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e Ultrafine particle inhalation causes
redox imbalance in the hippocampus.

« Ultrafine particle induces oxidative
stress and neuroinflammation.

 Ultrafine particle inhalation increases
Alzheimer's beta-amyloid levels.
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Particulate matter (PM) exposure is related to an increased risk of sporadic Alzheimer's disease (AD), the path-
ogenesis of which is explained by chronic neurometabolic disturbance. Therefore, PM-induced alterations in
neurometabolism might herald AD. We aimed to identify brain region-specific changes in metabolic pathways
associated with ultrafine particle (UFP) exposure and to determine whether such metabolic alterations are linked
to susceptibility to AD. We constructed UFP exposure chambers and generated UFP by the pyrolysis method,
which produces no toxic oxidized by-products of combustion, such as NOx and CO. Twenty male C57BL6 mice
(11-12 months old) were exposed either to UFP or room air in the chambers for 3 weeks. One week following
completion of UFP exposure, regional brain tissues, including the olfactory bulb, cortex, hippocampus, and cere-
bellum, were obtained and analyzed by metabolomics based on GC-MS and LC-MS, western blot analysis, and
immunohistochemistry. Our results demonstrated that the metabolomic phenotype was distinct within the 4 dif-
ferent anatomical regions following UFP exposure. The highest level of metabolic change was identified in the
hippocampus, a vulnerable region involved in AD pathogenesis. In this region, one of the key changes was
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dinucleotide; GC-MS, Gas Chromatography-Mass Spectrometry; GC-TOF MS, gas-chromatography time-of-flight mass spectrometry; GFAP, glial fibrillary acidic protein; HEPA, High-
Efficiency Particulate Air; LC-MS, Liquid Chromatography-Mass Spectrometry; LC-Orbitrap MS, Liquid-chromatography Orbitrap mass spectrometry; LOAD, Late-Onset Alzheimer's
Disease; 02, oxygen; PCA, principal component analysis; PM, particulate matter; TEM, transmission electron microscope; UFP, ultrafine particle.
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Neuroinflammation
Beta-amyloid

perturbed redox homeostasis via alterations in the methionine-glutathione pathway. UFP exposure also induced
oxidative stress and neuroinflammation, and importantly, increased Alzheimer's beta-amyloid levels in the hip-

pocampus. These results suggest that inhaled UFP-induced perturbation in hippocampal redox homeostasis has a
role in the pathogenesis of AD. Therefore, chronic exposure to UFP should be regarded as a cumulative environ-
mental risk factor for sporadic AD.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Particulate matter (PM) in ambient air is now well recognized as a
crucial risk factor for various illnesses and increased mortality
(Brunekreef and Holgate, 2002; Wang et al., 2017; Zhang et al., 2017;
Chen et al.,, 2019). In particular, ultrafine particle (UFP), the size of
which is as small as 0.1 um or even smaller, can enter the circulation
through various routes and exert direct toxic effects on multiple organs,
including the brain (Li et al., 2003; Chin-Chan et al., 2015). Indeed, sev-
eral epidemiological and experimental studies have suggested that PM
exposure is associated with an increased risk for Alzheimer's disease
(AD) (Chin-Chan et al., 2015; Jung et al., 2015; Jang et al., 2018). Al-
though neuroinflammation has been suggested as a mediator of the re-
lationship between PM exposure and AD risk (Calderon-Garciduenas
et al., 2008; Block and Calderon-Garciduenas, 2009; Calderon-
Garciduenas et al., 2012), how UFP exposure predisposes aged brains
to AD has not been fully investigated.

AD, the most common form of aging-related dementias, is a multi-
etiological disease. Only a small portion (<5%) of the disease (familial
form of AD) develops from genetic mutations, with onset at a relatively
young age (before 65). In contrast, the cause of sporadic, late-onset AD
(LOAD), which constitutes >95% of all cases, is still elusive. Deposition of
beta-amyloid (AR) leading to senile plaques is a hallmark of AD pathol-
ogy, commonly in both familial and sporadic forms. However, regarding
sporadic LOAD, neurometabolic dysfunction has been proposed as a
core etiology which may precede AP pathology (Buckner et al., 2005;
Kang et al., 2017; de la Monte and Tong, 2014). Several key findings
have contributed to this metabolic point of view towards LOAD, namely,
‘metabolic hypothesis of AD’ (Buckner et al., 2005). Firstly, metabolic
rate of glucose has been found to be significantly decreased in the brains
of patients with LOAD even though all the patients were in
normoglycemic state (Hoyer et al., 1991). Consistently, it has been re-
ported that insulin concentration and the activity of insulin receptor
are decreased in LOAD brain while the density of insulin receptor is in-
creased (Frolich et al., 1998; Hoyer, 2002). Secondly, it has been re-
vealed that the increased levels of aerobic glycolysis (implicating
reduced oxidative phosphorylation) is positively correlated with levels
of AR deposition in specific brain regions which show default-mode
resting state activity in young individuals, suggesting such
neurometabolic alteration to be a preceding factor to AR pathology in
LOAD (Vlassenko et al., 2010). Additionally, various aspects of metabolic
impairments in the brain such as redox imbalance, oxidative stress and
mitochondrial dysfunction have also been associated with the patho-
genesis of LOAD (Sutherland et al., 2013; Birnbaum et al., 2018;
Rowland et al., 2018).

Of note, chronic environmental or dietary exposures to toxic sub-
stances have been suggested as etiologic factors disrupting brain metab-
olism (de la Monte et al., 2009; de la Monte and Tong, 2014). For
instance, hypercholesterolemia in mid-life has been associated with
higher incidence of AD in later life (Kivipelto et al., 2001), and an exper-
imental high-cholesterol diet has shown to cause neuronal metabolic
disturbances contributing to LOAD pathogenesis (Wang et al., 2013).

As well as a high-cholesterol diet, UFP should be regarded as a
chronic environmental risk factor for AD. Thus, it would be reasonable
to investigate the potential contribution of UFP to AD pathogenesis in
the context of “neurometabolic vulnerability” in older age. To this end,
we conducted an integrative metabolomic analysis based on gas-

chromatography time-of-flight mass spectrometry (GC-TOF MS) and
liquid-chromatography Orbitrap mass spectrometry (LC-Orbitrap MS).
GC-MS, arobust and highly-reproducible analytical platform, is suitable
for exploratory and hypothesis-generating research (Cho et al., 2017; Ji
et al,, 2018), whereas LC-MS is renowned for its broader coverage and
high sensitivity upon optimization of target compounds. Thus, this com-
binatorial approach is ideal for defining overall metabolomic physiology
and determining biochemical mechanisms. In addition, we evaluated
four different brain regions (hippocampus, cerebellum, cortex, and ol-
factory bulb) from aged mice exposed to UFP, which allowed for
region-specific metabolic responses to UFP from the complex brain ma-
trix to be resolved.

Of note, we applied the “pyrolysis” method to generate UFP without
co-production of toxic oxidized by-products, such as nitrogen oxide
(NOx) and carbon monoxide (CO), which would have been generated
by the “combustion” method; this was to minimize the confounding ef-
fects of such toxic chemicals.

2. Methods
2.1. Animals

Male C57BL6/] mice (purchased from the Animal Facilities of Aging
Science at Korea Basic Science Institute, Gwangju, South Korea), aged
11-12 months old, were housed under a 12 h light/dark cycle with
food and water available ad libitum. All procedures were approved by
Yonsei University Institutional Animal Care and Use committee
(IACUC-A-201710-640-02) and conformed to the AAALAC (Association
for Assessment and Accreditation of Laboratory Animal Care) Interna-
tional guideline (https://www.aaalac.org/resources/Guide_2011.pdf).

2.2. Reagents

Antibodies for western blot analysis and immunohistochemistry
were purchased from the companies indicated; GFAP (Glial fibrillary
acidic protein; SC-6170, Santa Cruz Biotechnology, Santa Cruz, CA,
USA), TNFa (Tumor necrosis factor o; SC-52746, Santa Cruz Biotechnol-
ogy), B-actin (SC-47778, Santa Cruz Biotechnology), AR (6E10) for im-
munohistochemistry (SIG-39320, Covance, Princeton, NJ, USA), AR (B-
4) for western blot (SC-28365, Santa Cruz Biotechnology) and 4-
hydroxynonenal (4-HNE; AB5605, Millipore, Burlington, MA, USA). LC-
MS grade methanol, acetonitrile, water, and ammonium acetate were
obtained from Thermo Fisher Scientific (MA, USA). Ammonium hydrox-
ide 25% solution for LC-MS was purchased from Sigma-Aldrich (St.
Louis, MO, USA).

2.3. Manufacturing exposure chambers

The exposure chambers were manufactured as illustrated in the
schematic (Fig. 1A). The chambers were made of acryl and equipped
with a front door, H14 grade HEPA filters on both sides, a ventilation
duct on the top, a PM supplying inlet, and sensors for monitoring carbon
dioxide (CO), oxygen (0O;), and temperature. PM produced by the PM
generator was mixed with 99.999% purity air and then supplied to the
exposure chamber through the PM supplying inlet.
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Fig. 1. A schematic of the exposure system. (A) PM generator, exposure chamber, and ventilation systems. Note that two animal cages are put in the chamber. (B) A photo of the PM
generator outlet (top) and a TEM image of the PM (bottom) used for the exposure experiment. The average size of primary particles and the aerodynamic size of the agglomerates
were 27.4 nm and 178 nm, respectively, corresponding to ultrafine particles (UFP). PM, particulate matter.

2.4. UFP generation and characterization

In general, PM originates from incomplete combustion of fuel. When
PM is produced using a flame, its size and chemical composition are dif-
ficult to control. In addition, the exhaust gas contains NOx and CO,
which are harmful to the human body (Lim et al., 2017). To avoid
these problems including the confounding effects of NOx and CO on
brain function, we used a PM generator to synthesize UFP by pyrolysis
of fuel dispersed in nitrogen (N;), eliminating the effect of NOx and
CO from the UFP exposure experiment. This PM generator was found
to produce PM with well-controlled particle characteristics, such as a
primary particle size, chemical composition, morphology, and agglom-
erate size distribution (Cho et al., 2016). The characteristics of this PM
have been found to be similar to those of PM emitted from ships, auto-
mobile engines, or industrial combustors, depending on the synthesis
condition.

Desired particle characteristics were achieved by adjusting the flow
rates of the fuel and carrier nitrogen being supplied to the PM generator
as well as the temperature of the pyrolysis furnace. A steady flow of pro-
pylene (C3Hg) diluted in nitrogen (fuel mole fraction = 0.01) was pyro-
lyzed in the furnace at 1300 °C such that PM was continuously
generated through nucleation, surface growth, and agglomeration
steps.

Fig. 1B shows an image of the PM generator outlet and a transmis-
sion electron microscopy (TEM) image of the synthesized PM, which
was sampled with a TEM grid at the exhaust of the PM generator. The
PM from the generator always remains aerosolized since its generation
from a gaseous fuel. This fact makes it unnecessary to blow and aerosol-
ize powder-type carbon particles that many other studies have utilized
to create a PM-suspended atmospheric condition. More examples of PM
sampling and TEM imaging can be found in our previous publication
(Lee et al., 2019). A PM agglomerate consists of many spherical primary
particles. The average primary particle size was 27.4 nm, and the stan-
dard deviation was 4.2 nm (Fig. S1A). For this calculation, >200 spher-
ules were randomly chosen from multiple TEM images, and their sizes
were measured using Image] software (Schneider et al., 2012). In addi-
tion, the size distribution of PM agglomerates was achieved using a par-
ticle size analyzer (Nanoscan SMPS 3910, TSI, USA), and the average
aerodynamic size of the PM was found to be 178 nm and the standard
deviation was 65 nm (Fig. S1B). Therefore, we assumed that most of

the particles (ranging from primary particles to agglomerates) used in
this study correspond to UFP.

In general, PM generated by combustion or pyrolysis of pure hydro-
carbons consists of crystallized graphitic elemental carbon (EC) and
amorphous OC (organic carbon). The organic mass fraction, which is de-
fined by the mass of OC in PM divided by the total mass of PM, was mea-
sured using a combustion type particulate analyzer (MEXA-1370PM,
Horiba, Japan). The device measures the masses of EC and OC separately
by utilizing the difference between EC and OC in their volatility and ox-
idation behaviour (Lee et al., 2019; Lim et al., 2017). In this study, the
PM organic mass fraction was about 0.27 and the standard deviation
of the repeated measurement results was 0.04.

2.5. UFP exposure

The exposure experiment was performed for 3 weeks following a
routine of 5 days per week and 8 h per day while considering a general
human activity cycle. The UFP concentration in the exposure chamber
was monitored every 20 min using the particle size analyzer to keep
>90% of the target concentration, which was set at 1000 pg/m?>. In addi-
tion, since the concentration of CO, in the chamber is increased by the
animals' respiration, the ventilation duct on the top was used for suction
with the covers of the HEPA filters when the CO, concentration
exceeded ~1500 ppm. Once the CO, concentration decreased to the de-
sired concentration, UFP was supplied again to raise the UFP concentra-
tion to the target value. The main experimental parameters measured
during the experiment are summarized in Table S1.

2.6. Brain tissue preparation

Upon completion of the exposure experiment, regional brain tissues
were collected after the 7-day stabilization period, which was per-
formed to minimize the acute effects of UFP exposure on brain metabo-
lism during the last session. The mice were anesthetized with the
general inhalation anesthetic isoflurane (approximately 1.5-2.0%) and
sacrificed by decapitation under sterile conditions. Brains were carefully
removed after the skull was opened and dissected. For metabolomics
and western blot analyses, the hippocampus, cerebellum, cortex, and ol-
factory bulb were immediately dissected on ice and frozen at —70 °C.
For immunohistochemistry, brain hemispheres were immediately



4 S.J. Park et al. / Science of the Total Environment 718 (2020) 137267

fixed using 3.7% formaldehyde-containing phosphate buffered saline
(PBS). All procedures from decapitation to the freezing of tissues were
completed within 8 min consistently across all animals.

2.7. Metabolite extraction from brain tissue samples

Tissue samples were freeze-dried in 2.0 ml tube and disrupted with
a single 5-mm steel ball using the Mixer Mill MM400 (Retsch GmbH &
Co., Germany). Pulverized samples were extracted with 1.4 ml of a
cold methanol-water (9:5, v/v) mixture (Lee and Fiehn, 2008; Bajad
and Shulaev, 2011). The mixtures were kept on ice for 15 min and son-
icated for 15 min followed by 5-min centrifugation at 14,000g and 4 °C.
The resulting supernatants were transferred to a new 1.5 ml tube
(700 pl for GC-TOF MS and 550 pl for LC-Orbitrap MS). The aliquots
were evaporated to dryness in a speed vacuum concentrator (SCANVAC,
Korea), and dried extracts were stored at —80 °C until mass spectrom-
etry analysis.

2.8. Metabolite extraction from blood serum samples

Blood serum samples were thawed on ice at 4 °C and 45 pl was
aliquoted. An aliquot of serum samples was extracted with 1400 pl of
extraction solvent (methanol: water, 9:5, v/v/v). The mixtures were
mixed using the Mixer Mill MM400, kept on ice for 15 min, sonicated
for 15 min, and centrifuged for 5 min (14,000 g and 4 °C). The superna-
tants were transferred to a new 1.5 ml tube (700 pl for GC-TOF MS and
670 pl for LC-Orbitrap MS) and concentrated in a speed vacuum concen-
trator (SCANVAC, Korea). Dried extracts were stored at —80 °C until
mass spectrometry.

2.9. Gas chromatography-time-of-flight mass spectrometry

All analytical procedures were performed in a random order to min-
imize potential systematic error. Dried extracts were methoximated
with 5 pl of 40 mg/ml methoxyamine hydrochloride (Sigma-Aldrich,
St. Louis, MO, USA) dissolved in pyridine (Thermo, USA), and then incu-
bated for 90 min (800 rpm and 30 °C). For trimethylsilylation, 45 pl of N-
methyl-N-trimethylsilyltrifluoroacetamide (MSTFA +1% TMCS;
Thermo, USA) was added to the derivatives and reacted for 60 min at
800 rpm (37 °C). A mixture (2 pl) of 13 fatty acid methyl esters was
used for internal retention index (RI) markers, which included C8, C9,
C10, C12,C14, C16,C18, €20, €22, C24, €26, €28, and C30 in chloroform
(Jietal, 2018; Lee et al., 2019).

The derivatized metabolites were analyzed with an Agilent 7890B
gas chromatograph (Agilent Technologies) coupled to a Leco Pegasus
HT time of flight mass spectrometer (LECO, St. Joseph, MI, USA). The
0.5 pl aliquots of the metabolites were injected into an RTX-5Sil MS col-
umn (Restek, Gellefonte, PA, USA) controlled by an Agilent 7693 ALS
(Agilent Technologies, Wilmington, DE, USA). The initial GC oven tem-
perature was set to 50 °C and held for 1 min. Then, the GC oven temper-
ature was increased by 20 °C/min to 330 °C and held constant for 5 min.
Transfer line and ion source temperatures were set to 280 °C and 250 °C,
respectively. The mass spectra were acquired ranging from 85 to 500 m/
z at a scan rate of 20 spectra/s (Park et al,, 2019).

ChromaTOF software was used for data acquisition and pre-
processing. Results were stored as ChromaTOF-specific Pegasus files (.
peg), which included peak apex mass values, complete spectrum with
absolute intensities, retention time, peak purity, noise, and signal-to-
noise ratio. ChromaTOF-specific peg files were converted to generic
text (.txt) files and generic netCDF files for further data evaluation.
The text files were exported to a data server with absolute spectra in-
tensities, and further processed using the BinBase algorithm (Kind
et al,, 2009; Skogerson et al., 2011).

2.10. Liquid chromatography Orbitrap mass spectrometry

The dried samples were re-constituted with 50 pl of 70% acetonitrile
for LC-MS. Chromatographic separation was performed on an Ultimate-
3000 UPLC system (Thermo Fisher Scientific, USA) and a 150 x 2.1 mm
UPLC BEH 1.7-um HILIC column (Waters, USA) equipped with
5.0 mm x 2.1 mm UPLC BEH 1.7 pm HILIC VanGuard pre-column (Wa-
ters, USA). The mobile phase consisted of buffer A (19 mM ammonium
acetate and 68 mM ammonium hydroxide in 5% acetonitrile) and buffer
B (100% acetonitrile). The flow rate was set to 0.3 ml/min and a gradient
was programmed as follows: 0 min, 95% B; 10 min, 85% B; 20 min, 10%
B; 25.1-30 min, 95% B.

Mass-spectrometric analysis was performed on a Q-Exactive plus in-
strument (Thermo Fisher Scientific, MA, USA) with positive ionization
mode for all detections. The acquisition method was conducted using
a combination of the two-scan mode, Full MS and targeted SIM
(tSIM)-data dependent MS/MS (ddMS2). The Full MS scan ranged
from 100 to 1500 m/z, and the tSIM-ddMS2 scan mode was applied
for acetyl-CoA (810.1316 m/z, 14.5-15.6 min), nicotinamide adenine di-
nucleotide (NADH; 666.1285 m/z, 14.1-15.1 min), nicotinamide ade-
nine dinucleotide phosphate (NADPH; 746.0979 m/z, 14-15 min),
malonyl-CoA (854.1229 m/z, 14.8-15.8 min). Full MS-ddMS2 was per-
formed to annotate un-targeted compounds. Data acquisition and pre-
processing were managed using Xcalibur software (Thermo Fisher Sci-
entific, San José, CA, USA). RAW data files were processed using Com-
pound Discoverer 2.0 software (Thermo Fisher Scientific, San José, CA,
USA). Compound annotation was performed against mzCloud node in
which the MS2 mass tolerance and annotation threshold were set to
10 ppm and 70, respectively.

2.11. Cell viability assay

Apoptotic nuclear DNA breaks in the tissue sections were assessed
by double fluorescent labeling using a terminal dUTP nick-end labeling
(TUNEL) assay (11684795910, Sigma-Aldrich Co.) and 4, 6-diamidino-
2-phenylindole (DAPI, Sigma-Aldrich Co.). Brain hemisphere sections
(20 pm-thick) were air-dried at room temperature, and permeabilized
in PBS with 0.3% Triton X-100 for 1 h. Positive control sections were in-
cubated with a proteinase K working solution (20 pg/ml) for 30 min.
Then, sections were incubated with reaction mixtures for 60 min at
37 °Cin a humidified atmosphere in the dark. Sections were washed
three times with PBS and counter-stained with DAPI (Sigma-Aldrich
Co.)

2.12. Western blot analysis

Brain tissues from the different regions (cortex, hippocampus, olfac-
tory bulb, and cerebellum) were homogenized with lysis buffer contain-
ing 20 mM HEPES (pH 7.0), 1 mM EGTA, 10 mM KCl, 1.5 mM MgCl2,
250 mM sucrose, and cocktails of phosphatase inhibitors and protease
inhibitors at a concentration of 10 pl per 1 mg wet weight of frozen
brain tissue. Homogenates were incubated for 10 min on ice with gentle
rocking, and then samples were centrifuged at 8000g for 30 min at 4 °C.
Proteins were resolved on gradient sodium dodecyl sulfate (SDS)-poly-
acrylamide gels and blotted onto polyvinylidene fluoride (PVDF) mem-
branes (10,600,023, Amersham Biosciences, Piscataway, NJ, USA).
Membranes were washed with tris-buffered saline tween-20 (TBS-T,;
50 mM Tris/HCl, 140 mM NaCl, pH 7.3, containing 0.1% Tween-20) be-
fore blocking non-specific binding with TBS-T plus 3% skimmed milk
for 1 h. After blocking, membranes were incubated with the following
primary antibodies overnight 4 °C: 4-HNE for oxidative stress
(1:3000), TNFa for neuroinflammation (1:2000), AB(B-4) for AD pa-
thology (1:1000) in 3% skimmed milk plus TBST-T. After washing,
blots were incubated with secondary antibodies conjugated with horse-
radish peroxidase (1:5000) for 1 h, followed by enhanced
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chemiluminescence (Amersham ECL Select Western Blotting Detection
Reagent, RPN2235, Amersham Biosciences, Piscataway, NJ, USA)
detection.

2.13. Immunohistochemistry

Fixed frozen hemispheres were cut into 20 um coronal sections
using a cryostat. Sections were permeabilized in PBS with 0.3% Triton
X-100 for 1 h, and stained in floating condition. Sections were blocked
using 5% bovine serum albumin (BSA) in PBS with 0.3% Triton X-100
for 1 h. After blocking, sections were incubated with anti-4-HNE-
antibody (1:300), anti-GFAP-antibody (1:500) or anti-AB(6E10)-anti-
body in PBS containing 2% BSA and 0.3% Triton X-100 at 4 °C overnight.
After washing with PBS three times, slices were labeled with secondary
antibodies (1:500) targeting donkey anti-goat IgG conjugated to Alexa-
488 (705-545-003, Jackson ImmunoResearch Laboratories, West Grove,
PA, USA) for 1 h. Sections were washed three times with PBS. Sections
were counter-stained with DAPI (Sigma-Aldrich Co., St. Louis, MO,
USA) and observed under a confocal laser scanning microscope (Carl
Zeiss, Thornwood, NY, USA).

2.14. Statistical analyses

Statistical analyses were performed on all continuous variables ac-
quired from the GC-MS and LC-MS. Datasets were normalized using
the “MS total useful signal” (MSTUS) approach (NOREVA, http://idrb.
zju.edu.cn/noreva/) (Lietal.,, 2017). Unsupervised multivariate statistics
(principal component analysis, PCA) was performed on UV-scaled data
by SIMCA 14 (Umetrics AB, Umea, Sweden). A Student's t-test was per-
formed to calculate p-values using Microsoft Excel (Microsoft, Seattle,
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WA, USA). Some graphs were produced using Prism 8 (GraphPad Soft-
ware, San Diego, CA, USA). Multi Experimental Viewer (MeV, TIGR)
was applied to estimate false discovery rate (FDR) and compute q-
values. The significance level was set at & = 0.05. The metabolite-
disease network was constructed using Network Explorer module, and
pathway over-representation analysis was applied based on the
hypergeometric test and relative-betweenness centrality implemented
in MetaboAnalyst 4.0 (Chong et al., 2018). The metabolic network was
generated based on a chemical structure similarity and reaction pair in-
formation (Barupal et al., 2012) and visualized by a prefuse force-
directed layout using Cytoscape 3.7.1 (Shannon et al., 2003).

3. Results
3.1. Perturbed metabolomic phenotypes in the brain upon UFP exposure

First, untargeted metabolite profiling based on GC-TOF MS was con-
ducted on mouse brain tissue, which resulted in 110 structurally identi-
fied compounds, and covered a range of central carbon/nitrogen
metabolism. The metabolomic phenotype was primarily distinctive ac-
cording to the different anatomical regions (hippocampus, cerebellum,
cortex, and olfactory bulb; Fig. 2A). Score scatter plots from unsuper-
vised multivariate statistics (PCA) indicated the relative similarity be-
tween the hippocampus and olfactory bulb. Next to the brain regional
heterogeneity, the metabolic profiles were clearly discriminated by
UFP exposure, in particular the hippocampus relative to other brain re-
gions (Fig. 2B).

Subsequent univariate statistics verified the highest level of meta-
bolic changes in the hippocampus following UFP exposure (31 metabo-
lites, p-value < 0.05; 21 metabolites, FDR q < 0.001). Most of the
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Fig. 2. Distinctive metabolic physiology based on unsupervised multivariate statistics (PCA) by brain-regional specificity (A) and by PM (UFP) exposure in each brain region (B). The
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metabolites were significantly down-regulated (25 compounds out of
31) in the hippocampus. Threonic acid and methionine sulfoxide
showed the highest levels of reduction (up to 28%), generally consistent
with changes in the other regions, except the cortex. Likewise, 2-
hydroxypyridine and 5’-methylthioadenosine presented the most dra-
matic increases, particularly in the hippocampus and cerebellum.
Among the hippocampus-specific metabolites were cysteine, phos-
phate, glyceric acid, and glycolic acid, which were the most significantly
changed by UFP exposure (Fig. S2). In the cerebellum, 11 compounds
showed specific changes, including adenosine monophosphate, malic
acid, and creatinine, whereas 14 and 5 metabolites were specific to
the olfactory bulb and cortex, respectively. Of note, the dysregulated
metabolites in the hippocampus (31 metabolites) presented strong con-
nectivity to disease (Fig. 3A). In the metabolite-disease interaction net-
work, AD showed the highest levels of degree and betweenness along
with 12 metabolites that were significantly altered in the hippocampus.
This contrasted with the other brain regions. In the cerebellum and ol-
factory bulb, schizophrenia was connected to 9 and 5 metabolites,

respectively (Fig. 3B, D). The cortex showed no enriched connectivity
between disease and metabolites (n < 5) (Fig. 3C).

3.2. Hippocampal redox imbalance as metabolic susceptibility

To detail the metabolic linkage to the potential pathomechanisms,
extended-target metabolite profiling using LC-MS was conducted focus-
ing on metabolites related to bioenergetics and redox balance. The pri-
mary target was set to 23 metabolites (e.g., adenosine triphosphate
(ATP), NADH, NADPH, acetyl-CoA, and glutathione). Seventy-seven
compounds were additionally determined that were not detected by
GC-MS. The list of metabolites that showed statistically significant dif-
ferences is available in Table S2. We applied an integrated metabolic
network (MetaMapp), which systematically binned metabolites accord-
ing to chemical structural similarity and Kegg reaction pair (Lee et al.,
2012; Lee et al., 2016; Park et al., 2016; Polyzos et al., 2019). The
resulting network effectively depicted a group of metabolites dysregu-
lated by UFP exposure (Fig. 4). Primarily, coincident down-regulation

Fig. 3. Metabolite-disease network of the hippocampus. A metabolite-disease interaction matrix was computed based on Network Explorer implemented in MetaboAnalyst. Circles
indicate metabolites and squares indicate disease. Node size presents betweenness. Only node (degree >5) is visualized in the network. Edge is generated based on the metabolite-
disease interaction database (MetPriCNet). The metabolite-disease interaction network of hippocampus (A) presented significant association between metabolites and diseases
(Alzheimer's disease) compared to the networks of cerebellum (B), cortex (C), and olfactory bulb (D). See more details in the result part.
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was identified in nitrogen-containing compounds (green box), includ-
ing a range of amino acids and vitamin Bg (pyridoxamine and pyri-
doxal). In addition, a significant reduction in organic acids (red box)
and fatty acid (blue box) was found. The most abundant saturated
fatty acids in mammals, palmitic acid and stearic acid, showed 20%
and 15% reductions, respectively, compared to the control group.
Among the up-regulated metabolites, the highest fold-change was ob-
served in the reduced form of glutathione (2.7-fold change). Others
were cysteine, N-acetylaspartylglutamic acid, pyruvic acid, 5'-

methylthioadenosine, flavin adenine dinucleotide (FAD), and cytidine
5’-diphosphate.

The pathway over-representation analysis proposed the most signif-
icant alteration at a pathway level (hypergeometric test, y-axis) with
high impact score (relative betweenness centrality, x-axis) (Fig. 5A).
The hippocampal region was best characterized by the significant alter-
ation of amino acid metabolism following UFP exposure, particularly
Gly-Ser-Thr, Cys-Met, Val-Leu-lle, and glutathione metabolites
(Fig. 5A). Consequent mapping onto the relevant pathways provided

Fig. 5. UFP-driven metabolic pathway dysregulation in the hippocampus. (A) Pathway over-representation analysis of metabolites with significant differences (p < 0.05) between the PM
(UFP) group and controls. Pathway impact (x-axis) and significance levels (y-axis, —log(p)) were calculated based on relative betweenness and hypergeometric test, respectively. The
pathway importance and statistical significance are also presented as node size and color intensity, respectively. (B) Schematic overview of the integrative pathway that is
dysregulated in the hippocampus by PM (UFP) exposure. Red and blue indicate significant up- and down-regulation (*p < 0.1, **p < 0.05), whereas orange and blue-sky indicate

moderate changes (p > 0.1).
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an integrative view of the potential pathomechanisms associated with
UFP exposure. The methionine salvage pathway (methionine sulfoxide,
betaine, and 5’-Deoxy-5'-methylthioadenosine (MTA)) was coordi-
nately altered with the urea cycle (citrulline, ornithine, and proline)
and cysteine-glutathione metabolism (cysteine, glutathione, and FAD)
(Fig. 5B). The perturbation was further extended to the aberrant activi-
ties of vitamin Bg and vitamin C metabolism. The metabolic alteration
implied a potential disturbance in redox balance associated with oxida-
tive stress.

3.3. Marginal alteration in serum metabolite profiles by UFP exposure

Serum metabolite profiles were further interrogated to examine if
the metabolic dysregulation was systemic, which consequently insti-
gated secondary effect on brain metabolism. Indeed, merely marginal
differences were observed in serum of the UPF-exposed group. Unsu-
pervised multivariate statistics showed indistinct cluster between the
UFP-exposed group and controls (Fig. S3A). Likewise, 5% of metabolites
were altered by UFP exposure (p < 0.05). It was much lower level com-
pared to the metabolite profiles in the hippocampus tissue (21%). Be-
sides, pathway over-representation analysis showed relatively lower
statistical significance and pathway impact score (Fig. S3B). The subse-
quent mapping on the methionine-glutathione metabolism indicated
minimal perturbation associated with redox homeostasis and oxidative
stress, which was contrast to the one in the hippocampus tissue dramat-
ically altered by UFP exposure (Fig. S3C). These results argue against the
possibility of UFP-induced systemic alteration as a primary cause of
brain metabolic dysregulation.

3.4. Hippocampal oxidative stress and neuroinflammation upon UFP
expostre

To determine if UFP exposure induced neuronal cell death in the

brain, we conducted a TUNEL assay with hippocampal tissues of mice.
We found no TUNEL-positive cell death in either group (Fig. S4). This

A

indicates that UFP exposure was not sufficiently toxic to induce apopto-
tic cell death in the hippocampal tissue, ruling out the possibility that
metabolomic changes induced by UFP exposure were secondary to
cell death.

Upon observing no cell death, we hypothesized that brain redox
changes may be related to the oxidative stress or inflammation induced
by UFP exposure. To index oxidative stress and neuroinflammation, we
measured the levels of 4-HNE (as an oxidative stress marker) and TNF-
« (as inflammation marker). We chose TNF-a because it is a pro-
inflammatory cytokine known to play a major role in neuroinflamma-
tion process (Liddelow et al,, 2017) as well as in early stage of AD path-
ogenesis (Tarkowski et al., 2003).

UFP significantly increased the levels of 4-HNE in the hippocampus
(Fig. 6A, B), and also of TNF-a in the olfactory bulb, hippocampus, and
cerebellum (Fig. 6A, C).

To corroborate these findings, we conducted immunohistochemical
staining for 4-HNE and GFAP in the hippocampal tissues. We found that
the expression of 4-HNE was increased upon UFP exposure in the cornu
ammonis 1 (CA1) (Fig. 6D), CA3, and dentate gyrus (DG) (Fig. S5) of the
hippocampus. Also, the GFAP signal was increased in the hippocampal
tissue following UFP exposure, indicating UFP-induced astrocytic acti-
vation (Fig. 6E and Fig. S6). As astrocyte activation induced by TNF-a
is a primary cause of neuronal death (Liddelow et al., 2017), our findings
suggest a possibility that UFP-induced neuroinflammation might be a
preceding cause of neurodegeneration (Tarkowski et al., 2003).

3.5. Alzheimer's A levels in the hippocampus upon UFP exposure

Finally, we assessed the level of brain AR to see if UFP exposure in-
deed increases Alzheimer's pathology in old mice. AP levels were signif-
icantly increased in the hippocampal tissue of mice exposed to UFP
compared to that of control mice, but not in other regions of the brain
(Fig. 7A,B), indicating again the susceptibility of AD pathogenesis in
the hippocampus. Immunohistochemistry also revealed an obvious in-
crease in hippocampal AP levels in CA1 (Fig. 7C), CA3 and DG
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Fig. 7. Increased AP levels in the hippocampus upon PM (UFP) exposure. (A) AP levels in the cortex and hippocampus were measured by Western blot analysis (n = 5/group). Equal
amounts of protein (20 pg) from each brain region lysates were used. (B) Quantification of western blot band intensity. Data were normalized to 3-actin and expressed as relative
values to control. ***p < 0.001. (C) Immunohistochemistry of AR in the CA1 region of the hippocampus. DAPI (Blue) was used for nuclear counterstaining. Scale bar in 50 um. CON,
control unexposed group; PM, particulate matter exposed group.
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(Fig. S7). However, apparent changes in AR intensity were not observed
in other regions of the brain (Fig. S7). This finding suggests that UPF-
induced redox imbalance is associated with an increased susceptibility
to Alzheimer's pathogenesis.

4. Discussion

To the best of our knowledge, the current study is the first to evalu-
ate region-specific toxicity in the brain following exposure to well-
defined UFPs. The comprehensive metabolomic investigation revealed
significant UFP-induced perturbations and systematically characterized
the regional specificity of the metabolic dysfunction across 4 different
brain regions. Among these regions, the most significant changes were
found in the hippocampus, one of the first regions to develop patholog-
ical signs of AD (Braak and Braak, 1991; Jack et al., 1998). Of note, alter-
ations in this region were best characterized by dysregulated
methionine-glutathione metabolism, implying aberrant activity in
redox balance. The subsequent molecular examination uncovered evi-
dence of oxidative stress and neuroinflammation in the hippocampus
following UFP exposure. Importantly, UFP exposure also caused an in-
crease in the levels of AP, a hallmark of Alzheimer's pathology. There-
fore, these results collectively suggest the redox imbalance as a
metabolic account of the pathogenesis of sporadic LOAD upon UFP
exposure.

Neurodegenerative diseases are renowned for region-specific pro-
gression of pathologies (Lee et al,, 2013). For instance, AD primarily in-
volves the hippocampus, whereas Parkinson's disease and Huntington's
disease mainly involve the substantia nigra pars compacta and striatum,
respectively. Thus, a spatially-resolved metabolic profile is essential to
identify the disease-specificity of UFP-induced alterations. In our cur-
rent study, we examined 4 different brain regions (hippocampus, cor-
tex, cerebellum, and olfactory bulb). Indeed, UFP significantly affected
the primary metabolism in the hippocampus, cerebellum, and olfactory
bulb, which implied potential toxicity in a range of areas in the brain.
However, hippocampal metabolism was the brain region that showed
the most dramatic perturbations, supporting a pathogenic link between
UFP exposure and AD susceptibility. Particularly, concomitant alter-
ations in various amino acids were characteristic of the hippocampus.
The aberrant activity in amino acid metabolism has been metabolically
featured in AD (Gueli and Taibi, 2013; Xu et al., 2016; Griffin and
Bradshaw, 2017). The significant down-regulation of aromatic amino
acids (tryptophan, tyrosine, and phenylalanine) implies dysfunction in
the biosynthetic process for neurotransmitters (Griffin and Bradshaw,
2017; Usuda et al., 2018). Likewise, the reduced levels of branch-chain
amino acids (isoleucine and valine) in our current study have been im-
plicated in the cognitive change observed in patients with AD (Toledo
etal,, 2017). In addition, the urea cycle was moderately differentially in-
creased by UFP, whereas citrulline, ornithine, and proline were signifi-
cantly lower in the hippocampus of the PM (UFP) group. Dysfunction
of urea metabolism has been implicated in AD pathogenesis through de-
fects in osmoregulation or nitrogen metabolism.

The subsequent examination based on extended-target metabolite
profiling detailed the putative pathomechanism involved in bioenerget-
ics and redox balance. Primarily, abnormal redox balance was noted,
with the highest fold increase in glutathione, a major endogenous anti-
oxidant. Moreover, the moderate level of reduction was determined as
the ratio of reduced GSH to its oxidized form (p = 0.26; fold change =
0.68), which was consistent with a recent report in an AD mouse model
(Zhang et al., 2012). Although glutathione depletion has been generally
observed in the postmortem brains from patients with AD, our data
imply a systemic dysregulation of the glutathione redox balance. The
atypical activity was coupled to the significant increase in FAD, which
has been implicated in the pathogenesis of AD in a study of a young
transgenic AD mouse using label free fluorescence spectroscopy (Shi
et al,, 2017). Dysfunction of the glutathione redox cycle was further ex-
tended to the methionine salvage pathway and vitamin Bg metabolism.

Notably, recent studies proposed a beneficial effect of B-vitamin supple-
mentation on PM toxicity in a human intervention trial (Zhong et al.,
2017a,b).

Additional question was whether the observed metabolomic
changes were associated with neuronal death following UFP exposure.
We observed no cell death following UFP exposure, as assessed using
the TUNEL assay, suggesting UFP exposure was sub-lethal to brain
cells. However, consistent with our finding of a glutathione imbalance,
we identified significant changes in the levels of 4-HNE and TNF-q, indi-
cating increased oxidative stress and neuroinflammation, respectively
(Vassalli, 1992; Poli and Schaur, 2000; Poli et al., 2008). Oxidative stress
and neuroinflammation have been regarded as chronic causative factors
for AD. Thus, our findings strongly suggest that even a sub-lethal dose of
UFP could contribute to AD pathogenesis (such as AB) in a chronic and
cumulative way. These findings are highly consistent with a recent re-
port showing that PM2.5 causes alterations in glutathione metabolism,
energy metabolism, and oxidative/inflammatory cytokines including
TNF-a in human lung bronchial epithelial cells (Song et al., 2019).

Although the relationship between PM exposure and AD risk has
been consistently suggested, the specific link has been elusive. Accord-
ingly, we performed a strategic experiment to delineate the causality
as follows: First, we used the exposure chambers for ecological validity
of the inhalation of UFP in ambient air: We used UFP, which penetrates
the circulation and the brain (through the brain-blood barrier) and is
considered to be more clinically serious than other types of PM
(Oberdorster et al., 2004; Brauner et al., 2007). Most importantly, we
used the pyrolysis method to generate UFP without co-producing
toxic oxidized by-products, such as NOx and CO, which would have
also crucially affected brain metabolism. Thus, our results may reflect
the effect of UFP, minimizing the secondary (confounding) effects of
such toxic chemicals mixed with PM. Second, we used aged mice,
which we thought are appropriate for studies to observe UPF-induced
pathologies relevant for LOAD. Finally, we had a 7-day stabilization pe-
riod without UFP exposure before brain tissue sampling to minimize the
acute toxic effects of UFP (in the last exposure session).

Several limitations of our study should be addressed. Firstly, we did
not directly observe the presence of UFP in the brain tissues. Thus, it re-
mains to be identified whether metabolomic alterations in the brain
was direct consequences of UFP deposition in the brain or results of sys-
temic inflammation. However, our finding of metabolome changes in
serum and previous evidence that UFP could enter the brain tissue
(Oberdorster et al., 2005; Maher et al., 2016) may suggest a direct role
of UFP in this tissue rather than systemic inflammation. Secondly, as
the primary goal was to detect potentially subtle changes in brain me-
tabolism upon UFP exposure, we did not include experiments examin-
ing more severe phenotypes such as behaviour abnormality or various
forms of toxic AR. (We only measure AB42 as a representative form.)
Future study should seek evidence of cognitive impairment upon UFP
exposure and extensive molecular findings. Thirdly, we did not include
female mice to avoid any potential effects of hormonal cycle on
neurometabolism. Finally, we applied a 3-week duration of UFP expo-
sure, which could not be generalized to the real-world chronic, cumula-
tive effects of ambient air pollution. Therefore, behavioural experiments
with mice of both sexes following chronic exposure of UFP should be a
subject of the future study.

5. Conclusions

Our study proposes a link between UFP exposure and the suscepti-
bility to AD using aged mice. In particular, redox imbalance via the
methionine-glutathione pathway in the hippocampus was among the
most significant findings following UFP exposure. Consistent with
these findings on metabolism, increased levels of oxidative stress, neu-
roinflammation, and Alzheimer's AR were also identified in the hippo-
campus of mice exposed to UFP. These findings suggest that
maintaining redox homeostasis could be a practical strategy to
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counteract UFP-induced progression in neurodegeneration and reduce
the cumulative environmental risk of LOAD.
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