

Improving Response Time and Throughput of Search Engine with Web Caching
Pushpa C N1, Thriveni J1, Venugopal K R1, Patnaik L M2

1Department of Computer Science and Engineering,

University Visvesvaraya College of Engineering,

Bangalore- 560001
2 Honorary Professor, Indian Institute of Science, Bangalore, India.

Abstract

Large web search engines need to be able to process

thousands of queries per second on collections of

billions of web pages. As a result, query processing is a

major performance bottleneck and cost factor in

current search engines, and a number of techniques are

employed to increase query throughput, including

massively parallel processing, index compression,

early termination, and caching. Caching is a useful

technique for Web systems that are accessed by a large

number of users. It enables a shorter average response

time, it reduces the workload on back-end servers, and

it reduces the overall amount of utilized bandwidth.

Our contribution in this paper can be split into two

parts. In the first part, we proposed Cached Search

Algorithm (CSA) on top of the multiple search engines

like Google, Yahoo and Bing and achieved the better

response time while accessing the resulting web pages.

In the second part, we design and implemented the

Cached Search Engine and the performance evaluated

based on the training data (WEPS dataset [1]) and the

test data (Mobile dataset). The Cached Search

outperforms the better by reducing the response time of

search engine and to increase response throughput of

the searched results.

1. Introduction
The Internet and the Web offer new opportunities

and challenges to information retrieval researchers.

With the information explosion and never ending

increase of web pages as well as digital data, it is very

hard to retrieval useful and reliable information from

the Web.

Search Engines have become a popular way of

finding information on the World Wide Web. A large

number of users reach web sites via a Search Engine.

As the web become larger, individual sites become

more difficult to find, and thus the percentage of users

that reach web sites after querying a Search Engine will

probably increase.

 The basic functions of a crawl-based web search

engine can be divided into four stages: data acquisition

(or crawling), data mining and preprocessing, index

construction, and query processing. During crawling,

pages are fetched from the web at high speed, either

continuously or through a set of discrete crawls. Then

various data mining and preprocessing operations are

performed on the data, e.g., detection of web spam or

duplicates, or link analysis based on PageRank [2].

Third, a text index structure is built on the preprocessed

data to support fast query processing. Finally, when a

user issues a query, the top results for the query are

retrieved by accessing the index structure.

1.1 Web Caching
 Caching is a useful technique for Web systems that

are accessed by a large number of users. It enables a

shorter average response time, it reduces the workload

on back-end servers, and it reduces the overall amount

of utilized bandwidth. In a Web system, both clients

and servers can cache items. Browsers cache Web

objects on the client side, whereas servers cache pre-

computed answers or partial data used in the

computation of new answers.

 Web caching is the caching of web documents , such

as HTML pages and images, to reduce bandwidth

usage, server load, and perceived lag. A web cache

stores copies of documents passing through it;

subsequent requests may be satisfied from the cache if

certain conditions are met. Web cache optimization in

search engine is used to get fast retrieval of user query

results. Web objects can be cached locally on the user's

computer or on a server on the Web. One such

optimization is the use of caching, which occurs in

search engines on two levels. A query enters the search

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

1www.ijert.org

engine via a query integrator node that is in charge of

forwarding it to a number of machines and then

combining the results returned by those machines.

Before this is done, however, a lookup is performed

into a cache of previously issued queries and their

results. Thus, if the same query has been recently

issued, by the same or another user, then we do not

have to recompute the entire query but can simply

return the cached result. This approach, called result

caching, is widely used in current engines. A second

form of caching, called index caching or list caching

[3], is used on a lower level in each participating

machine to keep the inverted lists of frequently used

search terms in main memory. Our main focus is on

result caching.

1.2 Types of Web Caching
 There are several types of caches for web objects:

 Browser cache: Browsers' cache Web objects

on the user's machine. A browser first looks

for objects in its cache before requesting them

from the website. Caching frequently used

Web objects speeds up Web surfing. For

example, we often use Google.com and

yahoo.com. If their logos and navigation bars

are stored in the browser’s cache, then the

browser will pick them up from the cache and

will not have to get them from the respective

websites. Getting the objects from the cache

is much faster than getting them from the

websites.

 Proxy cache: A proxy cache is installed near

the Web users, say within an enterprise. Users

in the enterprise are told to configure their

browsers to use the proxy. Requests for

objects from a website are intercepted and

handled by the proxy cache. If they are not in

the cache, the proxy gets them from another

cache or from the website itself.

1.3 Advantages of Web Caching
 Web Caching has the advantages like

 i) Faster delivery of Web objects to the end user.

 ii) It reduces bandwidth cost and needs.

 iii) It benefits the user, the service provider and the

 Website owner.

 iv) It reduces load on the website servers.

Motivation: The growing sophistication of search

engine software enables us to precisely describe the

information that we seek. Millions of queries are

submitted daily to Web search engines, and users have

high expectations of the quality of results and the

latency to receive them. As the searchable Web

becomes larger, with more than 20 billion pages to

index, evaluating a single query requires processing

large amounts of data. In such a setting, using a cache

is crucial to reduce the response time and to increase

the response throughput.

Contribution: Our contribution in this paper can be

split into two parts. In the first part, we proposed

Cached Search Algorithm (CSA) on top of the multiple

search engines like Google, Yahoo and Bing and

achieved the better response time while accessing the

resulting web pages. In the second part, we design and

implemented the Cached Search Engine and the

performance of this is evaluated based on the training

data (WEPS dataset [1]) and the test data (Mobile

dataset). The Cached Search outperforms the better by

reducing the response time of search engine and to

increase response throughput of the searched results.

Organization: The remainder of the paper is organized

as follows: Section 2 reviews the related work of the

web search engine with web caching, Section 3

explains the system architecture of web caching for

multiple search engines, Section 4 gives the problem

definition and the Cached Search Algorithm. In Section

5 we explained the implementation of the Cached

Search engine, the Section 6 describes the web services

used, Section 7 gives the Performance Analysis and

results and Conclusions are presented in Section 8.

2. Related Work

 Junghoo Cho et. al. [4] proposed a method for

Efficient Crawling through URL ordering. A crawler is

a program that retrieves web pages, commonly for use

by a search engine or web cache. Different metrics are

defined and three models to evaluate crawlers.

Evaluated experimentally several combinations of

importance and ordering metrics, using Stanford web

pages. Drawback of this is, it run only over the

Stanford web pages. Future work proposed here is

working over non-Stanford web pages to analyze

structural differences and their implication for

crawling.

 Jon M. Kleinberg et. al. [5] developed a set of

algorithmic tools for extracting information from the

link structures of Hyperlinked environment. It is a

technique for locating high-quality information related

to a broad search topic on the www, based on a

structural analysis of the link topology surrounding

authoritative pages on topic. Francois Bry et. al. [6]

proposed design principles for versatile web query

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

2www.ijert.org

languages. It provides efficient and effective access to

data on the web. Versatile query languages able to

query data in any of the heterogeneous representation

formats used in both the standard and semantic web

query activities.

 John D King [7] presents the problem of how to find

what information is contained in each search engine,

what bias a search engine may have, and how to select

the best search engine for a particular information need.

To solve all these problems they introduce a new

approach called search engine content analysis. A

search engine content analysis is a new development of

traditional information retrieval field called collection

selection, which deals with general information

repositories. Current research in collection selection

relies on full access to the collection or estimations of

the size of the collections and the collection

descriptions are represented as term occurrence

statistics.

 Krishna Bharat [8] presents an extension to search

engines called SearchPad that makes it possible to keep

track of "search context" explicitly and describes an

efficient implementation of this idea deployed on four

search engines: AltaVista, Excite, Google and Hotbot.

The design of SearchPad has several desirable

properties: (i) portability across all major platforms and

browsers, (ii) instant start requiring no code download

or special actions on the part of the user, (iii) no server

side storage, and (iv) no added client-server

communication overhead. An added benefit is that it

allows search services to collect valuable relevance

information about the results shown to the user. In the

context of each query SearchPad can log the actions

taken by the user, and in particular record the links that

were considered relevant by the user in the context of

the query. The service was tested in a multi-platform

environment with over 150 users for 4 months and

found to be usable and helpful. They discovered that

the ability to maintain search context explicitly seems

to affect the way people search. Repeat SearchPad

users looked at more search results than is typical on

the web, suggesting that availability of search context

may partially compensate for non relevant pages in the

ranking.

 Adam D Bradley et. al. [9] presents a novel web

protocol called as “Basis Token Consistency” (BTC).

This protocol allows compliant caches to guarantee

strong consistency of content retrieved from supporting

servers. Then they compare the performance of BTC

with the traditional TTL (Time To Live) algorithm

under a range of synthetic workloads in order to

illustrate its qualitative performance properties.

Ricardo Baeza-Yates et. al. [10] explore the impact of

different approaches, such as static vs. dynamic

caching, and caching query results vs. caching posting

lists. Using a query log spanning a whole year, they

explore the limitations of caching and demonstrate that

caching posting lists can achieve higher hit rates than

caching query answers. Authors propose a new

algorithm for static caching of posting lists, which

outperforms previous methods and study the problem

of finding the optimal way to split the static cache

between answers and posting lists. Finally, they

measure how the changes in the query log influence the

effectiveness of static caching, given observation that

the distribution of the queries changes slowly over

time. The results and observations are applicable to

different levels of the data-access hierarchy, for

instance, for a memory/disk layer or a broker/remote

server layer.

 Evangelos P. Markatos [11] explore the problem of

Caching of Search Engine Query Results in order to

reduce the computing and I/O requirements needed to

support the functionality of a search engine of the

World-Wide Web. The paper shows that it is possible

to cache Search Engine results using moderate amounts

of memory and small computational overhead. The

contributions of the paper are: They study the traces of

a popular Search Engine (Excite) and show that there is

a significant locality in the queries asked, that is, 20%-

30% of the queries have been previously submitted by

the same or a different user. Using trace-driven

simulation shows that medium-sized accelerator caches

are enough to hold the results of most of the repeatedly

submitted queries. They compare caching of the most

popular queries (static caching) with caching of the

most recently accessed queries (dynamic caching) and

show that static caching of query results is promising

approach for small caches, while dynamic caching has

significantly better performance for large caches.

 Dharmendra Patel et. al. [12] introduced one

prediction model which predicts sequences of web

pages in advance and stores all web pages in cache

memory of proxy server when user starts a session and

as a result access latency to access web pages can be

reduced. This prediction model consists of several

components to do correct prediction. The components

of prediction models are Pre-processing, User Session

Identification, Pattern Generation and Pre-fetching.

This paper introduces pre-processing component of

prediction model. The algorithm of pre-processing

work is described with result and comparison of

proposed work is made among Markov model,

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

3www.ijert.org

Popularity based model and LRS model. The paper

concludes that other model clean some useful web

pages with unnecessary pages while this proposed

algorithm make sure of that thing.

 In paper [13], the comparison of Semantic based

multiple search engines and standard search engine is

evaluated and the analization of both advantages and

disadvantages of some current Web cache replacement

algorithms including Lowest Relative Value algorithm

(LRV), Least Weighted Usage algorithm (LWU) and

Least Unified-Value (LUV) algorithm is done. A novel

algorithm called Least Grade Replacement (LGR) is

proposed, which takes recency, rate of recurrence,

ideal-history, and document size into account for Web

cache optimization. The use of proxy server reduces the

work load for the main server, thus increasing the

performance of the servers. The simulation

observations showed that the novel algorithm (LGR) is

enhanced than LRV, LUV and LWU in terms of hit

ratio (HR) and byte hit ratio (BHR).

3. System Architecture

Figure 1: System Architecture of Web Caching for multiple

search engines

 Architecture contains GUI (Graphical User

Interface), search module, web cache, URL caching

database, parser, crawler, Internet. User is provided

with GUI where user can enter the search keyword and

user can also select the Search engines. Search results

are displayed back in GUI. Results are given with

performance comparison. Search module gets the input

from user , then it search for the key word in URL

caching database if key word is present it retrieves

corresponding URLs from database with search engine

information. If search keyword is not present in

database then it searches in internet. Cached web pages

are stored in local disk and its path is stored in

database. A crawler program collects the Web pages

on the Internet. The collected Web pages are

transported to a Web page database to be stored for the

use of future retrieving URLs and corresponding Web

pages. Parser is used to parse semantic web pages and

normal web pages. Database of both web objects and

cached URL keeps only last 15 days content. If it is

older than 15 days it is deleted by the caching program.

4. Problem definition
 The large numbers of web pages are stored in the

database, then we design Cached Search engine to

search the resulting web pages links which are exactly

matched in the static database and clustered using Hash

table Clustering Algorithm (HTCA) [1] and we

proposed Cached Search Algorithm (CSA) on top of

the multiple search engines like Google, Yahoo and

Bing, our objectives are:

 To reduce response time of the search engine.

 To increase the response throughput of

searched results.

4.1 Algorithm

Table 1: Notations used in algorithms

Symbol

Meaning

Cf Cached File

F File

Wp Web page

RL Resulting Files List

n Number of files

m Number of Keywords

k keyword

TempList Temporary List of Files

The Table 1 shows the notations used in algorithms.

We have proposed the Cached Search Algorithm to

extract the web pages that exactly match with all the

keywords from the database or from the web cache and

the resulting web pages are clustered using Hash Table

Clustering Algorithm [1].

Table 2: Cached Search Algorithm (CSA)

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

4www.ijert.org

Begin

Step 1: Remove the stop words from the query

 entered by the user.

Step 2: Check whether the keywords are appeared

 in Cached file Cf .

Step 3: if (k is found in Cf)then

corresponding is retrieved and stored

 into RL.

 else

Search all the files and folders present in

 the Current path and stored it into List.

foreach file F do

 if (F is an.html or .txt file)

TempList = TempList + F

 else

Delete the file F from the list

 end if

end for

 for i = 1 to n do

 for j = 1 to m do

if (kj ϵ Fc)

 RL = RL + F

 Add k and the Pagelink into

Cf

else

 Discard the File F

end if

 end for

end for

 end if

Step 4: return RL

End

5. Implementation

The Flowchart is described in the following steps:

Step 1: Web caching flow initiates when user enters

search string and selects multiple search engines to

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

5www.ijert.org

compare the result and to get the cached or actual web

page from WWW.

Step 2: Application checks the keyword in local

database.

Step 3: If keyword is found in local database then

application fetches corresponding URL list and

displays in GUI.

Step 4: If keyword is not found in cache database, then

application freshly fetches from multiple search engine

and stores in URL database.

Step 5: Select a link from URL list.

Step 6: If URL is present in cached URL database,

then time of caching is tested. If it is older than 15 days

then URL link is deleted from the database, or else

cached web page is displayed.

Step 7: If selected web page is not present in cache,

then it is crawled from WWW and cached link is stored

in database for future reference.

Step 8: Retrieved web page is displayed in browser.

6. Web services used
 In order to get the search results from multiple

search engines we have used open source web services

of Google, Yahoo and Bing.

Google:
 Google provides web services through which

developers can fetch the search result from Google that

may be web, video, image. When a program request

through Google web services, the Google responds

back through XML or JSON format. To access Google

web services user need to create application id. Google

controls the request by app id. It provides 100 query

per day per app id, if user wants more number of query

then user need to subscribe corresponding package.

 Google provides web services through following link

https://ajax.googleapis.com/ajax/services/search/web?v

=1.0&q=<Query-String>

Yahoo:
 Developers can fetch yahoo search results through

web services. To access yahoo web services developer

need to create a app id. Once app id is created then

developer can request web services to get the result

from yahoo. Yahoo responds to the requests by XML

format or JSON format.

Yahoo web services can be accessed by following

URL,

http://api.search.yahoo.com/WebSearchService/V1/web

Search?appid=YahooDemo&query=<Query-String>

Bing:
 Developers can fetch yahoo search results through

web services. To access yahoo web services developer

need to create a app id. Once app id is created then

developer can request web services to get the result

from yahoo. Yahoo responds to the requests by XML

format or JSON format.

Bing link to access web service,

http://api.search.live.net/json.aspx?Appid=8EB910AC1

3B632EA2F101793EC72C7F8CAA12300&query=<Q

ueryString>&sources=web

Class Diagram:

 The Figure 2 shows the Class Diagram of the System

Model.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

6www.ijert.org

7. Performance Analysis
 The performance is analyzed based on WEPS

dataset and Mobile dataset of web (static web pages

stored in database) and web results given by

multiple search engines (i.e. dynamic web pages).

Performance is analyzed based on responding time

of multiple search engines. We developed the

Cached Search Engine using java Programming

Language and we tested our search engine by two

datasets.

 We have used Google speed tracer to find the

responding time of web application. Speed Tracer

is a tool to help to identify and fix performance

problems in web applications. It visualizes metrics

that are taken from low level instrumentation points

inside of the browser and analyzes them as

application runs. Speed Tracer is available as a

Chrome extension and works on all platforms

where extensions are currently supported

(Windows and Linux).

7.1 Test Data

 Initially, we downloaded 500 web pages which

are relevant to mobile data and store it in a static

database and called it as test data.

Figure 3: Snapshot of Cached Search Engine

 The Figure 3 shows that snapshot of the Cached

Search Engine. A user can Search the mobile by

entering the name of the mobile in the text box

besides Enter the keyword and press the search

button. Once the keyword has taken then start

searching the keyword in the cache database, if it’s

found then URL of corresponding web page will be

displayed in the List box. Otherwise, it takes results

from the static database. Here the results are

clustered based on HTCA algorithm. When the user

click on the URL, the corresponding web page

brief description displayed in the Description box,

user can go through description to select or not to

select the resultant web page.

Figure 4: Comparison of response time of with v/s

without caching.

7.2 Training data

 Here, we considered training data as Web People

Search Dataset. In our previous work [1], there is

no caching concept for Web People Search Engine.

Therefore, we took this dataset as training data for

this work. The Figure 5 shows the comparison of

the response time for with v/s without caching for

WEPS dataset.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

7www.ijert.org

Figure 5: Comparison of the response time for with

v/s without caching for WEPS dataset.

 The Figure 6 shows that comparison of the

Response time of Cached Search Algorithm on top

of the multiple search engines like Google, Yahoo

and Bing search engines. We compared the

response time of the multiple search engines for

2000 words. The graph is plotted for only 10

words. The performance of the Google search

engine is better than Yahoo and Bing search

engines. The Cached Search Algorithm

outperforms better response time compared to other

search engines.

8. Conclusions
 In this paper, our contribution can be split into

two parts. In the first part, we proposed Cached

Search Algorithm (CSA) on top of the multiple

search engines like Google, Yahoo and Bing and

achieved the better response time while accessing

the resulting web pages. In the second part, we

design and implemented the Cached Search Engine

and the performance evaluated based on the

training data (WEPS dataset [1]) and the test data

(Mobile dataset). The Cached Search outperforms

the better by reducing the response time of search

engine and to increase response throughput of the

searched results.

Figure 6: Comparison of the Response time of

multiple search engines with the Cached Search

Algorithm.

9. References

[1] C.N. Pushpa, J. Thriveni, K.R. Venugopal, and L.M.

Patnaik, “Enhancement of F-measure for Web People

Search using Hashing Technique”, International Journal

of Information Processing, vol. 5, no. 4, IK International

Publishing House Pvt. Ltd., India, 2011, pp. 35-44.

[2] S. Brin and L. Page, “The anatomy of a large-scale

hypertextual web search engine”, In Proceedings of the

Seventh World Wide Web Confernce, 1998.

[3] Qingqing Gan and Torsten Suel, “Improved

Techniques for Result Caching in Web Search Engines”,

In Proceedings of International World Wide Web

Conference Comittee (IW3C2), Madrid, Spain, April

2009, pp. 431-440.

[4] Junghoo Cho, Hector Garcia-Molina, and Lawrence

Page, “ Efficient crawling through URL ordering”,

Journal Computer Networks and ISDN Systems , In

Proceedings of the seventh international conference on

World Wide Web 7, Elsevier Science Publishers B.

V. Amsterdam, The Netherlands, 1998, pp. 161-172.

[5] Jon M Kleinberg, “Authoritative Sources in a

Hyperlinked Environment”, Journal of the ACM, vol. 46,

no. 5, September 1995, pp. 604-632.

[6] François Bry, Christoph Koch, Tim Furche, Sebastian

Schaffert, Liviu Badea, and Sacha Berger, “Querying the

Web Reconsidered: Design Principles for Versatile Web

Query Languages”, Semantic Web-based Information

Systems, 2007.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

8www.ijert.org

[7] John D King, “Search Engine Content Analysis”,

Thesis, Queensland University of Technology, Brisbane,

Australia, December 2008.

[8] Krishna Bharat, “SearchPad: Explicit Capture of

Search Context to Support Web Search”, 9th

International WWW Conference (WWW9)/ Computer

Networks, vol. 33(1-6), 2000, pp. 493-501.

[9] Adam D Bradley and Azer Bestavros, “Basis on

Token Consistency: Supporting Strong Web Cache

Consistency”, Global Telecommunications

Conference(GLOBECOM’02) IEEE, 2002.

[10] Ricardo Baeza-Yates, Aristides Gionis, Flavio P.

Junqueira, Vanessa Murdock, and Vassioulis Plachouras,

“Design Trade-Offs for Search Engine Caching”, ACM

Transactions on the Web, vol. 2, no, 4, Article 20,

October 2008.

[11] Evangelos P. Markatos, “On Caching Search Engine

Query Results”, In Proceedings of the 5th International

Web Caching and Content Delivery Workshop, 2000.

[12] Dharmendra Patel, Atul Patel and Kalpesh Parikh,

“Preprocessing Algorithm of Prediction Model for Web

Caching and Perfecting”, International Journal of

Information Technology and Knowledge Management,

July-December 2011, vol. 4, no. 2, pp. 343-345.

[13] S. Latha Shanmuga Vadivu and M. Rajaram,

“Optimization of Web Caching and Response Time in

Semantic based Multiple Web Search Engine”, European

Journal of Scientific Research ISSN 1450-216X vol. 56

no.2 2011, pp.244-255.

Pushpa C N has

completed Bachelor of

Engineering in Computer

Science and Engineering

from Bangalore Universi-

-ty, Master of Technology

in VLSI Design and

Embedded Systems from

Visvesvaraya Technolog-

-ical University. She has 12 years of teaching

experience. Presently she is working as Assistant

Professor in Department of Computer Science and

Engineering at UVCE, Bangalore and pursuing her

Ph.D in Semantic Web.

Thriveni J has completed

Bachelor of Engineering,

Masters of Engineering and

Doctoral Degree in Computer

Science and Engineering. She

has 4 years of industrial exp-

erience and 16 years of

teaching experience. Curren-

-tly she is an Associate

Professor in the Department

of Computer Science and Engineering, University

Visvesvaraya College of Engineering, Bangalore.

Her research interests include Networks, Data

Mining and Biometrics.

Venugopal K R is currently

the Principal, University Vi-

-svesvaraya College of Eng- ineering, Bangalore

Univer- -sity,Bangalore. He obtained

his Bachelor of Engineering

from University Visvesv-

araya College of Engg. He

received his Masters degree

in Computer Science and

Automation from Indian

Institute of Science

Bangalore. He was awarded

Ph.D. in Economics from

Bangalore University and

Ph.D. in Computer Science from Indian Institute of

Technology, Madras. He has a distinguished

academic career and has degrees in Electronics,

Economics, Law, Business Finance, Public

Relations, Communications, Industrial Relations,

Computer Science and Journalism. He has authored

31 books on Computer Science and Economics,

which include Petrodollar and the World Economy,

C Aptitude, Mastering C, Microprocessor

Programming, Mastering C++ and Digital Circuits

and Systems etc.. During his three decades of

service at UVCE he has over 250 research papers

to his credit. His research interests include

Computer Networks, Wireless Sensor Networks,

Parallel and Distributed Systems, Digital Signal

Processing and Data Mining.

L M Patnaik is a Honorary Professor in Indian

Institute of Science, Bangalore. During the past 35

years of his service at the

Institute he has over 700

research publications in

refereed International

Journals and refereed

International Conference

Proceedings. He is a

Fellow of all the four

leading Science and

Engineering Academies in

India; Fellow of the IEEE

and the Academy of Science for the Developing

World. He has received twenty national and

international awards; notable among them is the

IEEE Technical Achievement Award for his

significant contributions to High Performance

Computing and Soft Computing. His areas of

research interest have been Parallel and Distributed

Computing, Mobile Computing, CAD for VLSI

circuits, Soft Computing and Computational

Neuroscience.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012

ISSN: 2278-0181

9www.ijert.org

