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Abstract

State and federal departments of transportation are charged with classifying vehicles
and monitoring mileage traveled. Accurate data reporting enables suitable roadway design for
safety and capacity. Vehicle classifier devices currently employ inductive loops, piezoelectric
sensors, or some combination of both, to aid in the identification of 13 Federal Highway
Administration (FHWA) classifications. However, systems using inductive loops have
proven unable to accurately classify motorcycles and record pertinent data. Previous
investigations undertaken to overcome this problem have focused on classification techniques
utilizing inductive loops signal output, magnetic sensor output with neural networks, or the
fusion of several sensor outputs. Most were off-line classification studies with results not
directly intended for product development. Vision, infrared, and acoustic classification
systems among others have also been explored as possible solutions.

This thesis presents a novel vehicle classification setup that uses a single piezoelectric
sensor placed diagonally on the roadway to accurately identify motorcycles from among
other vehicles, as well as identify vehicles in the remaining 12 FHWA classifications. An
algorithm was formulated and deployed in an embedded system for field testing. Both single-
element and multi-element piezoelectric sensors were investigated for use as part of the

vehicle classification system.

The piezoelectric sensors and vehicle classification system reported in this thesis were
subsequently tested at the University of Oklahoma-Tulsa campus. Various vehicle types
traveling at limited vehicle speeds were investigated. The newly developed vehicle
classification system demonstrated results that met expectation for accurately identifying

motorcycles.
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CHAPTER1

1 Introduction

State and federal departments of transportation in the United States monitor vehicle
classifications and miles travelled. Accurate reporting of this data is essential for highway
and roadway design, ensuring adequate capacity and driver safety. Current vehicle classifier
systems use inductive loops, a piezoelectric sensor, or a combination of both to classify
vehicles into one of the 13 FHWA classifications. However, systems utilizing inductive loops

have been unable to accurately classify motorcycles.

The Federal Highway Administration (FHWA) collects Vehicle Miles Travelled
(VMT) for each vehicle classification to predict accident trends, namely risks and fatalities.
The National Highway Traffic Safety Administration (NHTSA) is charged with maintaining
roadway fatality and injury counts in the United States. In 2005 the agency reported 4,576
fatalities and 87,000 injuries from motorcycles accidents—an increase of 13% and 14%,
respectively, since the previous year [1]. Between 1996 and 2005, motorcycle registration
was up 61% and motorcycle fatalities increased110%. Both could possibly be the result of a
rising trend in motorcycle use following elevated gas prices. Contrary to these figures,
motorcycle VMT increased only 8.6% during the same period. This disparity implies a

deficiency in currently employed classification systems.

To date, the most popular classification systems detect motor vehicle axles using two
piezoelectric sensors and one inductive loop located between the piezoelectric sensors or one
loop located before and one between the two sensors. The loop configuration is used to
trigger the system and can also be used to measure a vehicle’s magnetic length. However,

problems with such systems include the following



- A motorcycle might not have sufficient metal to trigger the inductive loop.
- A motorcycle might pass next to instead of on top of the inductive loop, as full-lane

sensor coverage is infrequent.

Piezoelectric sensors are of particular significance as they are used in Weight In Motion
WIM systems. WIM system weighs vehicles as they move on highway. This task can be done
using several methods such as piezoelectric sensors, capacitive plate transducer, strain gauge
sensor, fiber brag grating and microwave sensors [2][3]. Though the focus of this work is not
implementing an Automatic Vehicle Classification system (AVC), using piezoelectric sensors

gives scalability to investigate WIM implementation on the same system.

In this thesis a new classification system is suggested and built to overcome such inherent
motorcycle misclassification errors. The computer-based system executes a classification
algorithm to process data collected after passing vehicles trigger a road sensor. The algorithm
enhances the ability for accurate motorcycle classification by utilizing vehicle features,
including vehicle number of tires and length, among others.

1.1 System overview
Typical of most classification systems, the novel system described herein is comprised of

three phases:

- Sensing phase: Sensors collect all necessary information and transmit it to the
computing system. There the computer executes necessary preprocessing signals,
including noise cancellation and amplification when needed, making possible the
following phases:

- Feature extraction phase: The computing system processes the signal and extracts

necessary distinguishing features for classification, specifically motorcycles—the



target of this research. These include vehicle number of tires, inter axle spacing,
velocity, and width.

- Classification phase: The classification algorithm uses input features for
classification. Methods investigated and previously detailed in literature are
thoroughly investigated in Chapter II. For the system reported in this work, an
industry solution using statistically common features for a given classification are

used as algorithm inputs.

1.2 Contributions

This thesis presents a novel setup comprised of a single piezoelectric sensor placed
diagonally on the road to accurately classify motorcycles, as well as vehicles in other FHWA
classes. The author’s objective was to formulate an algorithm, and then deploy it in an
embedded system. Limited field testing was performed at the University of Oklahoma-Tulsa
campus. The final project goal is to interface the vehicle classification system with the
Roadside Embedded Extensible Computing Equipment (REECE)—a computing system
currently deployed at over 80 sites across the state of Oklahoma.

A single-element piezoelectric sensor is unable to detect vehicle track width which is
required for classification process. To accomplish this, an average track width was used. Also
a method of using multi-element piezoelectric sensor assembled from an array of smaller
piezoelectric sensors was suggested to detect vehicle track width. The multi-element sensor
was designed and built to detect vehicle track width as well. As vehicle tires pass the sensor
elements, a voltage is triggered and initiates the feature extraction and classification phases.
Vehicle track width is calculated using the data acquisition unit (DAQ), which is part of the

embedded computing system connected to the sensor elements.



1.3 Organization
This thesis is organized as follows. Chapter II highlights background literature.

Previous vehicle classification research and technology currently used by a number of
Departments of Transportation (DOT) is described. System development is detailed in
Chapter III, including sensor fabrication, DAQ development, and overall system description.
Chapter IV offers an extended description of the classification algorithm, as well as the logic
behind employing various algorithm features. Chapter V presents field testing results and

validation. The thesis concludes and suggested future work is found in Chapter VI.



CHAPTER II

2 Background Search

Automatic vehicle classification systems comprised of a variety of sensing devices
has been investigated by both researchers and industry manufacturers for over forty years
[20]. The FHWA and DOTs remain interested in ever-evolving systems that provide more
accurate classification results. In this chapter several methods and industry products are
presented.
2.1 Magnetic sensor and inductive loop based systems

Vehicle types can be classified according to recognized patterns generated by signals
harvested after a vehicle triggers either magnetic sensors or inductive loops. In [4]
Keawkamnerd et al. use magnetic sensors to measure the earth’s magnetic field disturbance.
The sensors’ small size makes them attractive when compared to the size of inductive loops.
Also inductive loops are active devices that need to be excited by a voltage to generate a field
of measurement while magnetic sensors are passive devices that measures changes in earth’s
magnetic field. Thus loops have larger field of measurement, depending on their size, where
magnetic sensors have more localized measurement characteristics [5]. Researchers divided
vehicles being classified into five groups, selecting an appropriate one based on: magnetic
length, average signal energy, and peak number in hill pattern. Magnetic length was used to
differentiate buses from the other four types vehicles. Peak number and average energy were
used to classify motorcycles, cars, pickups and vans. Although the overall classification
success rate using this method was 80.92%, a relatively low number of classification
categories were used, indicating that classification rate might suffer significant degradation if
a similar algorithm was employed for a greater number of vehicle classes. Inherent problems

are the results of an overlap in length between different FHWA categories [6].



Keawkamnerd et al. extended this research in [7], where two Anisotropic Magneto-
resistive (AMR) sensors were placed on a road-side mounted board. A microcontroller

located on the same board.

Using the onboard microcontroller the vehicle magnetic length and estimated length
were calculated. Initially magnetic length was calculated using signal delay between the two

sensors using eq 2.1:
L=X2 eq. (2.1)

where M is the acquired number of samples during vehicle passage, and Lq is the estimated

length.
Next, estimated length was calculated using the number of zero-crossings, as in eq 2.2:

Nz sr,
N = Z‘—”leﬂ eq. (2.2)

where T; is the zero-crossing duration between two sensors; St; is the number of samples

during Ti; and N, is number of zero-crossings.

Hill pattern, energy level, and magnetic length were utilized to classify vehicles.
When investigating hill pattern the number of peaks of the signal harvested from an inductive

loop is used to differentiate vehicle type.

A moving average was computed for the time series of the received signal to smooth
it and reduce number of received samples. Differential magnitude and new energy level
moving averages were then computed to obtain a rise or fall in energy during vehicle

detection. See eq 2.3 and eq 2.4.

M, = I3 — Z7, eq. (2.3)



where M, in differential magnitude between two consecutive moving average values.

Mn+Mp_1+Mp_2+Mp_3
4

M = eq.(2.4)

My is a four point moving average of the differential magnitude.

Finally, minimum, maximum, and normalized energy levels were computed based on vehicle

speed and sampling period.

These parameters were combined in a decision algorithm to distinguish from among
four types of vehicles: motorcycle, car, van, and pickup. An overall 81.69% rate in accuracy
in classification was observed. Although this demonstrates a marked improvement over

previous investigations, again only a few class categories were used.

Earlier research based on the use of two inductive loops for classification was
investigated by Pursula and Kosonen in 1989 [8]. In this paper the authors used the output of
two inductive loops to calculate the length, speed, and direction of a passing vehicle. These

parameters were used in a decision algorithm based on vehicle length.

Two types of detection techniques were presented: 1.) Digital, wherein the received
signal was approximated to a digital on/off signal using a specific threshold, and 2.) Analog,
wherein the signal edge was approximated with a line to offer consistent time readings or

center of gravity method (two centers are used to calculate for velocity).

According Pursula and Konsonen the analog method is more accurate, as the digital

method has a higher bias in terms of vehicle lengths recorded.

Ten vehicle types along with several FHWA classifications were combined. Some

FHWA classes were split into additional classes. A mean error was shown to be 9%.



Gajda et al. investigated the impact of loop length on vehicle classification in [9].
Loop lengths in the range of 0.25m-4m with a step of 0.25m, as well as a separate 10cm loop
used as a reference, were tested. Signals acquired from inductive loops were normalized for
velocity and sampling frequency. Several signal characteristics, mainly the magnetic profile,

were used as criterion to define vehicle type.

Test vehicles included two types of buses and a passenger vehicle. Testing
demonstrated that shorter loops furnish more highly distinguished criterion, and, thus,
improved distinction between the three vehicle types. Also, vehicle axles were clearly

distinguished in the 10cm loop magnetic profile.

In 1997 Gajda et al. researched the use of one inductive loop to calculate passing
vehicle speed [10]. The researchers were able to obtain a correlating parameter between the
inductive loop signal and the vehicle speed that was independent of vehicle type. With one
inductive loop, passing vehicle speed was measured and compared with results from a two-
loop system. With a 10m separation between the two inductive loops, the two loop system
demonstrated an inherent error in response to vehicle acceleration or deceleration occurring
between the two loops. Results have shown a velocity calculation with a maximum RMS
error of 2.5Kmph. However, the authors did not provide information on classification type or

classification rate accuracy.

Sokra studied data fusion techniques using parameters collected from an inductive
loop and piezoelectric sensor [11]. Parameters from these sensors were used to distinguish
vehicle classes. Typically, axle spacing and number utilized with piezoelectric sensor
systems. The inductive loop provides information to calculate vehicle magnetic length and

vehicle profile.



Magnetic profile parameters include mean value, mean square value, standard
deviation, maximum value, moment of third order, and central moment of third order. These,
along with the others such as vehicle length, speed, and number of axles, were used in

membership functions based on fuzzy logic.

More than one parameter was employed to determine an acceptable distinction between
classes. Gaussian shape and a triangular shaped membership function aided in classification,

as demonstrated below.

1— |xi—my|
M () = { 20;  for |xi—my| < 20; eq. (2.5)
0 otherwise
(xi—ﬂzli)z
() = e 27 eq. (2.6)

h

where x; is the i" element in the feature vector; m; is the mean; and o; is the standard

deviation.

Fusion of the parameters was accomplished with the following functions.

feanpyj = MLy 1y () = min(ry; ... fyj) eq. (2.7)
f(AND)j = Ugvzl ﬂij(xi) = max(nlj e rle) eq. (2.8)
1
f(power)j =N Z?l:l nij(xi) eq. (2.9)
= n?,:1 Iij
i = T, i +TTH, (=) eguldsll)
1 -1+kNg;
foweignn = (z—=) ( e eq. (2.11)
1+(K=1)nj
Where: G; = ?’zlm for1<K < oo eq. (2.12)



The researchers evaluated the results based on classification of four, one-axles vehicle
classes; cars, vans, lorries, and buses. Classification rates ranged from 0.68 to 0.92 with the
triangular membership function and from 0.68 to 0.94 for Gaussian membership. Improved

performance was obtained using the Gaussian membership function.

In 2003, Sun et al. researched a system with two inductive loops and an Inductive
Classifying Artificial Network (ICAN) [12]. ICAN is a self-organized feature map (SOFM)
employing inductive loop output from classification in a manner similar to the number of
neurons. The researchers selected SOFM for several reasons, including unsupervised learning
which enables the network to retrain and cluster itself and that network weights are directly
related to classification templates. Distance between neurons corresponded to frequency of

class occurrence.

Distances between the input vector and neural network weights are calculated at each
iteration, leading to one winning neuron, whose weight will be updated. Weights of neurons
within the same neighborhood, Nc, winning neuron will also be updated, as seen in eq2.13.

wi (k) + a(k)[x(k) — w; (k)]

w; (k), inot inNc(k)’ teNc (k) eq. (2.13)

w; (K + 1) ={

where w; is the i weight, and « is the learning rate.

The researchers’ test set consisted of 300 carefully selected vehicles in four
categories. Initial test results indicated 77% accuracy in classification—a moderately
acceptable rate due to misclassification of vehicles that were listed in an adjacent class. When
passenger cars change lane, inductive signature output decreases. In this way, pickup and
SUV classification is problematic. Their scheme was updated to include four categories by

merging some vehicle types. Classification rate increased to 81% accuracy.

10



The scheme was then expanded to a more complicated system with nine categories. A
classification rate of 71% accuracy was achieved. Limiting classes to seven categories
resulted in an 87% and an 82% accuracy rate for two data sets. Output classification rate was
low compared to similar research, which can be explained by the fact that the focus was
primarily to differentiate between two axle vehicles. As such, five of the seven categories in

the scheme were two axle vehicles.

Meta and Cinsdikici in 2010 used a single inductive loop to contribute to vehicle
classification research [13]. Their classification system was comprised of a 2X1 single loop,
inductive loop detector, validation camera, and computer. Their contributions included signal
preprocessing, data set reduction, and appropriate training set selection for their neural

network vehicle classification system.
The researchers chose five classification categories:

- Classl: car, SUV

- Class2: minibus, van

- Class3: pickup, truck

- Class4: bus, articulated bus

- Class5: motorcycle

First in their procedure, unwanted noise and unexpected ripples were cleaned
from the collected inductive loop raw signal, using DFT methods where frequency
filters smoothed the signal. The sampled signal was then transformed to frequency
domain using DFT. Next, the transformed signal was shifted to zero frequency at the

center. The noise signal, R’, was defined using the following equations.

= {Xshifted(i)l?lzl} eq. (2.14)

11



=
N

R= {Xshifted(mgz(;)ﬁ_ﬁ} eq. (2.15)

2
R~ =R- R* eq. (2.16)

where B was defined as the distance from the DC component, o is the noise
coefficient, which was set at 0.06 and R is the shifted signal set. After noise cancellation the

signal was converted to time domain for further processing.

In previous methods the signal was down sampled to reduce size for processing and
applicability to neural network (NN). This caused a loss in signal feature. Meta and
Cinsdikici implemented a newer approach using principal component analysis to capture the
signal’s main feature without need for a large data set. After subtracting the mean of each
inductive loop signal sets the figures were added as columns of a single matrix called signal
matrix. Decomposition of the signal covariance matrix captured eigenvalues and eigenvectors
of the signal matrix, which served as feature vector. Multiple tests were performed on several

feature set sizes, namely 4, 8, 16, and 32. Superior performance was demonstrated by16.

The researchers included the local maximum as another parameter to increase
distinction among classes. This was particularly useful, as vehicle classes have different
chassis formation and heights, which in turn affects inductive loop output. Ly.x was added to
the Principal Component Analysis (PCA) to constitute the feature vector. A data set of 1000
vehicles was used to train the neural network. A data set of 1330 vehicles was used for
testing. Multiple feature extraction methods where investigated with the nearest neighbor
technique forl00 tests. These included PCA, Linear Discriminant Analysis (LDA),
Independent Component Analysis (ICA), PCA-LDA, and PCA-ICA. Superior results were

obtained using PCA with NN. The classification rate for the 100 experiments was 91.13%.

12



A three three-layered Back Propagation Neural Network was used. To select the
number of nodes in the hidden layer, four values were tested 10, 20, 30, and 40. Optimal

node number relative to cognition rate and computational complexity was 20.

The configuration offered an overall classification accuracy rate of 93.53%. The researchers
added Lyax count to the NN input to improve the algorithm’s classification rate. Overall

recognition rate was improved to 94.21% accurate.

2.2 Vision Based Systems

Vision-based classification system research has recently enjoyed increased popularity
due to advances in image processing systems and techniques, making the systems easier and
more efficient. Installing traffic-monitoring cameras is often less disruptive, expensive, and
easier than installing in-pavement sensors, which typically involves scoring the roadway and
damaging the surface. Nonetheless, vision-based systems remain limited for vehicle
classification. Lens maintenance and camera operation in heavy weather conditions, e.g., rain
and fog, are significant challenges. Also those systems suffer from several effects such as

shadows and illumination variations [14].

Because these systems lack relative significance to the research presented herein, this section

offered limited attention to these systems.

In 2002, Gupte et al. investigated a system using gray-scale images to detect, track,
and classify vehicle [14]. The approach employed a single, overhead camera monitoring
several traffic lanes and was comprised of the following phases: segmentation, feature

extraction, vehicle identification, tracking, and vehicle classification.

In segmentation, passing vehicles foreground was separated from the background.

After identifying and removing the foreground pixels, background revisions were made using

13



adaptive background update to save both the background and the current frame in a weighted

average.

During the tracking phase a binary mask separated vehicles from the background in
the current frame and tracked movement. Inherent problems included region splitting or
combining, region sudden appearance, and region sudden disappearance. These were
somewhat alleviated by building an association graph between consequent frames, and then

using the graph for decision-making on regions in the current frame.

Calibration is required to extract vehicle features, such as length and width, among
others. To do so, traffic lane standard characteristics, e.g., stripes, were used with a
calibration user interface tool. Using stripes was advantageous because there is a standard

separation distance between each.

Throughout the vehicle identification phase typical vehicle sizes were used to set
maximum and minimum thresholds. These were then used to identify whether or not a region

actually represented a vehicle.

Vehicle parameters were updated as the vehicle moved through the scene from one
frame to another, using the aforementioned association graph. The researchers classified
vehicles into two major categories: cars and non-cars. Cars included passenger vehicles and
non-cars for all larger vehicle types. A sample of 20 minutes of highway traffic passed
without mention of actual vehicle number passed. The system demonstrated a 90% accuracy

rate for tracking and a 70% accuracy rate for classification.

In 2009, Shaoqing et al. used three overhead, mounted cameras tilted 60 degrees to
classify vehicles on a multi-lane highway [15]. Their proposed system classified three

categories (cars, trucks, and buses) through three stages. Rough classification is initiated by

14



extracting the license plate region from the first camera. To do this, a vertical and horizontal
region representing the highway was compared to regions where the vehicle is expected to
arrive. In rough classification cars and non-cars were distinguished based on license plate

color according to the standard license plate colors in China.

Next feature extraction stage employed five discriminatory features, namely total
number of regions; total number of colors; window size (big widow), number of edges of
vehicle’s top, and low gray region of top. The researchers specifically chose these to
differentiate trucks and buses through statistical search. Of note is that the parameters chosen

represent a limited set of vehicle classification.

The vehicle classification stage compared passing vehicle features to stored features.
The researchers competed two training sets: one hour between 7 and 8a.m. A total of 438
cars, 174 trucks, and 58 buses were accurately classified at a rate of 95%, 90.8%, and 86%,
respectively. A second test was performed between 3 and 4p.m. A total of 413 cars, 183
trucks, and 27 buses were accurately classified at a rate of 94.1%, 88.5%, and 81.5%,

respectively.

2.3 Piezoelectric based system

In 2008, Zhang et al. used an electrical resistance strain gauge sensor based on
piezoresistive material to perform axle detection for vehicle classification [16]. Typically
these sensors monitor pavement status, especially on bridges. The researchers assumed that

the sensors can also be used for both pavement monitoring and vehicle classification.

Although five in-pavement sensors were installed, only three were used as a result of high
correlation between sensors output. Each vehicle axle produced its own peak on the output of

each individual sensor. The researchers aimed to classify vehicles into five distinct
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categories: small trucks, medium trucks, buses/large trucks, 3-axle trucks, and combination

trucks.

A preliminary test was first conducted to perform feature extraction and confirm
measurement repeatability. Two-axle vehicle at different velocities were examined.
Maximum wheelbase measurement error was 4.1%, which can be explained by the vehicle’s
acceleration/deceleration when passing over the combination of sensors. Of note is that the

sensors covered a distance of 4.1m, with a spacing of 2.05m between consecutive sensors.

A final vehicle classification was accomplished with support vector classification
SVM-—a machine learning pattern recognition/classification technique. SVM is a binary
linear classifier in which input data is classified into one of two classes. The researchers
immigrated the problem to multi-class SVM via two separate methods: One Against All
(OAA) and One Against One (OAO). A data set from 602 highway vehicles was collected

and used for training 50%, validation (control set) 25%, and test 25%.

Two data fusion techniques were proposed to combine information from the three different

SeNnsors:

- Centralized fusion extracted features by combining sensor outputs, and then applying
a SVM method in a centralized manner.

- Distributed fusion extracted features from each sensor output individually, and then
independently applied them to the SVM algorithm. This process required that three

independent decisions are combined for classification.

This system rated 96.4% accuracy using OAO method and a distributed data fusion

scheme.
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In 2011 Bajwa el al. developed a wireless sensor classification system based on an
axle detection technique using vibration sensors and detection sensors [17]. Vibration sensors
detected each individual vehicles axle as a result of pavement structure vibration. Although
four accelerometers were implanted in the pavement, data from only three was gathered due

to the failure of the fourth.

A magnetometer served as a detection sensor excited by the magnetic field changes of
a passing vehicle. A limited number of sensors was installed at fixed distance from one
another, and then used to calculate vehicle speed based on arrival times at each of the two

Sensors.

To mitigate the effect of acoustic noise on the input, a third-order LP Butterworth

filter was used with a cutoff frequency of 50Hz.

The vibration sensor output is normalized to maintain the signal below 1 given no
axle is detected. The signal is then squared to obtain the power, which further increases the

signal to noise ratio and is, then, smoothed by a moving average.

The researchers tested a sample of 53 trucks and reported results for accurate axle
count. Accuracy ranged from 86.8% to 90.6% for axle count when using a single sensor;
100% accuracy for axle count was achieved when sensors were combined. The researchers

did not provide test results for actual vehicle classification.

2.4  Current technologies

Many DOTs use AVC to count and classify vehicle types travelling their highway
systems. This fact is particularly important for several reasons—most importantly because
VMT aids in capacity planning for new highways based on the highways currently used. Data

is also used for pavement design. Big truck counts are of higher significance than smaller
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vehicles for pavement design, as they greatly impact pavement degradation. Real-time AVC

data can also be used for enforcement and toll collection.

Current technology for DOT classification and vehicle count includes ever-popular
axle-spacing techniques made from AVC products. These systems have proven reliable and

practical. Either piezoelectric sensors with inductive loops or road tubes are commonly used.

In 2010, 23 states reported motorcycles as part of both permanent and temporary
vehicle counts. The most frequently used technologies those employing axle spacing with
piezoelectric sensors and inductive loops or road tubes. Other technologies included video,

radar, and signature-based inductive loops [18].

2.5 Axle spacing vehicle classification systems
As previously mentioned, axle spacing vehicle classification technologies are
frequently employed by DOTs . Technological maturity and extensive testing afford these

agencies a thorough understanding of the procedure and inherent errors.

2.5.1 Road tubes

Road tubes are fashioned from rubber and terminated on one side by a plug to prohibit
air leakage. The other side is connected to a vehicle detector. As a vehicle passes over the
road tube, an air pulse travels through the tube towards the detector. The detector is equipped
with a sensor that detects the pulse which is usually a piezoelectric film sensor, air switches

or loop [19].

In this way, vehicle classification is accomplished using two road tubes installed
within a given distance, as shown in figure 2.1. Passing vehicles will impact the first road

tube with their front axle at time “t”, and then impact the second road tube using the same
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axle at time “t+At”. Knowing the time difference At and the distance between the two road

tubes, vehicle speed can be calculated.

Figure 2-1 Pneumatic road tubes installed on Oklahoma highway 69 for temporary classification testing

Axle spacing can be found using vehicle speed and the time at which the consequent
axles impact the road tubes. These parameters can then be used to classify the vehicle based

on a preset margins determined by axle spacing.

Vehicle classification based on road tubes is highly appealing for various reasons,
including low complexity, inexpensive cost, and ease of installation. Because road tubes are
fixed over the road, there is no need to cut the pavement. However, these systems have
several problems, as well, including a tendency to miss motorcycles tire due to low sensitivity

[18]. For this, road tubes often under classify Classl vehicles. Distinguishing adjacent axles
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in close proximity to one another on vehicles traveling at high speeds is challenging due to
limited detection frequency of the detector. Axle over-count can occur, too, especially if a
road tube wasn’t affixed properly to the pavement. In this case, a heavy axle hitting the tube
can bounce the road tube at such a force that a fake pulse is interpreted as a new axle. Other
axle spacing problems, e.g., vehicle combining or splitting, are common, as well [19]. Road
tube technology is typically used in temporary and low-density traffic conditions. Because
road tubes are usually affixed on top the pavement, tubes will become loose after frequently

being passed by vehicles.

2.5.2 Piezoelectric axle sensors with and without a loop

A piezoelectric axle sensor is comprised of piezoelectric material that produces an
electric charge when pressured and is translated to voltage that, in turn, is detected by an
ADC [20]. Two full-lane or half-lane piezoelectric sensors are often installed with a
predetermined distance separating them. When a vehicle axle impacts a piezo-axle sensor, a
voltage pulse is produced and then detected, marking arrival time of the axle, as shown in
figure 2.2. When a vehicle triggers both sensors, speed and inter-axle distance are calculated

using a procedure similar to the one described in the previous subsection for road tubes.
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Figure 2-2 Pulses produced by axles hitting a piezoelectric sensor [22]
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Two types of vehicle classification and Weigh in Motion (WIM) are achieved using

piezoelectric axle sensor technology:

- Permanent vehicle classification: Sensors are embedded in the pavement with either
one inductive loop located in-between the sensors or one inductive loop located in-
between and one located before the combination in the upstream side of traffic. See
figure 2.3. Embedding the sensor combination under the pavement provides
protection and will extend their lifetime. Inductive loops are made of two or more
rounds of metal through which current passes, generating an electromagnetic field and
triggering vehicle detection. When a vehicle passes over the inductive loop, its metal
disturbs the earth electromagnetic field and changes the inductive loop inductance
[23]. When installed at a predetermined distance, two piezoelectric sensors can be

used to measure vehicle speed.
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Figure 2-3 Permanent vehicle classification [24]

- Temporary vehicle classification: Short-term classification/WIM is sometimes desired
for certain seasonal traffic abnormality or to asses traffic load on a certain
road/highway for short period of time. For this purpose, two piezoelectric sensors
without as inductive loop are utilized. See figure 2.3. An inductive loop in this

configuration is clearly unfeasible due its large size and stringent installation
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requirements. Two sensors are flashed over the pavement surface and then connected
to a road side detector/classifier. Although temporary vehicle -classification
installation is faster and less expensive installation than permanent vehicle

classification—no need to cut the pavement to embed the sensor, sensors are damaged

more quickly and installation cannot be maintained for a long period of time.

Figure 2-4 Temporary vehicle classification/WIM site

Although highly practical, piezoelectric sensors and inductive loop systems based on

axle spacing have a number of problems: temperature dependence and rapid aging.

Of most concern is that the inductive loop might fail to detect a passing vehicle. This
is particularly true for classl vehicles since motorcycles might not have enough metal to
trigger the inductive loop. Also, piezoelectric axle sensors might under-count or over-count
the number of vehicle axles, especially as the sensors age. This will result in inaccurate
classification. Piezoelectric sensors have a tendency to shift output with temperature,
resulting in under-detection or over-detection of axles. Classification and detection
algorithms are accountable for a number of mistakes, including vehicle splitting and

combining. System calculations rely on the maximum axle spacing set in the algorithm and
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the level of traffic congestion. There might also be an overlap for axle spacing in vehicles

belonging to different classes but with the same number of axles [6].
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CHAPTER III

3 System development
This chapter details the development of the proposed vehicle classification system.

The discussion includes system hardware, software, and a comprehensive system description.
Hardware described includes sensors that were developed during each step and subsequent
testing. Other hardware described includes data acquisition devices, computing devices, and
cellular data connection. Software details include programs used for both development and
testing. A complete system overview synthesizes all elements of this research.
3.1 System hardware general overview

System hardware is described in this section, including sensors and devices fabricated
to build and test the vehicle classification system. Of utmost importance are the piezoelectric
sensors. In this thesis both single element piezo-sensor and multi-element piezoelectric “all-
lane” sensors are required. These are used to fabricate single-element and multi-element
classification systems, which will be further described in the following subsections and
chapters. Computing hardware will be described, and testing devices will be listed and
explained. An illustration of validation systems will be provided.
3.2 Piezoelectric sensors

Piezoelectricity was discovered by Pierre Curie in 1880. In this phenomenon, electric
charge accumulates in a piezoelectric material subsequent to its mechanical dimensions
changing as a result of external mechanical force. These materials also change in dimension
when placed in an electrical field. Examples of piezo materials include certain crystals,

ceramics, and polymers.

Piezoelectric sensors are pressure-operated sensors that produce an electric charge in

response to alteration in their dimensions. New advances in polymer technology enable the
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use of Poly-vinylidene Fluoride (PVDF) film for manufacturing piezoelectric cable sensors

[25].

The purpose of this research is to investigate several piezoelectric sensors with
varying features, including flexibility, size, durability against heavy weight, and appropriate
output. This thesis will investigate two different layouts of piezoelectric sensors to develop
our motorcycle classifier, namely single element and multi-element sensors. Single element
sensors will be used for a single element vehicle classification system where a sensor made of
one element will be placed diagonally for full lane traffic coverage. A multi-element sensor
will be used for the development of a multi-element vehicle classification system where a
sensor fabricated from multiple independent piezoelectric elements is placed diagonally for
full lane traffic coverage.

Several market products were investigated. These include the following.
3.2.1 Piezo-ceramic sheets

Piezo-ceramic sheet sensors are manufactured by PIEZO SYSTEMS INC. and

provide ample length that allows for flexible design of a multi-element sensor. See

figure 3.1. However, this sensor is problematic in that the disc is extremely fragile and
prone to easy breakage, making its use very inconvenient for traffic application since
the sensor will be subject to heavy loads, e.g. trucks.

The sensors are also difficult to interface and harvest signal output, which might cause

irregularities among different elements if interfacing is not carefully executed. Of note

is that Piezo-ceramic sheet sensors are highly sensitive and easily excited by very
slight fingertip pressure. With these considerations it is clear this sensor is not
appropriate for single element development without an expensive an elaborate

enclosure design.
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Figure 3-1Piezo-ceramic sheet

3.2.2 Roadtrax BL traffic sensor (short cut)
Roadtrax BL sensors are manufactured by Measurement Specialties and designed

specifically for traffic use. See figure 3.2. As such, their features are highly desirable
for traffic counting, classification, and WIM application. The sensor can withstand
heavy weight and delivers clear output pulses when triggered by vehicle axles or tires.
However, the sensor is relatively expensive, and the shortest length available is 6’
[26]. Smaller lengths are available by special order, although there is an additional
cost. While the price increases for multi-element application, the sensor’s features
make it a perfect candidate for single element application. This sensor is available by
manufacturer at length of 6°6” which can cover an entire traffic lane when placed

diagonally.
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Figure 3-2Roadtrax BL sensor

3.2.3 Piezo-film sensor

Piezo-film sensors are sensitive piezoelectric elements used for various applications,
such as vibration detection and voice conversion to electrical signal. Often the sensors
are fragile and difficult to protect in roadway conditions. Their use as a multi-element

sensor can be a challenge as a result of their interfacing schemes.

Piezoelectric polymer coaxial cable
The piezo-cable affords an extremely flexible solution. The sensor is manufactured by

Measurement Specialties and can easily be formed to any desired length. The cable
can then interface as a regular coaxial cable, as shown in figure (3). According to the
manufacturer, the sensor has multiple applications that include vehicle classification

and counting [27].

Figure 3-3piezoelectric polymer coaxial cable
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Figure 3.4 illustrates the four layers of the cable: 1.) Stranded center core that acts as a
conductor of the electrical output signal; 2.) Piezoelectric film tape that serves as the
actual piezoelectric material; 3.) Copper braid; and 4.) Dielectric outer jacket, as

illustrated in figure 3.4.

_~ Copper Braid
P Polyethylene
e " Outer Jacket
/ ¥

,

" PVDF Pieza Film Tape (Spiral Wrap)

™ Stranded Center Core

20AWG Cable-Spiral Wrap

Figure 3-4Piezoelectric polymer coaxial cable layers [20]

The aforementioned features combined with a relatively inexpensive cost aided in the
decision to select the cable for further consideration and testing for the development
of the multi-element vehicle classification system.
3.3 Multi-element sensor fabrication
A standard 12’ lane width must be entirely covered by the multi-element sensor to
detect all passing tires and render a vehicle classification. By reducing the sensor to traffic
direction angle () allows additional separation between pulses from tires belonging to the

same axle. However either the number of elements or the element length must be increased

for full lane coverage.

A fixed element length of ~11.5” with 0.5” separation between consecutive sensors
was chosen for development and testing. This measurement satisfies the need to provide
appropriate vehicle width resolution. Thus, reducing 6 ensures improved resolution, although

additional elements— meaning more input channels to the data acquisition system—are
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required. Having a separation gap between sensors ensures adequate space for wire
channeling and to reduce the probability of multiple sensors being impacted at the same time.
With this in mind, it was determined that the angle should be set in a range of 45 to 50
degrees. Sixteen sensor elements are, then, required to cover the entire lane for 45° and 15

are required for 50°.

Protection of the piezo-elements and cables are of major concern for preliminary field
testing. To shield the cables and sensor, they were placed inside pocket tape specifically
designed for traffic application. See figure 3.5. This is heavy duty rubber has a 4-inch pocket

to encase both sensors and cables, and is affixed to the roadway with adhesive.

Figure 3-5 Heavy duty pocket tape.

To ensure reusability, an 8-foot aluminum/rubber road plate was used to affix the road
pocket tape and the inserted multi-element sensors and connecting cables, as shown in figure
3.6. It is possible for each road plate to hold up to eight piezo-elements. Two plates are
required for full lane coverage. Two parallel rows of pocket tape used—one containing piezo-

elements and another containing cable that connect sensor-elements to the DAQ.
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Figure 3-6 Multi-element sensor packaging procedure.

3.4 Temperature sensor
This section describes the integration of a temperature sensor with the classifier

system. Piezoelectric sensors have the tendency to change their output signal relative to
temperature. A temperature sensor was acquired and interfaced with the REECE device to
monitor road surface temperature and account of any changes affecting piezoelectric sensor

outputs, causing vehicle misclassifications.

Roadway surface temperatures in close proximity to where sensors are deployed
should be measured. We chose the temperature probe 108 manufactured by Campbell. See
figure 3.7. The temperature will be logged and then compared to output of the system in

question. The four connecting wires which are excitation voltage, signal HI, signal return and

ground. See figure 3.8.
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Figure 3-7 Piezoelectric polymer coaxial cable layers
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Figure 3-8 Temperature probe wiring scheme [28]

A continuous excitation voltage must be supplied to the probe through a wire. The
voltage can then be measured from HI wire and a surface temperature can be computed using
two equation that relate the voltage measurement and excitation voltage [28]. The measured

voltage Vs and excitation voltage are related through the following equation:

Vs 1000
— = eq. (3.1)
Vx Rs+40000+1000

where Rs is the thermistor resistor, and 1k and 40k are fixed resistors. Rs can then be applied

to the Steinhart-Hart equation 3.2 to calculate the temperature in Celsius:

i
b A+B(LnRs)+C(LnRs)3 273.15 eq. (3.2)

where A, B and C are coefficients related to the thermistor: A = 8.271111e-4, B = 2.08802e-

2, and C = 8.0592¢-8.
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3.5 Testing and development data acquisition units
This section describes the external data acquisition units (DAQs), which acquire

voltage signals coming from the sensors. Understanding the behavior of sensor signals and
their characteristics is essential to the development process, as the signals must be interpreted

and distinguishable according to vehicle classification.

DAQs have a variety of specifications enabling different capabilities, e.g. sampling
rate, input range, number of channels, and DAQ mode (differential or single ended). The
most important among these is sampling rate. Sampling rate takes into consideration acquired
signal frequency. For example, acquiring a piezoelectric signal resulting from a passing
vehicle is dependent upon the vehicle’s velocity and range between 1kS/s and 10ks. The
signal acquired from temperature probe requires a significantly lower sampling rate because

temperature changes are relatively slow.

Three DAQs were used in this project.

3.5.1 National Instruments NI-9215:
The National Instruments NI-9215 DAQ has four inputs, as shown in figure 3.9, and

can

Figure 3-9 NI-9215 data acquisition unit [29]
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Simultaneously perform sampling rate up to 100KS/s on the four analog inputs. Its
resolution is 16bit, and maximum voltage range is -10v to 10v with maximum
accuracy of 0.003v [29].

3.5.2 National Instruments NI-9205
This National Instruments NI-9205 DAQ has 32 single ended (SE) or 16 differential
inputs, as shown in figure 3.10, and can perform a maximum of 250KS/s sampling

rate

Figure 3-10 NI-9215 data acquisition unit [30]

divided among a number of active input channels. Its resolution is 16bit, and

maximum voltage range is -10v to 10v with a maximum accuracy of 6220uv [30].

3.5.3 REECE Helios embedded DAQ:
The REECE DAQ will be further detailed in the following section.

3.6 Roadside Extensible Embedded Computing Equipment (REESE)-Helios
In this section the Diamond Systems Helios computing system interface and related

capabilities pertinent to this thesis are briefly explained.

The RRECE device was initially developed as part of a project funded by the
Oklahoma Transportation Center (OTC) in 2005-2006. The goal was to develop wireless
access to Oklahoma Department Of Transportation (ODOT) ftraffic data collection sites,

enabling automatic vehicle classification (AVC) and weight-in-motion (WIM). The device
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was developed by Dr. Refai research team at the University of Oklahoma. The REECE has
the capability to access a cellular network using either a 3G or 4G wireless modem, and then
transfer data back and forth to servers in real time. Diamond Systems Prometheus served as
the basis for the computing system, and development advanced to incorporate the new

generation of Helios.

Helios is an embedded system designed by Diamond Systems. See figure 3.11. The

compact, embedded computer is able to run a number of operating systems, including Linux.

Figure 3-11 Helios computing system

Helios has an 800 vortex86DX CPU and is equipped with six VGA ports; PS/2 mouse
and keyboard ports; RS-232 ports; four USB ports; 40 digital programmable 1/O lines; four
analog outputs; and Ethernet port with 10/100 Ethernet circuit integrated into the processor.

Most important among Helios I/O ports is the 16 analog inputs, further detailed below [31].

Helios includes a built-in DAQ unit that can operate with 16 single ended (SE)
channels or 8 differential channels. Helios DAQ scans input channels sequentially and has a

maximum sampling rate of 250kS/s, although this rate is divided among input channels when
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more than one channel is used. For example; when using 16 SE input channels, the rate drops

to 15.625kS/s.

Signal input is connected to Helios DAQ through a 50-pin male header on the I/O
module The header is comprised of all 16 analog input channels; four analog outputs;

grounds; voltage out; and digital I/Os [32]. See figure 3.12.

DIO AD 1 2 DIO A1
DIO A2 3 | 4 DIO A3
DIO A4 5 6 DIO A5
DIO A& i 8 DIO A7
DIO BO 9 .10 DIO B1
DIO B2 11112 DIO B3
DIO B4 13 | 14 DioBS

DIC B8 181 16 Dio B7
DIO CO 17 | 18 Dio C1
DIO C2 18 | 20 DIOC3
DIO C4/Gate O 21| 22 DIC C5/ Gate 1
DIOCB/Clk 1 23 | 24 DIOC7/0ut0
Ext Trig 25 | 26 Tout 1
+5V Out 27 | 28 Dground
YVout 0 29 | 30 Yout 1
Yout 2 31 | 32 Yout 3
Aground (Vout) 33 | 34 Aground (Vin)
Vin 0 35 | 36 Vin 8
Vin 1 37 | 38 Vin 9
Vin 2 39 | 40 Vin 10
Vin 3 41 | 42 Vin 11
Vin 4 43 | 44 Vin 12
Vin 5 45 | 46 Vin 13
Vin 6 47 | 48 Vin 14
Vin7 49 | 50 Vin 15

Figure 3-12 DAQ I/O connector

The aforementioned characteristics make the REECE device Helios an appealing
platform for the development of a vehicle classification embedded system. It is currently
deployed at 80 ODOT data collection sites, making the deployment of the single/multi-

element classifier into these sites inexpensive and feasible

3.7 Cellular broadband modem
Either a 3G or 4G broadband modem can be used to connect the REECE device to the

Internet, allowing remote access and real-time operations. This is desirable when performing
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real-time per vehicle reporting. Modems for this project were acquired from Sprint cellular
service provider. Drivers and chat files associated with the cellular base station must be
installed on the REECE to ensure Internet connectivity.
3.8 Software used through development

This section provides a general overview of software used throughout system
development and testing. The classification algorithm will be described in further detail in
Chapter 1V.
3.8.1 Testing software

Software used during sensors signal testing is briefly presented in this subsection.
Software was primarily executed on Laptop computer running either Windows Vista or

Windows 7.

3.8.1.1 Labview SignalExpress:
National Instrument provided Labview SignalExpress to operate their proprietary

DAQs. The software has a user-friendly interface so that users can easily choose the
preferred DAQ, select specific channels, and set the sampling rate. Also, data
collected can be saved to either to a .lvm extension, which is Labview specific file
type, or to a .txt extension. Labview SignalExpress maintains a continuous graphical

plot of signals as they are acquired.

3.8.1.2 Matlab:
Matlab is used for several purposes: analyze signals collected from various sensors;

validate DAQ accurate operation; study piezoelectric sensors signal to design the
classification algorithm thresholds accurately; monitor temperature sensor output; and
perform correlation studies between different vehicles signals.

3.8.2 Software used in the on REECE coding process
A number of software programs aided in the development of the proposed vehicle

classification system. These ranged from operating system and programs on the REECE
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device itself to programs used on a PC to support the development process. A brief

description of programs and tools are offered below.

3.8.2.1

3.8.2.2

REECE device Operating System {(0S):
The Linux operating system (OS) was selected for the REECE device because it is an

embedded system, supporting society and its stability. Kernel version 2.6.37 was
used. A special build was done for REECE device applications using “buildroot”
software. This build includes tools and drivers needed for REECE device to operate
properly. Examples of these include the built-in DAQ driver, cellular broadband
modem driver, and chat file used by broadband modem to communicate with the
cellular base-station. The REECE OS contains files and programs developed for
REECE device connectivity from the server and VPN to server settings. Please refer
to Appendix A for additional information regarding the VPN network and REECE

network setup.

VirtualBox:
A host OS is needed to contain C compiler that is compatible with REECE OS

because the Linux OS was specifically built for REECE. Thus, VirtualBox serves as a
tool with Linux Debian OS so that C compiler for REECE OS is contained.

VirtualBox is cross-platform software used to emulate a computing environment for
an operating system. The program reserves hardware resources running Virtual
Machines (VM). VirtualBox can execute several VMs on a single host OS. The
software can support several versions of Windows, Linux, Mac OS X, and Solaris and

also 32-bit and 64-bit Oss [33].
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3.8.2.3 Putty:
Putty client software provides the capability for SSH, Telnet, Serial, and TCP

connections. This tool is extremely useful for remotely accessing and controlling
Linux machines; REECE device and Linux server.
3.9 Overall system description
This section offers a description for both single- and multi-element systems. The
layout, logic, and configuration of each system are detailed below.
3.9.1 Single element system
The single element vehicle classification system is comprised of one piezoelectric

sensor, a DAQ, and the embedded computing system. See figure 3.13.

Embedded computing
system

Figure 3-13 Single element vehicle classification system overview

It is imperative for the piezoelectric sensor to be flexible, available in various sizes,
withstand heavy weight, and provides appropriate output. As previously mentioned, the
sensor must cover the entire traffic lane diagonally at a certain degree, namely 45° for this
thesis. As such, length constraints must be met. Roadtrax BL manufactured by Measurement
Specialties was selected since the material was designed for sensing traffic. The piezoelectric
sensor is diagonally placed across a lane of traffic, ensuring that each tire of a passing vehicle

produces a pulse on the piezoelectric sensor output. Output signals from the piezoelectric
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sensor are analyzed through a feature extraction algorithm where pulses from each passing

vehicle are detected and then parameters are computed.

Data is then sent to classification phase of the algorithm to aid in vehicle
classification. In this way, motorcycle Class1 vehicles can accurately classified, as they’re the
only class with two tires. For the remaining 13 FHWA classes, vehicle velocity is required to
distinguish among classes with the same number of tires. Tire spacing is required to set
thresholds between different classes with the same number of tires. Vehicle track width is

needed to calculate vehicle velocity. See figure 3.14.

13

Figure 3-14 Example of piezo-sensor expected outpul when triggered by a passenger vehicle

Using vehicle track width w, velocity V and axle spacing L can be determined using

the following equations:
V =[w * cot(0)] / T12 eq. 3.1)
L=V *TI3 eq. (3.2)
where: 0 is angle between traffic direction and sensor;
T12 is time duration between beginning of first pulse and second pulse; and

T13 is time duration between beginning of first pulse and third pulse.
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3.9.2 Multi-element system
The multi-element vehicle classification system is comprised of several piezoelectric

sensor elements, multi-channel DAQ, and a computing system. See figure 3.15.

Computing
System

Figure 3-15 Single element vehicle classification system overview

Each element is connected to an output channel. When pressured, an element provides
a higher output than adjacent elements. Each element has its own ID numbered from 1 to
16—each represents one of the 16 sensor elements. To determine passing vehicle width,

assuming sensor elements n and m where m>n, the following equations are used.
m-n=w’ £4: (3:3)

where w’ is the hypotenuse of a right triangle in which the cathetus across from angle

0 is the vehicle width w.

Angle 0 represents the angle created between the piezoelectric sensor and direction of

the traffic. Vehicle width can then be simply calculated by:
w=Ww’. sin(0) eq. (3.4)
Width measurement resolution is sin(0) feet, since the separation between every two

adjacent sensor elements is one foot. This width is used to calculate vehicle velocity and axle
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spacing, as described in the previous section. The multi-element system requires more
complex computing than the single element system because signals from 16 channels are
simultaneously acquired. Voltage level of each channel must also be investigated to
differentiate sensor elements that are triggered from others. For these reasons, the computer

system processing power must be increased.
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CHAPTER IV

4 Program architecture and vehicle classification algorithm

This chapter describes the vehicle classification algorithm and program architecture
implemented on the REECE device. First a general description of software architecture will
be provided, followed by additional detail for each module/phase. The difference between

single- and multi-element systems will be discussed.

4.1 Overall program architecture

This section provides a detailed description of program architecture developed for this
project. The architecture can be defined as the path taken from the commencement of raw
data acquisition by DAQ to the decision stage of the algorithm’s classification phase. The
vehicle classification algorithm can be separated into two phases: feature extraction phase

and classification phase.

The architecture for a single-element vehicle classification system is nearly the same
as the architecture for a multi-element vehicle classification, with few exceptions. Algorithm
differences between single- and multi-element systems will be explained in subsection of this
chapter. Program development was implemented for REECE using C. C is a programing
language of choice for embedded systems. It has flexible structure with various functions

[34]. Figure 4.1 illustrates the overall software architecture.

The program is comprised of three primary modules: data acquisition; socket server

and initial processing; and feature extraction and classification.
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Figure 4-1 Overall software architecture
4.1.1 Data acquisition module
This part of the program includes the actual data acquisition phase and a socket client phase.

It configures the DAQ, collects raw data, formats it in character form and sends it to the next

module using a Linux socket. The two phases and their responsibilities are highlighted below:

- Data acquisition phase: This phase or sub-module is responsible for the collection of
raw data. The REECE DAQ is used for piezoelectric sensor output sampling. The
program includes initiating the board, configuring the sampling parameters, and
making sure data is not lost due to slow processing. Major sampling parameters are
chosen as follows. Sampling rate: 1Ks/s, continuous cyclic sampling; and channels
used: one among other configurations related to the DAQ board itself. The phase flow

graph and details are depicted in figure 4.2.
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- Socket client: Socket sends raw data from the DAQ module to the socket server and

initial processing module. Using multiple processes takes advantage of the Linux

multi-tasking/threading property so that the data processing load can be distributed

among different processes. In this way uninterrupted data acquisition is ensured.

During the data acquisition phase, data is fetched from the DAQ buffer on regular

basis. If all data processing relied on the same process used by the data acquisition

with no multi-threading the result could be latency and data loss.

Sockets are the most popular method for inter-process communication in Linux based

operating systems. The client side of the server is responsible for sending data in
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character form. Stream socket was selected for this project to guarantee sequenced
reliable exchange of data [35]. Stream socket uses Transmission Control Protocol
(TCP), which is a reliable sequenced data transmission protocol [36]. See figure 4.3

for socket client phase detail.
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Figure 4-3 Socket client phase

4.1.2 Socket server and initial processing module

The socket server and initial processing module is responsible for a number of tasks,
including receiving raw data from the socket client; initial data processing; and then utilizing
the multi-threading, call feature extraction and classification module with vehicle data as

function input.

The socket server first listens for a connection with the client. When client connects
and begins a data streaming, the socket server continuously receives data and converts it from
character form to floating point for processing feasibility. The purpose for this initial
processing is to isolate single or multiple vehicle data so that it can be sent to the feature
extraction and classification algorithm for further processing. Zeros are then suppressed from

occupying more resources in the system.

While raw data is being received from the socket client the socket server tests the
samples values. If they pass certain negative or positive threshold then detection flag is raised

and samples are stored as vehicle data. Furthermore, if a certain number of zeros equal to two
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seconds is surpassed, vehicle detection ceases and stored vehicle data is called from the

feature extraction and classification module as input.

This maximum axle spacing value works well without vehicle splitting for vehicle
speeds as low as 15mph and vehicle axle spacing of 40ft [6]. This is the same as the 2 second
period mentioned earlier. However, the method is prone to vehicle combining. This problem
can be solved in the feature extraction phase after vehicle speed is recognized. Figure 4.4

illustrates a flow graph of the socket server and initial processing module.
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4.1.3 Feature extraction and classification module
The feature extraction and classification module represents the vehicle classification

algorithm. This algorithm constitutes the logic used to process raw data into useful
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information, including the parameter and class of passing vehicles. Feature extraction and
classification modules are done on a separate thread. The reason for that is to take advantage
of the multitasking operating system. This way the father process can go back to raw data
processing while the child process handles feature extraction and classification. Thread takes
function to be executed and pointer to some data as input [37][38]. Feature extraction
function, isolated vehicle data and number of samples in isolated vehicle data are passed to
the new thread. Several tests were conducted to confirm consistency of expected and actual
voltage output that resulted when each vehicle passed over the piezoelectric sensor. A visual
example of sensor output triggered by a passenger vehicle travelling at 25mph is depicted in

figure 4.5. A detailed description of testing is provided in the following chapter.
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Figure 4-5 Piezoelectric sensor output for Class2 at 25mph

Each tire of a vehicle produces a unique pulse. Time difference between tires
detection is equivalent to the distance between tires and axles. The algorithm must detect the
pulses and the time between pulses, and then calculate vehicle velocity and tire /axle spacing.
Then algorithm employs this information to make a decision regarding vehicle class. The

vehicle classification algorithm is divided into two phases: feature extraction and

classification.
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4.1.3.1 Feature Extraction Phase.
The feature extraction phase is responsible for passing vehicle detection and subsequent

extraction of characterizing information and specifications for classification purposes. After
acquiring and preprocessing a piezoelectric response signal associated with one passing
vehicle, pulses associated with different vehicle tires are identified. In this way the number of
vehicle tires becomes known. Also, the time at which each pulse commences is detected,
which facilitates recognition of time difference between pulses. By using former extracted
vehicle information, vehicle velocity, tire/axle spacing, and total number of tires will be

calculated/recognized. These results will then be advanced to the classification phase.

Two methods for pulse detection and extraction during the feature extraction phase were

tested.
1) Pulse detection and extraction using differential rate:

This method depended upon calculating the differential rate of consecutive acquired
samples. The rate serves as an adaptable pointer to the signal state, meaning that the
rate should be immune to both minor changes in the signal’s amplitude not
representing a pulse, as well as disturbances or offsets in the acquired value due to

various factors, e.g., temperature bias and pavement factors, among others, affecting

the sensor.

Knowing piezoelectric signal behavior, we can pinpoint various patterns that mark
pulses triggered by different types of vehicles at the operational range of velocities.
Each differential rate value is represented by the amplitude difference between two

consecutive piezoelectric sensor samples divided by the time difference:

— SiTSed eq. (4.1)

”".
' L= ti—q
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The procedure contains two chief parts:

1- Marking the beginning of a pulse: A pulse is triggered when accumulated rate
exceeds a value of 1000 within a 20-sample period. Using an accumulated rate of
1000 is relative to piezoelectric signal behavior when triggered by vehicles. The
20-sample tolerance period prevents system triggering by values acquired from
long-term changes.

2- Marking the end of a pulse: Various conditions will pinpoint the end of a detected
pulse.

- When the rate is positive, the signal begins to rise. Thus, if more than six
samples are negative, the signal is assured to be falling below pulse peak.
- When the accumulated negative rate is higher than the accumulated positive
rate, the signal has fallen back to its original statues.
- When the rate is zero, or very close to zero, for a period of more than eight
samples, the signal is considered stable at zero.
2) Pulse detection and extraction using signal thresholds:

The pulse detection and extraction technique uses predetermined thresholds marking

the beginning and ending of a pulse. These thresholds are related to the behavior of

piezoelectric signal in idle mode, i.e., no vehicle is present, and in active mode, i.e.,

vehicle passes over the sensor. Thresholds are empirically found through the testing

of several passing vehicles. Similar to the differential rate method, this technique has
two chief parts:

1- Marking the beginning of a pulse: If signal goes above threshold of 0.1v and
remains there for over 0.01s, a new pulse is called and its beginning is recorded.

Of note is that pulse is not detected immediately after signal passes the threshold
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so as to minimize detection of pulses due to transient changes in signal not related
to passing vehicles.

2- Marking the end of a pulse: If signal is in idle state below detection threshold for
over 0.1s and a pulse is detected, an end of pulse is recorded at the beginning of

the idle state.

After a data set of 16 passenger vehicle runs were applied to both techniques, the
signal thresholds technique was found to provide superior pulse detection, rendering it the
technique used for the project detailed in this thesis. This is probably due to the fact that
change of velocity cause change in pulse rise rate, pulse rise becomes sharper, leading to
missing pulses at lower velocities. Regular sensor output calibration is added to the code to
solve signal bias resulting from temperature and pavement effects, among others. During
calibration the mean of sensor output signal is calculated on a regular basis and removed
from received raw data. Calibration was employed because pulse detection and extraction
using a signal thresholds technique is not inherently immune to signal bias as in pulse
detection and extraction using differential rate. Please consult figure 4.6 for a detailed

description of the feature extraction phase.
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4.1.3.2 Classification phase
The classification phase classifies vehicles into 13 FHWA classes using vehicle

information acquired and calculated in feature extraction phase. Required parameters include
number of tires, axle spacing for various axles, and time of pulses triggered by tires relative

to class. This phase is further divided into two sub-phases.

- Investigation sub-phase
Using FHWA standards and data we gathered, certain vehicle classification criteria
were defined, including total number of vehicle tires, tire/axle distances, and time
interval of peaks triggered by individual tires and double tires, i.e., sets of tires located
next to each other. Number of tires, i.e., pulses, is used to distinguish seven classes
from each other. For this research, of utmost importance is the ability to uniquely
distinguish pulse number for motorcycles. Because classl (motorcycles) is the only
one with two tires, this method ensures motorcycles classification parameter will not
overlap with other classification parameters. Time period of pulses are used to
differentiate class5 vehicles with two axles and six tires. Axle spacing between the
first and second axles and second and third axles are used to differentiate between
remaining classes.

- Decision sub-phase
A classification decision is made in this phase according to satisfying criteria set forth
in the investigation sub-phase. Each criterion or set of criteria is associated with only
one vehicle class. This phase reports detected vehicle information and classification.

See figures 4.7 and 4.8 for a detailed flow chart of the complete classification phase.
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4.2 Difference in vehicle classification algorithm between single element system
and multi-element system

Although algorithm differences when moving from a single- to multi-element system

are slight, they are essential in terms of achieving accurate vehicle parameters. These

alterations are done only in the feature extraction phase.

Vehicle track width is required in the algorithm’s feature extraction phase.
Determining this information is not possible using a single element piezoelectric sensor.
Thus, for a single-element system, an average width was used for all vehicles. This average
width may cause an error in vehicle detected and acquired parameters which might cause a
vehicle to be misclassified as an adjacent class. This effect is inconsequential for motorcycle
classification, as the proposed procedure is based on tire count only for motorcycle
classification. Nevertheless, the outcome could present an overall misclassification problem.
Hence, a multi-element configuration is proposed for accurately detecting vehicle width,

which in turn ensures accurate detection of the remaining vehicle parameters.

Algorithm signals from each sensor element are treated separately, meaning that
pulses are detected from each element output and signal levels are recorded. When a vehicle
passes over a multi-element sensor, output pulses might appear on several piezoelectric
elements caused by cross talk. Multiple elements might report voltage value higher than
threshold due to pavement movement. To overcome this, voltage levels must be monitored
and compared in accordance with sensor impact position. This facet will be investigated

further during multi-element sensor road testing.

Vehicles other than classl have more than one tire in a single axle and will trigger
more than one element at a certain separated distance. This distance represents vehicle track

width times sin(0). Given that one vehicle tire hits several sensors at the same time, a point
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closer to the higher amplitude element is chosen to represent the tire impact point. The
position of this point is proportional to difference in voltage values between elements

triggered.

Finally tire pulse width will be detected by single element impact or multiple
elements impacts, and vehicle width will be calculated based on the distance between
triggered elements. With the exception of this distinction between single- and multi-element
sensing, feature extraction phase remains the same. No alterations are required during the

classification phase.
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CHAPTER YV

5 Testing and results

Several tests of the single- and multi-element sensors were conducted. Initially,
straight and diagonal piezoelectric single element sensor output was tested when triggered by
different vehicles at different velocities—the purpose of which was to monitor and study the
output of single element piezoelectric sensor. Results aided in confirming expected output
and designing pick thresholds used for feature vehicle extraction. Secondly, tests were made
to verify the newly developed feature extraction and classification algorithm. In this testing
the stability of a single-eclement vehicle classification system was assessed for motorcycle and
passenger car classification accuracy. Finally, a multi-element piezoelectric sensor was
tested. The initial test of the fabricated sensor validated operationability and suggested design

modification.

All road testing was performed at the University of Oklahoma-Tulsa campus with vehicles

limited to a traveling speed of 30mph.

5.1 Single-element piezoelectric sensor testing

The objective of the single—element piezoelectric tests was to study single-element
sensor output under various conditions. Results were useful in building the feature extraction
and vehicle classification algorithm. Tests monitor changes in output signal resulting from
number of reasons, including alterations in vehicle velocity and axle spacing; correlation
between signals resulting from different vehicles driving at different velocities; and effects of
changing vehicle width on both detected axle spacing and detected velocity. This section
highlights a novel method for using track width-to-axle spacing ratio to classify vehicles as

well. The new method eliminates the need for velocity detection for classification, which in
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turn is expected improve vehicle classification capability when utilizing single-element

piezoelectric sensor.

5.1.1 Changes in signal due changes in vehicle velocity and axle spacing
This subsection offers test results that highlight the effects of changing velocity and

vehicle type over output signal.

Figure 5.1 shows examples of aligned test runs for a passenger car. In graph (a) four
aligned runs are plotted to represent results of a test in which the driver was asked to maintain
a speed of 20mph. Graph (b) shows four aligned runs plotted, representing when the driver
was asked to maintain a speed of 30mph. A comparison is beneficial for highlighting uniform
output at the same velocity for the same vehicle. Of note, however, is that the uniformity will
change once either velocity or axle spacing changes. Both parameters affect the time between
pulses and the shape of detected signal, consequently affecting vehicle classification. As we
can see in figure 5.1, as velocity increases both amplitude level and time duration of the
signal decreases. Also in (a) we can see that slight changes in vehicle velocity have a clear
impact on output signal. Variations in velocity are effects of the driver failing to maintain a

constant velocity of 20mph for all test runs.
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Figure 5-1 Aligned vehicle signals acquired by diagonal single element piezoelectric sensor a) car at 20mph b) car at
30mph

A test set of 11 runs for a passenger car vehicle was used to monitor changes in inter-
pulse periods at different velocities. Testing vehicle velocities ranged between 15 and 30
mph. Figure 5.2 demonstrates time durations between the first and second pulse and between
the first and third pulse. Duration between the first and second pulse corresponds to vehicle
track width, while duration between the first and third pulse corresponds to vehicle axle

spacing.
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In figure 5.3, time duration of the first pulse and second pulse are plotted against

vehicle velocity for the test vehicle. Vehicle velocity ranges between 15 and 30mph, just as in

the previous figure.

Results in figures 5.2 and 5.3 aid in choosing an appropriate sampling rate for the
DAQ unit on the embedded system. As vehicle velocity increases, the time interval between

pulses and of each distinct pulse decreases. This requires an increase in sampling rate, as

Figure 5-3 Time durations of 1st and 2nd tires pulses.
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well, to accommodate for the higher frequency signal. Also, variation in inter-pulse time due

to a change in velocity has a direct effect on detected axle spacing.

5.1.2 Correlation study for vehicle data detected by single element piezoelectric
sensor

In this section, the possibility of using another classification method is explored. Until
this point in the project vehicle classification was performed using axle-spacing algorithm.
This specific study looked at the possibility of using vehicle signature for classification. This
signature is obtained from piezoelectric signal acquired from diagonally placed single
element sensor when a vehicle passes over it.

Several parameters are required to perform vehicle classification using axle spacing
methodology. The primary information required is the number of axles or number of tires.
Number of tires instead of number of axles is being used in this research in order to improve
motorcycle detection and classification. The reason for that is motorcycles (Classl) are now
differentiated from other classes using number of peaks in the acquired signal rather than axle
spacing. Axle spacing is necessary to distinguish vehicles belonging to classes that share the
same number of tires.

To calculate vehicle axle spacing, vehicle velocity is required; to calculate velocity,
distance and time are required. Traditionally this is accomplished using two piezoelectric
sensors or two inductive loops separated by a fixed distance. This can also be achieved using
a diagonal sensor configuration wherein vehicle width serves as the reference distance.

Classification can also occur with vehicle signature recognition, often with a neural
network after training its nodes to classify vehicles. Research in this area has previously
focused on inductive loop output signal. The following subsection depicts results using

limited data from a preliminary correlation study.
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The following graph depicts examples of the correlation factors of data for two car runs at the

same speed.
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Figure 5-4 Correlation between vehicle signal using single element at same speeds a.) 20mph runs 1 and 3; b.) speed
20mph runs 2 and 4; c.) speed 30mph runs 2 and 4; and d.) speed 30mph runs 3 and 5.

Figure 5.4 shows that the maximum correlation coefficient is relatively high, ranging

between 0.6412 and 0.921. A pattern can be seen in the correlation graphs where nine peaks,

representing higher correlation, are repeated in all graphs. Peaks in correlation graphs are the

result of four pulses in each vehicle output signal subsequent to falling sequentially above

one another. The four pulses in vehicle output signal are representative of the test vehicle’s

four tires.

Figure 5.5 shows the correlation between signals of the same vehicle (car) at different

speeds.
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Figure 5-5 Correlation between vehicle signal using single element at different speeds a.) 20mph and 30mph; b)
20mph and 40mph; and ¢) 30mph and 40mph.

The maximum correlation factors for graphs in fig. 5.5 range between 0.3 and
0.4346—nearly half the correlation factors belonging to signals with the same vehicle speed.
Of note is that the pattern in the correlation graphs was lost, as well.

Correlation coefficients for different types of vehicles were investigated in the
following. Figure 5.6 demonstrates the correlation between a car at 30mph, a van at 20 and
30mph, and a bicycle. Car data was sampled using NI DAQ at 1kS/s; van and bicycle data
was sampled using REECE DAQ at 10kS/s. To perform correlation of data from the van and

bicycle vs. the car, van and bicycle data were down-sampled by factor of 10.
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Figure 5-6 Correlation between different vehicles signals using single element at different speed a.) car at 30mph and
van at 20mph; b.) car at 30mph and van at 30mph; and c.) car at 30mph and bicycle.

Maximum correlation coefficients are 0.2584 for car at 30mph and van at 20mph;
0.2902 for car at 30mph and van at 30mph; and 0.4081 for car at 30mph and bicycle.
Correlation coefficients actually dropped from car signal correlations at different speeds,
although the drop was minimal. Maximum correlation coefficient of car/bicycle signals is
higher than some car/car signals at different speeds, even though car/bicycle signals have
entirely different signatures.

No clear, consistent pattern is seen in correlation graphs once either speed or vehicle
class was changed. In summary, data from this study implies that because there are two
varying parameters—axle spacing and vehicle speed—classification cannot be directly

performed using only the correlation between signal from passing vehicles and stored
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signatures unless an enormous database of vehicle signatures is available. Utilizing neural
networks and training with large sets of data for different classes could offer improved

results.

5.1.3 Average vehicle track width effects over calculated velocity and axle
spacing
As previously discussed in chapter IV, vehicle track width is required in the feature
extraction phase of the vehicle classification algorithm. An average track width must be
chosen for all vehicle classes, as a single element piezoelectric sensor is incapable of

detecting actual vehicle track width.

A road test was performed using a van to simulate the way in which average track
width would affect the algorithm and calculation of axle spacing and velocity. Actual track
width for the van is 5.78 feet. Two extreme widths of 7.42 feet and 4.14 feet were also tested
to compare the effect with acquired vehicle parameters. The driver was asked to travel at
speeds of 20-, 25-. and 30-mph. The average of the detected and calculated velocity and axle
spacing for four runs at 20 mph, five runs at 25 mph, and a single run at 30mph is depicted in

Table 5.1. Of note is that the van’s actual wheel base (axle spacing) is 11.5ft, 3.5m.

Table 5-1 Average track width effect over velocity and axle spacing

Requested Speed Track width=5.78’ Track width =7.42° Track width=4.14’

(mph)
Speed Axle spacing (ft) | Speed (mph) Axle spacing (ft) Speed (mph) Axle spacing (ft)
(mph)

20 18.71 11.27 24.03 14.49 13.40 8.07

25 23.14 11.42 29.70 14.67 16.57 8.17

30 27.16 11.05 34.86 14.17 19.45 7.90
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When extreme average track widths are chosen there is a significant change in axle
spacing. The shift is 22% for upper limit track width and 39% for lower track width. This
phenomenon could lead to classification shift to adjacent classes for vehicles that have a
similar number of tires. The deficiency is tolerable, however, since for our purposes,
motorcycle classification is not affected and average track width will be used. However,
future work should include a suggested solution for detecting actual vehicle width when the

piezoelectric sensor is segmented to multi-elements and diagonally placed on the road.

5.1.4 Vehicle classification method using axle spacing to track width ratio

As suggested earlier in this thesis, vehicle velocity is required for classification.
Vehicle track width will be needed to calculate velocity when using single-element
piezoelectric sensor for vehicle classification. This could be problematic as track width is
needed for velocity calculation which unfeasible using single-element piezoelectric sensor.
This subsection presents novel approach for vehicle classification using a ratio of vehicle axle
spacing-to-track width (L/w), which eliminates the need for velocity and, thus, track width to
perform vehicle classification. This method can be applied to classify vehicles with a similar
number of tires. As previously discussed, time duration between the first pulse and second
pulse (T12) is proportional to vehicle track width w, and time duration between the first and
third pulse (T13) is proportional to vehicle axle spacing L. Vehicle velocity V relates T12 to

w and T13 to L. By taking the ratio of L to w, we find the following:

L _ Ti2v _ Ti2
w  TI3V  Ti13

eq. (5.1)

As we can see from equation 5.1, L/w ratio is obtained by detecting the time duration
between the first and second pulse and the first and third pulse. Capability of employing this
ratio to set thresholds that enables us to accomplish vehicle classification will be assessed

using available test data. Potentially, the need for vehicle velocity and track width to achieve
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vehicle classification could be eliminated. A data set of 30 test runs—10 for a car; 10 for a
four-tire, two-axle truck; and 10 for a van—was used to validate this approach. The driver
was asked to drive five runs at 20mph and five runs at 25mph. Four runs in total—two runs
for the van at 20mph and two for the truck at 25mph—failed. For all others, length-to-width
ratios (T13/T12) were plotted with respect to calculated velocity. See figure 5.7. Please note

the actual width of each vehicle was used to calculate velocity.
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Figure 5-7 Length to width ratio with respect to vehicle velocity.

Figure 5.7 shows that ratios for each vehicle type can be separated by clear thresholds.
Only a minor overlap at one point exists between van and truck L/w ratios. Taking this initial
test into consideration, this method for vehicle classification looks promising when using
single-element piezoelectric sensor without the need to explicitly acquire vehicle velocity or
width. However, data from additional testing of vehicles sharing the same number of tires
must be studied to fully assess the performance of this approach. L/w mean for acquired
testing data are 1.7626, 1.9622, and 2.0774 for car, van, and truck respectively. Standard

deviations for the same data are 0.0238, 0.0643, and 0.0222 for car, van, and truck
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respectively. Please note that actual L/w ratios for test vehicles are 1.8644, 2, and 2.1111 for

car, van, and truck respectively.

Over 51 test runs for the passenger vehicle, van, and a four-tire truck were undertaken

to verify voltage outputs and to design feature extraction thresholds.

5.2 Developed feature extraction and classification algorithm verification test
Developed feature extraction and classification algorithm verification, including on-
road, classification testing, as well as yielded parameter, testing was accomplished post

algorithm development and coding to evaluate performance.

Previously, Chapter IV indicated that the vehicle classification algorithm was coded
and developed on the REECE device. See Appendix B for developed code detail. When
executed, the program processes the sensor data continuously, looking for a passing vehicle.
per-vehicle records are reported on screen and saved on the REECE memory. These include
passing time, date, vehicle class, velocity, and number of tires. See figure 5.8 for an example
of reported output. A connection is initiated to the REECE device either directly to its public
[P address or through a VPN connection from a server. During the session, the program can

be initiated and stopped, and vehicles can be detected as they pass.
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|| File Edit Format View Help
| Time:2012-2-23 15:41:8, vehicle Class:2, vehicle speed:17.859003, Number of tires:4
| Time:2012-2-23 16:18:26, vehicle Class:1, vehicle speed:8.953843, Number of tires:2 |
| Time:2012-2-24 9:46:56, vehicle Class:1, vehicle speed:17.463366, Number of tires:2 b
| Time:2012-2-24 9:47:50, vehicle Class:1, vehicle speed:16.588728, Number of tires:2 L
| Time:2012-2-24 10:48:54, vehicle Class:1, vehicle speed:13. Number of tires:2
Time:2012-2-24 10:56:59, vehicle class:1, vehicle speed:12. Number of tires:2
| Time:2012-2-24 11:5:0, wehicle Class:1, vehicle speed:16.166864, Number of tires:2
{Time:2012-2-24 11:16:7, vehicle Class:1, vehicle speed:11.751586, Number of tires:2
Time:2012-2-24 11:34:38, vehicle Class:1, vehicle speed:16.22 Number of tires:2
Time:2012-2-24 11:37:35, vehicle Class:2, vehicle speed:16. Number of tires:4
ime:2012-2-24 12:55:3, vehicle Class:1, vehicle speed:14.918553, Number of tires:2
i 2012-2-24 13:0:50, vehicle Class:1, vehicle speed:13.863812, Number of tires:2
12012-2-24 :7:26, vehicle Class:6, vehicle speed:12.282585, Number of tires:6
12012-2-24 13:8:41, vehicle Class:1, vehicle speed:10.675735, Number of tires:2
12012-2-24 13:10:32, vehicle Class:1i, vehicle speed:13. Number of tires:2
12012-2-24 13:11:15, vehicle Class:1i, vehicle speed:11. Number of tires:2
012-2-24 13:14:33, vehicle Class:i, vehicle speed:18.022322, Number of tires:2
012-2-24 13:15:34, vehicle Class:1, vehicle speed:8.443620, Number of tires:2
2012-2-24 13:17:5, vehicle Class:1, vehicle speed:17.666883, Number of tires:2
2012-2-24 13:27:18, vehicle Class:1, vehicle speed:14.674169, Number of tires:2
012-2-24 13:31:3, vehicle Class:1, vehicle speed:12.157563, Number of tires:2
12012-2-24 13:46:11, vehicle Class:1, vehicle speed:19.956871, Number of tires:2
12012-2-24 14:9:2, vwvehicle Class:1, vehicle speed:9.968340, Number of tires:2
:2012-2-24 15:8:21, vehicle Class:1, vehicle speed:9.660494, Number of tires:2
12003-12-6 20:37:31, vehicle Class:1, vehicle speed:11.541675, Number of tires:2
003-12-6 21:5:8, vehicle Class:1, vehicle speed:11.491199, Number of tires:2
003-12-6 21:8:5, vehicle Class:2, vehicle speed:26.102528, Number of tires:4
12003-12-6 21:9:41, vehicle Class:1, vehicle speed:16.560846, Number of tires:2
:2003-12-6 21:10:43, vehicle Class:1, vehicle speed:7.609037, Number of tires:2
12003-12-6 21:10:43, vehicle Class:0, vehicle speed:0.000000, Number of tires:4
:2003-12-6 21:15:0, vehicle Class:1, vehicle speed:11.730599, Number of tires:2

i

Figure 5-8 Vehicle per vehicle reported output.

Testing equipment was deployed on campus, and three testing vehicles were used: a
passenger vehicle, a van, and a four-tire, two-axle, truck. A 12’ piezoelectric sensor was
deployed diagonally at an angle of 45° across a traffic lane. The sensor was connected to a

REECE device located in a cabinet located 75 feet from the road on which the sensor is

installed. See figure 5.9.
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Figure 5-9 On-campus test site for single element vehicle classification system

Axle spacing values were 9.16 feet, 11.66 feet, and 11.08 feet for the car, van, and

truck, respectively while track widths were 4.91 feet, 5.83 feet, and 5.25 feet.

A driver was asked to test drive each vehicle, being sure to impact a sensor with all
four tires for eight runs—four at 20mph and four at 30mph. An emulation of a motorcycle
using two tires was also tested. Again, the driver was asked to test drive the emulated
motorcycle for four runs—two at 20 mph and to two at 30 mph—using two tires. Test runs

total 36 in number.

All test drives for vehicles with four tires were classified as class2. This was expected,
as the axle spacing threshold separating class2 and class3 vehicles is 12.99 feet, which is
higher than the axle spacing values for all used vehicles. To ensure algorithm stability, the
threshold was changed to 11.15 feet, and an off-line test was accomplished using data from a
van. Results are presented in Table I, yielding 90% classification rate as class3 vehicles while

the remaining 10% was classified as class2 vehicles.
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Table 5.2 shows velocity average and standard deviation for test runs. Results show
consistency among velocity calculated. It is important to note that velocity is prone to human

error, as a diver might not be able to travel exactly at the pre-specified speed.

Accuracy in velocity calculated using a vehicle running with two tires on the sensor is
much lower than the case of four tires, primarily because the algorithm considers vehicle axle
spacing instead of track width as parameter to calculate velocity since now only two tires are
impacting the sensor. This issue, however, gives us a way to validate algorithm consistency at
different vehicles track widths. Velocity is calculated using time duration between first and
second pulses which corresponds to track width when using four tires and to axle spacing
when using two tire. Taking ratio between velocity using second configuration to velocity
using first configuration corresponds to ratio of vehicle axle spacing to track width.
Comparing those two ratios together helps us validate algorithm consistency when different
vehicles having different track width trigger the sensor. Ratios of calculated velocities for
four tires compared to calculated velocities for two tires for car, van, and truck were
evaluated. Averages of those ratios were taken for each type of vehicle to combine 20mph
results together and 30mph results together. Final ratios are 1.7792, 1.8719 and 2.0326 for
car, van and truck respectively. Ratios for each vehicle axle spacing L to track width w were
then taken for comparison with velocity ratios. These L/w ratios were 1.8644, 2, and 2.1111,
respectively. Comparing L/w ratio to velocity ratios proves them compatible, recognizing that

an average track width of 5.78* was used.
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Table 5-2 Calculated velocity averages and standard deviations

Requested Car Van Truck

Speed in mph velocity average (mph)/ velocity average (mph)/ velocity average (mph)/
velocity standard deviation velocity standard deviation velocity standard deviation
Four tires Two tires Four tires Two tires Four tires Two tires

20 22.96/ 12.81/ 17.72/ 9.97/ 21.28/ 10.25/
0.7724 0.1474 0.5915 0.1429 1.0959 0.0943

30 34.12/ 19.32/ 27.55/ 14.01/ 29.20/ 14.68/
0.3815 0.1339 1.2422 0.5279 0.4629 0.4254

¥ 1

.3 Multi-element piezoelectric sensor preliminary testing

This section includes testing of multi-element sensor design, as well as preliminary
testing of the fabricated multi-element sensor. Connection type was initially assessed. This
test is important, since many channels are connected to the DAQ and these might be prone to
coupling between different channels and outside noise. Connection cable is tested next for
mechanical pressure. Part of the cable, which will be impacted by passing vehicle tires, is laid
on the road surface. Because these might create pseudo vehicle pulses, they were lab tested to

account for noise coupling . Also the fabricated multi-element sensor was tested on road.

5.3.1 Signal coupling test

In the signal coupling test both single ended (SE) connection and differential
connection modes were tested and reported. In SE mode a single input (core) was connected
to input channel while the braid is grounded. In differential mode, core is connected to the
positive differential input, while braid is connected to negative differential input. Both inputs

were then referenced to common ground through resistors.

In the multi-element piezoelectric sensor, multiple channels shared the same multi-

conductor cable in which electric signals travel to the DAQ system. Also, in many
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applications, noise from electronics and the surrounding environment may couple to the
designed/studied system, negatively affecting them. Several coupling types of traveling signal
occur between conductors at close proximity, namely, radiative, capacitive, and conductive

[39].

Radiative coupling is somewhat irrelevant to our study, since the system is designed
for highway deployment in areas distant from sources with possibly significant radio wave

effect.

For capacitive coupling, a result could be signal corss talk, especially at higher
frequencies. When two conductors share the same cable at close proximity, both act as a
capacitance. With higher signal amplitude and higher frequency more power will couple to
the adjacent wire. Usually by increasing separation between conductors we’ll have higher

capacitance, thus less cross talk. However this is not an option when using the same cable.

Inductive coupling is caused by the magnetic fields resulting from current passing
through the conductor. These fields are vary due to the time varying nature of the passing
current. The magnetic field will induce a voltage in nearby conductors. These two conductors
can be seen as a transformer with a mutual conductance M. Thus the induced voltage in the

interfere (Vn) is given in eq.5.2:
V, = 2nfMI, eq. (5.2)
where 1, is the induced current, and f is its frequency. For more details refer to [39].

Eq. 5.2 clearly demonstrates that increasing frequency also increases inductive
coupling. Inductive coupling can be mitigated by increasing space between conductors.
However, as previously stated, this is not feasible when sharing the same cable. Shielding can

be used, as well, to channel unwanted signal to the ground.
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For a coupling problem, it is advised to use a twisted pair cabling with differential
mode. In contrast to SE mode, differential mode is inconvenient to use because it employs
twice the amount of DAQ resources since each input requires two channels instead of one.
This can create a problem, since every DAQ has a limited number of input channels and the

proposed method requires a large number of piezo-elements.

Lab testing was performed for preliminary assessment of coupling and its effect on
signal integrity when using piezoelectric sensors. To investigate referenced single ended
(RSE) and non-referenced single ended (NRSE), two inputs were attached to channels 1 and
2 in the DAQ. In RSE mode, channel 1 was attached to a piezo-element. See figure 5.10.
Channel 2 was attached to a 5S00Hz sine wave generated by a waveform generator. See figure
5.11. Crosstalk from channel 2 to channel 1 is evident; however, the opposite was not true

due to high noise at the channel 2 input.
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Figure 5-10 RSE mode piezo-element input channel
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w10

Figure 5-11 RSE mode 500Hz sine wave input channel

The following graph shows the correlation factor between two channels at different
lags. Since noise in channel2 is too high, and channell to channel2 crosstalk isn’t evident, the

correlation function could offer a better idea of coupling level.

Figure 5.12 shows a high correlation at lag zero where correlation factor p ~= 0.7.
Fluctuation in correlation factor is also noticeable when zooming, wherein the plot alter
between positive and negative values at a fixed frequency. This alternation frequency is equal
to 60Hz and the result of the surrounding 60Hz electrical field noise due to lab testing. Thus

when moving in the correlation function this noise get out of phase and then in phase at a

fixed rate of 60Hz.
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Figure 5-12 Correlation between inputs of channels 1&2 in RSE mode

NRSE mode was tested, and results were poor as a result of shifted output and high

noise. As such, it will not be considered for future experiments.

The following test was conducted with twisted pair cable and differential DAQ mode.
As previously mentioned, the purpose for using twisted pair cabling is mitigating coupling
effect. Channell input resulted in a pulse generated by a piezo-element, as shown in figure
5.13. Channel2 input was a sine wave at 500Hz and 600mv, as shown in figure 5.14. Figure
5.14 clearly demonstrates an extremely high noise component when the input is off. Of note
is that the piezoelectric signal was generated in the lab merely by tapping on the piezo-

element.
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Figure 5-13 Differential mode piezo-element input channel with twisted pair cabling
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Figure 5-14 Differential mode S00Hz sine wave input channel with twisted pair cabling

Correlation factor between both inputs was calculated, and a correlation factor at lag zero is p

~= (.7 was assigned.
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In terms of coupling, it was concluded that using differential mode with twisted pair
cabling is the most desired method to preserve signal integrity. Please note that no shielding

was used.

5.3.2 Cable pseudo signal test

As previous noted, several wires carrying an input signal share a cable. The cable is
located on the pavement next to the piezo-elements themselves. This cable is impacted by
passing vehicles in the same fashion as piezo-elements. The impact will alter the capacitance
between wires and might also create a pseudo pulse that would be detected at the input of the
DAQ. Testing was needed to assess different types of connection and observe resulting
signals from the cable impact—whether or not it might affect the final method selection. In
this test, differential mode with twisted pair was used because of its attractive coupling

resistive properties.

Lab tests were conducted wherein a student in charge of the experiment impact both
the piezo-element and the conducting cable. Two configurations were tested: 1.) Positive and
negative inputs of each channel were referenced to the ground by 1MQ resistors; and 2.)

Positive and negative inputs are referenced to ground through 100k<2 resistors.

In the first case, the overall signal level was higher, thus, noise appears more clearly.
In the second case, the overall signal level is lower because 100k€2 resistors pass more power
to the ground leading to a cleaner signal. An example of the second configuration is shown in

figure 5.15 wherein six piezo-element impacts and 13 cable impact s are depicted.
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Figure 5-15 Cable hit compared to piezo-element hit in-lab test using 100kQ resistor for ground referencing

The average of the six piezo-element peaks amplitude impact s is 0.327v, whereas the
average of 13 peaks generated by a cable impact is 0.0121v. Thus, in this scenario, the cable

hit level is approximately 28db lower than that of the piezo-element impact.

5.3.3 Multi-element sensor road test
Three vehicles (car, van, and truck) were used to test a multi-element sensor at
University of Oklahoma-Tulsa campus. The sensor was deployed on the campus’ south road

at a 45 degree angle to traffic flow.

A driver was asked to perform 10 test runs—five at 20 mph and five at 30 mph—for
each of the three vehicle types, making sure that all four tires crossed a sensor. Figure 5.16

depicts the road test setup.
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Figure 5-16 On road test site for multi-element piezoelectric sensor.

Yielded results demonstrated a repeating pattern in all tests. Elements 3, 4, 11, and 12
registered voltage amplitude that is an order of magnitude higher than other sensor elements.
Also, sensor elements 5 and 13 showed a higher amplitude value than other sensor elements,
implying voltage build up on input channels. During this test the driver attempted to impact

different elements during different test runs.

Other sensor elements produced the same voltage level with varying values between
different elements. Sensor elements registered four pulses in most test runs. Although pulses

were characterized with different values in different runs, signal shapes from all elements

were similar.

These issues made it difficult to distinguish which element was triggered by which
tire. Elements unaffected by high level voltage were studied, as voltage values are similar.
For some test results some elements measured higher amplitude than adjacent ones; these

were separated by width comparable to the vehicle width. See figure 5.17 for example of van
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signal output at 20mph for an element characterized with higher output and then the adjacent
element. Of note is that this was not typical for all test runs. Signals from elements with

higher amplitude also have similar pulse shapes.

Figure 5.17 demonstrates that channels 6 and 14 have higher output than the outputs
of adjacent channels, when taking into consideration that channel 4 is affected by voltage
buildup. However, pulses 1 and 3 have higher amplitude than 2 and 4 in all runs, most likely
due to sensor bouncing. Sensor elements 6 and 14 are 8-feet apart, which, when multiplied by

cos(45°), is 5.6569 feet. This is comparable to the van track width of 5.8333 feet.
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Figure 5-17 Multi-element sensor output for van at 20mph a) channel 5 b) channel 6 ¢) channel 7 d) channel 13 e)
channel 14 f) channel 15

The expected cause for errors in this test setup included:

- Sensor is not firmly fixed to pavement, causing it to bounce on the ground at each
tire impact. When this occurred, all elements were triggered for each tire impact.

- Voltage buildup at certain channels as a result of a connection with the DAQ and
sensor.

- Coupling between sensor elements due to grounding resistor.

Trouble shooting solutions for the aforementioned issues could possibly include:

- Affix the sensors firmly onto the pavement or request that the driver is travel very
slowly on the sensor to decrease sensor bouncing.
- Check DAQ connection for channels 3, 4, 11, and 12,as well as the corresponding

sensor connections.

- Reduce grounding resistors to drive unwanted signals to ground.

It was discovered that persistent sensor signal errors during our previous sensor road
installation and field-testing dated in 03/23/2012 was caused by the loos installation of the

sensor on the surface. Mechanical vibration caused by a passing vehicle produced signals on
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all the multi sensor elements regardless whether the elements were impact by the vehicle.
Taking this fact into our consideration, the sensor was firmly fixated on the road and test
vehicles drove at slower speeds (10m/h) over the sensor to minimize the sensor bouncing and
vibration. Furthermore, additional filtering was implemented to remove cross talk among

different DAQ channels.

Three test vehicles were used in this new evaluation, namely; car, van and a truck.
Four runs were performed for the car while three runs were performed for each the truck and

the van.

Better results and signal quality were obtained during this installation. Impacted
sensors accurately generated two pulses indicating vehicle detection while in previous tests
impacted elements generated a total of four pulses. Figure 5.18 shows the signals from
impacted sensor elements. This is a very interesting result because it proves that once all
channel inputs are calibrated to uniform output multi-element sensor will be ready to be used

for vehicle classification.
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Figure 5-18 Multi-element car signal output. a) Element 4 b) Element 11

The firm installation of the sensor was able to remove the bouncing effect on the
sensor. However, signal errors due to coupling and cross talk persisted in this installation.

Elements that were not impacted by the overpassing vehicle generated signals as strong as
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those generated by the impacted elements, resulting in element detection error. problem and
energy build up still exists where channel 10-14 have close output that is much higher in
amplitude than other channels. Also channel 4 and 5 had close output in most of the test runs.
This problem prevents us from detecting exact element that was triggered by the vehicle tire.

This can be in part due to connection to the DAQ which is very crowded, see figure 5.19.

Figure 5-19 Multi-element connection to DAQ

New connection scheme will be done for future testing to eliminate coupling and

further testing will be carried out to validate multi-element sensor operation.
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Chapter VI

6 Conclusion and future work

The number of motorcycles traveling on highways has increased in recent years. This
trend has not been reflected in FHWA statistics for vehicle miles travelled (VMT), indicating
a critical deficiency in motorcycle classification using current systems. Such a discrepancy
demonstrates a rising need for a more accurate classification system. Though classification
system is intended for more accurate motorcycle classification, system should be capable of

performing vehicle classification of other 12 FHWA classes.

The proposed vehicle classification system used a novel approach of tilting the
piezoelectric sensor to classify vehicles based on tire count and spacing rather than axle count
and spacing. An algorithm was developed in which tire count, tire spacing, vehicle velocity,
average track width, and pulse duration were used to process feature extraction and vehicle
classification. Using tire count makes motorcycles clearly distinguishable from other vehicle

classes.

Algorithm was developed on an embedded system using C code. For current
development, a single element piezoelectric sensor was used. The sensor was deployed
diagonally over the roadway surface. The newly designed, single-element vehicle
classification system was tested using multiple vehicles and an emulation of motorcycles with

two tires. The system successfully classified motorcycles. Results were presented in this

thesis.

A new vehicle classification method using axle spacing to track width ratio was also
presented. This method was applied to data from on-road test of various vehicles. The system

showed promising results. The method will advance technology so that velocity and track
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width are no longer be required to classify vehicles given the axle spacing to track width
ratio. This method eliminates the need to use the same average track width for all vehicles,
thus improving classification accuracy for vehicle classes sharing the same number of tires. A
multi-element sensor was fabricated and underwent initial testing. Results are presented in

this thesis.

6.1 Future testing

Further on-road testing of the single-element classification system for vehicles
representing a variety of classes is needed. Most important, testing will aid in assessing axle
spacing to track width ratio usability on all vehicle classes sharing same number of tires.
Also, more extensive testing is required to fully develop the multi-element vehicle
classification system. Additional focus on the amplitude of signal pulses and their position
with regard to each other is warranted to assist in differentiating elements impacted by a

particular vehicle tire from other vehicles in close proximity.

6.2 Algorithm development for vehicle classification system using L/w ratio
Using results from variety of vehicle classes tested, the proposed algorithm can be

adjusted to use axle spacing to track width ratio for vehicle classification. Testing is required

to set thresholds distinguishing vehicle classes with the same number of tires. Changes to

single element vehicle classification system are only in software.

6.3 Multi-element classification system development

Multi-element vehicle classification system should also be developed on an embedded
system following sufficient testing is performed taking into consideration previously
mentioned algorithm differences with single element system. A computing system with

superior performance is required since the system is characterized by a large number of DAQ

input channels.

87



References:

(1]
2]

[3]

[4]

[5]

[6]

[7]

8]

191

[10]

[11]

[12]

[13]

[14]

“Traffic Safety Facts,” NHTSA’s National Center for Statistics and Analysis, 2005.

Xuemin Chen et al., “Evaluating Innovative Sensors and Techniques for Measuring
Traffic Loads”, International Conference on Networking, Sensing and Control, 2008.
ICNSC 2008. IEEE , 2008.

B.G. Stoneman and A.C. Moore, “DYNAMIC AXLE AND VEHICLE WEIGHT
MEASUREMENTS”, Second International Conference on Road Traffic Monitoring,
1989

Saowaluck Keawkamnerd et al., ''Vehicle Classification with low computation
magnetic sensor'", ITS Telecommunications, ITST 2008. 8th International Conference
on, 2008.

Sing Yiu Cheung et al., “Traffic measurement and vehicle classification with a single
magnetic sensor”, 84th Annual Meeting, Transportation Research Board, 2004

Research Division, Nevada Department of Transportation, “Development of a Low-
Cost Automatic Vehicle Classification (AVC) System”, 2001

Saowaluck Kaewkamnerd et al.,, “Vehicle Classification Based on Magnetic Sensor
Signal,” Proceedings of the 2010 IEEE International Conference on information and -
Automation, 2010

Pursula, M. and Kosonen, I., “Microprocessor and PC-Based Vehicle Classification
Equipment Using Induction Loops”, Second International Conference on Road Traffic
Monitoring, 1989

Janusz Gajda et al., “A Vehicle Classification Based on Inductive Loop Detectors”,
IEEE Instrumentation and Measurement Technology Conference, 2001

Janusz Gajda et al., “Measurement of Road Traffic Parameters Using an Inductive
Single-Loop Detector”, 1997

Sroka, R., “Data fusion methods based on fuzzy measures in vehicle classification
process,” Proceedings of 21st IEEE Instrumentation and measurement Technology
Conference, pp.2234-2239, May 2004.

Carlos Sun et al., “Inductive Classifying Artificial Network for Vehicle Type
Categorization ,” Computer-Aided Civil and Infrastructure Engineering, pp. 161-172,

2003.

Soner Meta and Muhammed G. Cinsdikici, “Vehicle-Classification Algorithm Based
on Component Analysis for Single-Loop Inductive Detector,” IEEE Transactions on
Vehicular Technology, VOL. 59, NO. 6, pp. 2795-2805, 2010.

Surendra Gupte et al, “Detection and Classification of Vehicles”,JEEE
TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2002

88



[15]

[16]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
(28]
[29]
[30]

[31]

[32]

[33]

Mo Shaoqing et al., “Real-time Vehicle Classification Method for Multi-lanes
Roads”,4th IEEE Conference on Industrial Electronics and Applications, 2009

Wenbin Zhang et al., “A Novel Vehicle Classification Using Embedded Strain Gauge
Sensors,” Sensors — Open Access Journal, 8, pp. 6952-6971, 2008.

Ravneet Bajwa et al., “In-Pavement Wireless Sensor Network for Vehicle
Classification,” Information Processing in Sensor Networks (IPSN), pp. 85-96, 2011.

“Counting Motorcycles final report,” American Association of State Highway and
Transportation Officials (AASHTO), 2010.

Website:
http://support.diamondtraffic.com/knowledgemanager/questions/40/Road+Tube+Kno
wn+Problems+%26+Solutions, 10/17/2011

“Traffic Monitoring Handbook”, Florida Department of transportation
Transportation Statistics Office, 2007

P. Bonsall, “Information Technology Applications in Transport (Topics in
Transportation), V.S.P. Intl Science, 1987

“BL Roadtrax® Traffic Sensor Installation Instructions”, Measurement Specialties,
Inc, 2005.

“Highway Monitoring System Traffic Data For High Volume Routes: Best Practices
and Guidelines Final Report”, FHWA Office of Highway Policy information, 2004

A Summary of Vehicle Detection and Surveillance Technologies used in Intelligent
Transportation Systems, The Vehicle Detector Clearinghouse, 2007

Donald L. Halvorsen, “Piezoelectric Polymer Sensors”, National Traffic Data
Acquisition Conference, 1996

“Roadtrax® BL Piezoelectric Axle Sensor”, Measurements Specialties, 2008
“Piezo Polymer Coax Cable Rev 1”, Measurements Specialties, 2009

“Model 108 Temperature Probe Revision: 11/11”, Campbell Scientific, Inc. 2011
NI 9215, National Instruments Corporation, 2012

NI 9205, National Instruments Corporation, 2012

“Helios Single Board Computer PC/104 SBC with Vortex Processor and Integrated
Data Acquisition”, Diamond Systems Corporation, 2012

“Helios Panel /O Board User Manual Revision A”, Diamond Systems Corporation ,
2011

“Oracle VM VirtualBox User Manual Version 4.1.8”, Oracle Corporation, 2011

89



[34]
[35]

[36]

[37]

[38]

[39]

Website: http://www.cprogramming.com/tutorial/c-tutorial.html , 04/13/2002
Website: http://gnosis.cx/publish/programming/sockets.html, 04/13/2002

“RFC:793 Transmission Control Protocol, Darpa Internet Program, Protocol
Specification”, Information Sciences Institute, University of Southern California, 1981

Website: http://users.actcom.co.il/~choo/lupg/tutorials/multi-thread/multi-thread.html,
04/13/2002

Website: https://computing.llnl.gov/tutorials/pthreads/, 02/14/201

“Field Wiring and Noise Considerations for Analog Signals”, National Instruments,
2011

90



Appendix A
This appendix shows the procedure by which a new REECE device is added to the Linux
server vpn network. It is assumed that the REECE device is working and have internet

connection.

- REECE will keep trying to connect to server.

- On server check for REECE connection and get its public IP address: tail —f
/var/log/secure

- Connect to REECE using putty of any other terminal software

- Generate new RSA keys

- Secure copy (scp) public key to the server

- On server add REECE name to the list of users

- Give this user (REECE) permission to create vpn connection
Echo ‘<name> ALL=NOPASSWD: /usr/sbin/pppd call <name>’ >> /etc/sudoers

- Make new file in “/etc/ppp/peers/” named as the REECE user. This file the vpn
connection options and parameters for this user and the specific vpn network
address that REECE will have.

- Install public keys on server and make REECE user as their owner:
cp /PATHofPublicKey/id_rsa.pub /home/<name>/.ssh/authorized keys2

chown <name>:<name> -R /home/<name>
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Appendix B

Major code used in Matlab:

Feature extraction.m:

>n [pulse_numberD,velocityM,vehicle length, tl12,t13, T1D,T3D ] =
Feature extraction (FileToBeRead)

a8 sum Tixed
vehicle count = 0;
5 (true)
signal_statel = 0; signal state2 = 0;
sampling_rate = 10240; sample period = 1/sampling rate;
detection = false; data_pointgr = 1 B
pulse_number = 0; zeros_cons = 2/sample period; % number of sz

e

countl = 0; count2 = 0; count3 = 0; count4 = 0; count5 = 0; count6 = 0; count?
i

ikes arrays

= 0; count9
theta = pi/4;
width = 1.262;
en_class = false;
once_cond = true ;
number of starts = 0;
number of ends = 1;
previous pulse = -1000000;
2 4 / hi R oT:

%co

imaity (remo

(FileToBeRead) ;

_fi txt!', eval {

- data_pointer 1
length_data = length(data);

lelimiter', V", "~append’, 'roffset",

end
for counter = data_pointer:length data % counter repres
w n all of the detecte 18

data_pointer =
ue’s index within
i=1;
¢1f data_pointer > 1 && counter == data_ pointer
i = counter - data_pointer;

21 =1 + 1;

1 && counter == data_pointer %
e data file curre y being read

if data(i)> -0.25 && data(i) < 0.0025
datal(i) = 0;

else datal(i) = data(i);

end

if datal(i) > O

signal_state2 = signal_statel;
signal_statel = 1;

zeros_cons = 0;

detection = true;

:lzelf datal(i) < O
signal_state2 = signal_statel;
signal_ statel = -1;
zeros_cons = 0;
detection = true;

s

zeros_cons = zeros_cons+l;

if signal statel == 1 && signal_state2 ~= signal statel
if counter > previous_pulse + (0.0l/sample period)
pulse number = pulse_number + 1;
var_namel = genvarname ([’

3y switch case {1 to 14)

',num2str (pulse number)]);
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0; countl0 = 0; countll = 0; countl2 = 0; countl3 = 0; countld = 0;

index

Can he



eval ([var_namel '= counter;' ])

previous_pulse = counter;
number of starts = number of starts+l;
end

ipay atte

varhnameZ genvarname([
usig switch case (1 1 14)

eval ([var_ name2 :

number of ends= number . BE ends+l
and

if detection == true %&& sw == true
if pulse number ==1
countl = countl + 1;
spikel (countl) = datal(i);
f pulse number ==
count2 = count2 + 1;

pul

@O
M

spike2 (count2) = datal(i);
elseif pulse number ==

count3 = count3 + 1;

spike3 (count3) = datal(i);
elseif pulse number ==

count4 = count4d + 1;

spiked (countd) = datal(i);

elseif pulse number ==
count5 = countb5 + 1;
spikeb (count5) = datal(i);
elseif pulse number ==
count6 = count6é + 1;
spike6(count6) = datal(i);
elseif pulse number ==
count?7 = count?7 + 1;
spike7 (count?7) = datal(i);
f pulse number ==
count8 = count8 + 1;
spike8 (count8) = datal (i);
elseif pulse number ==
count9 = count9 + 1;
spike9 (count9) = datal(i);
elseif pulse number == 10
countl0 = countlO + 1;
spikelO(countl0) = datal(i);
elseif pulse number == 11
countll = countll + 1;
spikell (countll) = datal(i);

elzeif pulse number == 12
countl2 = countl2 + 1;
spikel2(countl2) = datal(i);

elseif pulse number == 13
countl3 = countl3 + 1;
spikel3 (countl3) = datal(i);

elseif pulse number == 14
countld = countld + 1;
spikeld (countl3) = datal(i);

end

eros_cons*sample_period > 2 counter == length data) && pulse number > 0
1y parameters (length, t .etc) after detec

detection = false;

if pulse_ number >= 4

tl2 = (st_spike2-st_spikel)*sample period;

D12 = width*cot (theta);

velocity = D12/tl2;

velocityM = velocity/0.44704;

pulse numberD = pulse_ number;

1 is over

end
T1lP = 0; T3P = 0; period of lst and 3rd pulses {
A23 = 0;
swi 1 pulse_ number
case 1
en class = false;

e 2
en_class = true;
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vehicle length = 1.5;

width = 0;
case 4
en_class = true;
tl3 = (st_spike3-st_spikel) *sample period; % added only for data
vehicle_ length = ((st_spike3 - st _spikel)* sample period)* velocity;
T1P = countl * sample period;
T1D = T1P; .
T3P = count3 * sample period;
T3D = T3P; B
C 6
en_class = true;
vehicle_length = ((st_spike5 - st_spikel)* sample period)* velocity;
A23 = ((st_spike5 - st _spike3)* sample period)* velocity

> 8
en_class = true;
vehicle length = ((st_spike7 - st _spikel)* sample period)* velocity;
case 10
en_class = true;
vehicle length = ((st_spike9 - st _spikel)* sample period)* velocity;
A23 = ((st_spike5 - st_spike3)* sample period)* velocity;
case 12
en_class = true;
vehicle length = ((st_spikell - st_spikel)* sample period)* velocity;
A23 = ((st_spike5 - st_spike3)* sample_ period)* velocity;
otherwise
if pulse_number >= 14 && mod(pulse_number,2)== 0 %

1at is more than 14

en_class = true;

before last = genvarname (['st sp ,num2str (pulse number-1)]);
vehicle length = ((eval([before last]) - st_spikel)*

sample_period)* velocity;
else
en_class = false;
end
end

if en_class
vehicle count = vehicle_count + 1;
class = Classification(pulse_number,vehicle length,T1P,T3P,A23)
else false trigger = true;

disp('fal

s

end

signal statel = 0; signal_state2 = 0;
pulse number = 0; zeros_cons = 2/sample_period;

3 en
countb5 = 0;

countd = 0; count6 = 0; count7

count3 = 0;

countl0 = 0; countll = 0; countl2 = 0; countl3 = 0;
countld = 0;

en _class = false;

(]

D
oo (il |

Q0

once_cond = detection;

Classification.m:

on class = Classification(pulse_number,vehicle_length,T1P,T3P,A23)

fu

switch pulse_ number
case 2
class = 1;
case 4
if vehicle length <= 3.96 && vehicle_length > 0
class = 2;
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vehicle_length <= 5 && vehicle length > 0
T1P+0.02 == T3P; B

class = 4;
e class = 3;

ena
vehicle length > 5
T1P+0.02 == T3P;
class = 5;
se class = 3;
end
elze class = 0;

else class = 0;
nd

class = 9;
elseif A23> 3
class = 11
else class = 0

i
’

class = 12;
else class = 0;
end
otherwise
class = 14;

Code developed on REECE device

DAQ _1CHcont.c:

[x dekdkkxk g dokkkkdok gk hk dkkkkdd APDAD

ok ok ok sk e ok ok bk kK ok ok ke ke bk bk kb sk b bk ok kR kex &/

FRk ko Rk A

e e ke ke ke ke ok Rk Rk ok ek

e e g ok

rer exampler vErdrdd

PR
s cl@ F kR Nk Rk R ko Ak ok ko ke k]

J o kk ek ek ke

sampling rate; 1KS/s, number of converstions;
g thresholid; 2048

#inc
finclude <stdli
#include <math.h>
#include <time.h>
#include <string.h>
// diamond driver in
#include "dscud.h"

o
&1

X_AD_CHANNEIL, NUMBER

// var declarations

BYTE result; // returned error code

DSCB dscb; /7 handle used to refer to the board
DSCCB dsccb; // structure containing board settings
DSCADSETTINGS dscadsettings; // structure containir
DSCAIOINT dscaioint; // structure containing auto-
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DSCS dscs; /7 used for interrupts.
DFLOAT voltage;
char volts[3#];

ERRPARAMS errorParams; // 3 e for returning errcr code and error string
int intBuff; Ve variables of int
; longBuff; /7t variabl long
float floatBuff; 14 & variables floa
num_conversions =
stop_after_ transfers
current transfers;
i last_total transfers;
last_transfers;
new_sample count;
i= 4 /7 neous counter
k = ;
num;
OS_DEFAULT BASE ADDR
//Main func
int main ()
{
J P e — s smmsssser e e s
// I. DRIVER INITIALIZATION
/7
/7 Initializes the DSCUD library.
s
/' "/ P nresas seasieenensiaen e seereees sesseses P ——

if ( dscInit ( DSC_VERSION ) != DE NONE )
{
dscGetLastError(&errorParams),
fprintf ( stderr, ° ¢

.
\n",

dscGetErrorString(errorParams.ErrCode), errorParams.errstring i
return 0;

/7 BOARD INI

4

/7 Initialize the LIOS board. This function passes the various
/7 hardware parameters to the driver and 2ts the hardware.

/; //

[/ mmm—— sam

7y

printf ( "\r

dsccb.base_address = HELIOS_DEFAULT_ BASE_ADDRESS;
dsccb.int_level = I

if ( dscInitBoard ( DSC_HELIOS, &dsccb, &dscb ) != DE_NONE )
{

dscGetLastError (&errorParams) ;

fprintf ( stderr, "d rd error: %is

XOox: %8

dscGetErrorString (errorParams.ErrCode), errorParams. errstrlng Y
return U;

INITIALIZAT

Yy e the structu the AD conven settings and
7 ss 1t to the

/7

// e
printf ( "\

memset (&dscadsettings, @, sizeof (DSCADSETTINGS)) ;

dscadsettings.range = RANGE_10;

0¥} oLP only has a 10V physical range. This
o
TEY.

uct member is for backward compatik
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dscadsettings.range = RANGE 10;

dscadsettings.gain = @;
dscadsettings.load cal = ©;

dscadsettings.current_channel = {i;

if ( ( result = dscADSetSettings ( dscb, &dscadsettings ) ) != DE NONE )
{
dscGetLastError (&errorParams) ;
fprintf ( stderr, ° € \
dscGetErrorString (errorParams. ErrCode), errorParams errstrlng ),
return O;

}
/7 Interrupt settings

1y

printf (
memset (&dscaioint, , sizeof (DSCAIOINT)) ;
dscaioint.num_conversions = num_conversions;

/7 If all 16 channel are operational the

dscaioint.conversion_rate = if
rate=rate/l6

dscaioint.cycle = 1;

dscaioint.internal clock Ly
dscaioint.low_channel = o;

dscaioint.high_channel = &;

dscaioint.external gate_enable = {; // can enable it if need be

dscaioint.internal clock gate = i; // can enable it if need be
dscaioint.fifo_enab = [;
dscaioint.fifo_depth = 18245

// Dump Threshold here iz the
/7 kernel space is copi

structure submitted in user space.

dscaioint.dump_threshold =

// allocate space r k =

// our samples bu‘leltT@an

dscaioint.sample values = (DSCSAMPLE*)malloc( sizeof (DSCSAMPLE) *
dscaioint.num conversions );

if ( ( result = dscADSampleInt ( dscb, &dscaioint ) ) != DE_NONE ) // Do the

g process and if result is zero that means no error happend
{
/- th function is going to sample the input and put it in bu: passed in

aioint. {team)

//an erx hap i so log it.
dscGetLastError(&errorParams),
fprintf ( stderr, "dschA

dscGetErrorString (errorParams.ErrCode), errorParams.errstring )-
free( dscaioint.sample values ); // remenber

er

MEmory
return {;

PP ALLSS LTSS
cerrupt status

SIELELLL L
/7 Check
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LII0TE7 1077777777777 77777
dscs.transfers =
dscs.overflows = i;

dscs.op_type = OP_TYPE INT;

current transfers = {;
last_total transfers = 7;
last_transfers = @;

do

{

do
{ dscGetStatus(dscb, &dscs);
dscSleep (SLEEP_TIME) ;
}while(dscs.total_ transfers - last total transfers < i{);

printf (g

if ( dscs.overflows )

{

pringf ("
break;
}
if ( dscs.total transfers == last total transfers )
{
printf (" SLEEP TIME) ;
break;
}

new_sample_count = dscs.total transfers - last total transfers;

LE
us
.8 bigger

cular buf
% ch

circulaxr buf

e
if ( new_sample_count > num conversions )
{
printf (" §
new_sample_count - num conversions);
break;

current transfers = dscs.transfers;
last_total transfers = dscs.total transfers;
if ( current transfers > last_transfers )
{ B printf ("poi
for ( i1 = last_transfers; i < current_transfers; i++ )

{

if ( dscADCodeToVoltage ( dscb, dscadsettings,
dscaioint.sample values[i], &voltage ) != DE_NONE)
{
dscGetLastError (&errorParams) ;
fprintf( stderr, "<
dscGetErrorString (errorParams.ErrCode), errorParams.errstring );
free ( dscaioint.sample values );
return U; -

}

sprintf (volts, "%
socket client(volts);

} else if ( current transfers <= last_transfers )

{ printf ("point2\n");
for ( i1 = last_transfers; i < num_conversions; i++ )
{
if ( dscADCodeToVoltage ( dscb, dscadsettings,
dscaioint.sample values[i], &voltage ) '= DE_NONE)
{

dscGetLastError (&errorParams) ;

fprintf( stderr, * HCodeToV
dscGetErrorString (errorParams.ErrCode), errorParams.errstring );

free ( dscaioint.sample_values )i
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return o

sprintf (volts,’
socket_client(volts);

}

1", voltage );

for (i = U; i < current_ transfers; i++ )
{ printf ("poin
if ( dscADCodeToVoltage ( dscb dscadsettings,
dscaioint.sample_values[i], &voltage ) != DE_NONE)
{

dscGetLastError (&errorParams) ;

fprintf( stderr, "
dscGetErrorString(errorParams.ErrCode), errorParams.errstring );

free ( dscaioint.sample values );

return i,

}
sprintf (volts, "%4.
socket client(volts);

L

, voltage );

}
}
last transfers = current transfers,
// cond {This is

currently _ing } t : 4
if ( last total transfers >= stop_after transfers )

{
break;

}
}while ( 1 );

free( dscaioint.sample values );
dscFree() ;

i

printf ( "\

return {;

socket client.c:

/% H ke e e ke ke sk k ke ko Rk R gy

flJ°ﬂ1 ok ok de ok ok ko

R

1% Kok Xk ow

#define ADDRESS "/root/con" /* addr to connect */

void socket_client (char voltagel[])

{
char c;
FILE *fp;

er int i, s, len;
sockaddr_un saun;

/~L
= will
*
}/
if ((s = socket(AF UNIX, SOCK STREAM, ©)) < &) {
perror ("client: o B
exit (1);
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this connection is
= AF UNIX;

/%
* Try to €6 : For th to
* succeed, lready have bound
. ;

add ssued a listen()

argument in
re, not jus
ket name.

tes the “"length" of
the length

len = sizeof (saun.sun_family) + strlen(saun.sun path);

if (connect(s, &saun, len) < ) {
perror (" ")
exit (1)

/7 Sending the string containing voltage value to server

send (s, voltage, strlen(voltage), {);

F 16 soCck
close(s);

socket server.c:

7k dek etk e ok ek ek ok ok ok ok ek ek kb g

ek s Bh bt e FASEEEES LT T L TR L

ok ke sk ok ek ok ok Rk

R R R R R S

con"  /* addr to conne */
pthread mutex t a_mutex = PTHREAD MUTEX INITIALIZER;

FILE* handle;

void Classification(int pulse_number,
velocity)

{

FILE* handleres;

float Mvelocity = velocity/i. 447
time_t t = time (NULL);

% vehicle_length, float T1P, £

= *localtime (&t); //defining time

to add to

class;
switch (pulse_number)

{

case
class = 1;
break;
case 4:
if (vehicle_length <= && vehicle_length > U) /7 Some general bounderies

ide

are taken from FHWA traffic monitoring Table 4-A-1




and bounderies are assuemd and maybe adjusted to have

better pexf
else 1f (vehlcle _length <= I && vehicle_ length > )
{
if (T1P+{.0Z2 == T3P)
class = 4;
else class = 3;
}
else if (vehicle length > %)
{

if (T1P+i.0Z == T3P)
class = %;
else class =
}
else class =
break;
case ©:

if (A23 < )
class = ;
else if (A23> 7)
class = 4;
else class =

break;

case ii):
if (A23 < 7)
class = %;
else if (A23> )
class = i:;
else class = 0y
break;
case ;
if (A23 < )
class = 1{;
else if (A23> A)
class = 1z;
else class = U7
break;
default:
class = .4;
break;

}

handleres = fopen("/
fprintf(handleresﬁ

& 5 f,
\n", tm. tm _year + 900, tm.tm mon + !, tm.tm mday, tm. tm_hour,
tm tm mln, tm tm sec, class Mveloc1ty pulse number) ;

.,

48 Vel i

i i tm tm _year + 15030, tm.tm mon + i, tm tm mday, tm. tm hour, tm tm min,
tm tm_sec,class,Mvelocity,pulse_number) ;
fclose(handleres)

id *Feature Extraction (i:
sification
{ prlntf( |
float *vehlcle data,
vehicle data=test;
int data_pointer =
zeros_cons=.1{00u0,en_class
T int number of starts = ¢, number_of ends = [,previous_pulse = -1
+,length _data;
3t
stﬁspikel,st_spikeZ,st_spike3,st_spike4,st_spikeS,st_spike6,st_spike7,st_spike8,st_spike9,st_s
pikelO,st_spikell,st_spikelZ,st_spikelB,st_spikel4,st_spike;
int
en_spikel,en_spike2,en _spike3,en_spiked,en_spike5,en_spike6,en_spike7,en_spike8,en_spike9,en_s
pikelO,en spikell,en_spikel2,en splkelB en_spikeld;
£ sample_period = i/sampling rate, velocity={, Awidth =

,counter,i, signal statel = ¢, signal state2 = {,

', pulse number =

1t sampling rate = LOUC
6Z,vehicle_length, t13,T1DB, T3D
double pi = 4.0%atan(L.0), theta = M PI/4 ;
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=0, T3P = $,A23 = {; // period of 1lst and 3zd pulses

int detection, ones cond = i;

//printf (s \n"};
length_data (int) floorf (vehicle datal[i]); // The length of data is added to
cdata array rst field)

while(ones_cond)

{
for(counter=data%pointer;counter<length_data+‘;counter++) //E to examine
points and extract vehicles
{

if (data_pointer == | && counter == data_pointer)

point index (if multiple vehicles are present
i=1;

else 1 = i+ ;

threshold for pulse

if (vehicle data[i] > ©.1) //positi

{(adjustable)

signal_state2 = signal_statel;
signal_statel = ;
zeros_cons = [;

}

else if (vehicle data[i] < =-0.2%) //ne
threshold for pulse detection

{

signal_state2 = signal statel;
signal_statel = -1.;
zeros_cons = i

}
else zeros_cons = zeros_cons+.; // counter for consequitive zeros
to W to a p or a vehi ends
if (signal_statel && signal_state2 != signal_ statel) // Pulse detection
; i of data sanmples
if (counter > (previous_pulse + (.0l /sample period))) //duration since
last pulse {(to avoid multiple ¢ the same pulse)
{
pulse number = pulse number + [;
switch (pulse number) //detection

{ case
st_spikel = counter;
break;
case 7:
st_spike2 = counter;

then assume that it's the first axle of an arriving vehi

velocity = (Awidth*tan(theta))/((st_spike2-

st _spikel)*sample period) ;

break;
cage

st_spike3 = counter;
break;
case 4:

st_spiked = counter;
break;
cagse o:

st_spike5 = counter;
break;
case

st_spike6 = counter;
break;
case

st_spike7 = counter;
break;
case

st_spike8 = counter;
break;
case

st_spike9 = counter;
break;
case §
st_spikel0 = counter;
break;
case
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//When

igh speed

{

st_spikell = counter;

= counter;

st_spikel3 = counter;

break;
case 14:
st_spikeld = counter;

break;

default:

if (pulse_number >4
st_spike = counter;
else
perror ("E
exit(l);
}

break;

}

previous_pulse = counter;
number_of starts = number of starts+l;

}

if (zeros_cons*sample period >

to

call an end of a pulse (based on axle pay attention,

switch (pulse number)
{

case 1:

en_spikel = counter-zeros_ cons;
break;
case .:

en_spike2 = counter-zeros_cons;
break;
case I:

en_spike3 = counter-zeros_cons;
break;
case 4:

en_spiked = counter-zeros_cons;
break;
case [:

en_spike5 = counter-zeros_cons;
break;
case 7

en_spike6 = counter-zeros cons;
break;
case 7:

en_spike7 = counter-zeros_cons;
break;
case &:

en_spike8 = counter-zeros_cons;
break;
case 4:

en_spike9 = counter-zeros_cons;
break;
case 1U:

en_spikel0 = counter-zeros_cons;
break;
case :

en_spikell = counter-zeros_cons;
break;
case :

en_spikel2 = counter-zeros_cons;
break;
case :

en_spikel3 = counter-zeros_cons;
break;
case

en_spikeld = counter-zeros_cons;
break;
default:

&& number of starts == number of ends)

might be wrong
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number_of_ ends=number of ends+.;

}
if ( (velocity>" && velocity*zeros_cons*sample period>. :2) || (counter >=
i Y n assuming a ma im axle spacing of

length_data-1)) /
300 : reding two seé
{
» to call an end of a pulse (based on axle spacing)
switch (pulse_number)

3 end of data

/W

// This will

Lation ¢

{

ication

include calc parameters for classi

en_class = ;

case |
en_class = i;
vehicle length = 1.5;
Awidth = o7
break;

case 4:

en_class = 1;
tl3 = (st_spike3-st_spikel)*sample period; /7 add

ed only

analysis!
vehicle_ length = ((st_spike3 - st _spikel)* sample period)* velocity;
TlP = (en_spikel-st_spikel) * sample period;
T1D = T1P;
T3P = (en_spike3-st_spike3) * sample period;
T3D = T3P;
break;

case i1

en _class = i;
vehicle length = ((st_spike5 - st_spikel)* sample period)* velocity;
A23 = ((st_spikeb5 - st_spike3)* sample period)* velocity;

break;

case ©

en _class = ©;
vehicle_length = ((st_spike7 - st_spikel)* sample period)* velocity;
break;

case

en_class = 1;
vehicle length = ((st_spike9 - st_spikel)* sample period)* velocity;
A23 = ((st_spike5 - st_spike3)* sample period)* velocity;

break;

case l.:
en_class = I;

vehicle_length = ((st_spikell - st_spikel)* sample period)* velocity;
A23 = ((st_spikeb - st_spike3)* sample period)* velocity;

break;
default:
if (pulse_number > i: && (pulse_number%>) == {i) // for
even number of pulses that is more than 4
{

en_class = 1;
vehicle_length = (st_spike - st_spike2)* sample period* velocity;

}
else
en_class = 0;
break;
}
if (en_class==}) // if en_class = 1 then p had
been detected and classification is possible

{

detection = [;
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Classification(pulse_number,Vehicle_length,TlP,T3P,A23, velocity) ;
//Function used for vehicle classification
data_pointer = counter;

break;

}

else if (detection == |l en_class == i) // condition to see i
serformed £ this data e or not if it was en this might be the

{

printf ("False 2
data_pointer = counter;
break;

}

}

, pulse_ number) ;

}
if (counter >= length_data - 1)
the data

dition to exit the wl

1

{
ones_cond = ;
3
else
{ signal_statel = {; signal state2 = {; zeros_cons= ts

number of starts = {, number of ends = !,previous pulse = - ;pulse _number = o;

st_spikel = ;st_spike2= {;st_spike3= {;st_spiked= [;st_spikeS= {;st spike6=
U;st_spike7= U;st_spike8= {;st_spike9= U;st_spikelO= (;st_spikell= {;st_spikel2= (;st spikel3=
(i;st_spikeld= iU;st_spike= o

en_spikel = ©;en_spike2= ;en_spike3= (;en_spiked= {i;en_spike5= {;en spike6=
U;en_spike7= U;en_spike8= i;en_spike9= (;en_spikelO= U;en_spikell= {;en spikel2= ii;en spikel3=
j;en_spikeld= ;

velocity=0, vehicle_ length= &;tl3= 1;T1lD= ¢;T3D= u;

T1P = &; T3P = {;A23 = ;

memset (vehicle data, NULL, (length data)+4); //Free memory occcupied by

data
pthread exit (NULL) ;
nt get_min()

ime_t ti = time (NULL) ;
t tm tim = *localtime (&ti) ;

return tim.tm min;

// array containing data samples for each

// array used for

{removing the mean)
cal _val = {,sum;
© minutes = ©, cal _counter = {, current min = 3;
. avg_counter;
. verification_switch = i;
count_stop = U;
. zeros_cons,ij, detection=i
1t *ip;
int sample_count = I
g it volts;
si;
count;
carrayl[7]:
.nt add_topass[Z]:
pthread_t threads[NUM_THREADS];

FILE *fp;
int fromlen;
er int i, s, ns, len;
sockaddr_un saun, fsaun;

stream socket to guarantee reliable connection

105




if ((s = socket (AF_UNIX, SOCK_STREAM, )) < 0) /7 socket server to receive data
from client (Data acquisition unit)
{
perror (s
exit (i) ;

}

// Creating address
saun.sun_family = AF UNIX;

strcpy (saun.sun_path, ADDRESS);

connaections at

/B ling ss to socket

unlink (ADDRESS) ;

len = sizeof (saun.sun_family) + strlen(saun.sun_path);
if (bind (s, &saun, len) < o) {

perror (s T 3§ %)
exit(1);

while () // an infinite loop Lo keep listening to get
more data from client

{

count_stop++; //tenp
volts = o
count = ¢;
si =
if (listen(s, ) < ) //stop and listen until you get a connection with

data peoint from client

perror (s
exit (1)

ting connections from client

= accept(s, &fsaun, &fromlen)) < ) {
perror (" =] £

exit (1)

fp = fdopen(ns, "i");

// defenitions here
while((c = fgetc(fp)) !'= EOF)
{

if(c == "\n')
break;

if(c == '-")

si = -1, // used to compensate for "~" sign in re
else

{carray[count] = c;

count++;

}

volts = strtod(&carrayl[V], &carray[:]); // convert from char to float
volts = volts * si;
current min = get_min();

//procedure done for ¢ bration each 20 mi
if (detection =={ && minutes<current min-2)
{ calibration[cal counter] = volts;
//printf ("in b
cal_counter++;
if (cal_counter>=
{
for (avg_counter = i; avg_counter <
{sumt+=calibration[avg_counter];}

106

counter) ;

/; ++avg_counter)



cal _val = sum/100
sum = ;
cal_counter =
minutes = current min;
printf ("¢
}

minu

value

n'",cal_val,minutes);

volts = volts - cal_val;

if (volts > 0.1)
start recording data

{

//pri (%6

zeros_cons =
detection = I ;

vehlcle data[sample count+.] = volts,
( .31f\n", vehi
sample_count++,

er that a thre

n',volts)

datal

else if (volt

flag and start

//prir
zeros_cons = i;
detection = [ ;
vehicle data[sample count+j] = volts;
//printf ("%6.31f\n", v talsa
samplewcount++,

}
elge if ((volts < 1) && (volts > ~-O
& flag is raised e

close to 0

// pr &.31f\n",volts) ;
zeros_cons = zeros_cons+:;
vehicle data[sample_count+i] = volts;
//printf ("6, 31 \n", vehicle datalsam
sample_count++; -
}
if (detection == | && verification_switch ==l)
{
printf ("¢
verification_switch

}

_count]};

> .. && detection
with recorded

if (zeros_ cons/ // zero count is higher than

trigger d

maximum axle sp

vehicle datal[%] = (float)sample count;
detection = @7

verification_switch = 1;

zeros_cons = {;
// send vehicle d

printf (’ ;

pthread_create (&threads[{], NULL, Feature_Extraction, vehicle data); // Create
new thread and send data to it for feature extraction and vehicle classificatior

sample_count = o;

volts = Uy

fclose(fp) ;

}

close(s);
pthread exit (NULL) ;

exit (7);

}
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