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Abstract - Ubiquitous presence of internet, advent of web 2.0 has made social media tools like blogs, 
Facebook, Twitter very popular and effective. People interact with each other, share their ideas, 
opinions, interests and personal information. These user comments are used for finding the 
sentiments and also add financial, commercial and social values. However, due to the enormous 
amount of user generated data, it is an expensive process to analyze the data manually. Increase in 
activity of opinion mining and sentiment analysis, challenges are getting added every day. There is a 
need for automated analysis techniques to extract sentiments and opinions conveyed in the user-
comments. Sentiment analysis, also known as opinion mining is the computational study of 
sentiments and opinions conveyed in natural language for the purpose of decision making. 
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I.

 

Introduction

 

ue to the huge growth of social media on the

 

web, opinions extracted in these media are used

 

by individuals and

 

organizations for decision 
making. Each site contains a large amount of opiniated 
text which makes it challenging for the user

 

to read and 
extract information [1]. This problem

 

can be overcome 
by using sentiment analysis techniques. The main 
objective of sentiment analysis is

 

to mine sentiments 
and opinions expressed in the

 

user generated reviews 
and classifing it into different

 

polarities. The output is the 
data annotated

 

with sentiment labels. Machine learning 
techniques

 

are widely used for sentiment classification 
[2].

 

For a specific domain D, sentiment data Xi and

 

Yi 
denoting data Xi has polarity Yi. If the overall

 

sentiment 
expressed in Xi is positive, then Yi is +1,

  

else -1. 
Labelled sentiment data is a pair of sentiment text and 
its corresponding sentiment polarity

 

fXi,Yig. If Xi is not 

assigned with any polarity data Yi, then it is a unlabelled 
sentiment data. In

 

supervised sentiment classi_cation 
method, classifier is trained using labeled data from a 
particular domain. Semisupervised classification 
method,

 

combines unlabeled data along with few 
labeled

 

training data to construct the classifier [3].

 

Applications:

 

There are variety of information in

 

the form 
of news blogs, twitter etc.. are available

 

in the social 
media about different products. Sentiment Analysis can 
summarize and give a score

 

that represents the opinion 
of that data. This is

 

used by customers depending on 
their need. There

 

are a number of applications of 
sentiment analysis and opinion mining. The area where 
Sentiment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:

 

Architecture of Sentiment

 

Analysis

 

 

Analysis is used is in Finance, Politics, 
Business

 

and public actions. In business Domain, 
Sentiment

 

analysis is used to detect the customer's 

D
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interest in their product. Sentiment analysis in political 
do-main is used to get the clarity on the politician's
position. Opinion Mining is also used to find the public 
interest on the newly applied rules by the goverenment.
Motivation: Current trend is to look for opinions and 
sentiments in the product reviews that are available in 
large scale in social media. Before making decision, we 
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Sentiment Analysis and Opinion Mining from 
Social Media: A Review

tend to look at the sentiment analysis results of the 
opinion given by different users. This helps any 
customer to decide his opinion on that product. As data 
available in large scale, it is a laborious process to look 

Abstract- Ubiquitous presence of internet, advent of web 2.0 
has made social media tools like blogs, Facebook, Twitter very 
popular and effective. People interact with each other, share 
their ideas, opinions, interests and personal information. These 
user comments are used for finding the sentiments and also 
add financial, commercial and social values. However, due to 
the enormous amount of user generated data, it is an 
expensive process to analyze the data manually. Increase in 
activity of opinion mining and sentiment analysis, challenges 
are getting added every day. There is a need for automated 
analysis techniques to extract sentiments and opinions 
conveyed in the user-comments. Sentiment analysis, also 
known as opinion mining is the computational study of 
sentiments and opinions conveyed in natural language for the 
purpose of decision making. Preprocessing data play a vital 
role in getting accurate sentiment analysis results. Extracting 
opinion target words provide fine-grained analysis on the 
customer reviews. The labeled data required for training a 
classifier is expensive and hence to over come, Domain 
Adaptation technique is used. In this technique, Single 
classifier is designed to classify homogeneous and 
heterogeneous input from di_erent domain. Sentiment 
Dictionary used to find the opinion about a word need to be 
consistent and a number of techniques are used to check the 
consistency of the dictionaries. This paper focuses on the 
survey of the existing methods of Sentiment analysis and 
Opinion mining techniques from social media.



 
 

 
  

 
 

 
 

 

 

into all the

 

user opinion. Hence Sentiment analysis is 
require.

 

The main Objective of sentiment analysis is to 
classify

 

the sentiment into different categories. Figure

 

1, 
shows the overall architecture of the sentiment

 

analysis. 
Document level, sentence level and aspect level are the 
different levels of sentiment classification. Classifying 
each document into positive

 

or negative class is called 
document-level sentiment

 

classification. While expressi-

 

ng the sentiment of a

 

document by this type of classifier, 
it assumes

 

that

 

document contains opinion of the user 
about a single object. Aspect level sentiment analysis 
classify

 

the opinion about a document assuming that 
the

 

opinion is expressed about different aspects in a

 

document.

 

Sentiment classifiers, designed using data from

 

one domain may not work with high accuracy if the

 

same is used to classify the data from a different do-
main. One of the main reasons is that the sentiment

 

words of a domain can be different from another

 

domain. Thus, Domain adaptations are required

 

to 
bridge the gaps between domains. The Domain

 

used to 
train the classifier is called source domain

 

and the 
domain to which we apply the trained classifier is called 
the target domain. The advantage of

 

this method is that 
we need some or no labeled

 

data of the target domain, 
where labeled data is

 

costly as well as in-feasible to 
manually label the

 

reviews for each domain type. This 
type of classification is called Cross Domain Sentiment 
Classification. Heterogeneous domain adaptation is 
required

 

when domains of different dimension are input 
to

 

the topic adaptive sentiment classifier.

 

Sentiment classifiers can be broadly classified

 

into machine learning and lexicon based. Machine

 

learning algorithms are used in machine learning 
approach. These algorithms can work in supervised, 
semi-supervised or unsupervised learning

 

methods. 
Supervised learning methods give more

 

accurate results 
compared to semi-supervised and

 

unsupervised lear-

 

ning methods, but it requires labeled data which is 
expensive and time consuming process. Semi-super-

 

vised approach uses Easy

 

Adapt (++[EA++]) which is 
easier than the Easy

 

Adapt [EA] which requires labeled 
data from source

 

and target domain. This is because it 
uses both labelled and unlabeled data from the target 
domain

 

which results in superior performance 

 
 
 

 

 
 

domains. But classifier designed to

 

classify data from 
one domain may not work efficiently on other domain. 
This is due to domain

 

specific words which are different 
for every domain.

 

Support vector machine and Naive baye's 
classifiers are the important classifiers that support 
machine learning approach. Support vector machine

 

classify data by finding hyper-plane that separates into 
different classes. Naive Baye's classifier is a

 

probabilistic 
classifier based on Bayes theorem and

 

the strong 
independence between the features. As

 

there is a 
shortage

 

of labeled data, a single classifier can be 
designed to classify reviews from different domains. But 
classifier designed to classify

 

data from one domain 
may not work efficiently on

 

other domain. This is due to 
domain specific words

 

which are different for different 
domain.

  

Organization:

 

The paper is organized as follows.

 

Section 
2 deals with the difffeerent techniques of

 

data 
Preprocessing. In Section 3, Domain Adaptation 
Methods are discussed along with importance

 

and 
applications of Heterogeneous Domain Adaptation. 
Section 4 give a comparison of different Topic

 

Adaptive 
Sentiment Classi_cation methods. Sections 5 and 6 
gives an overview of the Extracting

 

Opinion Targets and 
Words and Different levels of

 

Sentiment Analysis 
respectively. Section 7 gives a

 

brief overview on how to 
work on inconsistent dictionaries. Dificulties and 
Solutions of the Polarity

 

Shifting Detection

 

are discussed 
in Section 8. Intrinsic and Extrinsic Domain Relevance is 
discussed

 

in section 9. Section 10 contained information 
regarding Content-Based and Policy-

 

Based Filtering 
policies. Section

 

11 brief about the Evaluation

 

methods 
and paper is concluded in Section 12.

 

II.

 

Preprocessing Data

 

Data provided in the form of reviews by the 
users

 

contain lot of noise which need to be removed 
before it is classified. Haddi et al.[5] have explored the

 

role of preprocessing in improving the SVM classifier 
results by selecting appropriate features. Selection of 
relevent features increase the accuracy of the

 

classification process. Different techniques used are

 

Feature Frequency, Term Frequency Inverse Document 
Frequency, Feature Presence. Boa et al. [6]

 

show the 
effect of urls, repeated letters, negation,

 

lemmatization 
and stemming on the performance

 

of the classifier. 
Bigrams and emotion features addition improves the 
accuracy of the classifier [7].
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theoretically and empirically over EA and hence it can be 
efficiently used for preprocessing [4]. Lexicon based
approach utilizes Sentiment lexicon to analyze the
sentiments in a review. Lexicon based approach can 
use dictionary or corpus to classify the sentiment words. 
Due to the shortage of labeled data, a single classifier 
can be designed to classify reviews from different 

known as lemma is called lemmatization. This reduces 
the sparseness of the data which make text classifi-
cation efficient [8]. Stemming processes a word without 
knowledge of the context. Whereas lemmatization 
considers contextual part-of-speech information while 
finding the base form of a word.

Sentiment Analysis and Opinion Mining from Social Media : A Review

There are mainly three steps in data processing, 
to-kenization, normalization and part-of-speech(POS)
tagging. Transfering inected form to base form, also 



 
 

 
  

 
 

 
 

  

ams. This leads to less features which give

 

high 
performance. Stop words are excluded as they

 

are not 
helpful for our classification.

 

III.

 

Domain Adaptation Methods

 

Domain adaptation

 

methods have been used 
for diffe-

 

rent research fields. According to the data in 
the

 

target domain, the domain adaptation methods are

 

generally divided into three categories: Supervised,

 

Semi-super-

 

vised and Unsupervised domain adaptation 
methods. Supervised domain adaptation only

 

use the 
labelled data in the target domain, Semisupervised 
domain adaptation use both the labelled

 

and unlabelled 
data in the target domain and Unsupervised domain 
adaptation use only the unlabeled data in the target 
domain [4], [10]. Xavier

 

et al. [11] proposed an efficient 
method for domain adaptation without the requirement 
of labeled data. This method classifies reviews from

 

multiple domains by extracting the topic adaptive

 

words 
from the unlabeled tweets using deep learning 

approach. SUIT model [12] considers the topic

 

aspects 
and opinion hol-

 

ders for domain adaptation

 

using 
supervised learning.

 

Daume et al. [18] proposed a feature 
augmentation method for domain adaptation. This 
method

 

augments the source domain feature space 
using

 

feature from labeled data from the target domain.

 

Cheng et al. [17] proposed semi supervised domain 
adaptation

 

method that maps source to target feature 
space. Methods proposed in [19] donot consider 
labeled data while considering learning feature 
representation. Ando et al. [20] proposed multitasking 
algorithm to select pivot features between source and 
target domains which is

 

used to build pseudo-tasks for 
building correspondence among the features.

 

Structural Correspondence Learning uses 
unlabeled data from both source and target domain to

 

obtain common features referred to as Pivots which

 

behave in the same way in both domains and to find

 

the 
correspondence between them. Non-pivot features 
which co-occur with pivot features are also

 

considered. 
This technique is tested on the part of 

Table 1:

 

Summary of the Survey of Domain Adaptation Techniques
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Author Concept Advantages Disadvantages

Bollegala et
al., (2016),
[13]

Project both source and
target domain in same
lower dimensional embed-
ding and then learning
classifier on this embed-
ded feature

Only source domain la-
beled data is used

Single rule is applied at a
time

Liu et al.,
(2015), [14]

Updates topic adaptive
features based on collab-
orative selection of unla-
belled data

Single classifier classifies
multiple topic tweets

Few topic adaptive senti-
ment words are not se-
lected due to the threshold
applied while selecting the
words

Quynh et al.,
(2015), [15]

linguistic resources are
used to generate addi-
tional training examples

Percentage of new training
examples is high

Errors of syntactic parsing
may cause problems

Xiao et al.,
(2015), [16]

Feature Space Indepen-
dent semi-supervised do-
main adaptation

Both Homogeneous and
Heterogeneous domain
adaptation is imple-
mented

-

Cheng and
Pan (2014),
[17]

Linear Transformation
from source to target
damain is used with Semi-
Supervised Adaptation

Method can be used in
general for all variety of
loss functions

Practical Domain Adap-
tation problems are not
Considered

speech tagging and show the gain in performance for 
varying amount of source and target training data [21].

J Blitzer et al [22] proposed a method where the
SCL algorithm is extended which reduces the error 
between the domains by 30 to 46 percent over
supervised baseline. Movies reviews are the most
studied domain in the early days, but at present the 
number of domains are increasing widely. The sentiment 

classification system has to collect data for each new 
domain. The pivots are selected not only by considering 
the frequency of occurrence but also by using the 
manual information of the source labels by using very 
small number of labeled information. The distance 
between the domains is obtained which is the measure 
of loss due to domain adaptation from one to another. 
Spectral Feature Alignment require only small amount of 

Sentiment Analysis and Opinion Mining from Social Media : A Review

Unigrams and bigrams can be selected as 
training features. Pang et al. [9] show that unigrams
turned out to be more effective compared to using bigr-



 
  

 

 
 

 
 

 
 

 
 

 
 

source domain labeled data and no label data from 
target

 

domain. To span the gap between source and 
target domain spectral feature alignment algorithm is

 

used to align the domain specific words into a unified 
cluster with the help of domain independent

 

words as a 
bridge. SFA provides a new representation of cross-
domain data by using the relationship

 

between domain 
specific and domain independent

 

features(pivots) by 
clustering them into the same

 

latent space. These 
clusters reduce the mismatch

 

between domain specific 
words of both domains.The classifier is trained on the 
new representation.

  

Bipartite graph

 

is constructed to study the 
relationship between domain specific and domain 
independent words [23], [24]. A sentiment sensitive

 

the

 

saurus is created by using labeled data from diverse 
source domains and unlabeled data from both

 

source 
and target domains to find the association

 

between the 
words in different domains. The created thesaurus is 
used to expand the feature vector

 

to train the binary 
classifier. The feature vector

 

expansion is done by

 

appending the additional features that represent the 
source and target domain

 

reviews to minimize the 
mismatch of features [25],

 

[13].

 

Locality Preserving Projections is a linear 
projective map that emerges by resolving the different

 

problem and by maintaining the locality of the 
constitution of data set. When two data overlap on

 

the 
other, with the decreasing dimensionalities in

 

the 
ambient space

 

the Locality Preserving Projections are 
derived by determining the optimal linear

 

estimations to 
the eigen functions of the Laplace

 

Beltrami operator. 
Training and trial data when

 

drawn from same 
distribution methods of Discriminative learning execute 
well. Infinite number of

 

labeled data are available for 
source domain, but,

 

focus is to find a classifier that 
performs effectively

 

on target with little or no labeled 
data. First, we

 

have to evaluate the conditions on which 
the classifier performs well on the target domain. 
Second,

 

having compact labeled data for target domain 
and

 

huge labeled data for source domain we need to

 

combine them during training to attain minimum

 

mistakes at test time [26].

 

a)

 

Heterogeneous Domain Adaptation

 

Domain adaptation methods assume that the 
data

 

from different domains are represented by the 
same

 

type of features with same dimensions. These

 

methods cannot classify if the dimensions of source

 

and 
target data are different. Technique of classifying such 
data is called Heterogeneous domain

 

adaptation. Shi et 
al. [27] propose a solution

 

where classification of high 
accuracy can be obtained even with the different feature 
space and

 

different data distribution. Spectral 
embedding is

 

used to unify the feature space of both 
source and

 

target domains. It proposes Heterogeneous 
spectral

 

mapping to find the common feature subspace 

by

 

understanding two feature mapping matrix. Gap

 

between the two domains in Domain adaptation

 

methods can be achieved by re-weighting source 
instances [28], [29], target instances are self-labeled

 

[30], [31], introducing new feature representations

 

[22], 
[32], [33]. These methods can be applied when

 

both 
domains have same feature representations.

 

In real 
world, feature representation in the source

 

domain can 
be completely different from target do-main while doing 
cross domain sentiment classification. Example for this 
is cross language text classification, where reviews from 
different language domains

 

are represented by words 
in different languages. Text-aided image classification 
can also be

 

executed where source domain

 

has word 
features

 

and target domain has visual features.

 

Number of approaches are employed for hetero 
geneous domain adaptation, such as heterogeneous

 

spectral mapping [27], feature mapping, feature

 

projection and transformation [34], [35], manifold

 

alignment [36] and auxiliary resources [37]. Xiao

 

et al. 
[16] proposed a method which can do homogeneous 
and heterogeneous domain adaptation

 

across domains. 
In this process, source domain is

 

assumed to have 
large set of labeled data and unlabeled data compared 
to target domain data. Instead of focusing on the feature 
divergence, each

 

domain instances are employed 
kernelized representation. Table 1 gives the summary of 
the survey of

 

various Domain Adaptation techniques.

 

IV.

 

Topic Adaptive Sentiment 
Classification

 

Sentiment classifier trained using data from one

 

domain may not give a good accuacy if the same

 

classifier is used to classify data from different do-main. 
For example, sentiment words of kitchen do-main are 
different from book domain. Blitzer et al.

 

[22] proposed 
an approach called structural correspondance learning 
for domain adaptation where

 

it used pivot features to 
bridge the gap between

 

source and target domain. Pan 
et al. [23] proposed a method called spectral feature 
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alignment where domain specific words from different 
domains are aligned into unified clusters. Bollegala et al.
[25] proposed a method for classification when we do 
not have labeled data of target domain, but we have few 
labeled data of other domains. This method 
automatically creates a sentiment sesitive Thesaurus 
using labeled and unlabeled data from multiple source 
domains. Constructed Thesaurus is then used to 
enlarge the feature vectors to train the classifier. Choi et 
al. [38] proposed linear integer programming method 
that can adapt an existing lexicon into a new one and 
find the relations among words and opinion expressions 
to find the most likely polarity of each lexicon item for the
given domain.

Subjectivity analysis is concerned with 
extracting infor- mation about opinions, sentiments and

Sentiment Analysis and Opinion Mining from Social Media : A Review



 
  

 
 

 
  

 
 

 

 
  

 

  

other private states expressed in texts. Stoyanov et

 

al. 
[39] proposed a method which collectively considers the 
relation among words and opinion statements to get the 
polarity of the sentiment words of

 

the given domain. He 
et al. [40] and Gao

 

et al.

 

[41] gave a probabilistic topic 
model which bridge each pair of domains in a semantic 
level. Compared

 

to review data, Twitter data contain 
more variety

 

topics from various domains. To train a 
topic specific classifier, labeled data is required. Aspect 
level

 

sentiment analysis detect topic, relation of topic

 

aspects, opinion words and sentiment holders in a

 

document [42], [43]. Supervised learning is used

 

in 
SUIT model [44] considering topic aspects and

 

opinion 
holders for cross domain sentiment classification. 
Mejova et al. [45], [46] have shown that

 

by considering 
news, blogs and twitter data set,

 

cross media sentiment 
classification can be done.

 

Shenghua Liu et al. [14] 
proposed that a classifier

 

designed using multiple 
domain twitter inputs can

 

be

 

used as a specific classifier 
to classify tweets from

 

a specific domain. Microblogs as 
a social media has

 

become an interesting input for 
sentiment analysis

 

[47], [48], [49]. Tumasjan et al. [50] 
concluded that

 

twitter messages are more oriented 
towards the political opinion. Supervised learning of a 
sentiment

 

classifier need labeled tweets which is 
expensive and

 

rarely available.

 

Semi-supervised Support vector machine is one

 

of the efficient model which classify data with less

 

labeled data and utilizing more unlabeled data.

 

When 
features can be easily split into different

 

views, co-
training framework [51] achieves good results.

 

V.

 

Extracting Opinion Targets and

 

Opinion Words

 

Extracting opinion target and opinion words one

 

of the important task of opinion mining. More

 

attention 
has been given to focus on these tasks

 

[52],

 

[53]. 
Extraction can be classified into sentence level and 
corpus level extraction. Identifing

 

opinion target/word in 
each sentence refers to sentence level extraction [54], 
[55]. Extractors such as

 

CRFs and HMM are built using 
sequence labelling

 

models. Huang [56] shows that 
opinion extraction

 

can be done using lexicalized HMM 
model. These

 

methods need labeled training data to 
train the

 

model. Overall performance of extraction 
reduces

 

if less

 

amount of labeled training data or 
labelled

 

data from different domains other than the 
current domain is used. Based on the transfer learning 
method Li et al. [57] proposed that Cross do-main 
sentiment extraction of opinion words/ targets. 
Performance of extraction depend more on

 

the 
relevance between source and target domain.

 

Most of the earlier methods applied a 
unsupervised extraction process. Important component 
of

 

this method is to detect opinion relations and finding 
opinion associations among the words. Hu et

 

al. [58] 
show that nearest neighbour rule can also

 

exploit 

opinion relations among words. To obtain

 

the good 
accuracy of detecting opinion relations

 

among the 
words, only considering nearest neighbour rule and co-
occurrence information is not suffficient. Specific 
patterns are designed by Zhang et

 

al. and these are 
used in [59] which considerably

 

increased recall. They 
also used HITS algorithm

 

to calculate opinion target 
confidence to increase

 

precision. Word Alignment 
Model is one of the important algorithm to extract 
opinion/target. Liu et

 

al. [60] implemented WAM based 
opinion/target

 

extraction. Thy used unsupervised WAM 
to capture opinion relations in sentences. From opinion

 

relations, random walk framework is used to extract 
opinion targets. To detect implicit topics and

 

opinon 
words, topic modeling is employed [61], [62].

 

The 
purpose of these method is not to extract opinion 
target/word, instead clustering all words with

 

respect to 
the aspect in reviews.

 

VI.

 

Sentiment Analysis at Different 
Levels

 

Sentiment analysis approaches extract 
sentiment

 

words from the text and find the orientation of

 

words to classify them as positive, negative or neutral 
words. Initially, sentiment analysis focused on

 

the 
semantic orientation of adjectives. The techniquies of 
analysing the sentiment words are largely

 

used in 
filtering text, discovering the public opinions, customer 
relationship [63]. Sentiment analysis

 

can be done at 
different levels of granularity from

 

document level to 
sentence level. Pang et al. [64]

 

proposed three machine 
learning algorithms: support vector machines, maximum 
entropy classification, and Naive Baye's give best results 
compared

 

to human created baselines [64]. Rule based 
and

 

Learning based approaches are the different 
categories of the sentiment analysis approaches. This

 

approach uses the handbuild lexicon. Bloom et al.

 

[65] 
propose a method that extracts the sentiment

 

orientation from lexicon and classify the sentence

 

or 

© 2016   Global Journals Inc.  (US)

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
V
I 
Is
su

e 
V
 V

er
sio

n 
I 

  
  
 

  81

Y
e
a
r

20
16

  
 (

)
C

document by analysis the patterns that occure in text. 
Wiebe et al. [66] provided a lexicon containing subje-
ctive words such as verbs, nouns, adjectives with their 
polarity and strength associated with them.

The polarity of word can change depending on
the context in a sentence. Number of methods are
proposed to find the sentiment orientation of words by 
considering the context of a sentence [67]. Yuen et al. 
gave an approach that calculate the sentiment
orientation of words on the basis of morphemes and its 
statistical association with strong polarised words. To 
measure semantic polarity of adjectives, wordnet can 
also be used [68]. Hu and Liu [69] proposed a method 
where linguistic patterns called sequential rules are used 
to extract opinion features from reviews which can be 
mined from labeled data which is used for training 
sequences of words. Kim et al. [70] proposed a method 
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for identifying an

 

opinion with its holder and topic, given 
a sentence

 

in on-line news media texts is extracted.

 

Millions of people daily post their comments on

 

variety of topics with the help of social media. It

 

is very 
difficult to analyse this information as it is

 

huge and 
generally it is multidimentional and time

 

varing. Wang et 
al. [71] proposed a visualization

 

system that analysis the 
sentiments that are expressed in the public comments 
and give the short

 

term trend of the sentiments. 
Relationship map is

 

used to visualize the changes in the 
attributes and

 

evolution model is used to compare the 
time varing parameters. In general, most of the machine

 

learning algorithms learn single task at a time. Liet al. 
[72] investigated on Collaborative Multitasking Learning 
algorithm. The aim of the work is to

 

focus on improving 
the performance of all tasks insted of single primary 
task. Online data is used for

 

learning so that it can be 
processed as and when

 

it arrives. This makes method 
more realistic. Collaborative Online Multitasking 
Learning algorithm

 

results in improved classification 
performance. Relation between the tasks is assumed to 
be uniform

 

and considering the relatedness degree 
among the

 

tasks still improve the performance.

 

Social media is a great place for students to 
share

 

their experiences, ideas, emotions, stress and to

 

seek social support. To understand and reect the

 

students experiences in the social media, human

 

intervention is required. As the data available is

 

huge, 
we need a automated classifier. To address

 

this 
problem, Chen et al. [73] proposed a platform

 

where 
Students Learning Experience is analysed by

 

integrating 
large scale data mining techniques and

 

Qualitative 
analysis. All students may not be active in social media, 
resulting in only few students

 

who are ready to share 
their thoughts post their

 

ideas. This work only focus on 
the text content,

 

where as images and videos also add 
lot of information. Various research work is done on 
extracting

 

sentiments from the comments the user has 
posted.

 

Tan et al. [74] worked on finding the sentiment 
variations in the twitter

 

that give insite about the reason 
behind the cause of sentiment variations. Latent

 

Dirichlet 
Allocation model is used to analyse

 

the possible reason 
for the sentiment variations.

 

VII.

 

Polarity Inconsistent Dictionaries

 

Sentiment dictionaries are used to find the 
polarity of opinion words in the reviews. Orientation of

 

opinion words in the reviews can be found using

 

sentiment dictionaries. Final orientation of a sentence or 
a document is the addition of orientation

 

of each word. 
There are different types of sentiment dictionaries. 
Domain independent sentiment

 

dictionaries are created 
manually or semi automatically used by all domain 
reviews. Major problems

 

with sentiment dictionaries is 
the inconsistency in

 

intra and inter dictionary. Fragut et 
al. [75] show

 

that inconsistency problem is NP 
complete. Inconsistency in dictionaries can be detected 

using fast  SAT solver. There are corpora and Wordnet-
based

 

sentiment polarity lexicon used. To derive 
sentiment lexicon, Wordnet based approach uses 
lexicon

 

relations defined

 

in wordnet. Measuring the rela 
tive distance of a word from examples determine

 

the 
sentiment of adjectives in Wordnet [76]. Synonyms and 
antonyms are used to increase the sets

 

of words. One 
more method to increase the set of

 

words by adding all 
synomyms of a polar word with

 

polarity and antonyms 
with reverse polarity [77].When seed polar words are 
very few such as low resource language, method suffer 
from low recall [78].

 

In QW [79] synsets in word net are 
automatically

 

anotated. If two synsets are assigned 
opposing polarites, then they are discarded. Machine 
learning

 

algorithms as well as stochastic algorithms [80] 
can

 

be used to classify words into different polarities.

  

VIII.

 

Polarity Shifting Detection

 

Sentiment classifiers are intended to classify the

 

document into different catagories. Bag of words

 

model 
is used to represent the text

 

which need to

 

be classified. 
In BOW model, the text is represented in the form of 
vector of words. As BOW

 

changes word order and 
remove some syntatic information, it is not an efficient 
model for sentiment

 

classification. To remove this 
advantage, linguistic

 

knowledge is introduced to 
enhance the efficiency

 

of BOW. However, accuracy 
improvement is very

 

less due to the basic aws in BOW. 
Polarity shift

 

problem is the most important dificuly in the 
BOW

 

model. Features are also used to determine 
whether

 

the phrase is positive or negative contextual 
polarity and overall aim is to use the phrase-level 
sentiment analysis. Several approaches are proposed to

 

address the polarity shift problem [81].

 

Polarity shift problem also has a problem of 
extra annotations and linguistic knowledge and some

 

efforts are done on solving this problem [82], [83].

 

Nakagawa et al. [84] proposes a dependency tree-
based method for Japanese and English sentiment
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classification using conditional random variables. The 
polarity of each dependency subtree of a subjective 
sentence is represented by a hidden variable. Sentiment 
classification is done by calculating the values of the 
hidden variables that are calculated in consideration of 
interaction between the variables. Liu et al. [85] 
proposes linguistic rules to deal with the problem 
together with a new option aggregation function and 
classifies the review or opinion whether it is a positive or 
negative. Ding et al. [86] came up with holistic lexicon 
based approach to determine the semantic orientation 
of the reviews obtained by opinion mining and uses a 
new function for aggregating multiple opinion words in 
the same sentence. Ding et al. [87] deals with the 
assigning of entities to the opinion extracted using a 
pattern based method. It also finds the entities of the 
comparative sentences whose entities are not explicitly
mentioned by extracting large opinions using state of 
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Turney et al. [88] proposed a concept based on

 

simple unsupervised learning algorithm for rating a

  

Figure 2:

 

Dual sentiment analysis

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

review as recommended or un-recommended. The

 

algorithm extract phrases which has adjectives or

 

adverbs and estimates the semantic orientation of

 

each 
phrase and classifies the reviews based on average 
semantic orientation. Turney et al. [89] provides general 
technique to measure semantic orientation to semantic 
association. It evaluates the

 

semantic orientation using 
Pointwise mutual information and Latentsentiment 
Analysis(LSA) methods. Determining the polarity of 
sentiment-bearing

 

expression, by considering the effect 
of interaction

 

among words or constituents is important. 
It provides novel training-based approach which 
incorporates the structural inference to the learning pro-

 

cedure by the compositional semantics [90].

 

a)

 

Data Expansion Technique

 

Expanding the

 

data has been seen in the 
handwritten recognition, where the performance of this

 

method is improved by adding few more training

 

data. 
Figure 2 gives the process for dual sentiment

 

analysis. 
In text mining, Agirre et al. [91] proposed a method to 
expand the amount of labeled

 

data unique expressions 
in definitions from wordnet for a task of word sense 
disambiguation. Fujita

 

et al. [92] proposed a method 
which provides training data using sentences from the 
external dictionary. Xia et al. [93] proposed a novel 
method of

 

data expansion. The original and reversed 
reviews are constructed in one to one correspondence. 
The

 

data expansion happens both in training stage and

 

also

 

during testing stage.

 

IX.

 

Intrinsic and Extrinsic Domain 
Relevance

 

Opinion feature indicate attribute of an entity or

 

an entity on which user express their opinions.

 

Many 
approaches are proposed to extract to classify movie 
review

 

opinion features. One of the efficient method is 
supervised learning method. This

 

method works well in 
a given domain and if it needs

 

to work for other domain, 
it has to be retrained [94].

 

By defining domain independent syntactic rules,

 

Unsupervised approaches [95] identify opinion features. 
Wiebe et al. [96] proposed a supervised

 

classification 
method to predict sentence subjectivity [97]. Pang et al. 
[98] proposed three machine

 

learning algorithms to 
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the art technique. Several techniques for opinion mining 
features based on data mining and Natural language 
processing (NLP) methods on product reviews. It gives 
a feature-based summary of a large number of product 
reviews by customer.

The original
training set

The reversed
training set

Dual Training

The original
test review

The reversed
test review

Dual Prediction

classify movie reviews into different sentiments. They are 
Naive Baye's, Support vector machines and maximum 
entropy [99].

A document can contain both Subjective and 
objective sentences. Due to this, Sentiment classifier
may consider irrelevent text. Pang et al., [100] proposed 
sentiment level subjectivity detector which identifies 
subjective or objective sentences. Then objective 
sentences are discarded which improves the 
classification results. Subjective sentences are further 
classified into positive and negative [101].

Wiebe et al. [102] proposed a method which 
uses naive Bayesian classifier to classify subjective 
sentences. One of the restriction for this method is the
shortage of training set. Riloff et al. [103] proposed 
bootstrapping method which automatically label the 
training data so that lack of training data problem is 
solved.
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X.

 

Information Filtering

 

Online social networks has become a popular 
interactive medium to communicate between the 
users.Every day there is exchange of huge amountof 
information between the users. Information may be

 

text, 
audio and video data. But the disadvantage

 

is user

 

wall 
is posted with so many different varieties of information 
in which the user may not be

 

interested in some 
perticular type of data. This

 

leads to the requirement of 
filtering the messages

 

on the user wall before posting it 
[104], [105]. User

 

is given the authority to decide which 
content type

 

of messages need to be blocked. 
Information filtering of textual documents is of a great 
concern in

 

recent years [106]. Vanetti et al. [107] 
proposed

 

a Filtered Wall(FW), an automated system 
which

 

is able to filter unwanted messages from online 
social network users. To mechanically assign with

 

every 
text messages a set of categaries based on

 

content, 
Machine learning text categorization techniques [107] 
are used.

 

a)

 

Content-Based Filtering

 

Information filtering system are used to classify

 

continuously generated messages sent by information 
produces and post messages on to the user wall

 

that 
may satisfy the user requirements. Content

 

based 
filtering system selects messages based on

 

the 
interrelationship between the contents of the

 

messages 
and the user preferences. Content-based

 

filtering 
system mainly use the machine learning

 

algorithms. 
Here classifier is trained by learning

 

from the labeled 
examples. Text is mapped into

 

a condensed 
representation of its content and then

 

applied to training 
by feature extraction procedure.

 

Hirsh et al., [108] 
improved the short text messages

 

using semisupervised 
learning strategy. It is based

 

on the combination of 
labeled training data and

 

secondary corpus of 
unlabeled data. Another approach proposed by Bobicev 
et al., [109] is to adapt

 

a statistical learning method that 
performs well.

 

b)

 

Policy based Personalization

 

Classification mechanisms for personalizing 
access

 

in OSNs is of recent interest. In [110], focus is 
on

 

twitter and each tweet

 

is associated with set of 
categories depending on its content. User selects 
tweets

 

depending on the content that they are interested

 

in. Contradicting to this, Golbeck et al., [111] proposed 
filmTrust, that gives OSN trust relationship

 

and this does 
not provide filtering policy layer by

 

layer. Hence, user 
cannot exploit the classification

 

results.

 

c)

 

Text Representation

 

To increase the performance of classifier, taking 
out

 

suitable set of features which present the text of a

 

document is necessary. There are divergent sets

 

of 
features for text classification. BOW, Document 
properties (Dp) and Contextual features(CF) [112],

 

[113] 

are considered for short text messages. BOW

 

and DP 
are used in [112] and

 

they are completely

 

derived from 
the information present with in the

 

text of the message. 
Contextual features play an

 

important role in finding the 
semantics of the messages.

 

XI.

 

Evaluation

 

The performance of variety of methods that are

 

used in sentiment analysis is compared by measuring 
few parameters like precision, recall and Fscore. 
Precision is a part of retrieved data that

 

are more 
applicable. Whereas recall is the part

 

of relevant data 
that are retrieved. F-measure

 

is calculated using both 
recall and precision. As

 

given in the Table 2, we have 
compared various

 

works with respect

 

to classifiers used, 
feature extraction methods and different measurement 
metrics. Matrics considered are Accuracy(A), 
Precision(P), Recall(R) and F-score(F).

 

XII.

 

Conclusions

 

Variety of applications of sentiment analysis are

 

widely used. They include classifing reviews, sum

 

marizing review etc. In this paper, we have discussed 
different approaches of sentiment classification and its 
performance. Domain adaptation is required as it

 

reduces number of classifier user for the

 

sentiment 
analysis. Different approaches of domain

 

adaptation are 
compared using supervised, semisupervised and unsu-

 

pervised learning methods. Heterogeneous domain 
adaptation is able to classify

 

data with different 
dimensions. Extracting opinion

 

words and target words 
is crucial for the performance of the classifier. Efficient 
algorithms for extracting opinions words and opinion 
target are discussed. Data expansion techniques are 
discussed

 

which is used in dual

 

sentiment analysis that 
reduces the number of training labeled data used for

 

the 
classification. Information filtering is a online

 

social 
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network user friendly concept which gives user exible 
choices.
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