
International Journal of Network Security & Its Applications (IJNSA), Vol.5, No.2, March 2013

DOI : 10.5121/ijnsa.2013.5204 47

DESIGN ISSUES ON SOFTWARE ASPECTS AND
SIMULATION TOOLS FOR WIRELESS SENSOR

NETWORKS

Leelavathi G1, Shaila K2, Venugopal K R3 and L M Patnaik4

1Department of Electronics and Communication, Govt.S.K.S.J.Technological Institute,
Bangalore, India

2Professor and Head, Department of Electronics and Communication, Vivekananda
Institute of Technology, Bangalore, India

3Principal, University Visvesvaraya College of Engineering, Bangalore, India
4Honorary Professor, Indian Institute of Science, Bangalore, India

leelavathig12@yahoo.in

ABSTRACT

In this paper, various existing simulation environments for general purpose and specific purpose WSNs are
discussed. The features of number of different sensor network simulators and operating systems are
compared. We have presented an overview of the most commonly used operating systems that can be used
in different approaches to address the common problems of WSNs. For different simulation environments
there are different layer, components and protocols implemented so that it is difficult to compare them.
When same protocol is simulated using two different simulators still each protocol implementation differs,
since their functionality is exactly not the same. Selection of simulator is purely based on the application,
since each simulator has a varied range of performance depending on application.

KEYWORDS

Emulator, Simulator, Operation System, Programming Languages, Wireless Sensor Network.

1 INTRODUCTION

1.1 Wireless Sensor Networks

Wireless Sensor Network [1][2][3][4] is a collection of tiny nodes. Wireless Sensor Networks
(WSNs) is one of the developing areas in network research communities. Each node comprises of
processing units (one or more microcontrollers, CPUs or DSP chips), memories (program, data
and flash memories), RF transceiver (usually with a single omni- directional antenna), power
source (e.g., batteries and solar cells) and various types of sensors and actuators. These tiny
sensor nodes are deployed in spatially distributed terrain. Since it is an infrastructure less network
the nodes communicate wirelessly and self-organize themselves. Sensor nodes are often deployed
in an ad hoc manner. The nodes sense the environment and communicate the information
gathered from the monitoring field (e.g., an area) through wireless links. The information is
forwarded via multiple hops, to a sink which can be a controller or a monitor, that uses it locally
or the Internet through a gateway. The nodes can be either stationary or moving, may or may not
be aware of their location and can be either homogeneous or heterogeneous. Sensors can be
deployed in continuous changing environments or in environments that are inaccessible for
humans. Sensor networks offer good solutions to many applications like health monitoring, fault

mailto:leelavathig12@yahoo.in

International Journal of Network Security & Its Applications (IJNSA), Vol.5, No.2, March 2013

48

diagnosis and innovative human-machine interaction paradigms and spans from military
applications to almost every field in day to day life.

During the design of Wireless Sensor Networks one has to consider the effects of energy
consumption, fault tolerance, quality of service, synchronization, scheduling strategies, system
topology, communication and coordination protocols. The simulation environments can be
divided into two major categories: adaptive development and new development. The adaptive
development for example NS-2, MATLAB etc., includes simulation environments that already
exist before emerging of the idea of WSNs. These simulation environments were applied to
support wireless networks and later introduced for the WSNs.

At present various simulation environments are available for the simulation of WSNs. The new
simulators like TOSSIM, UWSim, AVRORA etc., [5][6][7] are created for simulating WSNs,
considering sensor specific characteristics. The tools are selected based on the properties of the
simulation tools, popularity of the tool among research communities, the possibility of providing
extension and the active maintenance of WSNs. The available simulation environments differ
significantly in their structure and features such as models and protocols. Some of the selected
and widely used simulation environments for Wireless Sensor Networks
are discussed and compared in section 5.

1.2 Software Aspects

WSNs have several common aspects when compared with Wireless Ad-hoc Network. A Sensor
Network operating system must address the characteristics of sensor network that is necessary for
developing and maintaining the WSNs. For example, the ability to dynamically reprogram WSNs.
This paper deals with the aspects focusing on technologies and standards along with the
modifications and improvements in both operating systems and simulators. In WSNs, the
important area of research is the simulation environment. It is observed through literature survey
each research groups use different simulation environments for performance evaluation.

1.3 Simulation in WSNs

The performance analysis of wired and wireless networks is broadly classified into three groups.
They are Analytical Methods, Computer Simulation and Physical Measurement. The resource
constraints imposed on sensor networks, such as energy limitation, decentralized collaboration,
and fault tolerance results in the use of complex algorithms for sensor networks that usually
disobey analytical methods. The quantitative analysis of sensor networks indicates that simulation
is the feasible approach because implementation of experiments on a test bed is costly and
difficult. On the other hand, repeatability is largely compromised since many factors like routing,
energy consumption, topology of the network affect the experimental results.

Real time execution of experiments is time consuming, hence simulation becomes essential for
the developments of WSNs, so that protocols and schemes can be evaluated on a very large scale.
WSNs simulators allow users to segregate different factors by tweaking configurable parameters
like the number of nodes, computational power, coverage area etc. There are no general protocols
or algorithms developed for a sensor network since the protocols have to be developed for a
particular application with specific features. With the above factors discussed it is vital to develop
simulation platforms that are constructive to investigate both the networking issues and the
distributed computing aspects of Wireless Sensor Networks.

International Journal of Network Security & Its Applications (IJNSA), Vol.5, No.2, March 2013

49

In the present day, simulation scenarios for Wireless Sensor Networks largely focus on the
networking issues rather than exploring distributed computing issues. The research area of WSNs
is a continuous process hence, new protocols and components are developed continuously. These
protocols have to be tested, which results in increase in the cost for developing and deployment of
the sensor nodes. An alternative to the development of real sensor nodes is to use simulation
environments, which are widely practiced in other networking domains. In Wireless Sensor
Networks, special characteristics are to be considered and made available for the simulation
environments.

Organization: Section 2 discusses the related work and section 3 briefly introduces the Operating
Systems and Programming Language. The different types of operating systems are addressed in
section 4 followed by simulation in section 5. The different types of simulation tools are
explained in section 6. Performance evaluation is discussed in section 8 and conclusions in
section 9.

2 RELATED WORK

The majority of the survey on WSNs deals with the prologue of Operating Systems and
Simulators of WSNs. WSNs design involves ample of aspects related to several issues like
connectivity, access to the channel, signal processing techniques, design of energy efficient
communication protocols etc. These aspects must be considered due to overabundance of WSNs
features . In [5][6][7] the applications of WSNs and information regarding the wireless
technologies are discussed along with the case studies. LiteOS [8][9] a UNIX-like, multithreaded
software platform is used for WSNs application development. Using this operating system, the
evaluation of the platform has been done experimentally by measuring the performance of
common tasks.

A thread-driven approach is attractive in sensor networks that have been adopted for PDAs,
laptops and servers. Shah et al., [10] investigates the practicality of implementing the popular
approach of pre-emptively time-sliced multithreading on micro sensor nodes and explores how a
thread-driven system could be tailored to the characteristics of WSNs. Author demonstrates that
the added OS intricacy needs to support pre-emptive time-slicing which can be easily
accommodated in MICA2 motes, with a kernel footprint cost of below 500 bytes, including the
scheduler and network stack. A multithreaded system can be designed to sleep efficiently [10]
when application threads indicate that there is no useful work to be done. It shows that
multithreading and energy efficiency are not mutually exclusive .The hardware details specified
illustrates the usage of MANTIS-OS.

For a particular application environment, David et al., [1][7][11][12][13] provide a wide-ranging
analysis and comparisons of different popular sensor network simulators with a vision to help
researchers to choose the superlative simulator available. J-Sim functionality [14] is enhanced
with a Guided User Interface for Wireless Sensor Networks which dramatically increases the
user-friendliness of the simulator.

The mechanisms provided in Contiki to meet real-time requirements and Quality of Service
guarantees are discussed in [15]. An embedded real-time operating system, named HEROS
Hybrid Embedded Real-Time Operating System, presented by Hai-ying Zhou et al., [16] which is
configurable to sprint in different modes: event-driven, multitask or hybrid to acclimatize to
diverse area of WSNs applications. Presently ,HEROS has been implemented and evaluated in
different applications and on different platforms. Keeping an objective to design a configurable
real time dedicated WSNOS, Zhou et al., [14] have premeditated this embedded real-time

International Journal of Network Security & Its Applications (IJNSA), Vol.5, No.2, March 2013

50

operating system , which enables to become accustomed to an application to minimize resource
consumption. HEROS has been ported on processors which are based on ARM7TDMI-S
architecture, which includes NXP LPC21xx and Atmel AT91SAM7S series. A resilient operating
system mechanism for Wireless Sensor Networks is presented by Kim et al., [17]. Through the
experimental results on a common sensor node, it has been shown that the proposed mechanisms
successfully protect the system from wayward applications.

3 OPERATING SYSTEMS AND PROGRAMMING LANGUAGES

Operating systems used for sensor networks is same as traditional embedded system such as eCos
or uC/OS often designed with real-time properties. Operating systems for WSN nodes typically
are less complex than general-purpose operating systems due to:

(i) The special requirements of sensor network applications.
(ii) Resource constraints in sensor network hardware platforms, Sensor network applications

are usually not interactive like any other personal computers. So there is no necessity for
incorporating the support for user interfaces.

(iii) Constraints in memory and memory mapping hardware support make mechanisms like
virtual memory unnecessary or it is impossible to implement.

Programming the sensor nodes is more difficult than programming normal computer systems due
to constrained resources, high dynamics and inaccessible deployment environments. New
programming models like c@t (Computation at a point in space(@)Time), DCL (Distributed
Compositional Language), galsC, nesC, Protothreads, SNACK, SQTL are developed to deal with
the resource constrained environment of WSNs nodes.

Recently, maximum research is on developing operating system for sensor nodes such as, TinyOS
and Colorado’s Mantis Operating System (MOS). MOS is a layered multithreaded operating
system with a layered network stack. Tiny OS is the most popular state machine based operating
system for sensor networks.

4 OPERATING SYSTEM OVERVIEW

4.1 Tiny OS

TinyOS is a flexible application specific operating system specifically designed for Wireless
Sensor Networks. It is an event-driven programming model and is not based on multithreading.
TinyOS programs are self-possessed of event handlers and tasks with run to completion-
semantics. When an external event occurs, TinyOS calls the appropriate event handler to handle
the event viz., incoming data packet or a sensor sensing any particular data of interest. Event
handlers can delay the tasks that are scheduled by the TinyOS kernel.

nesC is a special programming language.It is the extension of C programming language used by
TinyOS system. Recognition of race conditions between tasks and event handlers are the
important features of the nesC . TinyOS is an open source, BSD-licensed operating system
intended for low-power wireless devices, which are used in different applications like sensor
networks, ubiquitous computing, personal area networks, smart buildings and smart meters.

TinyOS 2.1.1 includes support for; (i) The epic, mulle, and shimmer2 platforms, (ii) Simple,
uniform low-power networking across many protocols (iii) 6lowpan, an IPv6 networking layer
within the TinyOS network (iv) Security on the CC2420 radio. The tiny sensor nodes in the

International Journal of Network Security & Its Applications (IJNSA), Vol.5, No.2, March 2013

51

sensor networks executes event-centric, concurrent, reactive program that operates with severe
memory and power constraints. These constraints drive towards the design of TinyOS. It supports
complex, concurrent programs with very low memory requirements like 16KB of memory and
the core OS is 400 bytes for many applications with minimum energy consumption.

4.2 Lite OS

LiteOS [18] is an operating system developed by UIUC for the sensor nodes. LiteOS model is an
interactive and reliable model which provides the benefits like robustness, integrity and
availability. It is capable of performing the simple operations when compared to TinyOS model.
LiteOS provides the environment for Object-oriented languages resulting in reusability,
modularity and extensibility. LiteOS provides a UNIX-like environment for sensor networks,
network embedded devices and cyber physical systems. A thread-based run-time execution
environment is provided by LiteOS for applications. LiteOS fits on memory-constrained nodes
such as MicaZ. This operating system is multithreaded and comes bundled with a UNIX like file
system and a C++ compiler. Through strong, modular environment, TinyOS and its extensions
have extensively enhanced programmability of mote-class embedded devices. NesC and the
event-based programming model introduce a learning curve for the most developers outside the
sensor networks area.

The purpose of LiteOS is to significantly reduce the learning curve. The overall architecture of
the LiteOS operating system is divided into three subsystems LiteShell, LiteFS and kernel.
LiteOS provides a wireless node mounting mechanism. in a file system called LiteFS, The
LiteShell subsystem which runs on the base station PC side, provides Unix-like command line
interface to sensor nodes. Therefore, it is a front-end that interacts with the user. The kernel
subsystem of LiteOS takes the thread approach, but it also allows user applications to handle
events using callback functions for efficiency.

LiteOS offers a number of characteristics in the sensor network operating systems. They are (i) a
hierarchical file system and a wireless shell for user interaction using UNIX-like commands, (ii)
kernel popup for dynamic loading and native execution of multithreaded applications and (iii)
online debugging, dynamic memory and file system assisted communication stacks. Software
upgradation is completed through careful partition between the kernel and user applications
which are bridged through a suite of system calls.

A web service for LiteOS-based Wireless Sensor Networks is proposed [18] to remotely monitor
the light, temperature, magnet and acceleration of the physical world. This proposed web service
enables the users to remotely query and visualize the sensor readings and accepts parameterized
queries, in view of the fact that UNIX-like shell commands and C programming language are
supported by LiteOS. To address real time applications it is time critical and demand richer set of
applications it is better to use LiteOS based Extended Service Oriented Architecture [18] for
Wireless Sensor Networks. The current version of LiteOS is Version 2.1. This version includes
(i)Fully integrated with AVR Studio with IRIS and MicaZ support and (ii) Fixed event logging
and memory tracing functionality.

4.3 MANTIS OS

A new multithreaded cross-platform embedded operating system for Wireless Sensor Networks is
provided by the MANTIS[8] MultimodAl system for NeTworks of In-situ wireless sensors.
Sensor Networks are capable of handling complex tasks such as Compression, Aggregation and
Signal Processing. Pre-emptive multithreading in the MANTIS sensor OS (MOS) enables micro

International Journal of Network Security & Its Applications (IJNSA), Vol.5, No.2, March 2013

52

sensor nodes to interleave time-sensitive tasks. This feature addresses the bounded buffer
producer-consumer problem. MOS is implemented in a lightweight RAM footprint that fits in
less than 500 bytes of memory, including kernel, scheduler and network stack, thus achieving the
memory efficiency.

The MOS power-efficient scheduler makes the microcontroller go to sleep mode after all active
threads have called MOS sleep () function, reducing current consumption. An important key
design feature of MOS provides flexibility in the form of cross-platform support and testing
across PCs, PDAs and different micro sensor platforms. It supports remote management of in-situ
sensors by means of dynamic reprogramming and remote login. With the intention to achieve
cross-platform support, MOS was designed to influence the properties of C, a portable standard
programming language. Ranging from PC’s to PDA’s MOS enables the same application code to
execute on a different micro sensor platforms.

4.4 Contiki OS

Contiki is an operating system for embedded devices in Wireless Sensor Networks that provides
powerful semantics to communicate with the sensor network. Contiki is an open source,
developed in 2004. Contiki is a highly portable, multitasking operating system for memory-
efficient networked embedded systems and Wireless Sensor Networks. Contiki has become fairly
popular and is attaining a high-quality place in the WSNs community.

Contiki [15][19] has a broad range of networking features and is ported to various hardware
platforms. The main features of Contiki are Protothreads which is an event-driven programming
model. Protothreads includes special primitives to express blocking waits by adding statements
that waits until an event has happened. Contiki comes with its own networking stack for TCP/IP,
IPv6 and supports the radio links utilized in Wireless Sensor Networks. Preemptive threading is
enabled on a per-process level and support for real-time applications provided through an extra
timer called rtime.

4.5 HEROS

HEROS[20] is a smart, resource-aware, low-energy and distributed real-time micro-kernel,
adopting the actionetask-thread component-based multi-level system architecture. By combining
event-driven and multitask concepts, HEROS adopts component-based multi-level system
architecture: action, thread and event. A minimal system element action in HEROS responds to
the basic system operation, such as read, write, schedule etc.. A specific task called thread is a
component that consists of a set of actions. An event is an etask (event task) which may be
composed atleast by one thread.

In HEROS etask is similar to event in TinyOS and they adopt two-level scheduling policy: non
preemptive priority scheduling for etasks and preemptive priority scheduling for threads. The
scheduling scheme is predictable and deterministic with respect to the real time applications. A
unique system interface and a system primitive-pair, i.e., tuple and IN & OUT, are proposed for
system synchronization and communication. HEROS integrate the advantages of TinyOS and
SDREAM and executes at different modes: event-driven, multi-tasking and hybrid. The
combination of two kernels greatly extends the application range of HEROS from simple single-
task to multi-task applications.

International Journal of Network Security & Its Applications (IJNSA), Vol.5, No.2, March 2013

53

4.6 SOS

The SOS[21] operating system implements a static kernel that provides a wide range of services
to user applications written in C and offers limited protection through kernel features. All nodes
in a deployment are initialized with this static kernel. At run time, user applications made of one
or more modules are loaded on top of the kernel for execution. Modules communicate with the
kernel through a function jump table and with each other through indirect function references and
messaging. A memory manager tracks the memory allocated by each user application.
Applications in SOS can be dynamically added to, updated on and removed from nodes. To better
support this functionality, the kernel intervenes when an application attempts to use a service
provided by another application that is not available on the node.

4.6.1 An Online Reprogrammable Operating System

The design and implementation of hot-swapping capability in SOS[22] allows a module to be
upgraded on the fly. The system uses the hot-swapping procedure which is an online process and
in this system execution state of the old module can be properly transferred to the new module. It
is also allowed to interface changes during hot-swapping. Hot-swapping of application modules
and kernel modules are enabled. Finally, hot-swapping procedure is lightweight. To reduce the
reprogramming cost in sensor nodes, during hot-swapping ,the job of module-linking is offloaded
to the server. Hot-swapping, the system call performance is improved in SOS by caching the
access results of the system call jump table. To evenly allocate memory traffic around the flash
memory, the first-fit flash memory allocation scheme is substituted by a technique that relies on
erase counters in SOS. The system is implemented on the Mica2 mote and maintenance of erase
counters of each block is offloaded to the server.

4.7 RETOS

RETOS kernel detects detrimental attempts on system safety by applications and terminates the
impenetrable application programs suitably [23]. The usefulness of the proposed mechanism is
validated by experiments executed on a commercial sensor node device running the RETOS
operating system. In Wireless Sensor Networks Resilient operating system mechanism depends
on dual mode operation and static/dynamic code checking. This mechanism guarantees stack,
data, code and hardware safety on MMU-less hardware without restriction of the standard C
language.

4.8 Comparison of Operating System

There is a rapid development of operating systems for wireless sensor networks from 2000
onwards. It is expected that operating system should make available a platform for fast
prototyping, testing and debugging application programs. TinyOS [18] and SOS [21] are based on
events, Mantis [8] and TinyThreads [18] choose threads and Contiki [15] provides support for
both. The comparison of operating systems with respect to diverse parameters is summarized in
Table 1. In their first attempt, Casado et al., [15] presents ContikiSec, to implement a secure
network layer for Wireless Sensor Network architecture for Contiki. ContikiSec provides three
security modes and it has a configurable design. ContikiSec offers confidentiality, authentication
and integration in communications under the Contiki operating system. In general, the expected
features from the next generation WSN OS are (i) Power aware policies, (ii) Self organization,
(iii) Easy interface to expose data, (iv) Simple way to program, update and debug, (v) Network
applications, (vi) Power-aware communication protocols, (vii) Portability and (viii) Easy
programming language.

International Journal of Network Security & Its Applications (IJNSA), Vol.5, No.2, March 2013

54

5 SIMULATION IN WSNS

The performance analysis of wired and wireless networks can be done using analytical methods,
physical measurement methods and computer simulation. The use of complex algorithms for
sensor networks that frequently violate analytical methods are due to the constraints forced on
sensor networks, like energy limitation, decentralized collaboration and fault tolerance. Hence,
simulation is the primary feasible approach to the quantitative analysis of sensor networks
[5][3][4][7].

Implementation of experiments on a test bed is costly and difficulty. While, repeatability is
largely compromised since many factors like routing, energy consumption, topology of the
network affect the experimental results and isolation of each factor is not possible. Running real
experiments are always time consuming. Therefore, simulation becomes essential for the
developments of WSNs, so that protocols, schemes and new ideas can be evaluated on a very
large scale and allow users to isolate different factors by tuning configurable parameters.

There are no specific protocols or algorithms for a sensor network since it is designed for a
particular application with specific features. Hence, it is essential to develop simulation platforms
that are useful to explore both networking issues and distributed computing aspects of Wireless
Sensor Networks. Network Simulation Tools are used which makes it difficult to apply for
exploring distributed computing issues. The research area of WSNs results in continuously
developing new protocols and components which have to be tested. This increases the cost for
developing and deployment of sensor nodes. An alternative to the development of real sensor
nodes is to use simulation environments that are widely practiced in other networking domains. In
Wireless Sensor Networks, the situation is quite different because WSNs have special
characteristics that are to be considered and have to be made available for simulation
environments.

Table 1 Comparison of Operating Systems used in WSNs

OS /
Features

LiteOS TinyOS Mantis Contiki SOS

Current
license

GPL BSD BSD BSD Modified BSD

Website www.liteos.n
et

www.tinyos.n
et

Mantis.cs.color
ado.edu

www.sics.se/co
ntiki

Projects.nesl.u
cla.edu/public/
sos-2x/doc/

Remote
scriptable
wireless shell

Yes(on the
base PC,
Unix
commands
supported)

No(applicatio
n specific
shell such as
SimpleCmd
exists)

No(on-the-mote
shell is
supported)

No(on-the-mote
shell is
supported)

No

Remote File
system
interface for
networked
nodes

Yes No No No No

File system Hierarchial
Unix-like

Single
level(ELF,
Matchbox)

No (will be
available in 1.1)

Single level No

Thread
support

Yes Partial
(through Tiny
Threads)

Yes Yes(also
supports proto
threads)

No

www.liteos.n
www.tinyos.n
www.sics.se/co

International Journal of Network Security & Its Applications (IJNSA), Vol.5, No.2, March 2013

55

Event based
Programming

Yes(through
callback
functions)

Yes No Yes Yes

Remote
Debugging(e.
g, Watch and
breakpoints)

Yes Yes (through
clairvoyant)

Partial (through
NodeMD)

No No

Wireless
reprogrammi
ng

Yes
(application
level)

Yes (whole
system image
replacement)

No Yes Yes (module
level)

Dynamic
Memory

Yes Yes No Yes Yes

First
Publication/re
lease date

2007 2000 2003 2003 2005

Platform
Support

MicaZ and
AVR series
MCU

Mica, Mica2,
MicaZ, Telos,
Tmote, XYZ,
Iris (among
others)

Mica2, MicaZ,
Telos

Tmote, ESB,
AVR series
MCU, certain
old companies

Mica2, MicaZ,
XYZ

Simulator Through
AVRORA

TOSSIM,
Power
Tossim

Through
AVRORA

Netsim, Cooja,
MSPsim

Source level
Simulator/Thr
ough
AVRORA

Current
version

2.1 2.1.1 1.0 beta 2.6 No active
development

A choice of operating systems are analysed with respect to different parameters and summarized
in Table 1. Reprogamming and dynamic memory features are of high-quality with respect to
operating systems except Mantis OS. The platform support provided by operating systems for
different sensor nodes are discussed in Table 1 and provides an insight in choosing the best
suitable operating system that fits for specific application.

5.1 Simulator

Simulator is a tool that is used universally to develop and test protocols of WSNs. The cost of
simulating thousands of nodes in a network is very less and the simulation can be completed
within very short span of the execution time. General and Specialized simulators are available to
simulate WSNs.

5.2 Emulator

Emulator is a tool, which comprises of firmware as well as hardware to perform the simulation.
Emulator is implemented on real nodes, providing more precision performance. Usually emulator
has high scalability, which can emulate numerous sensor nodes at the same time. Emulators are
different from simulators, the latter runs actual application code. Routing protocols, topology and
data aggregation effects are best analyzed using simulation. Emulators are efficient for timing
interactions among sensor nodes and for fine tuning network level and sensor algorithms.

6 SIMULATION TOOLS

Network simulation tools are used in the network design phase before actual implementation. A
real world environment is accurately modelled and predicted the behaviour using any simulation

International Journal of Network Security & Its Applications (IJNSA), Vol.5, No.2, March 2013

56

tool. So, that the information is provided with reference to feasibility and reflectivity that are
crucial in the implementation of any systems prior to investing large amount of time and cost. It is
essential to know the different simulation tools currently available and the benefits and drawbacks
allied with it, so that any protocol can be built effectively with the help of simulation. This
situation is, in particular true with respect to the investment in sensor networks, where hardware
may have to be purchased in large quantities and at high cost. Even if the sensor nodes are readily
available, testing the network for particular environment is time-consuming and difficult task.
Simulation-based testing helps anyone to decide the real world environment with ease of
implementation and practicality of testing large-scale networks. Therefore, simulation is the most
widespread approach to develop and test new protocol for sensor networks. There are three types
of simulation: Monte Carlo Simulation, Trace-Driven Simulation and Discrete-Event Simulations.
The Trace-Driven Simulation and Discrete-Event Simulation are the two simulations which are
used universally in WSNs.

6.1 Monte Carlo Simulation

To be aware of the impact of risk and uncertainty in financial, project management, cost and other
forecasting models , Monte Carlo simulation [24] or probability simulation technique is used.
This is a computerized mathematical technique that allows people to give an explanation for risk
in quantitative analysis and decision making. This technique is used by professionals in the field
of finance, project management, manufacturing, engineering, research and development,
insurance, oil and gas, transportation.

Monte Carlo simulation furnishes the decision-maker with a range of promising outcomes and the
probabilities of occurrence for any option of action. Monte Carlo simulation, also called
probability simulation is a technique used to understand the impact of risk and uncertainty in the
applications such as financial, project management, cost and other forecasting models. Monte
Carlo (MC) Method is a computational method that utilizes random numbers. The two major
applications of the MC method are (i) Multidimensional integrations (e.g., statistical mechanics in
physics) and (ii) Simulation of stochastic natural phenomena (e.g., stock price).

6.2 Trace Driven Simulation

Trace-Driven simulation is commonly used in real system and simulation results have more
credibility. This type of simulation provides more accurate workload and detailed information
that helps users to learn indepth the simulation model. Usually, input values in the simulation are
constant. High-level detail information increases the complexity of the simulation and
workloads may change. This leads to a drawback of trace driven simulation that
representativeness of the simulation needs to be suspicious.

6.3 Discrete-Event Simulation

Discrete-event simulation is widely used in WSNs, because it is capable of simulating lots of jobs
running on different sensor nodes. Discrete-event simulation includes some of components. This
simulation can record pending events and these can be simulated by routines. The system state
depicted by global variables can represent the simulation time, which allow the scheduler to
predict this time in advance. Input routines, output routines, initial routines and trace routines
are included in this simulation. In addition, this simulation provides dynamic memory
management, i.e., new entities can be added and drop old entities in the model. Debugger
breakpoints are provided in discrete-event simulation, so it is possible by the user to check the
code step by step without disrupting the program operation.

International Journal of Network Security & Its Applications (IJNSA), Vol.5, No.2, March 2013

57

7 DESCRIPTION OF SIMULATION TOOLS

The simulation tools [25] are available in two different forms. They are: (i) General Simulation
Tools and (ii) Specific WSNs Simulation Tools. The general simulation tools behaviour is
described using a tabular approach as shown in Table 2. Discrete Event Simulation is a
trustworthy platform for modelling and simulating a different types of systems. Some of the
discrete event simulators specific for WSNs are shown in Table 3.

7.1 Matlab-True Time Toolbox

The TrueTime toolbox which is a freeware Matlab® library. It is mainly used for simulating
networked and embedded real-time control systems. Ali et al., presents [26] a new simulation
methodology of WSNs. The new simulation methodology proposed by the authors proves that
ability of simulink MATLAB to be a useful and flexible move towards to revise the effect of
different physical layer parameters on the recital of WSNs. They use MATLAB(7.6) Simulink to
build a complete WSNs system. In [27] Alberto Cardoso et al., proposes a higher level
simulation platform for WSNs based on the TrueTime toolbox. The authors finds that TrueTime
toolbox was indispensable for a correct, reliable and effortless abstraction of the underlying layers
of the simulator, primarily the electronics and linking issues following each wireless node and the
wireless network.

Simulink block library and a collection of MEX files [27][28][29] are the major components of
the simulator software. The kernel block simulates a real-time kernel executing user-defined tasks
and interrupt handlers. The various network blocks allow nodes (kernel blocks) to communicate
over simulated wired or wireless networks. The latest release of this simulator is TrueTime 1.5.
This version characteristics a couple of standalone network interface blocks that makes it simpler
to develop networked control simulations. A TrueTime simulation is programmed to a great
extent the same way as a real time embedded system. Matlab code or C++ can be used to write
the application. The execution/transmission times must be specified by the developer , this finds
the main difference from real programming. TrueTime is treated as a very flexible co simulation
tool. The step from simulation code to production code is not that large in this simulation tool.

8 PERFORMANCE EVALUATIN OF SIMULATOR

8.1 Evaluation of Simulators

Recognition and Identification of the functional requirements from the simulation tool is
profoundly related to the perspective in which it is to be used. The key properties of simulator
which are expected from a Wireless Sensor Network application developer from excellent
Wireless Sensor Networks simulator are: (i) Reusability and Extensibility, (ii) Performance and
Scalability, (iii) Operating System Portability, (iv) Semantics Scripting languages, (v) Realism
level of Virtual Environment, (vii) Graphics, Debug and Trace.

Table 2 General Simulation Tools

Simulation
tool

Type of
simulation

Programming Availability/GUI Details

NS-2
(current
version 2.35)

Discrete Event
Simulation

Object
oriented
extension of

Open Source/ No
(provides online
documents)

1.Paradigm of reusability.
2.It includes WSN specific
protocols Directed Difussion

International Journal of Network Security & Its Applications (IJNSA), Vol.5, No.2, March 2013

58

Tcl and C++ /SMAC
3.Poor Graphical support, via
Nam.

J-Sim
(java sim)

Discrete Event
Simulation

Java
(component
based)
Scripting
interface
(Perl,Tcl and
Python.)

Open Source/ Yes Main benefit of J-sim is its
considerable list of supported
protocols, WSN simulation
framework with a very
detailed model of WSN.
Implementation of
localization, routing and data
diffusion algorithms of
WSNs.

OPNET
(Provides free
of charge
university
program for
academic
Research
programs)

Parallel
Discrete Event
Simulation
(OPNET

Modeler
Wireless suite
version 16.0)

C/C++
object-oriented

Commercial/ Yes Hierarchical model to define
each aspect of the system.
OPNET has ESD (External
System Domain) for
communicating with external
software and systems.

OMNeT++ Discrete Event
Simulation

C++(Highly
portable with
Windows,Linu
x and Mac
OSX

Non commercial
licence,
(OMNESET)
commercial
licence/Yes

OMNeT++ is not simulator,
but it provides a frame work
and tools to write
simulations.

EYES framework for OMNeT++ is written for self organizing an collaborative energy-
efficient sensor networks

Mobility
Framework

Basic support for Mobile and Wireless Networks. Includes some basic layers such as
MAC layers (Aloha, CSMA) and network layers (flooding) as well as some basic
mobility functionality and some basic application layer.

GloMoSim
(Qualnet)
(Parallel
computing lab
@UCLA)

Parellel Discrete
Event Simulation

Parsec
(Simulation
language Derived
from C)

Commercial/
Yes
(commercial
version @2000
sQualNet)

Several proposals for
WSNs protocols have
been tested with it.
Recently, a
development kit for
WSNs has been
released, sQualnet

Ptolemy II different
models of
simulation
paradigms (e.g.
continuos time,
dataflow, discrete-
event).

Java packages
(component-based
design of J-Sim.)

Open
source/GUI

addresses the
modeling, simulation
and design of
concurrent, real-time,
embedded systems.
VisualSense is a
modeling and
simulation framework

JiST/SWANS Discrete Event
Simulation
(Virtual Machine
based
Simulation(JVM))

Java Byte Code Open
Source/The only
graphical aid is
an event logger.
Jython is used
as a scripting
engine

The main drawback
of JiST tool, is the
lack of enough
protocol models.
It provides an ad-hoc
network
simulator called
SWANS, built atop

International Journal of Network Security & Its Applications (IJNSA), Vol.5, No.2, March 2013

59

JiST engine and with a
reduced protocol
support..

NCTUns2.0 Discrete Event
Simulator

kernel of a UNIX
machine(embedded
)

unknown Adding WSN
simulation modules to
architecture is not a
straightforward task.

SSFNet
(Scalable
Simulation
Framework)

Discrete Event
Simulator

Domain modeling
language
(APIs in JAVA as
well as C++)

Open
Source/GUI

DartmouthSSF
(DaSSF) is a C++
implementation of
SSF oriented to
(parallel) simulation of
very large scale
communication
networks.

SWAN A specific extensions oriented towards ad hoc networking . SWAN is being extended to
be able to execute TinyOS code, a new framework called TOSSF .

TrueTime
toolbox
(MATLAB)

Networked and
embedded real-
time control
systems

Matlab
programming

Freeware/YES
(XML
configuration
file,3Dsimulatio
n and
visualization as
well as the
possibility of real
time simulations
embedding real
motes.

supports the ZigBee
protocol.

Table 3 Specific Simulation Tools

Name of
Simulation
tool

GUI
Type of
availability

Programming
or
Operating
systems

Description

Tossim
(powerful
Emulator)

Yes
(TinyViz)

Open
Source/online
documents

TinyOS Tossim cannot
correctly simulate due
to the
issue of energy
consumption in WSNs.

Power Tossim TinyOS simulator extends power model to TOSSIM , estimates the power
consumption of each node.

Tossf&Tython Simulation systems complies TinyOS applications to emulate the Berkely MICA
mote hardware. TOSSF enhances the TOSSIM scalability, Tython compliments
TOSSIM executions adds a scripting environment to augment the simulation.

Emstar
(Emulator
Built in C runs in
real time)

Yes Open Source C Can only apply to
iPAQ-class sensor
nodes and MICA2
motes.
.

EmSim simulator of the microserver environment each simulated node runs an EmStar
stack and is connected through a simulated radio channel model.

EmCee Interface to real low-power radios, capable of generating radio emulation.
EmSim Simulator of the microservers environment. In EmSim simulated node runs an

International Journal of Network Security & Its Applications (IJNSA), Vol.5, No.2, March 2013

60

EmStar stack and is connected through a simulated radio channel model.
ATEMU
(emulator of an
AVR processor)

Yes
XTADB
debugging tool

Open Source
And online
documents

C
(supports user to
run TinyOS on
MICA2
hardware)

Emulate different
sensor nodes in homo
and heterogeneous
networks at the cost of
high processing
requirements and poor
scalability.

Avrora (simulator of
an AVR processor)
Sensor platform
Mica2 and MicaZ.
Current version
Beta 1.7.106

Lacks GUI
Tools:
profiling
utilities,
energy analysis
tool, stack
checker,
control flow
graph tool.

Open Source
and online
documents

Java
(can simulate
different
programming
code projects)

Support thousands of
nodes simulation and
saves execution time.

Prowler/Jprowler
(simulates Berkley
MICA motes)

YES Specific for
mica motes

Runs under
Matlab/Java
intended to
optimize n/w
parameters.
(matlab code)

Jprowler supports
pluggable radio models
and MAC protocols

UWSim
(for Underwater
Sensor Networks
(UWSN)).

purely object-
oriented
fashion using
C# capabilities

Commercial The software was
developed on
Windows XP
using Microsoft.
Net Framework

Simulates the acoustic
network.
Characteristics of
underwater networks
such as low BW, need
for high frequency and
the effect of salinity
and temperature with
depth are considered

Shawn
(Designed to
support large-scale
network simulation.)

Not known open source Java customizable sensor
network simulator.

COOJA/MSPSim
(primarily a code
level simulator for
networks consisting
of nodes running
Contiki OS.)

No GUI unknown Java application,
interaction with
compiled Contiki
through Java
Native Interface
(JNI).

Nodes with different
simulated hardware
and different on-board
software may co-exist
in the same simulation.

An analysis of various simulators that are used for Wireless Sensor Networks is compared in
Table 2. Reusability and extensibility is very good and Operating System Portability provided
in NS-2, Jsim, Ptoelmy, Avrora as their programming languages are object oriented. Whereas in
Opnet, Pmnet, Tossim, Emstar, Atemu, Shawn have quoted normal rates and in Sense it is too
low. The users can obtain a better performance and scalability with Glomosim, JSim, Atemu and
Avrora. The Semantics Scripting languages are available in Ns-2 (Tcl and OTcl), Jsim (perl, Tcl,

International Journal of Network Security & Its Applications (IJNSA), Vol.5, No.2, March 2013

61

python), Ptoelmy, Tossim, Atemu. The Virtual environment for analysis of results is provided in
Opnet and Sense. Graphical support for simulations , a debugging aid, a visual modeling and
composition tool and result plotter are best provided with Opnet, Glomosim, Omnet, JSim,
Ptoelmy and Avrora.

8.2 Analysis of Simulation Tools

Many of the simulators are developed for a specific modelling task in which they are accurate and
appropriate. In such cases the description in Table 3 need to be extended or modified. Very high
performance real time simulations that include operating system and application layer code
execution delays are impossible with these presented simulators without extensions or use of
external software. Commercial simulator OPNET, offers better support, maintenance and is
proved simulation models. It is observed that for scalability of large networks NS-2 lags behind
the other reviewed simulators. Simulation code exportation, e.g., C/C++ or TinyOS routing
algorithm or application, to sensor node is easy in commercial platform dependent TinyOS
emulators, e.g., TOSSIM runs most application code used for sensor nodes. In general purpose,
platform independent simulators like NS-2, C/C++ and source code interchange is possible when
required interfaces and libraries are included on the target platform.

JavaSim, SSFNet, Glomosim and its descendant Qualnet, which are publicly available network
simulators, attempted to address problems that were absent and unexplained by NS2. Out of
SSFNet, Glomosim and its descendant Qualnet, JavaSim developers realized the drawback of
object-oriented design and attempted to molest this problem by developing a component-oriented
architecture. But they choose Java as the simulation language, sacrificing the efficiency of the
simulation. The designers have paid more attention to Parallel simulation, in SSFNet and
Glomosim , with the Glomosim more focused on wireless networks. With respect to NS2 in terms
of design and extensibility SSFNet and Glomosim are not advanced.

Although SENSE is a commonly used simulator it was originally created without the capability
to provide visual feedback from a simulation. Christopher et al., [10] in their proposed work
discuss the problem and solution for connecting the SENSE Wireless Sensor Network simulator
with iNSpect, a visualization tool planned to work with NS2. Paulo et al., [7] presents a GUI
application, called G-JSim, provides a WSN simulation tool with direct and automatic interface
with the J-Sim simulation engine. The tool is freely available for download and accepts user input
parameters, stores them into an XML file and automatically launches J-Sim to perform
simulations. Further, it provides an enhancement of J-Sim functionality with a Guided User
Interface for Wireless Sensor Networks that dramatically increase the user-friendliness of the
simulator.

Keeping the low-power consumption, small code and data size, evolvability factors as main
design criteria Kim et al., [26] developed an Evolvable Operating System (EOS) for Wireless
Sensor Network applications . Memory space efficient thread management, collaborative thread
communication model and network stack are mainly provided by EOS. It supports power
management of microcontroller, radio transceiver and network wide time synchronization
function. Evolvability is the most important feature with which the operating system itself is
configurable and upgradeable.MATLAB with its given fundamental features provides researchers
a very flexible simulation environment with application in a different scientific areas, such as,
WSN communication protocols or distributed control over wireless networks.

International Journal of Network Security & Its Applications (IJNSA), Vol.5, No.2, March 2013

62

9 CONCLUSIONS

In this paper, we have presented different simulators for both general purpose and specific
purpose of simulation. Evolutionary adaptation in use of simulators provides the advantages in
reusing well-tested ideas, developer basis, focusing on the special characteristics and the
functioning of sensor nodes in Wireless Sensor Networks. Programming sensor network systems
always remains a challenging task and hence the primary goal of simulation platforms is to
alleviate these challenges. For a Wireless Sensor Network system, two features of simulators are
extremely valuable: reproducible experimentation and dynamic environment modelling.

The simulation study explores the scalability, reusability, extendibility, availability of graphic
tools/ scripting languages and performance. Unlike traditional computer systems, it is not
sufficient to simulate the behaviour of the sensor network. The experience of practicality is much
more required in analogous to simulators. Even though there are several simulators, still there is
no one particular simulation tool that solves all the problems for any type of scenarios for a given
WSNs.

REFERENCES

[1] Akyildiz, I.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. A Survey on Sensor Networks. IEEE
Commun. Mag vol. 40, pp.102-114, 2002.

[2] C Y Chong and S P Kumar, ”Sensor Networks:Evolution, Opportunities and Challenges,”
Proceedings of the IEEE 2003, vol. 91, pp.1247-1256, 2003.

[3] Gowrishanka.S , T G Basavaraju, Manjaiah D H, Subir Kumar Sarkar ,” Issues in Wireless Sensor
Networks”, In Proceedings of the World Congress on Engineering 2008 WCE 2008, vol I, July 2008,
London, U.K.

[4] Marko Korkalainen, Mikko Sallinen, Niilo Kärkkäinen and Pirkka Tukeva,“ Survey of Wireless
Sensor Networks Simulation Tools for Demanding Applications” Fifth International Conference on
Networking and Services Survey of Wireless Sensor Networks Simulation Tools for Demanding
Applications, 2009.

[5] David Curren ,“ Evaluation-of-Discrete-EventWireless-Sensor-Network-Simulators”,
http://www.docstoc.com/docs/132602032.

[6] E Egea-López, J Vales-Alonso, A S Martínez-Sala, P Pavón-Mariño, J García-Haro,” Simulation
Tools for Wireless Sensor Networks”, Summer Simulation Multiconference - SPECTS , 2005

[7] Paulo A C S Neves, Iúri D C Veiga, Joel J P C Rodrigues,”G-JSIM – A GUI tool for Wireless
Sensor Networks Simulations under J-SIM”. http://netgna.it.ubi.pt/files/2008-ISCE.pdf.

[8] Shah Bhatti, James Carlson, Hui Dai, Jing Deng, Jeff Rose, Anmol Sheth, Brian Shucker, Charles
Gruenwald, Adam Torgerson and Richard Han “MANTIS OS: An Embedded Multithreaded
Operating System for Wireless Micro Sensor Platforms”ACMKluwer Mobile Networks and
Applications (MONET) Journal, Special Issue on Wireless Sensor Networks, August 2005.

[9] Masaaki Takahashi, Basit Hussain, Bin Tang ,” Design and Implementation of a Web Service for Lite
Os-based Sensor Networks”, In Proceedings of the 5th Annual GRASP Sympsosium, Wichita State
University, 2009.

[10] Harsh Sundani, Haoyue Li, Vijay K. Devabhaktuni, Mansoor Alam and Prabir Bhattacharya”
Wireless Sensor Network Simulators A Survey and Comparisons” International Journal of Computer
Networks (IJCN), 2(5):249.

[11] David Curren ,“A Survey of Simulation in Sensor Networks” University of Binghamton,NY,2005.
[12] C Mallanda, A Suri, V Kunchakarra, S S Iyengar, R. Kannan and A. Durresi, “Simulating Wireless

Sensor Networks with OMNeT++ ”,LSU Simulator, Version 1, 01/24/2005.
[13] Fei Yu, “ A Survey of Wireless Sensor Network Simulation Tools”

http://www1.cse.wustl.edu/~jain/cse567-11/ftp/sensor/index.html
[14] Chiara Buratti, Andrea Conti, Davide Dardari and Roberto Verdone” An Overview on Wireless

Sensor Networks Technology and Evolution”, ISSN 1424-8220, Sensors 2009, vol.9, 2009

http://www.docstoc.com/docs/132602032
http://netgna.it.ubi.pt/files/2008-ISCE.pdf
http://www1.cse.wustl.edu/~jain/cse567-11/ftp/sensor/index.html

International Journal of Network Security & Its Applications (IJNSA), Vol.5, No.2, March 2013

63

[15] Lander Casado and Philippas Tsigas, “ContikiSec: A Secure Network Layer for Wireless Sensor
Networks under the Contiki Operating System”.

[16] Qing Cao, Tarek Abdelzaher John Stankovic,Than He” LiteOS:Towards Unix-likeAbstractions for
Wireless Sensor Networks” Proceedings of ACM/IEEE IPSN, pp 233-244, 2008.

[17] Daniele De Caneva, Pier LucaMontessoro and Davide Pierattoni “Operating Systems for Wireless
Sensor Networks: An Overview “Ubiquitous Computing and Communication Journal Volume 3(4).

[18] Masaaki Takahashi, Basit Hussain, Bin Tang ,” Design and implementation of a web service for Lite
Os-based Sensor Networks”, Proceedings of the 5th Annual GRASP Sympsosium, Wichita State
University , 2009.

[19] Daniel Willmann “Contiki - A Memory-Efficient Operating System for Embedded Smart Objects”,
2009.

[20] Hai-ying Zhou, Kun-mean Hou, Christophe DE Vaulx and De-Cheng Zuo” A Hybrid Embedded Real-
time Operating System for Wireless Sensor Networks” Journal of Networks, 4:(6), August 2009.

[21] Vlado HandZizki,Andreas Kopke, Holger karl,Adam Wolisz “A Common WSN Architerure?” In
Proc.1 Gi/ITG Fachgesparach “sensornetze”(Technical Report TKN-03-012 of the
Telecommunications Networks Group, Technische Universitat Berlin) ,pp.10-17, Berlin, Jul 2003.

[22] Hsung-Pin Chang, Yu-Chieh Lin and Da-Wei Chang,” An Online Reprogrammable Operating System
for Wireless Sensor Networks”, Journal of Information Science and Engineering, 27, 261-286 (2011)

[23] Hyoseung Kim and Hojung Cha “Towards a Resilient Operating System for Wireless Sensor Networks
‘USENIX Association Annual Tech ’06: 2006 USENIX Annual Technical Conference

[24] www.palisade.com/risk/monte_carlo_simulation.asp
[25] Abdelrahman Abuarqoub, Fayez Al-Fayez, Tariq Alsboui, Mohammad Hammoudeh, “Simulation

Issues in Wireless Sensor Networks: A Survey,” SENSORCOMM 2012 : The Sixth International
Conference on Sensor Technologies and Applications.

[26] Tu-Thydo,Daeyoung G Kim,Tomas Sanchezlopez,Hyunhak Kim,Seongki Hong,Minh-Long
Phan,”An evolvable Operating system for Wireless Sensor Networks”.

[27] Qutaiba Ibrahem Ali, Akrm Abdulmaowjod, Hussain Mahmood Mohammed,”Simulation and
Performance study of Wireless Sensor Network using MATLAB,” First IEEE International
Conference on Energy,Power,and control,pp 307-314,2010.

[28] Alberto cardoso, Sergio Santos, Amaneio Santos and Paulo Gill, ”Simulation platform for Wireless
Sensor Networks based on the True Time Toolbox”.

[29] Prof. Satish K. Shah, Ms. Sonal J. Rane, Ms. Dharmistha Vishwakarma,”A Simulation Study of
Behavior of Wireless Motes With Reference To Parametric Variation,” International Journal of
Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol. 1, issue 2,
August 2012

AUTHORS

Leelavathi G is Assistant Professor in the Department of Electronics and Communication
Engineering at Govt. SKSJTI, Bangalore, India. She received her B.E and M.E degrees in
Electronics and Communication Engineering from Bangalore University and Visvevaraya
Technological University, respectively. Her research areas are Wireless Sensor Networks
and Reconfigurable Embedded systems. She has published around 10 papers in national
and international conferences.

Shaila K is Professor and Head in the Department of Electronics and Communication
Engineering at Vivekananda Institute of Technology, Bangalore, India. She received her B.E
and M.E degrees in Electronics and Communication Engineering from Bangalore University,
Bangalore. She has written a book on Digital Circuits and Systems. She obtained her Ph. D in
the area of Wireless Sensor Networks from Bangalore University.She has published 40
research papers in refereed International Journals and conferences.

www.palisade.com/risk/monte_carlo_simulation.asp

International Journal of Network Security & Its Applications (IJNSA), Vol.5, No.2, March 2013

64

Venugopal K R is currently the Principal, University Visvesvaraya College of Engineering,
Bangalore University, Bangalore. He obtained his Bachelor of Engineering from University
Visvesvaraya College of Engineering. He received his Masters degree in Computer Science and
Automation from Indian Institute of Science Bangalore. He was awarded Ph. D. in Economics
from Bangalore University and Ph. D. in Computer Science from Indian Institute of
Technology, Madras. He has a distinguished academic career and has degrees in Electronics,
Economics, Law, Business Finance, Public Relations, Communications, Industrial Relations, Computer
Science and Journalism. He has authored 35 books on Computer Science and Economics, which include
Petrodollar and the World Economy, C Aptitude, Mastering C, Microprocessor Programming, Mastering
C++ etc. He has over 350 research papers to his credit. His research interests include Computer Networks,
Parallel and Distributed Systems, Digital Signal Processing, Digital Circuits and Systems and Data Mining.

L M Patnaik is the honorary professor in IISc. He wasVice Chancellor, Defence Institute of
Advanced Technology, Pune, India. He was a Professor from 1986 to 2008 in the Department of
Computer Science and Automation, Indian Institute of Science, Bangalore. During the past 40
years of his service at the Institute he has over 800 research publications in refereed International
Journals and Conference Proceedings. He is a Fellow of all the four leading Science and
Engineering Academies in India; Fellow of the IEEE and the Academy of Science for the Developing
World. He has received twenty national and international awards; notable among them is the IEEE
Technical Achievement Award for his significant contributions to high Performance Computing and Soft
Computing. His areas of research interest have been Parallel and Distributed Computing, Mobile
Computing, CAD for VLSI circuits, Soft Computing and Computational Neuro-science.

