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Abstract—The Sensor Network consists of densely deployed
sensor nodes. Energy optimization is one of the most important
aspects of sensor application design. Data acquisition and aggregation
techniques for processing data in-network should be energy efficient.
Due to the cross-layer design, resource-limited and noisy nature
of Wireless Sensor Networks(WSNs), it is challenging to study
the performance of these systems in a realistic setting. In this
paper, we propose optimizing queries by aggregation of data and
data redundancy to reduce energy consumption without requiring
all sensed data and directed diffusion communication paradigm to
achieve power savings, robust communication and processing data
in-network. To estimate the per-node power consumption POWER-
Tossim mica2 energy model is used, which provides scalable and
accurate results. The performance analysis shows that the proposed
methods overcomes the existing methods in the aspects of energy
consumption in wireless sensor networks.

Keywords—Data Aggregation, Directed Diffusion, Partial Aggre-
gation, Packet Merging, Query Plan.

I. INTRODUCTION

RECENT advances in science and technology have led
to the production of cost effective chip consisting

of number of transistors. Processing capacity of chip is
exponentially growing every year. These advances have led to
the production of cheaper and smaller mechanical structure,
battery-powered, sensing, processing and computing wireless
sensors. As the technology is advancing the size of the
sensors are available in smaller size. These sensors sense the
field and forces in environment where they are deployed.

Figure 1 illustrates the generic architecture of a sensor node.
It is composed of a power unit, processing unit, sensing unit
and communication unit. The processing unit is responsible
to collect, process signals captured from sensors and transmit
them to the network. The processing unit is used to compute
and process the data locally. Sensors are devices that produce
a measurable response to a change in a physical condition
like temperature and pressure. The wireless communication
channel provides a medium to transfer signals from sensors to
external world or to a computer network and helps to establish
and maintain wireless sensor network which is usually ad-
hoc. Advances in Micro Electro Mechanical System (MEMS)
technology and its associated interfaces, signal processing and
Radio Frequency (RF) circuitry have enabled the development
of wireless sensor nodes.
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Fig. 1: Sensor Node Hardware

Each of the sensor is a separate data source that consists
of node-id, location, time stamp, sensor type and the value of
the reading. Sensor data might contain noise; it is not often
possible to obtain more accurate results; but it is possible to
obtain accurate results by fusing data from several sensors.
Aggregation of raw sensor data is thus more useful in sensor
applications than individual sensor readings. For example,
when monitoring the pressure of a fluid flow in an industry,
one possible query is to measure the average value of all
sensor readings in that region, and report whenever it is
higher than some predefined threshold.

Applications of sensors can be viewed as environmental,
habitat monitoring, agriculture, intelligent systems, medical
field, disaster management and object tracking. While
designing sensor networks, resource constraints such as
power consumptions, communication bandwidth, computing
power, memory size and uncertainty in sensor readings are
important parameters. Energy optimization is a paramount
issue in wireless sensor networks as the sensor nodes are
expected to have a few years of lifetime. The collection of
information from sensors must be carefully managed with
limited power and radio bandwidth [1].

Aggregation in sensor network is a very fast-evolving field.
Two sensors geographically to each other to produce similar
values. Similarly, a single sensor which is continuously
monitoring a physical variable typically produces a stream of
values which are correlated in time. Aggregation algorithms
which exploit such correlations can significantly cut down
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the amount of processing and communication. Acquiring and
processing such event data can itself be a challenge.

Motivation : Each sensor in a network takes time-stamped
measurements of physical phenomena. A sensor network
database consits of sensor data. Maintenance of the database
generate several new challenges. The challenges are: (1) The
high energy cost of communication encourages in-network
processing during query execution. (2) Limited storage
on nodes and high communication costs imply that older
data has to be discarded. The database system can try to
maintain more high-level statistical summaries of the detailed
information. (3) Additional operators have to be added to the
query language to specify durations and sampling rates for
the data to be acquired.

In-network data processing techniques improve the energy
efficiency, which is a typical measure of performance of
sensor networks. Sending all raw data to the sink node
consumes more energy. Onboard processor of a sensor
node carry out computation locally, reducing the power
consumption of radio communication. In this paper, to
evaluate the energy efficiency of in-network data processing
approaches and data dissemination method called directed
diffusion are proposed.

Contribution : To propose a solution to evaluate
queries, query optimization for specific types of queries
and the data routing approaches such as multihop ad-hoc
distance vector routing and the directed diffusion method
for data dissemination and processing in sensor networks.
In a simulation study the performance of in-network data
processing approach and the performance of different query
plans are compared. In-network data processing techniques
improve the energy efficiency; a typical parameter measure
of performance in sensor networks.

Organization : The organization of the rest of the paper is
as follows. Section II gives related work, Problem formulation
and Detailed system design is presented in Section III and
Section IV respectively; Detailed algorithm is developed
Section V; Analysis of in-network data processing approaches
and comparison of simulation results are given in section VI;
Finally, Section VII contains conclusions.

II. RELATED WORK

The evolution of sensor networks, challenges and
opportunities is presented in [2]. A Survey of number
of data processing methods, communication architectures
and the features influencing the sensor netwok design
have been described in [3]. Intanagonwiwat et al., [4] has
proposed a directed diffusion paradigm and a Robust scalable
communication to achieve energy savings by selecting the
empirically good paths and by caching and processing
data in-network. The disadvantage is that data is processed
individually in the network and it consumes high energy.

Polastre et al., [5] has proposed data collection models
in which data is stored in traditional databases and can be
queried using standard techniques. Such a data collection
model is easy to deploy but short lived when high data rate
sensors are used, since the data communication requirements
overwhelm the available energy resources.

The TinyDB and Cougar Operating System proposed in
[6], [7] are equipped with query processing engine in which
a user injects (in an extended SQL) a query at the sink node.
Upon receiving the query, the sink node collects data from
all nodes participating in the query. Based on the collected
data, the sink node generates a single query plan that defines
the sequence of data to be collected from its sensors which
consumes high energy and it reduces the lifetime of a network.

The COUGAR [8] and query processing [6], [9] focuses
on executing queries over sensor and stored data. Sensors
are represented as a new data type, with special functions
to extract sensor data when requested. COUGAR addresses
scalability (increasing numbers of sensors) by introducing
a virtual table where each row represents a specific sensor.
The COUGAR system inspired many ideas in the early
design phases of Nile, specifically, the stream data type
and the table representation of streams. Seshadri et al.
[10] presented the sequential model and implementation
for sequence databases. A sequence is defined as a set
with a mapping function to an ordered domain. Sequence
databases is included in the extension of SQL:1999, which
supports the notion of window queries over static data streams.

The challenge of maximizing the data collection from
energy-limited store and extracts WSNs is examined in [11].
Tian He et al., [12] explained on the trade-off between
energy awareness and surveillance performance by adaptively
adjusting the sensitivity of the systems in WSNs. Mathew et
al., [13] propose bootstrapping as a possible phase for energy
saving in which the entities of the network are made aware
of all or some of the other entities in the network. It aims
at saving energy by reducing the number of collisions and
turning off radio. The disadvantage is that it requires nodes
to be highly synchronized.

Sabbineni et al., [14] presented a new dissemination
protocol for data collection in WSN. It uses location
information to reduce redundant transmissions, thereby saving
energy. Virtual grid formation is used to achieve location
aided flooding. This reduces the redundant transmissions of
same packet by a node resulting in energy saving. TOSSIM
[15] provides a scalable simulation environment for sensor
networks based on TinyOS [16]. Unlike machine level
simulators, TOSSIM compiles a TinyOS application into
a native executable that runs on the simulation host. This
design allows TOSSIM to be extremely scalable, supporting
thousands of simulated nodes. Deriving the simulation from
the same code that runs on real hardware greatly simplifies
the development process. TOSSIM supports several realistic
radio-propagation models and has been validated against real
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deployments for several applications.

Kalpakis et al., [17] have formulated the maximum-lifetime
data-gathering problem has a linear programming formulation
by taking data aggregation in to consideration and presented
a polynomial-time algorithm to solve the problem. although
this optimization framework yields satisfactory performance
it makes the simplistic assumption of perfect data correlation,
where intermediate sensor node can aggregate any number
of incoming packets into a single packet. A perfect data
correlation can also be found in [18], which analyzes the
performance of data-centric routing schemes with in-network
aggregation.

III. PROBLEM DEFINITION

Given a WSN of size N, where (ni, nj) are connected if
both the nodes i and j and the network model is connected
graph G(N,E) where the node ni and nj are connected
iff they are able to communicate and transmit data among
themselves, the objectives are

• To improve a data processing method to reduces the data
size.

• To improve a communication model to lower the number
of transmissions.

• To reduce energy by sending the data to be transferred
to the basestation.

A. Assumptions

1) A query issued in an environment typically specifies
sensing types(photo, light, temperature, location, accel-
eration, magnitude), source node, set of predicates and
sample period.

2) Every node holds a symmetric connectivity list of its
neighbours.

3) Every node maintains a black list of neighbours of
insufficient connectivity. All packets from or to a black
node are dropped.

4) Every node holds an interest cache and a data list.
5) All nodes have similar capability and equal significance.
6) Each of the node is battery operated and fixed residual

energy level.

B. Example

Consider the following example, where an average reading
is computed over a network of six nodes arranged in a
three-level routing tree in Figure 2. In the server based
approach, where the aggregation occurs at an external server,
each sensor sends its data directly to the server. This requires
a total of sixteen message transmissions. Alternatively, each
sensor may compute a partial state record, consisting of (sum,
count), based on its data and that of its children, if there are
any. This requires a total of only six message transmissions
to server.

a

c d
f(a,b)

f(c,d,f(a,b))

Server

n1

n2

n3
n4

n5

n6

Fig. 2: In-network Aggregation at Nodes

TABLE I: NOTATIONS

Symbols Definition

N Number of nodes in the network

E Number of Edges

x, y Location of the node

C1, C2 Constants

Tenergy Total Energy

Aenergy Average Energy

Ectrans Cost for the Transmission

Etx Transmitter Energy

s Packet size

d Average distance between any two nodes

Eamp Amplifier Energy

Ecpu CPU Energy

Eadc ADC Energy

In-network aggregation and query processing typically in-
volve query propagation and data aggregation. To push query
to every node in a network, an efficient routing structure
have to be established. Transmitting all raw data to the sink
nodes consumes more energy than pushing computation into
the network. It requires different optimizing techniques for in-
network data processing in sensor networks.

IV. SYSTEM DESIGN

A. Network Architecture

A sensor network is modeled as a connected graph G(N,
E), where sensor nodes are represented as the set of vertices
N and wireless links as the set of edges E.

Consider a scenario where several sensors that are deployed
in a remote region have completed their sensing task and have
some locally computed data. They are interested in collecting
the required data possible from all these sensors at a sink
node then to end user. Given some energy constraints in each
of these sensors. Figure 3, shows a sample scenario with six
source nodes, one sink node(node 0). Each node is labelled
with its (x,y) coordinates, its available data and energy. The
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Fig. 3: Sensor Node Deployment

goal is to extract the data to the sink node. The arrows indicate
the direction of data sent.

B. Query Model

The order in which a node samples its sensors convention-
ally referred to as a query plan, This can be a crucial factor
affecting the energy consumed by the sensor network. Such
orderings for the nodes involved in a query are an essential
part of query plan [19]. The data collected by the sink node
can be used to determine energy-efficient query plans for the
nodes participating in the query. It is important to note that
the cost of determining the optimal query for a node depends
on the complexity of the query. While for simple queries, a
node may itself be able to derive the optimal query plan by
spending a small amount of energy or memory, for complex
queries, it might be desirable to delegate this task to the energy
or memory rich sink node. Figure 4, shows the query for the
sink node, which contains an AVG operator to compute the
average value over all sensor readings and SELECT operator
that checks if the result is above threshold.

Sink Node

Select AVG > Threshold

Network Interface

Average value

Partialy aggregated result

Aggregate Average Value Operator(AVG)

Fig. 4: Query plan at the Sink Node

The goal of the In-network query workload design is to
reveal the performance characteristics of in-network query

processing techniques. The query workload as follows.

1) In-Network Data acquisition query workload: In this
section, the different types of query plans are presented. In
the workload, Q1-Q4 are data acquisition queries.

Q1: Single Sensory Attribute Projection

SELECT node id, photo
FROM sensors

In this query plan the workload is just to select sensor photo
readings.

Q2: Projection of Multiple Sensory Attributes

SELECT nod id, photo, temperature, acceleration,
magnitude

FROM sensors

In this query multiple attributes such as photo, temperature,
acceleration and magnitude readings in x and y directions are
selected.

Q3: Single Sensory Attribute Projection and Selection

SELECT node id, photo
FROM sensors

WHERE light ≥ C

Q3 studies the performance of selection queries on a sensory
attribute. In comparison with Q1, this query adds a WHERE
clause with a selection predicate on the projected light sensory
attribute. In each epoch (sample interval) of the query, only
those nodes whose recent photo readings satisfy the predicate
will send out their data towards the sink even though all
nodes in the network acquire their own light readings. The
set of nodes that satisfy the predicate may vary from epoch
to epoch depending on the data. The parameter C in the
predicate is a user-specified constant value. It can be changed
to achieve different selectivities of the predicate.

Q4: Conjunctive Selection on Multiple Sensory Attributes

SELECT node id, photo, temperature
FROM sensors

WHERE photo ≥ C1
AND temperature ≥ C2

The query condition of Q4 is the conjunction of multiple
selection predicates on sensory attributes. This query is
used to investigate the predicate ordering issue in query
evaluation. The number of predicates involved in the selection
condition can be increased as necessary. C1 and C2 are
two user specified constant values. Instead of sending all
the raw reading query plan can be optimized by sending
only readings which qualifies the criteria. Here the query
condition is checked locally at the sensor nodes. The packets
are transmitted only if the conditions are true.

2) Aggregation Query Workload: In this section, present
the four SQL queries in the current version of query workload.
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In the workload, Q5-Q7 are aggregation queries. All queries
in the workload are continuous queries.

Q5: Duplicate-Insensitive Simple Aggregation

SELECT MAX(photo)
FROM sensors

Q5 tests the performance of the aggregation schemes for
duplicate-insensitive aggregates. All nodes in the network
participate in the aggregation process.

Q6: Duplicate-Sensitive Simple Aggregation

SELECT SUM(photo)
FROM sensors

Q6 tests the performance of the aggregation schemes for
duplicate-sensitive aggregates. The duplicate-sensitivity of the
aggregate requires extra effort in multi-path routing in order
to ensure the correctness of query results.

Q7: Aggregation with Sensory Attribute Selection

SELECT AVG(photo)
FROM sensors

WHERE photo ≥ C

In comparison with Q5 and Q6, Q7 adds a selection predicate
on the aggregation attribute. The predicate selects a subset of
the nodes in the network to participate in the aggregation and
this subset may change over epochs of the query depending
on the data.

Here the data is processed locally. Here photo sensor
readings are periodically sampled and compute the average
of recent raw samples. To route the computed average values
to the sink node we can use mutihop protocol. A packet
is forwarded by internal nodes along the route until the
packet reaches its destination. Sensor nodes are limited by
the transmission power of the wireless radio. In addition its
limited communication channel and frequent topology changes
make the sensor networks quite unstable. Routing protocols are
required to overcome these limitations [20], [21].

C. In-Network Data Processing

Data stored in sensor networks can be viewed as local,
external and data centric. In local storage, data is stored on
nodes locally; to retrieve data a query floods the network. In
external storage, data is sent to sink node without waiting for
the query. In data centric storage all communication is for
named data.

1) Broadcasting Query Message: This is the simplest
scheme. Sink node broadcast query message(BQ). Each
source sensor node sends a data packet consisting of a record
towards the sink. Computation will only happen at the sink
after all the records have been received. This may consume
more power to communicate with far nodes and computation
at sink node.

2) Processing Data Locally: Instead of sending all the
data to the sink node, send the locally processed data to
the sink which will optimize the power consumption and
communication radio energy, e.g., instead of sending all the
raw temperature readings, we send partially aggregated(PA)
data such as average of every seven readings from intermediate
node and send it to the sink for further processing.

3) Packet Merging: In Packet Merging(PM), instead of
sending each sensor readings separately in a packet we
can merge several records into large packet, consisting of
many readings. Packet merging is the only way to reduce
the number of bytes transmitted. This will save power
consumption of source node and reduces the computation
cost of sink node.

D. Communication Paradigm for Sensor Networks

1) Traditional Ad-hoc On-Demand Distance Vector
Routing: The Ad-hoc On-Demand Distance Vector
Routing(AODV) stack has slightly different requirements
than a Traditional Ad-hoc On-Demand Distance Vector
Routing(TAODV) algorithm. It is a reactive algorithm, so
it builds routes on demand when desired by source nodes.
A source node desiring a route to the destination generates
and broadcasts a route request (RREQ) message across the
network. When the RREQ arrives at the destination or an
intermediate node with the path to the destination, a route
reply (RREP) message is generated and propagated along
the reverse path. The nodes propagating the RREP back
to the source add a route entry for the destination. RREP
messages are only generated by the destination. No messages
are generated to keep routes active because routes never
expire. Route errors are generated when a data message can
no longer be sent over the path. Using TAODV also reduces
power consumption by routing data using multihop method.

2) Directed Diffusion: Applications of directed
diffusion(DD) involve various types of sensors and sensor
data and customizable in-network aggregation and processing
(Filtering). Directed diffusion is a data centric in that all
communication is named data. Here the sink node sends out
interest, which is a task description to all sensors. Both data
requests and data responses are composed of data attributes
that describe the data. Each piece of the subscription/publish
(an attribute) is described via a key-operator-value triplet. Key
indicates the semantics of the attribute (latitude, frequency,
etc.). Keys are simply constants (integers) that are either
defined in the network routing header or in the application
header. Allocation of new key numbers will be done with an
external procedure to be determined. Operator describes how
the attribute will match when two attributes are compared.
Value has some type and contents. Some values also have a
length (if its not implicit from the type). Each node stores
interest in its cache, which contains a timestamp field and
several gradient fields.
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As the interest is propagated throughout the sensor network,
the gradients from the source back to the sink are set up.
When the source has data for the interest, the source sends
the data along the interest gradient path. The interest and data
propagation and aggregation are determined locally. The sink
must refresh and refine the interest when it starts to receive
data from the source. Directed diffusion is implemented
using oneway pull assuming every node holds a symmetric
connectivity list of its neighbours. A node maintains a Black
List of neighbours of insufficient connectivity. All packets
from or to a Black node are dropped. Every node holds an
interest cache and a data list.

E. Energy Model

To process a query, each source node samples its sensed
data and checks if resulting readings satisfy the relevant
predicates. To estimate the power consumption of per-node
energy consumption Mica2 energy mode is used.

The total energy consumed Tenergy is the sum of
energy consumed by RADIO(Eradio), CPU(Ecpu),
LEDs(Eleds), ADC(Eadc), MEMORY (Ememory) and
V OLTAGE(Evoltage).

The values of Eleds and Eadc are insignificant, then Equa-
tion becomes

Tenergy = Eradio + Ecpu + Ememory + Evoltage (1)

The average energy consumption Aenergy of a node is given
by sum of total energy Tenergy by number of nodesN

Aenergy =
∑

Tenergy/N (2)

The cost for transmitting data Ectrans in terms of packet
size s, the distance between the sender and receiver d can
be formulated .

Ectrans = s ∗ Etx + s ∗ Eamp ∗ d2 (3)

where Etx is the cost for using the transmitter (i.e., the bit cost
for the transmitter electronics) and Eamp for the amplifier cost.

V. ALGORITHM

Data is exchanged when there are matching between sub-
scriptions and publications. Algorithm for matching rules
is given in Table II. Since diffusion is based on the core
concept of subject-based routing, it is very important to make
sure attributes in publications, subscriptions and filters match.
For both Publish/Subscribe and Filters interfaces, matches
are determined by one way match applying the following
rules between the attributes associated with publish (P) and
subscribe (S).

Subscribe : Each subscription causes Diffusion to send
an interest message to the network. These interest messages
are broadcast throughout the network. Figure 5(a), shows
interest message broadcast. On arrival of an interest message

TABLE II: DATA MATCHING RULES

Data Match(Sa, Pa)
// Sa is a set of Subscribe Attribute
// Pa is a set of Publish Attribute
// Sa.op is a Subscribe Operator
// Sa.key is a Subscribe key
// Pa.value is a Publish Value

begin
for every attribute Sa ∈ S and any
operator Sa.op
begin

for every attribute Pa ∈ P
begin

Sa.key = Pa.key
Pa.value satisfies Sa.op
if (none exits)

exit(no match)
else

S matches P
end

end
end

to a node, it is matched against the interest cache. Duplicate
interests are dropped. An interest gradient is set in the
interest cache based on first arriving interest which is shown
by Figure 5(b). When an interest arrives to publishers with
matching data, a simple hop-by-hop route is set up from the
publisher to the subscriber.

Publish : A publisher sends a data message in reply to
an interest or reinforcement. From a publisher point of view
there is no difference between an interest and reinforcement.
Periodically, a publisher compares its data list to its interest
cache. Matching data is aggregated and send in a data
message. Data messages are sent only through interest
gradients of unique neighbours. On arrival of data message
to a node, it is first matched against a data list. Duplicate
data messages are dropped. Later, it is matched against the
interest cache. Matching data message is forwarded down
stream through interest gradients of unique neighbours. On
a match the data gradient list is updated. Figure 5(c), shows
the data delivery path of matching data.

Filter : On data message arrival it‘s first matched against
all subscribed filters. On a match a copy of the interested data
is forwarded to the filter. The data then is matched against
other interests. The filter can decide if to drop a data message
or forward it down stream modified or unmodified. Diffusion
allows for aggregation of data, thus multiple attributes of
the same kind can arrive at the same attributes array. The
application layer is responsible to extract and verify multiple
arriving data since as long as at least one match of data to an
interest is attained, the data will be forwarded to the sink.

The temperature reading task can be described as an interest
e.g.,

Attribute key temperature
Operation equal
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Event Source node Sink Node

(a)

Event Source node Sink Node

(b)

Event Source node Sink Node

(c)

Fig. 5: A simplified schematic for directed diffusion

Attribute value 40
Interval 20 ms

Duration 10 seconds

The data sent in response to the above interest are also
named using the similar scheme, e.g.,

Attribute key temperature
Sensor node id 2
Attribute value 40

Timestamp 01:23:42

VI. PERFORMANCE EVALUATION

Simulation results performed on a test bed using TOSSIM
simulator for TinyOS. Using PowerTOSSIM to estimate the
total energy consumption of in-network data processing ap-
proaches. To estimate the power consumption of the mica2
sensor node mica2 energy mode is used. Table III, shows
energy dissipation for mica2 mote .

TABLE III: THE ENERGY DISSIPATION OF OPERATIONS
FOR MICA2

Operation Energy Dissipation(mA)
CPU Active 8.93
CPU Idle 4.13
CPU ADC Noise Reduction 1.0
CPU Power Down 0.103
CPU Power Save 0.110
CPU Standby 0.216
CPU Initialization 3.2
Radio Default Power 15.00
EEPROM Read 6.24
EEPROM Write 18.40

Suppose a sensor is operating at 3 Volts and capable
of transmitting data at a rate of 40 Kbps at 0.012 Amp
transmit current draw. Hence, the energy cost of transmitting
(TEctrans) one bit in Joules is computed as TEctrans =
3 ∗ 0.012 ∗ (1/40, 000) = 0.9μJoules.

A. Simulation Setup

In this section, simulation studies are compare the per-
formance of the packet broadcasting, packet merging with
packet aggregation and the Directed Diffusion with TAODV
methods with respect to its lifetime using TOSSIM simulator

in windows operating system. Different number of Sensors are
randomly distributed in a query region over 100m x 100m area.
The Simulation is run for 60 seconds, and each simulation run
for different network size. The simulation parameters for query
processing and directed diffusion are listed in Table IV and
Table V respectively.

TABLE IV: SIMULATION PARAMETERS FOR QUERY
PLAN

Parameter Type Test Value
Number of nodes 5,20,50,65,75,85,100
Sink node Mote 0
Radio model Lossy
Distance scaling factor 1.0 with empirical radius
Simulator hardcoded 4Mhz
Epoch Period 1000ms-10000ms
Aggregate operations SUM,AVG,MAX
Sensor type Photo sensor,

Temperature sensor,
Demo sensor,
Accelerometer sensor,
Magnetometer sensor

B. Performance Analysis

From the simulation results, Figure 6, illustrates the
performance analysis of a simple query(SQ) of sensing photo
reading above some threshold value and increased workload

TABLE V: SIMULATIOM PARAMETERS FOR DIRECTED
DIFFUSION

Parameter Type Test Value
Number of nodes 5,20,50,65,75,85,100
Sink node Mote 1
Radio model Lossy
Distance scaling factor 4 with empirical radius
Maximum interest 10
Maximum gradients 2
Maximum gradients overrides 4
Maximum attributes 4
Maximum Data 25(data cache size)
Time to live 10
Timer period(msec) 125
Timer tics per second 1000 / Timer period(msec)
Interest sender period 5
Interest expire time(seconds) 15
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Fig. 6: Average Dissipated Energy versus Network Size for
different query type

 50

 100

 150

 200

 250

 300

 0  20  40  60  80  100

Ave
rag

e D
iss

ipa
ted

 En
erg

y N
ode

(mJ
)

Network Size

Packet broadcasting
Packet merging

Packet averaging

Fig. 7: Average Dissipated Energy for In-Networks Data
Processing Techniques

query of detecting photo, temperature, accelerometer and
magnetometer in x and y directions, and all readings above
some threshold values which influences the performance
metrics such as lifetime of the network. Energy consumption
for sparse networks is increases linearly and for dense
networks simple query increases faster than workload query.

Figure 7 illustrate the variation of average dissipated energy
per node with different network size. This figure compares
the energy dissipation of data processing techniques such as
packet broadcasting messages, processing data locally that
is partially aggregating values on local nodes, and packet
merging. Without in-network data processing, each node has
to send a data packet for each node whose route goes through
n number of nodes, so energy consumption increases very
fast. Packet broadcasting consists of all raw data, consumes
more energy Packet merging consumes less energy than
packet broadcasting as it consists of several sensor readings
merged in a packet. Packet aggregation in in-network data
processing method consumes less energy compared to other
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methods, it reduces redundancy in sensor readings.

In Figure 8, compares the directed diffusion (DD) with
multihop Traditional Ad-hoc On-Demand Distance Vector
Routing (TAODV) scheme for data dissemination in sensor
networks. This figure shows that the average dissipated energy
per node as the function of network size. Directed diffusion
is scalable and robust data dissemination and processing
approach consumes less energy than multihop ad-hoc distance
vector routing.

From Figure 9, at any instant, In 10 to 20 percent of
the nodes failures, Directed diffusion is able to maintain
reasonable event delivery. The average dissipated energy
actually improves in the presence of node failures. But
it is also expected that directed diffusion would expend
energy to find alternative paths. In addition, diffusion benefits
significantly from in-network aggregation. Intermediate nodes
suppress duplicate packet estimation. Figure 10 shows that
diffusion expends nearly three times as much energy in
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Fig. 11: Total Energy of Network using Packet merging and
TAODV

smaller field, as when it can suppress duplicates. In larger
sensor field, the ratio is 2.

Figure 11 and Figure 12 are the results, showing network
lifetime; average dissipated energy for varying network
densities; calculates the lifetime of network; compares
TAODV with DD. It is observed that the life time of the
network increases when packet averaging used for data
processing and DD used for communication, which reduce
the number of transmissions

The analysis of various in-network data processing and
communication methods with respect to average dissipated
energy as shown in the Table VI. In all methods as anticipated,
the packet averaging for data processing and directed diffusion
could significantly reduces energy consumption in sensor
networks.
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Fig. 12: Total Energy of Network using Packet merging and
DD

TABLE VI: NETWORK LIFE TIME

Average Energy(mJ)
Processing Communication

Nodes SQ BQ PM PA TAOVD DD

5 212 260 230 65 280 225

15 265 260 240 70 260 220

50 268 265 238 60 265 230

70 273 270 242 65 263 235

80 278 272 248 68 268 240

100 284 275 250 70 270 248

VII. CONCLUSIONS

The key point of this paper is to stress the need for a
simulation framework for data processing and communication
algorithms in sensor networks from data generation to
network simulation. The Energy optimization techniques are
proposed such as in-network data processing methods such as,
query optimization plans, processing data locally and packet
merging, and communication paradigm directed diffusion. As
compared to the existing data processing and communication
methods, our approaches are more effective to minimize the
total processing and transmission energy consumed by the
network.

Future challenges include running queries from multiple
users for long time over a sensor network, sharing the re-
sources among the queries to balance and minimize overall
resource usage.
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