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Signal transducer and activator of transcription 3 (STAT3) regulates cell

growth, cell survival, angiogenesis, metastasis of cancer cells, and cancer

immune evasion by regulating gene expression as a transcription factor.

However, the effect of STAT3 on translation is almost unknown. We

demonstrated that STAT3 acts as a trans-acting factor for MLST8 gene

expression and the protein level of mLST8, a core component of mechanis-

tic target of rapamycin complex 1 and 2 (mTORC1/2), positively regulates

the mTORC1/2 downstream pathways. Suppression of STAT3 by siRNA

attenuated 4E-BP1 phosphorylation, cap-dependent translation, and cell

proliferation in a variety of cancer cells. In HCT116 cells, STAT3 knock-

down-induced decreases in 4E-BP1 and AKT phosphorylation levels were

further attenuated by MLST8 knockdown or recovered by mLST8 overex-

pression. STAT3 knockdown-induced G2/M phase arrest was partially

restored by co-knockdown of 4EBP1, and the attenuation of cell prolifera-

tion was enhanced by the expression of an mTORC1-mediated phosphory-

lation-defective mutant of 4E-BP1. ChIP and promoter mapping using a

luciferase reporter assay showed that the �951 to �894 bp of MLST8 pro-

moter seems to include STAT3-binding site. Overall, these results suggest

that STAT3-driven MLST8 gene expression regulates cap-dependent trans-

lation through 4E-BP1 phosphorylation in cancer cells.

1. Introduction

Signal transducer and activator of transcription 3

(STAT3), the most studied member of the STAT pro-

tein family, is a transcription factor which transmits

signals from cytokines and growth factors, translocates

to the nucleus as a phospho-STAT3 dimer, and acti-

vates the expression of target genes (Darnell, 1997).

STAT3 signaling is involved in the progression of the

cell cycle and the prevention of apoptosis by upregu-

lating the expression of cell growth and survival

proteins (Huynh et al., 2017). STAT3 is constitutively

active in a variety of human malignancies and regu-

lates the expression of target genes involved in tumori-

genesis and cancer progression (Cao et al., 2014;

Johnson et al., 2018; Yu et al., 2014). Inhibition of

STAT3 in wide range of cancer cell lines with small

molecular inhibitors, dominant-negative mutants, and

small interfering RNA (siRNA) results in a decline in

cell proliferation, indicating that STAT3 is a potential

target for anticancer therapies (Lin et al., 2011; Lin

et al., 2005; Ni et al., 2000; Zhang et al., 2008).
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The activation of the PI3K-AKT or MAPK path-

ways by nutrients and growth factors culminates in the

regulation of the protein mechanistic target of rapamy-

cin (mTOR) which coordinates the growth, survival,

proliferation, and metabolism of cells (Blenis, 2017;

Saxton and Sabatini, 2017). mTOR forms two distinct

complexes, mTORC1 and mTORC2. mTORC1 con-

tains the core components mLST8 and Raptor, and

two inhibitory subunits DEPTOR and PRAS40, while

mTORC2 contains the core components mLST8 and

Rictor, an inhibitory subunit DEPTOR, and stimula-

tory subunits Protor1/2 and mSin1 (Saxton and Saba-

tini, 2017). Transcriptional activation by transcription

factors, as well as general mRNA translation, is known to

be increased in tumor cells (Blenis, 2017; Silvera et al.,

2010; Sonenberg and Hinnebusch, 2009). Translation of

mRNA is mainly exerted at translation initiation through

the coordinated actions of members of the eukaryotic ini-

tiation factor (eIF) family. The cap-binding protein

eIF4E, together with helicase eIF4A and scaffold protein

eIF4G, forms eIF4F complexes, which play an important

role in the regulation of cap-dependent translation. eIF4F

is negatively regulated by eIF4E-binding proteins (4E-

BPs), which interact with eIF4E to prevent eIF4G binding

(Richter and Sonenberg, 2005). mTORC1 signaling

directly governs the cell growth by regulating protein syn-

thesis via the phosphorylation of 4E-BPs and ribosomal

protein S6 kinase (S6K), whereas mTORC2 signaling reg-

ulates cell survival, proliferation, and migration via the

phosphorylation of AKT(S473) and PKC (Saxton and

Sabatini, 2017).

Recent reviews have demonstrated that many cancers

have increased mTOR activity due to deregulation of

upstream and downstream mTOR signal pathways (Ble-

nis, 2017; Saxton and Sabatini, 2017; Seeboeck et al.,

2019). mTORC1/2 core components and regulators are

also involved in tumorigenesis in a variety of cancers.

Increased activation of mTORC1/2 pathways due to

MTOR mutations has been reported in a range of cancers

(Grabiner et al., 2014). mLST8, a core component of both

mTORC1 and mTORC2, associates with the kinase

domain of mTOR and may stabilize the active site (Xu

et al., 2013). mLST8 is upregulated in human colon and

prostate cancer cells, in which it contributes to tumor

growth by regulating mTORC1/2 activity (Kakumoto

et al., 2015). Raptor is overexpressed in prostatic adeno-

carcinomas (Evren et al., 2011), and knockdown of RAP-

TOR induces attenuation of mTORC1 kinase activity,

followed by reduction in S6K and 4E-BP1 phosphoryla-

tion and cell growth (Fuhler et al., 2009; Kim et al.,

2002). Expression of DEPTOR, a negative regulator of

mTORC1/2, is known to be low in many cancer cells

(Peterson et al., 2009), however, DEPTOR acts as a

tumor suppressor or oncogene, depending on the cellular

context of cancers (Catena and Fanciulli, 2017). Hyper-

phosphorylation of PRAS40, resulting in dissociation

from mTORC1 and enhanced mTOR activation, has

been found in a variety of cancers, including melanoma,

prostate cancer, stomach cancer, and non-small-cell lung

cancer (Lv et al., 2017). Overexpression of Rictor pro-

motes glioma cell growth and motility by elevation of

mTORC2 activity (Masri et al., 2007). Downregulation of

mSin1 inhibits hepatocellular carcinomas invasion and

metastasis via mTORC2 inactivation (Xu et al., 2013).

However, the role of Protor1/2 in cancers has not been

studied in depth.

Although both the STAT3 and mTOR pathways play

crucial roles in tumorigenesis, studies are underway to

investigate cross-talk between the two pathways in cancer

cells. STAT3-S727 phosphorylation by ciliary neu-

rotrophic factor treatment in neuroblastoma cells has

been reported to be induced by mTOR kinase (Yokogami

et al., 2000), but the mechanism of mTOR pathway regu-

lation by the STAT3 pathway is unknown. Here, we show

that knockdown of STAT3 by siRNA treatment induces

cell cycle arrest and apoptosis by a decrease in cap-depen-

dent translation in human cancer cells. We also demon-

strated that STAT3 knockdown-induced attenuation of

cap-dependent translation is mediated by a decline in

mLST8 expression, followed by downregulation of 4E-

BP1 phosphorylation. Overall, we suggest that mLST8

constitutes a potential target for cancer therapy as a

cross-road between STAT3 and the mTOR pathway.

2. Materials and methods

2.1. Reagents

The mutant 4E-BP1 expression vector (p4EBP1-4A) was

obtained from Addgene (#38240) (Thoreen et al., 2012).

The MLST8 cDNA expression vector (hMU000234) in

which full-length cDNA was inserted into a pCMV-

SPORT6 vector was obtained from KHGB (Daejeon,

Korea). All chemicals were purchased from Sigma-

Aldrich (St. Louis, MO, USA), unless otherwise stated.

2.2. Cell culture

Human cancer cells (origin), A549 (lung), ACHN (kid-

ney), HCT116 (colon), LNCaP (prostate), and MDA-

MB-231 (breast), were obtained from ATCC (Manas-

sas, VA, USA) and KCLB (Seoul, Korea). A549,

LNCaP, and MDA-MB-231 cells were grown in

RPMI1640 medium, HCT116 cells were grown in

McCoy’s 5A medium, and ACHN cells were grown in
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DMEM medium at 37 °C in a humidified atmosphere

with 5% CO2. All media were supplemented with 10%

FBS. Both floating and adherent cells were harvested

for the cell proliferation assays and FACS analysis,

whereas adherent cells were washed twice with cold

PBS and immediately stored at �80 °C for RNA and

protein extraction or luciferase assay.

2.3. Transfection of cells with siRNA or DNA

Cells were seeded in six-well plates for 18 h before

transfection with siRNA. Lipofectamine RNAiMAX

transfection reagent was used for siRNA transfection

according to the manufacturer’s instructions (Thermo

Fisher, Waltham, MA, USA). ON-TARGETplus

Non-targeting Pool from Dharmacon Inc. (Lafayette,

CO, USA) was used for control siRNA (siCTRL). For

the negative control, an equal amount of siCTRL was

added to adjust the concentration of total siRNA.

Gene-specific siRNA duplexes with additional 30 UU

overhangs were synthesized by Genolution Pharmaceu-

ticals (Seoul, Korea). The siRNA target sequences are

shown in Table S1. For DNA transfection, cells were

transfected with 2.5 lg of pcDNA3.1 vector (Thermo

Fisher) or cDNA expression vector or using LT1

reagent (Mirus Bio, Madison, WI, USA). Doxycycline

(2 lg�mL�1) was treated into cells for 48 h.

2.4. Cell proliferation assay

For cell proliferation assay, 5 9 103 (A549, ACHN,

HCT116, and MDA-MB-231) or 10 9 103 (LNCaP)

cells were plated on 96-well plates 18 h before treat-

ment with 5 nM of siRNA. Cell proliferation was

determined with WST-1 colorimetric assay (Lee et al.,

2009) or counting the number of live cells as described

previously (Lee et al., 2014).

2.5. Cell cycle analysis with FACS

Cell cycle was analyzed using a flow cytometer,

FACSCalibur, from BD Bioscience (San Jose, CA,

USA) as described previously (Lee et al., 2014).

2.6. Preparation of cell extracts and western blot

analysis

Cell extracts were prepared by scraping the cells with 60–
80 lL of cold lysis buffer (Lee et al., 2014) and storing on

ice for 10 min. Clearing of the homogenates, protein quan-

tification, SDS/PAGE, western blotting, and quantifica-

tion of blots were performed as described previously (Lee

et al., 2009). The antibodies (Catalog number) against 4E-

BP1 (#9644), phospho-4E-BP1(T37/46) (#2855), phospho-

4E-BP1(S65) (#9451), phospho-4E-BP1(T70) (#9455), 4E-

BP2 (#2845), AKT (#4691), phospho-AKT(T308)

(#2965), phospho-AKT(S473) (#9271), eIF4A (#2013),

eIF4A1 (#2490), eIF4B (#3592), phospho-eIF4B(S422)

(#3591), eIF4E (#2067), eIF4G (#2469), eIF4H (#3469),

mLST8 (#3274), Raptor (#2280), Rictor (#2214), p70S6K

(#2708), phospho-p70S6K (T389) (#9205), STAT1

(#9172), phospho-STAT1(Y701) (#9171), STAT3 (#4904),

phospho-STAT3(Y705) (#9131), phospho-STAT3(S727)

(#9134), mTOR (#2983), phospho-mTOR(S2448) (#5536),

and phospho-mTOR(S2481) (#2974) were obtained from

Cell Signal Technology (Danvers, MA, USA); GAPDH

(#CSB-MA000071M0m) was obtained from Cusabio

(Houston, TX, USA).

2.7. Immunoprecipitation

HNTG buffer (20 mM HEPES, 150 mM NaCl, 0.1% Tri-

ton X-100, 10% glycerol) was supplemented with protease

inhibitors (1 mM PMSF, 10 lg�mL�1 of leupeptin, and

10 lg�mL�1 of aprotinin) and phosphatase inhibitors

(1 mM Na3VO4, 1 mM NaF, and 10 mM b-glycerophos-
phate) just before use. Cell extract (0.2–0.5 mg) in 0.4 mL

of HNTG buffer was incubated with 20 lL of Protein G

agarose (Thermo Fisher) for 1 h at 4 °C for preclearing.

The cleared extract was collected by centrifugation and

incubated with 2 lg of anti-mTOR (H-266) antibody

from Santa Cruz Biotechnology (Dallas, TX, USA) over-

night at 4 °C, followed by incubation with 20 lL of Pro-

tein G agarose for 3 h at 4 °C. The agarose beads were

washed four times with HNTG buffer, and protein com-

plexes were eluted with 29 SDS sample buffer by heating

95 °C for 3 min and used for western blotting.

2.8. Cap-binding assay

Cells were lysed in NP-40 lysis buffer (50 mM Tris/

HCl, pH 7.5, 1% Nonidet P40, 150 mM NaCl) supple-

mented with proteinase and phosphatase inhibitors

and cleared by centrifugation. The protein extracts

(100 lg) were adjusted to 0.4 mL with NP-40 lysis

buffer and incubated with 20 lL of immobilized c-
aminophenyl-7-methylguanosine (m7GTP)-Agarose

(Jena Bioscience, Jena, Germany) at 4 °C for 3 h.

Agarose beads were washed three times with NP-40

lysis buffer, and protein complexes were eluted with

29 SDS sample buffer and used for western blotting.

2.9. Quantification of cap-dependent translation

Bicistronic luciferase reporter vector, pcDNA3-rLuc-

PolioIRES-fLuc, was generously provided by J. Blenis
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(Harvard Medical School). Cells treated with siRNA for

48 h were further transfected with a bicistronic luciferase

reporter vector (0.5 lg) using LT1 reagent for 24 h. After

lysis of the cells, luciferase activity was measured with a

Luminometer (Promega, Madison, WI, USA) using a

Dual-Luciferase Reporter Assay System (Promega). The

activity of cap-dependent translation is defined as the

ratio of Renilla luciferase to firefly luciferase activity.

2.10. Polysome profiling and analysis of mRNA

distribution

The protocol for polysome fractionation to analyze

mRNA distribution profiles was described previously

(Panda et al., 2017). Briefly, HCT116 cells in 150-mm dish

were treated with 100 lg�mL�1 of cycloheximide (CHX)

for 10 min, trypsinized for 3 min, and washed cells twice

with cold PBS, and cell pellets were stored at �80 °C. All

reagents were supplemented with 100 lg�mL�1 of CHX.

Cells were lysed with 1 mL of extraction buffer [20 mM

HEPES (pH 7.4), 150 mM KCl, 5 mM MgCl2, 1 mM

DTT, 100 lg�mL�1 of CHX, 1% NP-40] supplemented

with protease inhibitor and 0.2 U�lL�1 RNaseOUT

(Thermo Fisher). Equal amount of cleared cell extract

was loaded onto top of 10-50% sucrose gradient made

with polysome buffer [20 mM HEPES (pH 7.4), 150 mM

KCl, 5 mM MgCl2, 1 mM DTT, 100 lg�mL�1 of CHX]

and centrifuged for 2 h in a SW41Ti rotor at 4 °C. Frac-
tions (0.5 mL) in tubes from the top to the very bottom

of the gradient were collected using the gradient fractiona-

tor while measuring absorbance at 254 nm. RNA was

purified from the 0.5 mL pooled fractions using TRIzol

(Thermo Fisher), and reverse transcription, real-time

PCR, and quantification of targets were performed as

described previously (Kim et al., 2011). The sequence of

primers for PCR is shown in Table S2.

2.11. ChIP assay

ChIP assays were performed using an EZ-ChIPTM kit,

according to the manufacturer’s instructions (EMD Milli-

pore, Darmstadt, Germany). Briefly, cells were treated

with 1% formaldehyde for 10 min at room temperature

and the reaction was quenched for 5 min in 19 glycine.

The cells were washed with PBS, scraped, pelleted, and

resuspended in SDS lysis buffer for sonication. The DNA

was sheared with 10 rounds of 10-s pulses followed by

1 min of rest on wet ice using a sonicator (Branson Digi-

tal Sonifier 450, Danbury, CT, USA) equipped with a 2-

mm tip and set to 30% of maximum power. Sonicated cell

lysates were precipitated with 2 lg of STAT3 (C-20) or

normal rabbit IgG (Santa Cruz Biotechnology). The pre-

cipitated protein–DNA complexes were subjected to

proteinase treatment, and the amount of DNA was deter-

mined by quantitative PCR. The primer sequences to con-

firm the binding of STAT3 to the promoter region of

MLST8 gene were 50-tgggctcagtgggatgtcct-30 (sense) and
50-aagctgcggctttctctcc-30 (antisense).

2.12. Reverse transcription and real-time PCR

Total RNA preparation, reverse transcription, real-

time PCR, and quantification of targets were per-

formed as described previously (Kim et al., 2011). The

sequence of primers for PCR is shown in Table S2.

2.13. Promoter assay

The 316-bp promoter region (�1201 to �894; +1, transla-
tion initiation site) of MLST8 promoter was synthesized

(Cosmo Genetech, Seoul, Korea) and subcloned to

pGL3-promoter firefly luciferase reporter (Promega). The

�1201 to �951 and the �951 to �894 MLST8 promoter

regions were PCR-amplified and subcloned to the firefly

luciferase reporter vector. For promoter assay, 2 9 104

cells were seeded 18 h before siRNA treatment in 24-well

plates. The reporter plasmids were transfected 48 h after

siRNA treatment, and the cells were further incubated for

24 h before harvest. Transfection efficiency was normal-

ized by cotransfection with a pCMV3.1-Renilla vector in

which Renilla luciferase coding region from pRL-TK

Renilla luciferase vector (Promega) was subcloned into

pcDNA3.1 vector. Both the firefly luciferase and Renilla

luciferase activities were quantified using a dual-luciferase

reporter assay system (Promega).

2.14. Statistical analysis

Experimental groups were compared with two-tailed Stu-

dent’s unpaired t-test, one-way ANOVA with Newman–
Keuls multiple comparison test, or two-way ANOVA

with two-stage step-up method of Benjamini, Krieger,

and Yekutieli using the GRAPHPAD PRISM program (San

Diego, CA, USA). Statistically significant differences are

marked. P < 0.05 was considered statistically significant.

3. Results

3.1. STAT3 knockdown decreases cap-dependent

translation in human cancer cells

Similar to the antiproliferative effect of STAT3 knock-

down on various cancer cells, STAT3 siRNA treat-

ment of HCT116 or MDA-MB-231 cells led to a

decrease in cell proliferation (Fig. S1A). The level of
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STAT3 protein started to decrease gradually 24 h after

STAT3 siRNA treatment and dropped to < 20% of

the level of control siRNA 72 h after treatment

(Fig. S1B). We analyzed cell proliferation in other

human cancer cells 72 h after siRNA treatment. Treat-

ment with STAT3 siRNA led to a decrease in the

amount of both STAT3 protein and phospho-STAT3

levels (Fig. 1A), and inhibition of cell proliferation

(Fig. 1B). Cell cycle analysis revealed that STAT3

knockdown caused increases in the number of cells in

sub-G1 phase, indicating the occurrence of cell death,

in the majority of cell lines, except MDA-MB-231

cells. G1 phase arrest was also manifested in A549,

ACHN, and LNCaP cells, in contrast to the G2/M

phase arrest in HCT116 and MDA-MB-231 cells

(Fig. 1C). These results demonstrated that STAT3

knockdown induces either G1 or G2/M phase arrest,

generally accompanied by cell death in human cancer

cells.

Oncogenic AKT and ERK signaling converges on

the activation of cap-dependent translation, which is

responsible for tumor cell growth (She et al., 2010).

Cell cycle arrest and death caused by STAT3 knock-

down suggest that STAT3 may be involved in the reg-

ulation of cap-dependent translation. Bicistronic

luciferase reporter assays to measure cap-dependent

translation activity showed that STAT3 knockdown

reduced cap-dependent translation in all cell lines

tested (Fig. 1D), indicating cross-talk between STAT3

and cap-dependent translation-related proteins.
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Fig. 1. Inhibitory effect of STAT3 knockdown on cell proliferation and cap-dependent translation. Cancer cells were treated with 5 nM of

siCTRL (�) or siSTAT3 (+) for 72 h. (A) Equal amounts of extracts were analyzed by western blotting with the antibodies indicated. (B)

Relative cell proliferation of each group measured by WST-1 assay was compared with the siCTRL group of A549 (n = 4). (C) Cell cycle

distribution was analyzed with FACS (n = 3). (D) Diagram of bicistronic luciferase reporter is shown (top). Luciferase activities were

measured by a dual-luciferase assay, and the Renilla/firefly luciferase luminescence ratio was calculated for cap-dependent translational

activity (n = 4). Data are presented as mean � SEM. Statistically significant differences are marked with *P < 0.05, **P < 0.01, and

***P < 0.001, respectively (t-test).
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3.2. Reduction in cap-dependent translation by

STAT3 knockdown is correlated with the

dephosphorylation of 4E-BP1

Downregulation of cap-dependent translation by

STAT3 knockdown could be due to the decreased

expression of cap-dependent translation initiation fac-

tors. We therefore examined the levels of proteins

involved in cap-dependent translation initiation

(Fig. 2A). The majority of eIF4 family members exhib-

ited constant or increased levels following STAT3

knockdown. The level of eIF4B was reduced in every

cell, but eIF4H levels were reduced only in LNCaP

and MDA-MB-231 cells. In cap-dependent translation

initiation, eIF4B is known to enhance both ATPase

and the helicase activities of eIF4A (Raught et al.,

2004; Shahbazian et al., 2006). We then analyzed the

effect of EIF4B knockdown on cap-dependent transla-

tion. The level of eIF4B was downregulated by EIF4B

siRNA treatment (Fig. S2A). However, only ACHN

cells exhibited a decrease in cap-dependent translation

(Fig. S2B) and proliferation (Fig. S2C). Cell cycle

analysis revealed that antiproliferation by EIF4B

knockdown was mainly due to G1 phase arrest with a

little increase in cell death (Fig. S2D). In all cells

observed, the level of EIF4B mRNA was not

decreased by siSTAT3 treatment (Fig. S2E). In con-

trast to the broad effect of STAT3 knockdown on cell

proliferation, cell cycle arrest, cell death, and cap-de-

pendent translation, the effect of EIF4B knockdown

on cells was restricted to ACHN cells.

An increase in 4E-BP1 protein also inhibits cap-de-

pendent translation (Richter and Sonenberg, 2005).

However, 4E-BP1 and 4E-BP2 protein levels were

either constant or downregulated by STAT3 knock-

down (Fig. 2B), indicating that the STAT3 knock-

down-induced decrease in cap-dependent translation is

irrespective of 4E-BP1 or 4E-BP2 protein levels.

STAT3 knockdown led to shifts in 4E-BP1 isoforms,

which are generated by differential phosphorylation. It

is well established that dissociation of 4E-BP1 from

the eIF4E/4E-BP1 complex by hyperphosphorylation

of 4E-BP1 is a requisite for the activation of cap-de-

pendent translation (Richter and Sonenberg, 2005).

Western blotting with phospho-specific 4E-BP1 anti-

body revealed reduced phosphorylation of 4E-BP1 in

every cell line by STAT3 knockdown (Fig. 2B). To

determine the amount of 4E-BP1 associated with

eIF4E, eIF4E protein was affinity-purified with agar-

ose beads coupled to the m7GTP, which mimics the

mRNA 50 cap structure (Sonenberg et al., 1978). The

amount of 4E-BP1 interacting with the m7GTP-bound

eIF4E was increased in all cell lines by STAT3 knock-

down (Fig. 2C), suggesting that dephosphorylation of

4E-BP1, rather than the expression of cap-dependent

translation initiation factors, is directly correlated with

the suppression of cap-dependent translation by

STAT3 knockdown.

3.3. STAT3 regulates 4E-BP1 phosphorylation

Similar to the hyperphosphorylation of 4E-BP1, a

decrease in 4E-BP1 protein level resulted in reduction

in the interaction between eIF4E and 4E-BP1 and the

subsequent activation of cap-dependent translation

(Connolly et al., 2006; She et al., 2010). To further test

whether a decrease in 4E-BP1 may alleviate the effect

of STAT3 knockdown on cells, 4EBP1 siRNA and

STAT3 siRNA were treated together in HCT116 cells.

Treatment with 4EBP1 siRNA showed near-complete

knockdown of 4EBP1 and phospho-4E-BP1 levels

(Fig. 3A). 4EBP1 knockdown abolished the downregu-

lation of cap-dependent translation induced by STAT3

knockdown (Fig. 3B). Moreover, the inhibition of cell

proliferation was much less when STAT3 and 4EBP1

were both knocked down, than when STAT3 was

knocked down alone (Fig. 3C). Cell cycle analysis

showed that cotreatment with 4EBP1 siRNA led to

the complete disappearance of G2/M phase arrest, and

significant recovery of sub-G1 phase resulted from

STAT3 knockdown alone (Fig. 3D).

To test whether further inhibition of 4E-BP1 phos-

phorylation aggravated the effect of STAT3 knock-

down on cells, HCT116 cells were cotreated with

STAT3 siRNA and doxycycline-dependent mutant 4E-

BP1 expression vector, replacing four phosphorylation

sites (T37, T46, S65, and T70) with alanine to main-

tain the constitutive binding of mutant 4E-BP1 to

Fig. 2. STAT3 knockdown-induced change in factors related to cap-dependent translation initiation. Cancer cells were treated with 5 nM of

siCTRL (�) or siSTAT3 (+) for 72 h. (A, B) Western blotting was performed using indicated antibodies (top). The band intensity of siSTAT3

group was normalized to that of siCTRL group in each cell line (bottom; n = 2–6). Long, long exposure; Short, short exposure. (C) Cell

lysates were precipitated with m7GTP agarose beads, and eluted complexes were analyzed by western blotting with the antibodies

indicated (left). The relative intensity of 4E-BP1 to eIF4E of siSTAT3 group was compared with that of siCTRL group in each cell line (right;

n = 4). Data are presented as mean � SEM. Statistically significant differences are marked with *P < 0.05, **P < 0.01, and ***P < 0.001,

respectively (t-test).
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eIF4E (Rong et al., 2008). Mutant 4E-BP1 expression

alone did not cause the downregulation of phospho-

4E-BP1 level, but it further decreased the phospho-4E-

BP1(S65) level induced by STAT3 knockdown

(Fig. 3E). Cotreatments resulted in more suppression

of cap-dependent translation than treatment with

mutant 4E-BP1 vector or STAT3 siRNA alone

(Fig. 3F). Similarly, inhibition of cell proliferation was

much greater by the cotreatments compared with

either treatment alone (Fig. 3G). Cell cycle analysis

showed that inhibition of cell proliferation was due to

increases in both G2/M and sub-G1 phases by the

cotreatments (Fig. 3H). These data support the

hypothesis that a reduction in cap-dependent transla-

tion by STAT3 knockdown is mediated by the dephos-

phorylation of 4E-BP1 in cancer cells.

We also analyzed the effects of STAT3 knockdown

on the formation of mTORC1 to find a reason for the

observed decrease in 4E-BP1 phosphorylation.

Immunoprecipitation (IP) with mTOR antibody

revealed that STAT3 knockdown reduced the interac-

tion of mLST8 and Raptor with mTOR (Fig. 4). Wes-

tern blot analysis of the proteins showed that STAT3

knockdown reduced the total amount of mLST8 but

not Raptor. In contrast to the dephosphorylation of

the 4E-BP1, phospho-p70S6K, another substrate for

mTORC1, was increased slightly by STAT3 knock-

down. These results suggest that the STAT3-mediated

MLST8 gene expression is likely to be involved in the

interaction of mTOR and Raptor, and subsequent

phosphorylation of 4E-BP1.

3.4. mLST8 mediates STAT3-dependent 4E-BP1

phosphorylation

T37, T46, S65, and T70 of 4E-BP1 are phosphorylated

by mTORC1, and activation of mTORC1 is controlled

by regulatory proteins associated directly with mTOR

or indirectly with mTORC1 (Hay and Sonenberg,

2004). Hence, we hypothesized that STAT3 mediates

4E-BP1 phosphorylation through regulation of the

genes for mTORC1 components, especially mLST8.

To test this hypothesis, we measured the mRNA levels

of mTORC1 components and related proteins after

STAT3 knockdown. The mRNA levels of DEPTOR,

PDIA3, PRAS40, RAC1, RAPTOR, and TTI1 were

consistent in every cell line, whereas the level of

MLST8 mRNA was downregulated by STAT3 knock-

down in all of the cell lines, and the level of TELO2

mTOR

mLST8mTOR
IP RAPTOR

mTOR

p70S6K

mLST8

Input

p-p70S6K(T389)

4E-BP1

p-4E-BP1(S65)

RAPTOR

– +siSTAT3:

GAPDH

RICTOR

RICTOR

Fig. 4. Correlation of STAT3 knockdown-induced 4E-BP1

dephosphorylation and downregulation of mTORC1. HCT116 cells

were transfected with 5 nM of siSTAT3 or siCTRL for 72 h. Cell

lysates were immunoprecipitated with mTOR antibody, followed by

western blotting with the indicated antibodies using IP and input

samples. Representative images of three independent experiments

are shown.

Fig. 3. STAT3-dependent modulation of 4E-BP1 phosphorylation in HCT116 cells. In A to D, cancer cells were treated with 5 nM of siSTAT3

or 2 nM of si4EBP1 for 72 h (�, treatment with siCTRL; +, siSTAT3 or si4EBP1). (A) Western blotting was performed using equal amounts

of extracts with the antibodies indicated. (B) The Renilla/firefly luciferase luminescence ratio was calculated for cap-dependent translational

activity (n = 3). (C) Cell proliferation was measured by WST-1 assay (n = 3). (D) Cell cycle distribution was analyzed with FACS. (E–H) Cells

were transfected with siSTAT3, and the cells were further transfected 24 h after siRNA transfection with a bicistronic luciferase reporter

and 4E-BP1 dominant-active mutant vector, followed by doxycycline treatment for 48 h before harvesting cells. (E) Western blotting was

performed using indicated antibodies. (F) The Renilla/firefly luciferase luminescence ratio was calculated for cap-dependent translational

activity (n = 3). (G) Counting of viable cells (n = 3). (H) Cell cycle distribution was analyzed by FACS (n = 3). Data are presented as

mean � SEM. Bars (B–D and F–H) with different letters are significantly different (P < 0.05), one-way ANOVA. For D and H, a–c for G2/M;

k–m for sub-G1, respectively.
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was also attenuated in most cell lines, except MDA-

MB-231 cells (Fig. S3).

Attenuation of MLST8 mRNA levels by STAT3

knockdown resulted in downregulation of mLST8 pro-

tein levels (Fig. 5A). IP with mTOR antibody revealed

that MLST8 knockdown decreased the interaction of

mLST8 and Raptor with mTOR, although western

blot analysis of the protein showed no changes in

mTOR or Raptor following MLST8 knockdown

(Fig. 5B). MLST8 knockdown resulted in a marked

reduction in 4E-BP1 phosphorylation similar to those

of STAT3 knockdown, but the level of phospho-

p70S6K was not changed (Fig. 5B).

To investigate the significance of mLST8 downregu-

lation by STAT3 knockdown, HCT116 cells were

treated with MLST8 siRNA alone or with MLST8

siRNA and STAT3 siRNA together. STAT3 knock-

down-induced reduction in mLST8 protein levels was

further reinforced by treatment with MLST8 siRNA

(Fig. 6A). Although MLST8 knockdown was sufficient

to attenuate phospho-4E-BP1(S65) level, co-knock-

down led to more attenuation than either STAT3 or

MLST8 knockdown (Fig. 6A). Cap-dependent transla-

tion was reduced by MLST8 knockdown and was fur-

ther suppressed by co-knockdown of MLST8 and

STAT3 (Fig. 6B). The amount of 4E-BP1 interacting

with m7GTP-bound eIF4E was increased by MLST8

knockdown and was further increased by co-knock-

down (Fig. 6C). MLST8 or STAT3 knockdown

resulted in marked reduction in the phosphorylation of

mTOR
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Fig. 5. Intermediation of mLST8 in STAT3-dependent 4E-BP1 phosphorylation. (A) Western blotting (top) and mLST8 protein level were

quantified at 72 h after 5 nM of siRNA treatment in human cancer cells. The relative intensity of mLST8 to GAPDH was normalized to that

of siCTRL group of A549 (bottom; n = 3). Data are presented as mean � SEM. Statistically significant differences are marked with

*P < 0.05, **P < 0.01, and ***P < 0.001, respectively (t-test). (B) HCT116 cells were transfected with 5 nM of siCTRL or siMLST8 for 24 h.

Equal amounts of HCT116 cell lysates were immunoprecipitated with mTOR antibody. The proteins in the immunoprecipitated and input

were analyzed with western blotting using the antibodies indicated. Representative images of three independent experiments are shown.

Fig. 6. Added effect of STAT3 and MLST8 knockdown on cap-dependent translation in HCT116 cells. siSTAT3 (5 nM) were transfected into

cells for 48 h. The cells were then transfected with siMLST8 (1 nM) for 24 h. (A) Western blotting was performed using equal amounts of

extracts with the antibodies indicated (top), and the band intensity of phospho-4E-BP1(S65; bottom) was quantified (n = 3). (B) siSTAT3-

transfected cells were further transfected with siMLST8 and bicistronic luciferase reporter to measure luciferase activities. Cap-dependent

translational activity of each group was compared with siCTRL group (n = 3). (C) m7GTP pull-down assay was performed after serial

treatment with siSTAT3 and siMLST8 (top), and the cap-binding 4E-BP1 index was determined by the ratio of 4E-BP1 to eIF4E (bottom;

n = 3). (D) Counting of cell numbers (n = 3). (E) Cell cycle distribution was analyzed by FACS (n = 3). Data are presented as mean � SEM.

Different letters (A–E) are significantly different (P < 0.05), one-way ANOVA. For E, a–d for G2/M; k–m for sub-G1, respectively.
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AKT(S473), but no reduction in phospho-p70S6K or

phospho-AKT(T308) levels (Fig. S4A). Inhibition of

cell proliferation reflected the extent of cap-dependent

translation (Fig. 6D). Co-knockdown increased the

numbers of cells in the G2/M and sub-G1 phases

(Fig. 6E). These results indicate that STAT3 knock-

down-induced decrease in mLST8 level mediates the

downregulation of 4E-BP1 phosphorylation and subse-

quent decrease in cap-dependent translation and cell

proliferation.

3.5. mLST8 overexpression compensates for

reduction in STAT3 knockdown-induced cap-

dependent translation

A stable HCT116 cell line (MLST8-HCT116) overex-

pressing mLST8 was generated to supplement the

decrease in mLST8 level caused by STAT3 knockdown.

Overexpression of mLST8 prevented the STAT3 knock-

down-induced decrease in phospho-4E-BP1(S65) level

(Fig. 7A). Overexpression of mLST8 partially dimin-

ished the STAT3 knockdown-induced downregulation

of cap-dependent translation (Fig. 7B), which corre-

lated well with the amount of 4E-BP1 interacting with

m7GTP-bound eIF4E (Fig. 7C). STAT3 knockdown-in-

duced decrease in the phosphorylation of AKT(S473)

did not occur in the MLST8-HCT116 cells (Fig. S4B).

STAT3 knockdown-induced inhibition of cell prolifera-

tion was also partially restored by mLST8 overexpres-

sion (Fig. 7D), reflecting partial recovery from G2/M

phase arrest, but not from cell death (Fig. 7E).

Polysomal profiling was performed by STAT3

knockdown in HCT116 cells and MLST8-HCT116

cells (Fig. 7F). In HCT116 cells, the monosome (near

Fraction #11) portion was significantly increased by

STAT3 knockdown, but in MLST8-HCT116 cells, the

monosome portion was less increased. Conversely, in

the HCT116 cells, the polysome (Fractions #17–#21)
portion was reduced by STAT3 knockdown, but in the

MLST8-HCT116 cells, the reduction in the polysome

portion was minimal. Overall, the polysome-to-mono-

some ratio was dramatically reduced by STAT3

knockdown in HCT116 cells, but this ratio was allevi-

ated by mLST8 overexpression (Fig. 7G). RNA was

extracted from polysome fractions (#7–#13, mono-

some; #14–#21, low-molecular-weight to high-molecu-

lar-weight polysome), and the relative amount of

CCND1 or CCND3 mRNA, two mRNAs translation-

ally controlled by the mTORC1/4E-BP/eIF4E axis,

was examined in the fractions using quantitative

reverse transcription and real-time PCR (qRT–PCR;

Fig. 7G). The ratio of high-molecular-weight polysome

of CCND1 and CCND3 mRNA (Fractions #20 to

#21) was reduced in HCT116 cells by STAT3 knock-

down but not in MLST8-HCT116 cells. Overall, these

results suggest that cap-dependent translation is

reduced by STAT3 knockdown and can be rescued

partially by mLST8 overexpression.

3.6. STAT3 acts as a transcription factor for the

MLST8 gene expression

Because STAT3 is a well-known transcription factor,

we hypothesized that STAT3 acts as a transcription

factor for MLST8 gene expression. We found that the

�1201 to �894 region of the MLST8 promoter con-

tains four potential STAT3-binding sites (TTN5AA).

ChIP assays using STAT3 antibody in HCT116 cells

revealed that STAT3 interacted with the promoter

region including the �1201 to �894 region of the

MLST8 gene (Fig. 8A). Promoter mapping with luci-

ferase reporter assays showed that the downregulation

of MLST8 gene expression induced by STAT3 knock-

down was mediated by the �951 to �894 but not by

the �1201 to �951 region (Fig. 8B). These results

indicated that in the �951 to �894 region of the

MLST8 promoter is likely to include the STAT3-bind-

ing site.

Fig. 7. Amelioration of cap-dependent translation in mLST8-overexpressed HCT116 cells. (A) siSTAT3 were transfected into control HCT116

and MLST8-HCT116 cells for 72 h. Western blotting was performed using equal amounts of extracts with indicated antibodies, and the

band intensity of phospho-4E-BP1(S65; bottom) was quantified (n = 4). (B) siSTAT3 were transfected into cells for 48 h followed by

secondary transfection of cells with the bicistronic luciferase reporter for 24 h. Cap-dependent translational activity of each group was

compared with siCTRL group using dual-luciferase assay (n = 4). (C) m7GTP pull-down extract was detected by western blotting using

indicated antibodies, and the cap-binding 4E-BP1 index was determined by the ratio of 4E-BP1 to eIF4E (bottom; n = 3). (D) Relative cell

proliferation was determined by counting the viable cells (n = 3). (E) Cell cycle distribution was analyzed by FACS (n = 3). (F) Cell extract

was obtained after 48 h of treatment with 2 nM siRNA, and polysome fractionation was performed. Elution profile was shown by reading

absorbance readings at 254 nm. (G) Relative polysome-to-monosome ratios in F are shown. (H) RNA was extracted by pooling each fraction

as indicated (#7–#13, monosome; #14–#21, polysome), and relative amounts of mRNA in fractions were expressed when the total fractions

of CCND1 and CCND3 mRNA were 100% using qRT–PCR (n = 2). The RNA difference in each fraction was normalized using the value of

RNA polymerase II (POLR2A) mRNA. Data are presented as mean � SEM. Statistically significant differences are marked with different

letters (A–E; for E, a–d for G2/M; k–n for sub-G1; P < 0.05) or with *P < 0.05; ns, statistically insignificant, two-way ANOVA.
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JAK/STAT3 activation by IL-6 plays an important

role in STAT3 target gene expression (Johnson et al.,

2018), and we investigated whether MLST8 gene

expression is regulated by IL-6 treatment in HCT116

cells (Fig. S5). Western blotting showed that phospho-

STAT3(Y705) was increased by IL-6 treatment, and

the expression of the IL-6-inducing gene CYP1B1

mRNA was increased as a result. However, the expres-

sion of MLST8 did not increase at the mRNA or pro-

tein level. Since STAT3 can form heterodimer with

STAT1, the effect of STAT1 on MLST8 gene expres-

sion was also investigated in HCT116 cells. The levels

of phospho-STAT1(Y701) and phospho-STAT3(Y705)

decreased, but the expression of MLST8 was

unchanged by STAT1 knockdown at the mRNA or

protein level (Fig. S6). MLST8 mRNA expression is

not affected by the phosphorylation status of STAT3

(Y705), suggesting that it is expected to be regulated

through unphosphorylated STAT3 as described else-

where (Srivastava and DiGiovanni, 2016).

4. Discussion

STAT3 binds to consensus cis-acting elements of target

genes in the nucleus, thus driving the transcription of a

variety of genes encoding regulators of growth (such as

cyclin D1 and c-Myc), survival (such as BCL-xL and

survivin), angiogenesis (such as HIF1-a and VEGF),

metastasis (such as MMP1 and vimentin) of cancer cells,

and cancer immune evasion (such as IL-6 and TGF-b)
(Carpenter and Lo, 2014). In cancers, hyperactivity of

mTORC1/2 overlapped with the function of STAT3

especially in cell growth, survival, and migration (Blenis,

2017; Saxton and Sabatini, 2017), where STAT3 phos-

phorylation by mTORC1 is probably involved.

mTORC1 is one of the kinases that can phosphorylate
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Fig. 8. Identification of STAT3-binding sites in MLST8 promoter. (A) Protein–DNA complexes from HCT116 cells were precipitated with

either STAT3 antibody or normal IgG and the amount of DNA was determined by PCR with primers for promoter regions of the MLST8

gene, followed by agarose electrophoresis (left) or quantitative PCR (right; n = 3). (B) Luciferase reporter assay was performed in

HCT116 cells treated with 5 nM of siCTRL or siSTAT3. MLST8 promoter-luciferase constructs and pCMV3.1-Renilla vector were

transfected 48 h later, and the cells were further incubated for 24 h before harvest. Firefly luciferase activity was normalized with

Renilla luciferase activity (n = 4). Data are presented as mean � SEM. Statistically significant differences are marked with *P < 0.05,

**P < 0.01, and ***P < 0.001, respectively; ns, statistically insignificant (A, t-test; B, two-way ANOVA).
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STAT3 at S727, resulting in maximal activation of

STAT3-responsive reporter (Yokogami et al., 2000), but

the details of the regulation of the mTOR pathway by

STAT3 are not known. Our results indicated that

STAT3 regulates MLST8 gene expression and facilitates

the formation of mTORC1/2, cooperating with the

mTOR pathway in cancer cell proliferation.

Because mLST8 is a core component of both

mTORC1 and mTORC2 (Saxton and Sabatini, 2017),

it is probable that mLST8 protein level reflects

mTORC1/2 formation and kinase activity. The phos-

phorylation status of 4E-BP1(T37/46, S65, T70) and

AKT(S473), substrates of mTORC1 and mTORC2,

respectively, that we observed using knockdown or

overexpression of mLST8 in HCT116 cells was consis-

tent with that previously reported (Kakumoto et al.,

2015). STAT3 knockdown-induced downregulation of

4E-BP1 and AKT phosphorylation observed in our

study was correlated with mLST8 level, suggesting that

STAT3 may regulate mTORC1/2 formation and

kinase activity through MLST8 gene expression.

STAT3 knockdown-induced decreases in 4E-BP1 and

AKT phosphorylation levels were further attenuated

by MLST8 knockdown or recovered by mLST8 over-

expression, indicating that mLST8 level is likely to be

an important factor regulating mTORC1/2 kinase

activity. Besides 4E-BP1, p70S6K phosphorylation by

mTORC1 plays an important role in translational ini-

tiation and elongation (Truitt and Ruggero, 2016).

However, p70S6K(T389) phosphorylation was not

reduced, but slightly increased by STAT3 knockdown

or unchanged by MLST8 knockdown, similar to a pre-

vious report of MLST8 knockdown in HCT116 cells

(Kakumoto et al., 2015). Knockdown of MTOR

reduced the phosphorylation of p70S6K and 4E-BP1

in HCT116 cells (Zhang et al., 2009). In contrast,

mTOR inhibitors reduced p70S6K phosphorylation

but not 4E-BP1 phosphorylation in HCT116 cells

(Zhang and Zheng, 2012), indicating that the phospho-

rylation of p70S6K and 4E-BP1 is independently regu-

lated, depending on the situation. Both mTORC1-

mediated p70S6K and 4E-BP1 phosphorylation may

be initially reduced by mLST8 downregulation, but

p70S6K phosphorylation status may be compensated

by another kinase such as PDK1 (Balendran et al.,

1999) or PI3K (Gonzalez-Garcia et al., 2002), due to a

heterozygous substitution mutation in PIK3CA

H1047R, which produces constitutive activation of

PI3K in HCT116 cells (Samuels et al., 2005). However,

the detailed mechanisms underlying these phenomena

need to be investigated in future studies.

Our results showed that eIF4B protein was regu-

lated by STAT3 in a variety of cancer cells, and eIF4B

downregulation itself had little effect on cap-dependent

translation. However, in cancer cells such as ACHN

cells, in which eIF4B plays an important role, it is pos-

sible to stimulate cell growth by regulating cap-depen-

dent translation through the expression of eIF4B and

mLST8 by STAT3. STAT3 phosphorylation by

mTORC1 produces maximal transcriptional activation

of STAT3-responsive genes (Yokogami et al., 2000),

and our results indicate that STAT3 regulates cap-de-

pendent translation by regulating 4E-BP1 phosphory-

lation through MLST8 transcription, suggesting a

positive feedback regulation between STAT3 and

mTORC1. Many STAT3 target genes related to cancer

are also regulated at the translational level by cap-de-

pendent translation (Carpenter and Lo, 2014; De Ben-

edetti and Graff, 2004; Musa et al., 2016). Thus,

STAT3 target genes in cancer can be expressed very

efficiently both at the transcription level and at the

translation level. This phenomenon is comparable to

the target gene expression control of c-Myc, the well-

known transcription factor, in which the c-Myc onco-

gene regulates the expression of eIF4F components,

which in turn regulate c-Myc mRNA translation,

establishing a positive feedforward loop for deregula-

tion of translational control and aberrant growth in

cancer cells (Lin et al., 2009).

We also found that STAT3 knockdown-induced

attenuation of cell proliferation resulted from cell

death and cell cycle arrest, depending on cancer cell

context. In HCT116 cells, cell death and G2/M phase

arrest preferentially occurred following STAT3 knock-

down. The partial recovery of G2/M phase arrest by

co-knockdown of 4EBP1 and the additive attenuation

of cell proliferation by the expression of mutant 4E-

BP1 suggests that STAT3-dependent 4E-BP1 phospho-

rylation is likely to play a role in cell cycle progression

and cell death. In contrast, the inhibition of mTOR by

siRNA induces cell death and G1 phase arrest in

HCT116 cells (Gulhati et al., 2009; Zhang et al.,

2009). This may be due to the differential effect of

STAT3 and MTOR knockdown on cell cycle arrest,

since MTOR knockdown induces a decrease in

p70S6K and 4E-BP1 phosphorylation, whereas STAT3

knockdown only induces a decrease in 4E-BP1 phos-

phorylation. Therefore, it appears that the STAT3 and

mTOR pathways are common factors in controlling

cell death and the cell cycle, but there are mutually

specific pathways.

5. Conclusions

In this work, we have demonstrated that STAT3 regu-

lates MLST8 gene expression, resulting in the
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facilitation of the formation of mTORC1, inducing

phosphorylation of 4E-BP1 and upregulation of cap-

dependent translation. STAT3 induces the expression

of multiple genes related to cancer cell growth and sur-

vival, and also could activate cap-dependent transla-

tion through MLST8 expression, further promoting

cancer cell proliferation. We suggest that the STAT3/

mLST8/4E-BP1 signal pathway might be a valuable

target for cancer therapy.
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