elsevier Health Sciences. 2015, pp 1970–2. 

11. Ferrando C, Mugarra A, Gutierrez A, Carbonell JA, Garcia M, 
Soro M, et al. Setting individualized positive end-expiratory 
pressure level with a positive end-expiratory pressure decrement 
trial after a recruitment maneuver improves oxygenation and 
lung mechanics during one-lung ventilation. Anesth Analg 
2014; 118: 657-65. 

12. Blank RS, Colquhoun DA, Durieux ME, Kozower BD, McMurry 
TL, Bender SP, et al. Management of one-lung ventilation: im-
pact of tidal volume on complications after thoracic surgery. An-
esthesiology 2016; 124: 1286-95. 

13. Marret E, Cinotti R, Berard L, Piriou V, Jobard J, Barrucand B, et 
al. Protective ventilation during anaesthesia reduces major post-
operative complications after lung cancer surgery: a dou-
ble-blind randomised controlled trial. Eur J Anaesthesiol 2018; 
35: 727-735. 

14. Fernandez-Bustamante A, Frendl G, Sprung J, Kor DJ, Subrama-
niam B, Martinez Ruiz R, et al. Postoperative pulmonary com-
plications, early mortality, and hospital stay following noncar-
diothoracic surgery: a multicenter study by the perioperative re-
search network investigators. JAMA Surg 2017; 152: 157-66. 

15. Canet J, Gallart L, Gomar C, Paluzie G, Valles J, Castillo J, et al. 
Prediction of postoperative pulmonary complications in a popu-
lation-based surgical cohort. Anesthesiology 2010; 113: 1338-50. 

16. Agostini P, Cieslik H, Rathinam S, Bishay E, Kalkat MS, Rajesh 
PB, et al. Postoperative pulmonary complications following tho-
racic surgery: are there any modifiable risk factors? Thorax 2010; 
65: 815-8. 

17. Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, 
Schoenfeld DA, et al. Driving pressure and survival in the acute 
respiratory distress syndrome. N Engl J Med 2015; 372: 747-55. 

18. Guerin C, Papazian L, Reignier J, Ayzac L, Loundou A, Forel JM, 
et al. Effect of driving pressure on mortality in ARDS patients 
during lung protective mechanical ventilation in two random-
ized controlled trials. Crit Care 2016; 20: 384. 

19. Villar J, Martin-Rodriguez C, Dominguez-Berrot AM, Fernan-
dez L, Ferrando C, Soler JA, et al. A quantile analysis of plateau 
and driving pressures: Effects on mortality in patients with acute 
respiratory distress syndrome receiving lung-protective ventila-
tion. Crit Care Med 2017; 45: 843-50. 

20. Mathis MR, Duggal NM, Likosky DS, Haft JW, Douville NJ, 
Vaughn MT, et al. Intraoperative mechanical ventilation and 
postoperative pulmonary complications after cardiac surgery. 
Anesthesiology 2019; 131: 1046-62. 

21. Park M, Ahn HJ, Kim JA, Yang M, Heo BY, Choi JW, et al. Driv-
ing pressure during thoracic surgery: a randomized clinical trial. 
Anesthesiology 2019; 130: 385-93. 

22. Neto AS, Hemmes SN, Barbas CS, Beiderlinden M, Fernan-

https://doi.org/10.4097/kja.20041202

Ahn et al.  · Driving pressure

http://orcid.org/0000-0002-4737-3117
http://orcid.org/0000-0002-6369-7429
https://doi.org/10.1056/NEJM199802053380602
https://doi.org/10.1056/NEJM199802053380602
https://doi.org/10.1056/NEJM199802053380602
https://doi.org/10.1056/NEJM199802053380602
https://doi.org/10.1056/NEJM200005043421801
https://doi.org/10.1056/NEJM200005043421801
https://doi.org/10.1056/NEJM200005043421801
https://doi.org/10.1016/j.anclin.2008.01.011
https://doi.org/10.1016/j.anclin.2008.01.011
https://doi.org/10.1097/EJA.0000000000000233
https://doi.org/10.1097/EJA.0000000000000233
https://doi.org/10.1093/bja/aeg083
https://doi.org/10.1093/bja/aeg083
https://doi.org/10.1007/s00540-011-1100-0
https://doi.org/10.1007/s00540-011-1100-0
https://doi.org/10.1007/s00540-011-1100-0
https://doi.org/10.1007/s00540-011-1100-0
https://doi.org/10.1136/thx.54.1.51
https://doi.org/10.1136/thx.54.1.51
https://doi.org/10.1136/thx.54.1.51
https://doi.org/10.1016/j.jcrc.2005.07.001
https://doi.org/10.1016/j.jcrc.2005.07.001
https://doi.org/10.1016/j.jcrc.2005.07.001
https://doi.org/10.1378/chest.09-2293
https://doi.org/10.1378/chest.09-2293
https://doi.org/10.1378/chest.09-2293
https://doi.org/10.1378/chest.09-2293
https://doi.org/10.1213/ANE.0000000000000105
https://doi.org/10.1213/ANE.0000000000000105
https://doi.org/10.1213/ANE.0000000000000105
https://doi.org/10.1213/ANE.0000000000000105
https://doi.org/10.1097/ALN.0000000000001100
https://doi.org/10.1097/ALN.0000000000001100
https://doi.org/10.1097/ALN.0000000000001100
https://doi.org/10.1097/ALN.0000000000001100
https://doi.org/10.1097/EJA.0000000000000804
https://doi.org/10.1097/EJA.0000000000000804
https://doi.org/10.1097/EJA.0000000000000804
https://doi.org/10.1097/EJA.0000000000000804
https://doi.org/10.1001/jamasurg.2016.4065
https://doi.org/10.1097/ALN.0b013e3181fc6e0a
https://doi.org/10.1097/ALN.0b013e3181fc6e0a
https://doi.org/10.1097/ALN.0b013e3181fc6e0a
https://doi.org/10.1136/thx.2009.123083
https://doi.org/10.1136/thx.2009.123083
https://doi.org/10.1136/thx.2009.123083
https://doi.org/10.1136/thx.2009.123083
https://doi.org/10.1056/NEJMsa1410639
https://doi.org/10.1056/NEJMsa1410639
https://doi.org/10.1056/NEJMsa1410639
https://doi.org/10.1186/s13054-016-1556-2
https://doi.org/10.1186/s13054-016-1556-2
https://doi.org/10.1097/CCM.0000000000002330
https://doi.org/10.1097/CCM.0000000000002330
https://doi.org/10.1097/CCM.0000000000002330
https://doi.org/10.1097/ALN.0000000000002909
https://doi.org/10.1097/ALN.0000000000002909
https://doi.org/10.1097/ALN.0000000000002909
https://doi.org/10.1097/ALN.0000000000002909
https://doi.org/10.1097/ALN.0000000000002600
https://doi.org/10.1097/ALN.0000000000002600
https://doi.org/10.1097/ALN.0000000000002600


dez-Bustamante A, Futier E, et al. Association between driving 
pressure and development of postoperative pulmonary compli-
cations in patients undergoing mechanical ventilation for gener-
al anaesthesia: a meta-analysis of individual patient data. Lancet 
Respir Med 2016; 4: 272-80. 

23. Bugedo G, Retamal J, Bruhn A. Driving pressure: a marker of se-
verity, a safety limit, or a goal for mechanical ventilation? Crit 
Care 2017; 21: 199. 

24. Bellani G, Grassi A, Sosio S, Gatti S, Kavanagh BP, Pesenti A, et 
al. Driving pressure is associated with outcome during assisted 
ventilation in acute respiratory distress syndrome. Anesthesiolo-
gy 2019; 131: 594-604. 25.Gattinoni L, Pesenti A. The concept of 
“baby lung”. Intensive Care Med 2005; 31: 776-84.  

26. Silva PL, Rocco PR. The basics of respiratory mechanics: ventila-
tor-derived parameters. Ann Transl Med 2018; 6: 376.  

27. Fengmei G, Jin C, Songqiao L, Congshan Y, Yi Y. Dead space 
fraction changes during PEEP titration following lung recruit-
ment in patients with ARDS. Respir Care 2012; 57: 1578-85. 

28. Loring SH, Malhotra A. Driving pressure and respiratory me-
chanics in ARDS. N Engl J Med 2015; 372: 776-7. 

29. Borges JB, Hedenstierna G, Larsson A, Suarez-Sipmann F. Alter-
ing the mechanical scenario to decrease the driving pressure. 
Crit Care 2015; 19: 342. 

30. Ferrando C, Suarez-Sipmann F, Tusman G, Leon I, Romero E, 
Gracia E, et al. Open lung approach versus standard protective 
strategies: Effects on driving pressure and ventilatory efficiency 
during anesthesia: a pilot, randomized controlled trial. PLoS 
One 2017; 12: e0177399.1 

31. Suter PM, Fairley B, Isenberg MD. Optimum end-expiratory air-
way pressure in patients with acute pulmonary failure. N Engl J 
Med 1975; 292: 284-9. 

32. Pereira SM, Tucci MR, Morais CCA, Simoes CM, Tonelotto BFF, 
Pompeo MS, et al. Individual positive end-expiratory pressure 
settings optimize intraoperative mechanical ventilation and re-
duce postoperative atelectasis. Anesthesiology 2018; 129: 1070-
81. 

33. Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, 
Ancukiewicz M, et al. Higher versus lower positive end-expira-
tory pressures in patients with the acute respiratory distress syn-
drome. N Engl J Med 2004; 351: 327-36. 

34. Mercat A, Richard JC, Vielle B, Jaber S, Osman D, Diehl JL, et al. 
Positive end-expiratory pressure setting in adults with acute lung 
injury and acute respiratory distress syndrome: a randomized 
controlled trial. JAMA 2008; 299: 646-55. 

35. Scaramuzzo G, Spadaro S, Waldmann AD, Bohm SH, Ragazzi R, 
Marangoni E, et al. Heterogeneity of regional inflection points 
from pressure-volume curves assessed by electrical impedance 

tomography. Crit Care 2019; 23: 119. 
36. Yokota K, Toriumi T, Sari A, Endou S, Mihira M. Auto-positive 

end-expiratory pressure during one-lung ventilation using a 
double-lumen endobronchial tube. Anesth Analg 1996; 82: 
1007-10. 

37. Hoftman N, Eikermann E, Shin J, Buckley J, Navab K, Abtin F, et 
al. Utilizing forced vital capacity to predict low lung compliance 
and select intraoperative tidal volume during thoracic surgery. 
Anesth Analg 2017; 125: 1922-30. 

38. Umbrello M, Formenti P, Bolgiaghi L, Chiumello D. Current 
concepts of ARDS: a narrative review. Int J Mol Sci 2016; 18. 

39. Grasso S, Fanelli V, Cafarelli A, Anaclerio R, Amabile M, Ancona 
G, et al. Effects of high versus low positive end-expiratory pres-
sures in acute respiratory distress syndrome. Am J Respir Crit 
Care Med 2005; 171: 1002-8. 

40. Writing Committee for the PROBESE Collaborative Group of 
the PROtective VEntilation Network (PROVEnet) for the Clini-
cal Trial Network of the European Society of Anaesthesiology, 
Bluth T, Serpa Neto A, Schultz MJ, Pelosi P, Gama de Abreu M, 
et al. Effect of intraoperative high positive end-expiratory pres-
sure (PEEP) with recruitment maneuvers vs low PEEP on post-
operative pulmonary complications in obese patients: a random-
ized clinical trial. JAMA 2019; 321: 2292-305. 

41. Kacmarek RM, Villar J, Sulemanji D, Montiel R, Ferrando C, 
Blanco J, et al. Open lung approach for the acute respiratory dis-
tress syndrome: a pilot, randomized controlled trial. Crit Care 
Med 2016; 44: 32-42. 

42. Writing Group for the Alveolar Recruitment for Acute Respira-
tory Distress Syndrome Trial I, Cavalcanti AB, Suzumura EA, 
Laranjeira LN, Paisani DM, Damiani LP, et al. Effect of lung re-
cruitment and titrated positive end-expiratory pressure (PEEP) 
vs low PEEP on mortality in patients with acute respiratory dis-
tress syndrome: a randomized clinical trial. JAMA 2017; 318: 
1335-45. 

43. Kiss T, Wittenstein J, Becker C, Birr K, Cinnella G, Cohen E, et al. 
Protective ventilation with high versus low positive end-expira-
tory pressure during one-lung ventilation for thoracic surgery 
(PROTHOR): study protocol for a randomized controlled trial. 
Trials 2019; 20: 213. 

44. Carraminana A, Ferrando C, Unzueta MC, Navarro R, Su-
arez-Sipmann F, Tusman G, et al. Rationale and study design for 
an individualized perioperative open lung ventilatory strategy in 
patients on one-lung ventilation (iPROVE-OLV). J Cardiothorac 
Vasc Anesth 2019; 33: 2492-502. 

45. Ferrando C, Soro M, Unzueta C, Suarez-Sipmann F, Canet J, Li-
brero J, et al. Individualised perioperative open-lung approach 
versus standard protective ventilation in abdominal surgery (iP-

203https://doi.org/10.4097/kja.20041

Korean J Anesthesiol 2020;73(3):194-204

https://doi.org/10.1016/S2213-2600(16)00057-6
https://doi.org/10.1016/S2213-2600(16)00057-6
https://doi.org/10.1186/s13054-017-1779-x
https://doi.org/10.1186/s13054-017-1779-x
https://doi.org/10.1186/s13054-017-1779-x
https://doi.org/10.1097/ALN.0000000000002846
https://doi.org/10.1097/ALN.0000000000002846
https://doi.org/10.1097/ALN.0000000000002846
https://doi.org/10.1097/ALN.0000000000002846
https://doi.org/10.1007/s00134-005-2627-z
https://doi.org/10.1007/s00134-005-2627-z
https://doi.org/10.21037/atm.2018.06.06
https://doi.org/10.4187/respcare.01497
https://doi.org/10.4187/respcare.01497
https://doi.org/10.4187/respcare.01497
https://doi.org/10.1056/NEJMe1414218
https://doi.org/10.1056/NEJMe1414218
https://doi.org/10.1186/s13054-015-1063-x
https://doi.org/10.1186/s13054-015-1063-x
https://doi.org/10.1186/s13054-015-1063-x
https://doi.org/10.1371/journal.pone.0177399
https://doi.org/10.1371/journal.pone.0177399
https://doi.org/10.1056/NEJM197502062920604
https://doi.org/10.1056/NEJM197502062920604
https://doi.org/10.1056/NEJM197502062920604
https://doi.org/10.1097/ALN.0000000000002435
https://doi.org/10.1097/ALN.0000000000002435
https://doi.org/10.1097/ALN.0000000000002435
https://doi.org/10.1097/ALN.0000000000002435
https://doi.org/10.1056/NEJMoa032193
https://doi.org/10.1056/NEJMoa032193
https://doi.org/10.1056/NEJMoa032193
https://doi.org/10.1056/NEJMoa032193
https://doi.org/10.1001/jama.299.6.646
https://doi.org/10.1001/jama.299.6.646
https://doi.org/10.1001/jama.299.6.646
https://doi.org/10.1001/jama.299.6.646
https://doi.org/10.1186/s13054-019-2417-6
https://doi.org/10.1186/s13054-019-2417-6
https://doi.org/10.1186/s13054-019-2417-6
https://doi.org/10.1186/s13054-019-2417-6
https://www.ncbi.nlm.nih.gov/pubmed/8610857
https://www.ncbi.nlm.nih.gov/pubmed/8610857
https://www.ncbi.nlm.nih.gov/pubmed/8610857
https://www.ncbi.nlm.nih.gov/pubmed/8610857
https://doi.org/10.1213/ANE.0000000000001885
https://doi.org/10.1213/ANE.0000000000001885
https://doi.org/10.1213/ANE.0000000000001885
https://doi.org/10.1213/ANE.0000000000001885
https://doi.org/10.3390/ijms18010064
https://doi.org/10.3390/ijms18010064
https://doi.org/10.1164/rccm.200407-940OC
https://doi.org/10.1164/rccm.200407-940OC
https://doi.org/10.1164/rccm.200407-940OC
https://doi.org/10.1164/rccm.200407-940OC
https://doi.org/10.1001/jama.2019.7505
https://doi.org/10.1001/jama.2019.7505
https://doi.org/10.1001/jama.2019.7505
https://doi.org/10.1001/jama.2019.7505
https://doi.org/10.1097/CCM.0000000000001383
https://doi.org/10.1097/CCM.0000000000001383
https://doi.org/10.1097/CCM.0000000000001383
https://doi.org/10.1097/CCM.0000000000001383
https://doi.org/10.1001/jama.2017.14171
https://doi.org/10.1001/jama.2017.14171
https://doi.org/10.1001/jama.2017.14171
https://www.ncbi.nlm.nih.gov/pubmed/30975217
https://www.ncbi.nlm.nih.gov/pubmed/30975217
https://www.ncbi.nlm.nih.gov/pubmed/30975217
https://www.ncbi.nlm.nih.gov/pubmed/30975217
https://doi.org/10.1053/j.jvca.2019.01.056
https://doi.org/10.1053/j.jvca.2019.01.056
https://doi.org/10.1053/j.jvca.2019.01.056
https://doi.org/10.1053/j.jvca.2019.01.056
https://doi.org/10.1016/S2213-2600(18)30024-9
https://doi.org/10.1016/S2213-2600(18)30024-9
https://doi.org/10.1016/S2213-2600(18)30024-9


ROVE): a randomised controlled trial. Lancet Respir Med 2018; 
6: 193-203. 

46. Marini JJ. Recruitment by sustained inflation: time for a change. 
Intensive Care Med 2011; 37: 1572-4. 

47. Costa Leme A, Hajjar LA, Volpe MS, Fukushima JT, De Santis 
Santiago RR, Osawa EA, et al. Effect of intensive vs moderate al-
veolar recruitment strategies added to lung-protective ventila-
tion on postoperative pulmonary complications: a randomized 
clinical trial. JAMA 2017; 317: 1422-32. 

48. Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Coo-
per DJ, et al. Ventilation strategy using low tidal volumes, re-
cruitment maneuvers, and high positive end-expiratory pressure 
for acute lung injury and acute respiratory distress syndrome: a 
randomized controlled trial. JAMA 2008; 299: 637-45. 

49. Anaesthesiology PNIftCTNotESo, Hemmes SN, Gama de Abreu 
M, Pelosi P, Schultz MJ. High versus low positive end-expiratory 
pressure during general anaesthesia for open abdominal surgery 
(PROVHILO trial): a multicentre randomised controlled trial. 
Lancet 2014; 384: 495-503. 

50. Unzueta C, Tusman G, Suarez-Sipmann F, Bohm S, Moral V. Al-
veolar recruitment improves ventilation during thoracic surgery: 
a randomized controlled trial. Br J Anaesth 2012; 108: 517-24.  

51. Finlayson GN, Chiang AB, Brodsky JB, Cannon WB. Intraopera-
tive contralateral tension pneumothorax during pneumonecto-
my. Anesth Analg 2008; 106: 58-60. 

52. Gabbott DA, Carter JA. Contralateral tension pneumothorax 
during thoracotomy for lung resection. Anaesthesia 1990; 45: 
229-31. 

53. Hoechter DJ, Speck E, Siegl D, Laven H, Zwissler B, Kammerer T. 
Tension pneumothorax during one-lung ventilation: an under-
estimated complication? J Cardiothorac Vasc Anesth 2018; 32: 
1398-402. 

54. Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, 
Quintel M, et al. Lung recruitment in patients with the acute re-
spiratory distress syndrome. N Engl J Med 2006; 354: 1775-86. 

55. Kozian A, Schilling T, Schutze H, Senturk M, Hachenberg T, 
Hedenstierna G. Ventilatory protective strategies during thoracic 
surgery: effects of alveolar recruitment maneuver and low-tidal 
volume ventilation on lung density distribution. Anesthesiology 
2011; 114: 1025-35. 

56. Sahetya SK, Brower RG. Lung recruitment and titrated PEEP in 
moderate to severe ARDS: Is the door closing on the open lung? 
JAMA 2017; 318: 1327-9.  

https://doi.org/10.4097/kja.20041204

Ahn et al.  · Driving pressure

https://doi.org/10.1016/S2213-2600(18)30024-9
https://doi.org/10.1007/s00134-011-2329-7
https://doi.org/10.1007/s00134-011-2329-7
https://doi.org/10.1001/jama.2017.2297
https://doi.org/10.1001/jama.2017.2297
https://doi.org/10.1001/jama.299.6.637
https://doi.org/10.1001/jama.299.6.637
https://doi.org/10.1001/jama.299.6.637
https://doi.org/10.1001/jama.299.6.637
https://www.ncbi.nlm.nih.gov/pubmed/24894577
https://www.ncbi.nlm.nih.gov/pubmed/24894577
https://www.ncbi.nlm.nih.gov/pubmed/24894577
https://www.ncbi.nlm.nih.gov/pubmed/24894577
https://doi.org/10.1097/01.SA.0000422675.28228.44
https://doi.org/10.1097/01.SA.0000422675.28228.44
https://doi.org/10.1097/01.SA.0000422675.28228.44
https://doi.org/10.1213/01.ane.0000287685.02860.47
https://doi.org/10.1213/01.ane.0000287685.02860.47
https://doi.org/10.1213/01.ane.0000287685.02860.47
https://doi.org/10.1111/j.1365-2044.1990.tb14692.x
https://doi.org/10.1111/j.1365-2044.1990.tb14692.x
https://doi.org/10.1111/j.1365-2044.1990.tb14692.x
https://doi.org/10.1053/j.jvca.2017.07.022
https://doi.org/10.1053/j.jvca.2017.07.022
https://doi.org/10.1053/j.jvca.2017.07.022
https://doi.org/10.1053/j.jvca.2017.07.022
https://doi.org/10.1056/NEJMoa052052
https://doi.org/10.1056/NEJMoa052052
https://doi.org/10.1056/NEJMoa052052
https://doi.org/10.1097/ALN.0b013e3182164356
https://doi.org/10.1097/ALN.0b013e3182164356
https://doi.org/10.1097/ALN.0b013e3182164356
https://doi.org/10.1097/ALN.0b013e3182164356
https://doi.org/10.1001/jama.2017.13695
https://doi.org/10.1001/jama.2017.13695
https://doi.org/10.1001/jama.2017.13695

	Introduction
	Driving pressure 
	Definition 
	Retrospective studies for ARDS patients 
	Retrospective studies for general surgical patients 


	Suggested mechanism of how driving pressure guided-ventilation can decrease morbidity 
	The two methods to reduce driving pressure 
	PEEP titration 
	VT titration 

	Alveolar recruitment 
	Application of driving pressure-guided ventilation 
	Currently undergoing large randomized studies for thoracic surgery  
	PROTHOR 
	iPROVE-OLV 

	Conclusion
	Conflicts of Interest 
	Author Contributions 
	References

