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Purpose: This study was conducted to evaluate the diagnostic performance of machine learning 
in differentiating follicular adenoma from carcinoma using preoperative ultrasonography (US).
Methods: In this retrospective study, preoperative US images of 348 nodules from 340 patients 
were collected from two tertiary referral hospitals. Two experienced radiologists independently 
reviewed each image and categorized the nodules according to the 2015 American Thyroid 
Association guideline. Categorization of a nodule as highly suspicious was considered a positive 
diagnosis for malignancy. The nodules were manually segmented, and 96 radiomic features were 
extracted from each region of interest. Ten significant features were selected and used as final 
input variables in our in-house developed classifier models based on an artificial neural network 
(ANN) and support vector machine (SVM). The diagnostic performance of radiologists and both 
classifier models was calculated and compared. 
Results: In total, 252 nodules from 245 patients were confirmed as follicular adenoma and 96 
nodules from 95 patients were diagnosed as follicular carcinoma. As measures of diagnostic 
performance, the average sensitivity, specificity, and accuracy of the two experienced radiologists 
in discriminating follicular adenoma from carcinoma on preoperative US images were 24.0%, 
84.0%, and 64.8%, respectively. The sensitivity, specificity, and accuracy of the ANN and SVM-
based models were 32.3%, 90.1%, and 74.1% and 41.7%, 79.4%, and 69.0%, respectively. 
The kappa value of the two radiologists was 0.076, corresponding to slight agreement.
Conclusion: Machine learning-based classifier models may aid in discriminating follicular 
adenoma from carcinoma using preoperative US.
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Introduction

Follicular neoplasms of the thyroid gland are divided into benign 
follicular adenoma and malignant follicular carcinoma. The 
differential diagnosis between these two entities is made by 
identifying the presence of capsular, vascular or extrathyroidal tissue 
invasion, and nodal or distant metastasis [1]. Thus, in cases without 
overt extrathyroidal tissue invasion or nodal/distant metastasis on 
the preoperative examination, the differential diagnosis is made by 
a pathologic examination after surgical excision [2]. The prevalence 
of follicular adenoma in patients initially diagnosed with follicular 
neoplasm is roughly 80%, meaning that a majority of patients 
undergo diagnostic thyroid lobectomy despite having a benign 
condition [3,4]. Therefore, there is an evident need to distinguish 
these two entities preoperatively to avoid this overtreatment of 
patients with benign disease.

Certain grayscale ultrasonography (US) features, including those 
that have previously been proposed as malignant US features 
(hypoechogenicity, noncircumscribed margins, and the presence of 
calcifications), have shown significant associations with follicular 
carcinoma compared to follicular adenoma [5-7]. Absence of 
internal cystic changes, hypoechogenicity, lack of a perilesional 
halo on US, and larger size have also been shown to be associated 
with follicular carcinoma as distinct from follicular adenoma [8,9]. 
However, a majority of follicular carcinomas fail to show the 
proposed imaging findings, which have low positive predictive 
values (ranging from 55.6% to 61.2%) for differentiating benign 
follicular adenoma from malignant follicular carcinoma [5,8].

Machine learning is a new field in medical imaging that has 
emerged and become the topic of intense interest based on the 
belief that medical images contain crucial information-some of 
which seems to be beyond the perception of the human eye-
about the underlying physiology of tumors [10,11]. Thus, machine 
learning is expected to play an important role in precision oncology 
as a robust, non-invasive method to reveal the characteristics of 
individual tumors based on medical images. Machine learning is 
a collective term comprising multiple computational methods and 
models that extract meaningful features from medical images, and 
it has been increasingly applied in the field of radiology [12,13]. 
Several classifier models using various machine learning algorithms 
have also been applied to thyroid US imaging [14-17]. However, 
previous studies using classic radiologic lexicons as input variables 
for several classifier models showed contradictory diagnostic 
performance in differentiating benign and malignant thyroid nodules 
compared to experienced radiologists [14,15].

To date, no study has applied machine learning to differentiate 
follicular adenoma and follicular carcinoma based on their 

preoperative US findings, a task that is currently considered to be 
a diagnostic challenge [4,18,19]. In this study, we investigated the 
utility of machine learning, using support vector machine (SVM) 
and artificial neural network (ANN)-based models to differentiate 
follicular adenoma from follicular carcinoma on preoperative US 
images.

Materials and Methods

Subjects
Patients from two tertiary referral hospitals (Severance Hospital and 
Samsung Medical Center) of South Korea were included in our study. 
The Institutional Review Board approved this retrospective study 
and waived the requirement for informed consent for both study 
populations.

We reviewed the data of consecutively enrolled patients from 
January 2012 to December 2015 who were surgically confirmed as 
having follicular adenoma or carcinoma equal to or larger than 1 cm 
in diameter. There were 104 nodules in 104 patients from Severance 
Hospital and 244 nodules in 236 patients from Samsung Medical 
Center. A total of 348 nodules from 340 patients (261 women and 
79 men) were included from two institutes, of which 252 nodules 
from 245 patients were confirmed as follicular adenoma and 96 
nodules from 95 patients were diagnosed as follicular carcinoma 
(Fig. 1). Among the nodules diagnosed as follicular carcinoma, 
eight (8.3%) were diagnosed as widely invasive and 87 (91.6%) as 
minimally invasive. 

Visual Analysis of the Nodules by Radiologists
Preoperative US images were retrospectively reviewed by two 
experienced radiologists, both with 15 years (H.J.M. and H.J.K.) 
of experience in thyroid imaging and both of whom were blind to 
the patients' clinical information and histopathologic results. For 
each nodule, the radiologists selected one category for each of the 
following five US features: composition (solid, predominantly solid, 
predominantly cystic, and spongiform), echogenicity (hyperechoic, 
isoechoic, hypoechoic, and markedly hypoechoic), margin (well-
circumscribed, microlobulated, and irregular), calcification 
(microcalcification, macrocalcification, egg-shell calcification, and 
absence of calcification), and shape (parallel and non-parallel). The 
2015 American Thyroid Association (ATA) guideline was used to 
stratify each thyroid nodule according to its US pattern as very low 
suspicion, low suspicion, intermediate suspicion, and high suspicion 
based on the above features [20]. Categorization of a nodule as 
highly suspicious was considered to indicate a positive diagnosis for 
malignancy. 
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Image Segmentation and Pre-processing
All preoperative US images of the thyroid nodules were collected 
as grayscale images on the picture archiving and communication 
system by one of 33 radiologists with 1-22 years of experience 
in thyroid imaging. The images of the study populations at each 
institution were exported and viewed in the Paint program in 
Windows 7 (Microsoft, Redmond, WA, USA). All images for each 
nodule were reviewed by a radiologist with 20 years of clinical 
experience (J.Y.K.) and a representative image was retrospectively 
selected for each nodule. A region of interest (ROI) was manually 
drawn on the representative image of each nodule by an 
experienced radiologist (J.Y.K.). The overall workflow is summarized 
in Fig. 2.  

Feature Extraction and Selection
In this study, we used in-house developed software for computerized 
feature analysis of the US images and machine learning. This 
program was developed using C/C++ in Microsoft Visual Studio 
(2010 version, Microsoft).

A total of 96 image features were extracted from the ROIs of 
thyroid nodules by 2-dimensional image analysis software (ImageJ, 
National Institutes of Health, Bethesda, MD, USA). Each feature list 
is summarized and is shown in Supplementary Table 1. The texture 
features were classified into the following four subgroups according 
to the extraction method and their intrinsic characteristics: gray-level 
co-occurrence matrix (GLCM), gray-level run length matrix (GLRLM), 
Gabor, and Haar wavelet [21,22]. In the GLCM and GLRLM 
methods, a matrix was created for each of the four directions, while 
the Gabor method considered four directions and three scales. Two-

Fig. 1. Inclusion diagram of patient population. 
US, ultrasonography.

Histologically confirmed follicular adenoma or
follicular carcinoma from Jan 2012 to Dec 2015

Final study population: 348 nodules
Severance Hospital: 104 nodules from 104 patients

Samsung Medical Center: 244 nodules from 236 patients

Follicular adenoma
252 nodules

Follicular thyroid cancer
96 nodules

Exclusion criteria
1) Nodules less than 1 cm
2) Absent or inadequate preoperative US

Fig. 2. Diagram of overall workflow of model training and validation. GLN, gray level nonuniformity; RLN, run length nonuniformity; 
LASSO, least absolute shrinkage and selection operator; GLCM, gray-level co-occurrence matrix; ANN, artificial neural network; SVM, support 
vector machine.

A. Image segmentation 
& pre-processing

B. Feature extraction 
and selection C. Model training D. Model validation

http://www.e-ultrasonography.org


Ilah Shin, et al.

260  Ultrasonography 39(3), July 2020 e-ultrasonography.org

each subgroup of follicular adenoma and follicular carcinoma. The 
independent two-sample t test and chi-square test were used to 
compare these two variables, respectively. The Mann-Whitney U 
test was done to compare the mean nodule diameter between the 
follicular adenoma and carcinoma subgroups. 

Sensitivity, specificity, and accuracy were calculated to quantify the 
performance of radiologists referring to the 2015 ATA guideline and 
each classifier model for discriminating between follicular adenoma 
and carcinoma. Sensitivity, specificity, and accuracy were compared 
using logistic regression with generalized estimating equations. 
Area under the receiver operating characteristic curve (AUC) values 
were measured for both radiologists and both classifier models. 
To consider data clustering caused by patients having multiple 
thyroid nodules, AUC values were compared and 95% confidence 
intervals (95% CIs) were calculated using the Obuchowski method 
[26]. Additionally, a cross-validated AUC was derived during 
model construction. The radiologists’ average values of sensitivity, 
specificity, and accuracy were also derived and compared with 
the corresponding values of the classifier models using logistic 
regression with generalized estimating equations.

Cohen kappa coefficients were derived to compare the 
interobserver agreement of the visual analysis of the two 
radiologists. The bootstrap method with 1,000 resamples was used 
to derive the 95% CI. Kappa values of 0-0.20, 0.21-0.40, 0.41-
0.60, 0.61-0.80, and 0.81-1.00 were considered to indicate slight 
agreement, fair agreement, moderate agreement, good agreement, 
and perfect agreement, respectively [27]. Positive and negative 
percent agreement were also calculated, considering the unbalanced 
and asymmetric nature of our study population

The statistical analysis was performed using R version 3.4.2 (R 
Foundation for Statistical Computing, Vienna, Austria). P-values less 
than 0.05 were considered to indicate statistical significance.

Results

Subjects
The mean age of patients was 47.2 years (range, 11 to 85 years; 
standard deviation, 14.4 years) and the mean size of the nodules 
was 3.1 cm (range, 1.0 to 15.0 cm; standard deviation, 1.7 cm). The 
demographic data, including patients’ age, nodule size, and the sex 
ratio, showed no significant differences between follicular adenoma 
and carcinoma (Table 1). Thirteen patients had two nodules: eight 
patients had two follicular adenomas, four patients had both a 
follicular adenoma and a follicular carcinoma, and one patient had 
two follicular carcinomas. 

level wavelet transformation was done in the Haar wavelet analysis. 
A total of seven sub-band decompositions were performed, and 
energy and entropy were extracted for each band. Each extracted 
feature was represented in different ranges; to solve this problem, 
the feature values were normalized to values between 0 and 1 by 
the min-max method.

A statistical selection process was performed to identify significant 
candidates among the extracted features. The least absolute 
shrinkage and selection operator (LASSO) method was used to 
select features [23]. Ten features were finally selected for use as 
input variables of the classifier models. The selected features were 
as follows: min, mean, entropy, and 0° contrast from the GLCM 
features; 0° gray level nonuniformity from the GLRLM features; 
roundness, rectangularity, and concavity from the morphology 
features; and entropy (HH2) and entropy (HH1) from the Haar 
features. The extracted features from the preoperative US images of 
252 surgically proven follicular adenoma nodules and 96 follicular 
carcinoma nodules were implemented in our in-house developed 
SVM and ANN classifiers.

Classification Model and Validation
The classifier models were built using in-house developed software. 
We applied two classification algorithms-an ANN and SVM-to 
classify our data. The SVM calculated the optimal hyperplane using 
a linear classification model and classified it into two classes [24]. 
The ANN model had a feed-forward architecture and was trained by 
using the back-propagation algorithm with the hyperbolic tangent 
activation function [25]. The ANN model consisted of an input 
layer of 10 neurons, a hidden layer of 12 neurons, and an output 
layer of two neurons. Since the training data size was small, model 
validation was done by using the leave-one-out cross-validation 
method.

Statistical Analysis
Demographic data on patients' age and sex were collected for 

Table 1. Demographic data of patients
Total Follicular 

adenoma
Follicular 

carcinoma
P-value

No. of nodules (%) 348 252 (72.4) 96 (27.6)

Age (yr) 47.2±14.4 47.4±14.0 46.7±15.2 0.671
Size of nodule (mm)a) 31.0±1.7 29.0 

(17.0-40.0)
29.5 

(18.0-45.0)
0.261

Male sex 79 54 (21.4) 25 (26.0) 0.359
Values are presented as mean±standard deviation or number (%) unless otherwise 
indicated.
a)Median values are shown, with interquartile values of 25% and 75% in 
parentheses.
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Diagnostic Performance of the Radiologists and Classifier 
Models for Nodule Classification 
The average diagnostic performance values of the two radiologists 
referring to the 2015 ATA guideline were calculated (Table 2). The 
sensitivity, specificity, and accuracy of radiologist 1 were 3.1%, 
94.8%, and 69.5%, respectively. The results for radiologist 2 
were 44.8%, 65.9%, and 60.1%, respectively. All values showed 
significant differences between the radiologists (sensitivity, 
P<0.001; specificity, P<0.001; and accuracy, P=0.003). The reader-
averaged sensitivity, specificity, and accuracy were 24.0%, 80.4%, 
and 64.8%, respectively. The AUC values of radiologist 1 and 2 
were 0.490 (95% CI, 0.468 to 0.512) and 0.553 (95% CI, 0.495 to 
0.612), respectively, and were significantly different from each other 
(P=0.038). 

The diagnostic performance of both classifier models was derived 
and compared with the radiologists’ average values (Table 2). 
The ANN classifier model showed an accuracy of 74.1%, with a 
sensitivity of 32.3% and a specificity of 90.1%. Similarly, the SVM 
classifier model showed an accuracy of 69.0%, a sensitivity of 
41.7%, and a specificity of 79.4%. Both classifier models showed 
higher accuracy than the radiologists’ average values, with statistical 
significance for the ANN model (P<0.001). The cross-validated AUC 
values of the ANN and SVM models were 0.646 (95% CI, 0.544 to 
0.653) and 0.599 (95% CI, 0.597 to 0.707), respectively. The AUC 
values of the ANN and SVM classifier models were 0.612 (95% CI, 
0.561 to 0.662) and 0.605 (95% CI, 0.550 to 0.661), respectively. 
Since a reader-averaged value for AUC cannot be derived, the AUC 
for each radiologist was compared with the values of each classifier 
models. The AUC of the ANN classifier model was higher than 
those of radiologist 1 and radiologist 2 (P<0.001 and P=0.085, 
respectively). The AUC of the SVM classifier model was also higher 
than those of radiologist 1 and radiologist 2 (P<0.001 and P=0.146, 
respectively). Example images of cases with discrepancies are shown 
in Figs. 3 and 4.

Interobserver Variability
The kappa value was 0.076 (95% CI, 0.017 to 0.139), showing 
slight agreement between the two radiologists. The overall percent 
agreement of the two radiologists referring to the ATA guideline was 
64.7% (225 of 348). The underlying positive percent agreement was 
3.2% (11 of 348) and the negative percent agreement was 61.5% 
(214 of 348). 

Discussion

Preoperative US and fine-needle aspiration cytology have been 
used to differentiate benign and malignant thyroid nodules, with 
good diagnostic performance in preoperatively distinguishing 
papillary thyroid cancer [28,29]. However, these methods play a 
limited role in discriminating follicular adenoma and carcinoma of 
the thyroid gland. Certain US features, such as solid appearance, 
hypoechogenicity, the presence of calcifications, absence of a US 
halo, and a noncircumscribed margin, have been associated with 

Table 2. Diagnostic performance of two radiologists, the radiologists' average values, and the classifier models for differentiating 
follicular thyroid neoplasms on US 

Radiologist 1 Radiologist 2 Radiologists' 
average value

SVM ANN P-valuea) P-valueb)

Sensitivity (%) 3.1 44.8 24.0 41.7 32.3 0.002 0.103

Specificity (%) 94.8 65.9 80.4 79.4 90.1 0.744 <0.001

Accuracy (%) 69.5 60.1 64.8 69.0 74.1 0.137 <0.001

AUC 0.490 0.553 - 0.605 0.612 - -

US, ultrasonography; SVM, support vector machine; ANN, artificial neural network, AUC, area under the curve.
a)P-value obtained by comparing the corresponding values with the SVM model and the radiologists' average values. b)P-value obtained by comparing the corresponding values 
with the ANN model and the radiologists' average values.

Fig. 3. Ultrasonography of a 47-year-old woman with pathologically 
proven follicular adenoma. The lesion was correctly categorized as 
benign by both classifier models but was interpreted as malignant by 
both radiologists.
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follicular carcinoma compared to follicular adenoma. However, 
these features show limited diagnostic performance, with either 
high sensitivity but low specificity (solid appearance, sensitivity 
ranging from 68.0% to 90.0% and specificity ranging from 13.7% 
to 30.8%) or high specificity but low sensitivity (the presence of 
calcifications and a noncircumscribed margin, sensitivity ranging 
from 10.2% to 32.6% and specificity ranging from 85.1% to 
90.9%) in discriminating follicular carcinoma from adenoma 
[5,7-9]. Similarly, although certain subtypes of adenoma, such 
as macrofollicular-type adenoma, may be distinguished from 
follicular carcinoma by fine-needle aspiration cytology, other 
subtypes of adenoma such as Hürthle cell adenoma are known 
to be indistinguishable from follicular carcinoma, meaning that a 
significant gray zone exists [18,30-32]. Core needle biopsy and 
intraoperative frozen sections discriminate follicular adenoma from 
carcinoma with slightly high specificity and low sensitivity, and 
the frequent indeterminate results of these methods hinder their 
practical use as independent tools [33,34]. 

In our study, we developed radiomics-based classifier models 
to differentiate follicular adenoma and carcinoma based on 
preoperative US images. The diagnostic performance of our models 
was evaluated and compared with that of experienced radiologists, 
who categorized each nodule according to the 2015 ATA guideline. 
Nodules classified as highly suspicious were considered to have 
received a positive diagnosis for malignancy. In this setting, our 
radiomics-based classifier models showed higher overall accuracy 
than the experienced radiologists (radiologist average, 64.8%; SVM, 
69.0%; ANN, 74.0%). Additionally, our radiomics-based classifier 
models showed relatively high specificity (79.4% and 90.1% for 

SVM and ANN, respectively) in discriminating follicular carcinoma 
and adenoma. Although the overall accuracy of our radiomics-
based model is limited, it could be used as an adjuvant tool to 
preoperatively differentiate follicular adenoma and carcinoma. To our 
knowledge, this is the first study to apply radiomics to preoperative 
US to predict malignancy in a study population exclusively including 
follicular neoplasms of the thyroid gland. Several previous studies 
have applied radiomics to predict the malignancy of thyroid nodules 
on US, but have done so regardless of histologic subtype [35]. 
Liang et al. [36] included 137 thyroid nodules (52 benign and 82 
malignant nodules) in their training cohort and developed a formula 
to calculate a radiomics score for each nodule using radiomics 
features extracted from preoperative US images. Similarly to our 
study, 1,044 features were initially extracted and then reduced to 
19 features using the LASSO regression model. Their radiomics score 
model had an AUC of 0.921 for predicting malignancy, showing 
better performance than experienced and junior radiologists 
referring to the 2017 Thyroid Imaging, Reporting, and Data System 
scoring criteria [36]. Another study by Yu et al. [17] included 610 
thyroid nodules (403 benign and 207 malignant). Texture features 
were extracted from each nodule and were used to train ANN and 
SVM-based classifier models to predict malignancy. The ANN and 
SVM models showed 90.0% and 86.0% accuracy in predicting 
malignancy, respectively [18]. The radiomics-based models in 
our study including only follicular neoplasms showed inferior 
diagnostic performance compared to other radiomics models in the 
previously mentioned studies, which included all thyroid nodules. 
However, the experienced radiologists in our study also showed 
poorer performance in predicting malignancy than the radiologists 

Fig. 4. Ultrasonography of a 33-year-old woman with pathologically proven follicular carcinoma minimally invasive. 
On longitudinal (A) and transverse (B) images, the lesion was correctly categorized as malignant by both classifier models but was 
interpreted as benign by both radiologists.

A B
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in those studies. The reason for this may be differences in the 
conformity of US findings for predicting follicular carcinoma [37]. 
A significant gray zone exists in US findings between follicular 
adenoma and carcinoma, and therefore, there may potentially be a 
more substantial role for machine learning-based classifier models 
in discriminating follicular adenoma from carcinoma in larger 
confirmative studies.

The interobserver variability in discriminating malignant from 
benign thyroid nodules has overall shown substantial agreement 
(ĸ=0.61-0.79) among experienced radiologists [38-40]. To date, no 
study has evaluated the interobserver variability of US assessment 
results limited to follicular neoplasms of the thyroid gland on 
cytology. In our study, the interobserver variability between the two 
radiologists was poor, with only slight agreement (ĸ=0.076), even 
though both radiologists had more than 10 years of experience with 
thyroid US. Similarly, all performance variables (sensitivity, specificity, 
and accuracy) for each radiologist showed significantly different 
values from one another, even though the same guideline was used 
as a reference point for decision-making. These findings suggest that 
US-based analyses seeking to discriminate follicular adenoma from 
carcinoma are much more subjective, with a significant gray zone 
that yields low reproducibility. Therefore, radiomics-based classifier 
models using quantitative information from US have the potential to 
provide more objective results in the preoperative discrimination of 
follicular adenoma and carcinoma on US. 

There are several limitations in our study. First, the study 
population was small, with a total of 348 nodules consisting of 
252 follicular adenomas and 96 follicular carcinomas. Due to this 
small study population, the leave-one-out cross-validation method 
was used for model validation, rather than creating a separate 
validation set. A further assessment with a larger study population 
should be conducted. Second, demographic information was not 
applied as input data in our classifier models. Clinical data such 
as age, sex, and tumor size could be predictors of malignancy 
in follicular neoplasms of the thyroid [8]. However, in our study, 
demographic data showed no significant difference between 
the benign and malignant subgroups, and these variables were 
therefore not included as input variables in the classifier system. 
Larger data sets may reveal the potential role of demographic 
data in diagnosing follicular neoplasms of the thyroid gland. Third, 
external validation was not done in our study. Due to the low 
prevalence of follicular neoplasms and the even lower incidence of 
follicular thyroid carcinoma, it was difficult to prepare a separate 
group of patients for external validation. Further studies with larger 
sample sizes are needed for further validation. Fourth, the diagnostic 
performance and interobserver variability were questionably low, 
even though both radiologists in this study had more than 10 years 

of experience in thyroid imaging. This result may have been due 
to the fact that differentiating follicular adenoma and carcinoma 
on US is challenging and moreover, the overwhelming majority of 
the patients in the carcinoma group had minimally invasive tumors 
(88 of 96, 91.6%), which are especially difficult to distinguish 
from adenoma. Lastly, our study only utilized one criterion for the 
US-based diagnosis of malignancy. However, there are currently 
various guidelines for thyroid nodule characterization, with different 
thresholds for malignancy in each guideline. Moreover, the majority 
of guidelines focus on discriminating the more common papillary 
thyroid cancer, and thus might not be appropriate as a guideline 
for radiologists in differentiating follicular neoplasms. A further 
comparison of diagnostic performance with reference to various 
guidelines should be done in future studies.

Our in-house developed SVM and ANN classifier models, which 
used texture features as input variables, showed high specificity in 
differentiating follicular carcinoma from adenoma, with comparable 
diagnostic performance to that of experienced radiologists referring 
to the ATA guideline. This is a preliminary study, and with further 
validation and refinement, classifier models may have the potential 
to aid attending radiologists in differentiating thyroid follicular 
neoplasms.
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